JP2012211078A - Highly pure magnesium oxide powder - Google Patents

Highly pure magnesium oxide powder Download PDF

Info

Publication number
JP2012211078A
JP2012211078A JP2012135275A JP2012135275A JP2012211078A JP 2012211078 A JP2012211078 A JP 2012211078A JP 2012135275 A JP2012135275 A JP 2012135275A JP 2012135275 A JP2012135275 A JP 2012135275A JP 2012211078 A JP2012211078 A JP 2012211078A
Authority
JP
Japan
Prior art keywords
magnesium oxide
magnesium
magnesium hydroxide
oxide powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012135275A
Other languages
Japanese (ja)
Other versions
JP5420720B2 (en
Inventor
Kaori Yamamoto
香織 山元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateho Chemical Industries Co Ltd
Original Assignee
Tateho Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateho Chemical Industries Co Ltd filed Critical Tateho Chemical Industries Co Ltd
Priority to JP2012135275A priority Critical patent/JP5420720B2/en
Publication of JP2012211078A publication Critical patent/JP2012211078A/en
Application granted granted Critical
Publication of JP5420720B2 publication Critical patent/JP5420720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide magnesium oxide powder having a sufficiently low content of lead as an impurity.SOLUTION: The magnesium oxide powder having 99.9 mass% or more of purity and a content of Pb of less than 0.1 ppm, wherein a half-value width of a peak of surfaces (111), (200), and (220) in powder X-ray diffraction measurement using Cu-Kα-ray is 0.20° or less, respectively and Dis 0.1-10 μm.

Description

本発明は、高純度酸化マグネシウム粉末に関する。   The present invention relates to high purity magnesium oxide powder.

水酸化マグネシウム粉末及び酸化マグネシウム粉末は、種々の分野において、食品添加剤等の各種添加剤、燃料電池原料、電子部品用途、蛍光体原料、各種ターゲット材原料、超伝導薄膜下地用原料、トンネル磁気抵抗素子(TMR)用のトンネル障壁原料、PDP用保護膜原料、PDP用結晶酸化マグネシウム層原料、トナー電荷調整剤、トナー粒度調整剤、二次電子増倍電極の原料、紫外線発光半導体の原料、二次電池の原料、医薬品原料、化粧品原料等として使用され、きわめて広範な用途を持つ無機材料として注目されている。   Magnesium hydroxide powder and magnesium oxide powder are used in various fields, such as various additives such as food additives, fuel cell raw materials, electronic component applications, phosphor raw materials, various target material raw materials, raw materials for superconducting thin films, tunnel magnetism. Tunnel barrier material for resistance element (TMR), protective film material for PDP, crystalline magnesium oxide layer material for PDP, toner charge modifier, toner particle size modifier, secondary electron multiplier electrode material, ultraviolet light emitting semiconductor material, It is used as a raw material for secondary batteries, a pharmaceutical raw material, a cosmetic raw material, and the like, and has attracted attention as an inorganic material having an extremely wide range of uses.

これらの粉末としては純度がより高いものが求められており、不純物のなかでも鉛(Pb)は人体に有害な元素であること、様々な用途において悪影響を及ぼす元素であることなどから、できるだけPb含量を低減することが望まれている。   These powders are required to have a higher purity. Among impurities, lead (Pb) is an element harmful to the human body and an element that adversely affects various uses. It is desired to reduce the content.

従来、高純度の水酸化マグネシウム粉末を製造するにあたっては精製法などが行われ、高純度の酸化マグネシウム粉末を製造する方法としては、塩素雰囲気下での焼成などが行われている。鉛の含有量を記載した文献としては以下の特許文献1〜3が挙げられる。   Conventionally, in producing high-purity magnesium hydroxide powder, a purification method or the like is performed, and as a method for producing high-purity magnesium oxide powder, firing in a chlorine atmosphere or the like is performed. The following patent documents 1-3 are mentioned as literature which described content of lead.

特許文献1では、水酸化マグネシウムを700〜1300℃の温度で焼成することにより、鉛の含有量が7ppm以下の酸化マグネシウム粉末を得ることが記載されている。鉛の含有量の最小値としては表1で0.3ppmが記載されている。   Patent Document 1 describes that magnesium oxide powder having a lead content of 7 ppm or less is obtained by firing magnesium hydroxide at a temperature of 700 to 1300 ° C. In Table 1, 0.3 ppm is described as the minimum value of the lead content.

特許文献2では、海水を精製して重金属を除去したマグネシウム原料と、苛性ソーダや水酸化カルシウム等のアルカリ原料とを反応させて、鉛の含量が0.6ppmである水酸化マグネシウムを得、これを焼成して鉛の含量が0.1〜1.2ppm程度である酸化マグネシウムを製造することが記載されている。   In Patent Document 2, a magnesium raw material obtained by refining seawater to remove heavy metals and an alkali raw material such as caustic soda and calcium hydroxide are reacted to obtain magnesium hydroxide having a lead content of 0.6 ppm. It is described that magnesium oxide having a lead content of about 0.1 to 1.2 ppm is produced by firing.

特許文献3では、鉛含有量が2×10−7モル/モル以下である酸化マグネシウムを、ハロゲン源の存在下で水酸化マグネシウムを焼成することにより製造できることが記載されている。鉛の含有量として実施例では1.9〜7.4×10−8モル/モル、すなわち0.1〜1.0ppm程度が記載されている。 Patent Document 3 describes that magnesium oxide having a lead content of 2 × 10 −7 mol / mol or less can be produced by firing magnesium hydroxide in the presence of a halogen source. In the Examples, the lead content is described as 1.9 to 7.4 × 10 −8 mol / mol, that is, about 0.1 to 1.0 ppm.

また、鉛の含有量は記載されていないが、高純度の水酸化マグネシウム粉末又は酸化マグネシウム粉末を記載した文献としては以下の特許文献4〜5が挙げられる。   Moreover, although content of lead is not described, the following patent documents 4-5 are mentioned as literature which described high purity magnesium hydroxide powder or magnesium oxide powder.

特許文献4では、シュウ酸マグネシウムを1200〜1400℃で焼成することによって、高純度の酸化マグネシウム粉末を製造する方法が記載されている。   Patent Document 4 describes a method for producing high-purity magnesium oxide powder by firing magnesium oxalate at 1200 to 1400 ° C.

特許文献5では、高純度の塩化マグネシウムと精製水とを混合した水溶液に、アルカリ水溶液を反応させて水酸化マグネシウムスラリーを得、次いで、当該スラリーに凝集剤を添加して水酸化マグネシウムを沈降させ、さらに、得られた水酸化マグネシウムを水熱処理することにより、高純度の水酸化マグネシウムを製造する方法が記載されている。   In Patent Document 5, an aqueous alkali solution is mixed with an aqueous solution obtained by mixing high-purity magnesium chloride and purified water to obtain a magnesium hydroxide slurry, and then a flocculant is added to the slurry to precipitate magnesium hydroxide. Furthermore, a method for producing high-purity magnesium hydroxide by hydrothermally treating the obtained magnesium hydroxide is described.

特開2003−33159号公報JP 2003-33159 A 特開2004−345912号公報JP 2004-345912 A 特開2004−244313号公報JP 2004-244313 A 特開2007−91525号公報JP 2007-91525 A 特開2007−254250号公報JP 2007-254250 A

以上の文献で開示されていた方法によると、水酸化マグネシウムや酸化マグネシウム中の鉛の含有量は低減できるものの、さらに鉛の含有量が低い高純度品は製造できなかった。すなわち、特許文献1や3に記載の水酸化マグネシウムをハロゲン源存在下で焼成する方法では、鉛の低減に限度があり、鉛含量として少なくとも0.1ppm程度しか達成できなかった。特許文献2や5に記載の方法によると、水酸化マグネシウムの原料精製工程において、鉛が原料溶液中に再溶出してしまうので、0.1ppm未満の鉛含量を達成できない。特許文献4では鉛の含量を低減できる特別な工程はなんら記載されていないため、この文献に記載の方法では鉛含量は十分に低減できなかった。   According to the methods disclosed in the above documents, although the lead content in magnesium hydroxide and magnesium oxide can be reduced, a high-purity product with a lower lead content cannot be produced. That is, in the method of baking magnesium hydroxide described in Patent Documents 1 and 3 in the presence of a halogen source, there is a limit to the reduction of lead, and a lead content of at least about 0.1 ppm can be achieved. According to the methods described in Patent Documents 2 and 5, lead is re-eluted into the raw material solution in the raw material purification step of magnesium hydroxide, so that a lead content of less than 0.1 ppm cannot be achieved. Patent Document 4 does not describe any special process that can reduce the lead content. Therefore, the method described in this document cannot sufficiently reduce the lead content.

そこで、本発明は、不純物である鉛の含有量が十分に低い水酸化マグネシウム粉末及び酸化マグネシウム粉末を提供することを目的とする。   Therefore, an object of the present invention is to provide a magnesium hydroxide powder and a magnesium oxide powder having a sufficiently low content of lead as an impurity.

本発明者らは、上記課題を解決すべく種々検討を重ねた結果、特許文献5に記載の高純度水酸化マグネシウムの製法において、水酸化マグネシウムスラリーを高温、高攪拌下で保持する精製工程を追加実施することにより、予想外に、得られる水酸化マグネシウム粉末の鉛含量が低減されることを見出し、本発明に至ったものである。   As a result of repeated studies to solve the above-mentioned problems, the inventors of the present invention have, as a method for producing high-purity magnesium hydroxide described in Patent Document 5, a purification step for holding a magnesium hydroxide slurry at high temperature and high agitation. Unexpectedly, it has been found that the lead content of the obtained magnesium hydroxide powder is reduced, and the present invention has been achieved.

すなわち本発明は、純度が99.9質量%以上であり、Pbの含量が0.1ppm未満である、水酸化マグネシウム粉末に関する。ここで、Pbの含量は0.01ppm以下が好ましい。   That is, the present invention relates to a magnesium hydroxide powder having a purity of 99.9% by mass or more and a Pb content of less than 0.1 ppm. Here, the content of Pb is preferably 0.01 ppm or less.

また本発明は、純度が99.9質量%以上であり、Pbの含量が0.1ppm未満である、酸化マグネシウム粉末にも関する。ここで、Pbの含量は0.01ppm以下が好ましい。また、Cu−Kα線を用いた粉末X線回折法における(111)面、(200)面及び(220)面のピークの半価幅がそれぞれ0.20度以下であることが好ましく、レーザ回折散乱式粒度分布測定による累積50%粒子径(D50)が0.1〜10μmであることが好ましい。 The present invention also relates to a magnesium oxide powder having a purity of 99.9% by mass or more and a Pb content of less than 0.1 ppm. Here, the content of Pb is preferably 0.01 ppm or less. Moreover, it is preferable that the half widths of the peaks of the (111) plane, the (200) plane, and the (220) plane in the powder X-ray diffraction method using Cu—Kα rays are each 0.20 degrees or less, and laser diffraction The cumulative 50% particle diameter (D 50 ) determined by the scattering particle size distribution measurement is preferably 0.1 to 10 μm.

本発明の水酸化マグネシウム粉末及び酸化マグネシウム粉末は、不純物である鉛の含有量が十分に低いものである。   The magnesium hydroxide powder and magnesium oxide powder of the present invention have a sufficiently low content of lead as an impurity.

本発明の水酸化マグネシウム粉末又は酸化マグネシウム粉末は、水酸化マグネシウムの純度が99.9%以上ときわめて高純度であり、かつPbの含量が0.1ppm未満のものである。Pbの含量は、さらに0.05ppm以下、あるいは0.01ppm以下とすることができる。また、Pb含量の下限としては0.001ppm以上、あるいは0.005ppm以上であってよい。このように鉛含量が低い水酸化マグネシウム粉末又は酸化マグネシウム粉末は本発明において初めて得られたものであり、様々な用途において悪影響を及ぼす鉛の含量が低い意義はきわめて大きい。水酸化マグネシウムや酸化マグネシウムは鉛を吸着しやすい傾向が強く、単なる洗浄ではその含量を十分に低減することがきわめて困難であった。   The magnesium hydroxide powder or magnesium oxide powder of the present invention has an extremely high purity of magnesium hydroxide of 99.9% or more and a Pb content of less than 0.1 ppm. The Pb content can be further 0.05 ppm or less, or 0.01 ppm or less. Further, the lower limit of the Pb content may be 0.001 ppm or more, or 0.005 ppm or more. Thus, the magnesium hydroxide powder or the magnesium oxide powder having a low lead content is obtained for the first time in the present invention, and the significance of the low content of lead that adversely affects various applications is extremely great. Magnesium hydroxide and magnesium oxide have a strong tendency to adsorb lead, and it has been extremely difficult to sufficiently reduce the content by simple washing.

本発明の酸化マグネシウム粉末は結晶性が良好であるため、結晶歪が極めて小さく、結晶中に格子欠陥等が少ない。具体的には、Cu−Kα線を用いた粉末X線回折法における(111)面、(200)面及び(220)面のピークの半価幅がそれぞれ、0.20度以下のものである。当該半価幅の下限は特に限定されないが、例えば、0.070度以上、あるいは0.090度以上が可能である。   Since the magnesium oxide powder of the present invention has good crystallinity, the crystal distortion is extremely small, and there are few lattice defects in the crystal. Specifically, the half widths of the peaks of the (111) plane, (200) plane, and (220) plane in the powder X-ray diffraction method using Cu-Kα rays are each 0.20 degrees or less. . Although the minimum of the said half value width is not specifically limited, For example, it is 0.070 degree | times or more, or 0.090 degree | times or more is possible.

本発明の酸化マグネシウム粉末の平均粒径は、レーザ回折散乱式粒度分布測定による累積50%粒子径(D50)で0.1〜10μmの範囲にあることが好ましい。D50は1.0μm以上であってもよいし、1.0μm未満であってもよい。当該数値範囲の下限としては0.3μm以上がより好ましい。上限に関しては8μm以下がより好ましく、6μm以下がさらに好ましい。なお、D50とは、メジアン径のことで、粒度の累積グラフにおいて50体積%に相当する粒径(μm)をいい、粉体をある粒子径で2つに分けたとき、大きい側と小さい側が等量となる粒径のことである。 The average particle size of the magnesium oxide powder of the present invention is preferably in the range of 0.1 to 10 μm with a cumulative 50% particle size (D 50 ) by laser diffraction scattering type particle size distribution measurement. D 50 may be 1.0 μm or more, or less than 1.0 μm. The lower limit of the numerical range is more preferably 0.3 μm or more. The upper limit is more preferably 8 μm or less, and further preferably 6 μm or less. Note that D 50 is a median diameter, which is a particle diameter (μm) corresponding to 50% by volume in a cumulative particle size graph. When a powder is divided into two by a certain particle diameter, it is smaller on the larger side. It is the particle size where the sides are equal.

次に本発明の水酸化マグネシウム粉末又は酸化マグネシウム粉末を製造する方法を説明する。   Next, a method for producing the magnesium hydroxide powder or magnesium oxide powder of the present invention will be described.

本発明の水酸化マグネシウム粉末は、塩化マグネシウムと水とを混合した水溶液に、アルカリ水溶液を反応させて水酸化マグネシウムスラリーを得、次いで、当該水酸化マグネシウムスラリーを高温、高攪拌下で一定時間保持した後、このスラリーに凝集剤を添加して水酸化マグネシウムを沈降させ、上澄液を回収し、精製塩化マグネシウム水溶液を得、次いで、得られた精製塩化マグネシウム溶液とアルカリ水溶液を反応させて水酸化マグネシウムスラリーを得、得られた水酸化マグネシウムスラリーを水熱処理することによって得られる。   The magnesium hydroxide powder of the present invention is obtained by reacting an aqueous alkaline solution with an aqueous solution obtained by mixing magnesium chloride and water to obtain a magnesium hydroxide slurry, and then holding the magnesium hydroxide slurry for a certain period of time under high temperature and high agitation. Then, a flocculant is added to the slurry to precipitate magnesium hydroxide, and the supernatant is recovered to obtain a purified magnesium chloride aqueous solution. Then, the resulting purified magnesium chloride solution is reacted with an alkaline aqueous solution to produce water. It is obtained by obtaining a magnesium oxide slurry and hydrothermally treating the obtained magnesium hydroxide slurry.

このようにして得られた水酸化マグネシウム粉末を、例えば焼成炉等で焼成することにより本発明の酸化マグネシウム粉末を得ることができる。   The magnesium hydroxide powder of the present invention can be obtained by firing the magnesium hydroxide powder thus obtained in, for example, a firing furnace.

前記塩化マグネシウムとしては、高純度の無水塩化マグネシウムを使用することが好ましい。   As said magnesium chloride, it is preferable to use high purity anhydrous magnesium chloride.

前記塩化マグネシウム原料に水を混合して塩化マグネシウム水溶液とする。水の添加量は、無水塩化マグネシウムに対して2〜5質量倍であることが好ましい。このとき水は、イオン交換した超純水を使用する。特に、水中に含まれる不純物量を低減するため、イオン交換樹脂に通して電気伝導率を0.1μS/cm以下まで精製した超純水を使用することが好ましい。   Water is mixed with the magnesium chloride raw material to obtain a magnesium chloride aqueous solution. The amount of water added is preferably 2 to 5 times the mass of anhydrous magnesium chloride. At this time, ion-exchanged ultrapure water is used as the water. In particular, in order to reduce the amount of impurities contained in water, it is preferable to use ultrapure water that has been refined to an electric conductivity of 0.1 μS / cm or less through an ion exchange resin.

次に、塩化マグネシウム水溶液中に含まれるPbを精製除去するために、マグネシウムイオンに対して、反応率20モル%になるようにアルカリ源を投入し、一定時間保持した後、さらにこの水酸化マグネシウムスラリーを高温、高攪拌下で一定時間保持する。具体的には、80℃〜沸点未満程度の温度で、15,000〜30,000rpm程度の高攪拌下、10〜100時間程度の期間保持する。このようにして得た不純物を吸着した水酸化マグネシウム沈殿物を除去することによって、極めてPb量の低い高純度の精製原料溶液を得る。このような保持工程によりPb含量が低減する理由は明らかではないが、高攪拌下での高温保持によって水酸化マグネシウム粒子の結晶化が促進され、水酸化マグネシウム粒子の表面に吸着したPbが結晶中に取り込まれ、溶媒への再溶出が抑制されることが原因と推定される。なお、水酸化ナトリウムは、不純物のコンタミが少ない点で好ましいが、アンモニア水を使用することもできる。また水酸化ナトリウムは、アルカリ分が20〜50質量%のアルカリを溶解した水溶液を使用するのが好ましい。加えて、NaOH自体に混入されているPbを精製除去するために、水酸化ナトリウムを本反応に使用する前に、水酸化物イオンに対して、反応率10モル%となるように塩化マグネシウム溶液を投入して予備反応を行い、純度を高める。上記の反応により、水酸化ナトリウム水溶液中の水酸化物イオンの10モル%がマグネシウムイオンと反応し水酸化マグネシウムとして沈殿するとともに、不純物が沈殿し除去され、残った水酸化ナトリウム水溶液の不純物量が低減する。   Next, in order to purify and remove Pb contained in the magnesium chloride aqueous solution, an alkali source was added so that the reaction rate was 20 mol% with respect to magnesium ions, and after maintaining for a certain period of time, this magnesium hydroxide was further added. The slurry is held for a certain time under high temperature and high agitation. Specifically, the temperature is maintained at a temperature of about 80 ° C. to less than the boiling point for about 10 to 100 hours under high agitation of about 15,000 to 30,000 rpm. By removing the magnesium hydroxide precipitate adsorbing the impurities thus obtained, a highly purified purified raw material solution having a very low Pb amount is obtained. Although the reason why the Pb content is reduced by such a holding step is not clear, crystallization of magnesium hydroxide particles is promoted by holding at high temperature under high agitation, and Pb adsorbed on the surface of the magnesium hydroxide particles is in the crystal. This is presumed to be caused by the fact that the re-elution into the solvent is suppressed. Sodium hydroxide is preferable in terms of low impurity contamination, but ammonia water can also be used. Sodium hydroxide is preferably an aqueous solution in which an alkali having an alkali content of 20 to 50% by mass is dissolved. In addition, in order to purify and remove Pb contained in NaOH itself, before using sodium hydroxide in this reaction, a magnesium chloride solution is used so that the reaction rate becomes 10 mol% with respect to hydroxide ions. To increase the purity. By the above reaction, 10 mol% of hydroxide ions in the aqueous sodium hydroxide solution react with magnesium ions and precipitate as magnesium hydroxide, and impurities are precipitated and removed. Reduce.

次に、得られた精製MgCl溶液を、NaOH等のアルカリ源と二次反応させることにより、水酸化マグネシウムスラリーを得る。得られた水酸化マグネシウムスラリーをオートクレーブにて水熱処理(温度:100〜150℃、時間:0〜60分)を施すことで、本発明の高純度水酸化マグネシウム粉末が得られる。オートクレーブ処理することにより、結晶粒を整えることができ、また結晶中に取り込まれている不純物を溶液中に滲出させることができると考えられ、結果として不純物量を減少することができる。 Next, the resulting purified MgCl 2 solution is subjected to a secondary reaction with an alkali source such as NaOH to obtain a magnesium hydroxide slurry. By subjecting the obtained magnesium hydroxide slurry to hydrothermal treatment (temperature: 100 to 150 ° C., time: 0 to 60 minutes) in an autoclave, the high purity magnesium hydroxide powder of the present invention is obtained. By performing autoclaving, it is considered that crystal grains can be prepared and impurities incorporated in the crystals can be leached into the solution, and as a result, the amount of impurities can be reduced.

以上のようにして得られる本発明の高純度水酸化マグネシウム粉末をおよそ1000〜1500℃で焼成することにより、本発明の高純度酸化マグネシウム粉末を得ることができる。   The high-purity magnesium oxide powder of the present invention can be obtained by firing the high-purity magnesium hydroxide powder of the present invention obtained as described above at approximately 1000 to 1500 ° C.

以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

以下の実施例では、以下に示す手順に沿って各種物性等を測定した。   In the following examples, various physical properties and the like were measured according to the following procedure.

(1)水酸化マグネシウム及び酸化マグネシウムの純度測定法
水酸化マグネシウム及び酸化マグネシウムの純度は、100質量%から測定した不純物量の合計を差し引いた値として算出した。
(1) Method for measuring purity of magnesium hydroxide and magnesium oxide The purity of magnesium hydroxide and magnesium oxide was calculated as a value obtained by subtracting the total amount of impurities measured from 100% by mass.

(2)水酸化マグネシウム及び酸化マグネシウムの不純物量及びPb量測定法
水酸化マグネシウム及び酸化マグネシウムの不純物量(Si、Al、Ca、Fe、V、Cr、Mn、Ni、Zn、B、Zr、Cu、Na、K、Cl)及びPb量は、ICP質量分析装置(Agilent社製4500)を使用して試料を酸に溶解したのち測定した。
(3)粉末X線回折法
X線回折装置(商品名:RINT-UltimaIII、リガク製)を使用して、Cu−Kα線を用いた粉末X線回折法により酸化マグネシウム粉末試料を測定し、解析ソフト(商品名:Jade 6、リガク製)を用いて2θ=36.9deg付近のピークを(111)面、2θ=42.9deg付近のピークを(200)面及び2θ=62.3deg付近のピークを(220)面とし、それぞれのピークの半価幅を算出した。
(4)レーザ回折散乱式粒度分布測定法
レーザ回折散乱式粒度分布測定装置(商品名:HIRA、日機装 製)を使用して、累積50%粒子径(D50)を測定した。
(2) Impurity amount and Pb amount measuring method of magnesium hydroxide and magnesium oxide Impurity amount of magnesium hydroxide and magnesium oxide (Si, Al, Ca, Fe, V, Cr, Mn, Ni, Zn, B, Zr, Cu , Na, K, Cl) and Pb amounts were measured after dissolving the sample in acid using an ICP mass spectrometer (4500 manufactured by Agilent).
(3) Powder X-ray diffraction method Using an X-ray diffractometer (trade name: RINT-UltimaIII, manufactured by Rigaku), a magnesium oxide powder sample is measured and analyzed by a powder X-ray diffraction method using Cu-Kα rays. Using software (trade name: Jade 6, manufactured by Rigaku), the peak near 2θ = 36.9 deg is the (111) plane, the peak near 2θ = 42.9 deg is the (200) plane, and the peak near 2θ = 62.3 deg Was the (220) plane, and the half width of each peak was calculated.
(4) Laser diffraction / scattering particle size distribution measuring method Using a laser diffraction / scattering particle size distribution measuring device (trade name: HIRA, Nikkiso Co., Ltd.), a cumulative 50% particle size (D 50 ) was measured.

(実施例1)
無水塩化マグネシウム(MgCl)をイオン交換水に溶解して、約3.5mol/lの塩化マグネシウム水溶液を調製した。MgClの反応率が20モル%になるよう、MgCl溶液と25%NaOH溶液をそれぞれ定量ポンプでリアクターに送液して、連続反応を実施した。反応スラリーは、リアクターより滞留時間30分間でオーバーフローさせた。次にオーバーフローで回収したスラリーを、40℃で3時間保持した後、昇温速度が毎分2℃±0.5℃の範囲に調整して90℃まで昇温した後、ホモジナイザー(ヒスコトロンNS−50、(株)マイクロテックニチオン製)を用いて19,000rpmの高速攪拌下で48時間保持し、その後、凝集剤を生成水酸化マグネシウムに対し500ppm添加して、沈降させ、上澄液(精製塩化マグネシウム水溶液)を回収した。
Example 1
Anhydrous magnesium chloride (MgCl 2 ) was dissolved in ion-exchanged water to prepare an about 3.5 mol / l magnesium chloride aqueous solution. As the MgCl 2 in the reaction rate of 20 mol%, MgCl 2 solution and 25% NaOH solution each fed to the reactor at a metering pump, was continuously reacted. The reaction slurry was overflowed from the reactor in a residence time of 30 minutes. Next, the slurry recovered by overflow was held at 40 ° C. for 3 hours, and then the temperature rising rate was adjusted to a range of 2 ° C. ± 0.5 ° C. per minute and the temperature was raised to 90 ° C. Then, a homogenizer (Hiscotron NS- 50, manufactured by Microtech Nichion Co., Ltd.) and kept at high speed stirring at 19,000 rpm for 48 hours, after which 500 ppm of flocculant is added to the produced magnesium hydroxide, allowed to settle, and the supernatant (purified) Magnesium chloride aqueous solution) was recovered.

回収した精製塩化マグネシウム溶液を攪拌しながら、25%NaOH溶液を、MgClの反応率が90モル%となるように投入し30分間攪拌した。得られた水酸化マグネシウムスラリーをオートクレーブで130℃、1時間の水熱処理を実施した。水熱処理した水酸化マグネシウムスラリーをろ過、水洗、乾燥して、水酸化マグネシウム粉末を得た。 While stirring the recovered purified magnesium chloride solution, a 25% NaOH solution was added so that the reaction rate of MgCl 2 was 90 mol%, and the mixture was stirred for 30 minutes. The obtained magnesium hydroxide slurry was hydrothermally treated at 130 ° C. for 1 hour in an autoclave. The hydrothermally treated magnesium hydroxide slurry was filtered, washed with water and dried to obtain magnesium hydroxide powder.

得られた水酸化マグネシウム粉末を電気炉で1300℃、60分間焼成することによって、酸化マグネシウム粉末を得た。   The obtained magnesium hydroxide powder was baked in an electric furnace at 1300 ° C. for 60 minutes to obtain a magnesium oxide powder.

これら水酸化マグネシウム粉末及び酸化マグネシウム粉末の鉛含有量及び純度を測定した結果を表1に示す。酸化マグネシウム粉末の粉末X線回折法における測定結果、及び累積50%粒子径の測定結果を表2に示す。   Table 1 shows the results of measuring the lead content and purity of these magnesium hydroxide powder and magnesium oxide powder. Table 2 shows the measurement result of the magnesium oxide powder in the powder X-ray diffraction method and the measurement result of the cumulative 50% particle diameter.

(比較例1)
無水塩化マグネシウム(MgCl)をイオン交換水に溶解して、約3.5mol/lの塩化マグネシウム水溶液を調製した。MgClの反応率が20モル%になるよう、MgCl溶液と25%NaOH溶液をそれぞれ定量ポンプでリアクターに送液して、連続反応を実施した。反応スラリーは、リアクターより滞留時間30分間でオーバーフローさせた。次にオーバーフローで回収したスラリーを攪拌しながら、凝集剤を生成水酸化マグネシウムに対し500ppm添加して、沈降させ、上澄液(精製塩化マグネシウム水溶液)を回収した。
(Comparative Example 1)
Anhydrous magnesium chloride (MgCl 2 ) was dissolved in ion-exchanged water to prepare an about 3.5 mol / l magnesium chloride aqueous solution. As the MgCl 2 in the reaction rate of 20 mol%, MgCl 2 solution and 25% NaOH solution each fed to the reactor at a metering pump, was continuously reacted. The reaction slurry was overflowed from the reactor in a residence time of 30 minutes. Next, while stirring the slurry recovered by the overflow, 500 ppm of a flocculant was added to the produced magnesium hydroxide and allowed to settle, and the supernatant (purified magnesium chloride aqueous solution) was recovered.

回収した精製塩化マグネシウム溶液を攪拌しながら、25%NaOH溶液を、MgClの反応率が90モル%となるように投入し30分間攪拌した。得られた水酸化マグネシウムスラリーをオートクレーブで130℃、1時間の水熱処理を実施した。水熱処理した水酸化マグネシウムスラリーをろ過、水洗、乾燥して、水酸化マグネシウム粉末を得た。以上の比較例1の工程は特許文献5に記載の方法に準じたものである。 While stirring the recovered purified magnesium chloride solution, a 25% NaOH solution was added so that the reaction rate of MgCl 2 was 90 mol%, and the mixture was stirred for 30 minutes. The obtained magnesium hydroxide slurry was hydrothermally treated at 130 ° C. for 1 hour in an autoclave. The hydrothermally treated magnesium hydroxide slurry was filtered, washed with water and dried to obtain magnesium hydroxide powder. The steps of Comparative Example 1 described above are in accordance with the method described in Patent Document 5.

得られた水酸化マグネシウム粉末を電気炉で1300℃、60分間焼成することによって、酸化マグネシウム粉末を得た。   The obtained magnesium hydroxide powder was baked in an electric furnace at 1300 ° C. for 60 minutes to obtain a magnesium oxide powder.

これら水酸化マグネシウム粉末及び酸化マグネシウム粉末の鉛含有量及び純度を測定した結果を表1に示す。酸化マグネシウム粉末の粉末X線回折法における測定結果、及び累積50%粒子径の測定結果を表2に示す。   Table 1 shows the results of measuring the lead content and purity of these magnesium hydroxide powder and magnesium oxide powder. Table 2 shows the measurement result of the magnesium oxide powder in the powder X-ray diffraction method and the measurement result of the cumulative 50% particle diameter.

(比較例2)
濃度が2.0mol/lの塩化マグネシウム溶液に対して、得られる酸化マグネシウムの濃度が1.2mol/lとなるように水酸化カルシウムスラリーを添加した。この混合溶液を、70℃で2時間反応させ、ろ過、水洗、乾燥して、水酸化マグネシウムを得た。
(Comparative Example 2)
The calcium hydroxide slurry was added to the magnesium chloride solution having a concentration of 2.0 mol / l so that the obtained magnesium oxide concentration was 1.2 mol / l. This mixed solution was reacted at 70 ° C. for 2 hours, filtered, washed with water, and dried to obtain magnesium hydroxide.

さらに、この水酸化マグネシウムを、ロータリーキルンで1000℃、20分間焼成、破砕し、酸化マグネシウム粉末を得た。   Furthermore, this magnesium hydroxide was baked and crushed at 1000 ° C. for 20 minutes in a rotary kiln to obtain a magnesium oxide powder.

これら水酸化マグネシウム粉末及び酸化マグネシウム粉末の鉛含有量及び純度を測定した結果を表1に示す。酸化マグネシウム粉末の粉末X線回折法における測定結果、及び累積50%粒子径の測定結果を表2に示す。   Table 1 shows the results of measuring the lead content and purity of these magnesium hydroxide powder and magnesium oxide powder. Table 2 shows the measurement result of the magnesium oxide powder in the powder X-ray diffraction method and the measurement result of the cumulative 50% particle diameter.

(比較例3)
6水和塩化マグネシウム225gを蒸留水500mLで溶解し、800rpmで攪拌させながら水酸化ナトリウム80gを蒸留水500mLに溶解させた溶液を投入し、10分後攪拌を止め、1.5hr放置後、ろ過、水洗、乾燥させ水酸化マグネシウム粉末を得た。
(Comparative Example 3)
Dissolve 225 g of hexahydrate magnesium chloride in 500 mL of distilled water, add a solution prepared by dissolving 80 g of sodium hydroxide in 500 mL of distilled water while stirring at 800 rpm, stop stirring after 10 minutes, leave it for 1.5 hr, and filter , Washed with water and dried to obtain magnesium hydroxide powder.

さらに電気炉で1100℃、60分間焼成し、酸化マグネシウム粉末を得た。   Furthermore, it baked at 1100 degreeC for 60 minutes with the electric furnace, and obtained the magnesium oxide powder.

これら水酸化マグネシウム粉末及び酸化マグネシウム粉末の鉛含有量及び純度を測定した結果を表1に示す。酸化マグネシウム粉末の粉末X線回折法における測定結果、及び累積50%粒子径の測定結果を表2に示す。   Table 1 shows the results of measuring the lead content and purity of these magnesium hydroxide powder and magnesium oxide powder. Table 2 shows the measurement result of the magnesium oxide powder in the powder X-ray diffraction method and the measurement result of the cumulative 50% particle diameter.

Figure 2012211078
Figure 2012211078

Figure 2012211078
Figure 2012211078

表1より、実施例1で製造した水酸化マグネシウム粉末及び酸化マグネシウム粉末は、比較例1〜3のそれらと比較すると鉛含有量がきわめて低いものであった。   From Table 1, the magnesium hydroxide powder and the magnesium oxide powder produced in Example 1 had extremely low lead content as compared with those in Comparative Examples 1 to 3.

本発明の高純度水酸化マグネシウム粉末及び高純度酸化マグネシウム粉末は、種々の分野において、食品添加剤等の各種添加剤、燃料電池原料、電子部品用途、蛍光体原料、各種ターゲット材原料、超伝導薄膜下地用原料、トンネル磁気抵抗素子(TMR)用のトンネル障壁原料、PDP用保護膜原料、PDP用結晶酸化マグネシウム層原料、トナー電荷調整剤、トナー粒度調整剤、二次電子増倍電極の原料、紫外線発光半導体の原料、二次電池の原料、医薬品原料、化粧品原料等として使用することができる。   The high-purity magnesium hydroxide powder and high-purity magnesium oxide powder of the present invention are used in various fields, such as various additives such as food additives, fuel cell raw materials, electronic component applications, phosphor raw materials, various target material raw materials, superconductivity. Thin film base material, tunnel barrier material for tunnel magnetoresistive element (TMR), protective film material for PDP, crystalline magnesium oxide layer material for PDP, toner charge adjusting agent, toner particle size adjusting agent, secondary electron multiplying electrode raw material It can be used as a raw material for ultraviolet light emitting semiconductors, a raw material for secondary batteries, a pharmaceutical raw material, a cosmetic raw material, and the like.

Claims (4)

純度が99.9質量%以上であり、Pbの含量が0.1ppm未満である、酸化マグネシウム粉末。   Magnesium oxide powder having a purity of 99.9% by mass or more and a Pb content of less than 0.1 ppm. Pbの含量が0.01ppm以下である、請求項1に記載の酸化マグネシウム粉末。   The magnesium oxide powder according to claim 1, wherein the Pb content is 0.01 ppm or less. Cu−Kα線を用いた粉末X線回折法における(111)面、(200)面及び(220)面のピークの半価幅がそれぞれ0.20度以下である、請求項1又は2に記載の酸化マグネシウム粉末。   3. The half width of peaks of (111) plane, (200) plane, and (220) plane in powder X-ray diffraction using Cu—Kα rays is 0.20 degrees or less, respectively. Magnesium oxide powder. レーザ回折散乱式粒度分布測定による累積50%粒子径(D50)が0.1〜10μmである、請求項1〜3のいずれかに記載の酸化マグネシウム粉末。

Cumulative 50% particle diameter measured by a laser diffraction scattering particle size distribution measurement (D 50) is 0.1 to 10 [mu] m, magnesium oxide powder according to claim 1.

JP2012135275A 2012-06-15 2012-06-15 High purity magnesium oxide powder Active JP5420720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012135275A JP5420720B2 (en) 2012-06-15 2012-06-15 High purity magnesium oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012135275A JP5420720B2 (en) 2012-06-15 2012-06-15 High purity magnesium oxide powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008090217A Division JP5039624B2 (en) 2008-03-31 2008-03-31 High purity magnesium hydroxide powder

Publications (2)

Publication Number Publication Date
JP2012211078A true JP2012211078A (en) 2012-11-01
JP5420720B2 JP5420720B2 (en) 2014-02-19

Family

ID=47265388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012135275A Active JP5420720B2 (en) 2012-06-15 2012-06-15 High purity magnesium oxide powder

Country Status (1)

Country Link
JP (1) JP5420720B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034119A (en) * 1998-07-15 2000-02-02 Ube Material Industries Ltd Magnesium oxide and its production
JP2002255544A (en) * 2001-02-23 2002-09-11 Ube Material Industries Ltd Highly pure, highly oriented magnesium hydroxide powder and method for producing the same
JP2003033159A (en) * 2001-07-24 2003-02-04 Kyowa Hakko Kogyo Co Ltd Magnesium oxide powder for food additive
JP2004244313A (en) * 2004-04-19 2004-09-02 Ube Material Industries Ltd Magnesium oxide
JP2004345912A (en) * 2003-05-23 2004-12-09 Kyowa Chem Ind Co Ltd Heavy metal-free magnesium oxide and method for preparing raw material for the same
JP2006069811A (en) * 2004-08-31 2006-03-16 Tateho Chem Ind Co Ltd Single crystal magnesium oxide sintered compact and protective film for plasma display panel
JP2007254250A (en) * 2006-03-27 2007-10-04 Tateho Chem Ind Co Ltd Highly pure magnesium hydroxide powder and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034119A (en) * 1998-07-15 2000-02-02 Ube Material Industries Ltd Magnesium oxide and its production
JP2002255544A (en) * 2001-02-23 2002-09-11 Ube Material Industries Ltd Highly pure, highly oriented magnesium hydroxide powder and method for producing the same
JP2003033159A (en) * 2001-07-24 2003-02-04 Kyowa Hakko Kogyo Co Ltd Magnesium oxide powder for food additive
JP2004345912A (en) * 2003-05-23 2004-12-09 Kyowa Chem Ind Co Ltd Heavy metal-free magnesium oxide and method for preparing raw material for the same
JP2004244313A (en) * 2004-04-19 2004-09-02 Ube Material Industries Ltd Magnesium oxide
JP2006069811A (en) * 2004-08-31 2006-03-16 Tateho Chem Ind Co Ltd Single crystal magnesium oxide sintered compact and protective film for plasma display panel
JP2007254250A (en) * 2006-03-27 2007-10-04 Tateho Chem Ind Co Ltd Highly pure magnesium hydroxide powder and method for producing the same

Also Published As

Publication number Publication date
JP5420720B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
TWI429592B (en) Magnesium oxide particle aggregate and method of producing the same
Abellán et al. Hexagonal nanosheets from the exfoliation of Ni2+-Fe3+ LDHs: a route towards layered multifunctional materials
JP5686563B2 (en) Magnesium hydroxide fine particles and magnesium oxide fine particles, and methods for producing them
JP5415215B2 (en) Magnesium oxide powder having excellent dispersibility and method for producing the same
Gömpel et al. Facile hydrothermal synthesis of crystalline Ta 2 O 5 nanorods, MTaO 3 (M= H, Na, K, Rb) nanoparticles, and their photocatalytic behaviour
JP2019513117A5 (en)
JP2013103851A (en) Lithium iodide anhydrate, method for producing lithium iodide anhydrate, solid electrolyte and lithium ion battery
JP2016036804A (en) Adsorbent, method for producing adsorbent and adsorption method using adsorbent
KR101904579B1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
CN112714751B (en) Active high-purity magnesium oxide and production method thereof
KR20150009701A (en) Method of manufacturing precipitated calcium carbonate using a sodium-removed shell
JP5039624B2 (en) High purity magnesium hydroxide powder
KR101469298B1 (en) magnesium oxide powder
TWI615359B (en) Adsorption material dispersion and adsorption method
WO2012127771A1 (en) Process for producing sintered magnesium oxide material
JP2013100200A (en) Method for producing lanthanum titanate compound and lanthanum titanate compound
JP5420720B2 (en) High purity magnesium oxide powder
CN109553121B (en) Preparation method of high-purity low-sodium aluminum hydroxide
JP2014088284A (en) Method for refining phosphoric acid solution, phosphate, and method for producing the same
JP4778111B1 (en) Magnesium hydroxide and method for producing the same
JP5050785B2 (en) Method for producing powder mainly composed of indium oxide
Samberg et al. PbO networks composed of single crystalline nanosheets synthesized by a facile chemical precipitation method
WO2015136816A1 (en) Indium hydroxide powder and indium oxide powder
JP2016172658A (en) Manufacturing method of nickel oxide powder
JP5447471B2 (en) Powder mainly composed of indium oxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131120

R150 Certificate of patent or registration of utility model

Ref document number: 5420720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250