JP2014088284A - Method for refining phosphoric acid solution, phosphate, and method for producing the same - Google Patents

Method for refining phosphoric acid solution, phosphate, and method for producing the same Download PDF

Info

Publication number
JP2014088284A
JP2014088284A JP2012239191A JP2012239191A JP2014088284A JP 2014088284 A JP2014088284 A JP 2014088284A JP 2012239191 A JP2012239191 A JP 2012239191A JP 2012239191 A JP2012239191 A JP 2012239191A JP 2014088284 A JP2014088284 A JP 2014088284A
Authority
JP
Japan
Prior art keywords
phosphoric acid
acid solution
exchange resin
phosphate
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012239191A
Other languages
Japanese (ja)
Inventor
Chie Sakudo
千枝 作道
Sachiko Numa
幸子 沼
Manabu Takanaga
学 高長
Naoyuki Kaneko
直征 金子
Shinji Tokidaka
伸二 時高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHOSPHORUS CHEM IND
RIN KAGAKU KOGYO KK
Original Assignee
PHOSPHORUS CHEM IND
RIN KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PHOSPHORUS CHEM IND, RIN KAGAKU KOGYO KK filed Critical PHOSPHORUS CHEM IND
Priority to JP2012239191A priority Critical patent/JP2014088284A/en
Publication of JP2014088284A publication Critical patent/JP2014088284A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform the refining of a phosphoric acid solution in such a manner that a sulfur compound, further, impurities such as Na, Mn and Ni are reduced from the phosphoric acid solution, particularly, and to provide phosphoric metal salt such as ferric phosphate with reduced impurities, in a method of producing phosphoric metal salt such as ferric phosphate by reacting a phosphoric acid solution and a metal raw material in a relatively thin water solution in a state where phosphoric acid is surplus, by refining the phosphoric acid solution containing a sulfur compound after the filtering of phosphoric metal salt and recycling the same to a reaction step.SOLUTION: A phosphoric acid solution with a phosphoric acid concentration of 5 to 30 mass% containing a sulfur compound is contacted with an anion exchange resin, more preferably, with a weakly basic anion exchange resin to reduce the sulfur compound. Further, by contacting the same with a strongly acidic cation exchange resin, Na, Mn and Ni are reduced.

Description

本発明は、硫黄化合物含有リン酸液の精製方法、精製されたリン酸液を用いて製造されるリン酸塩、およびその製造方法に関する。特に、リチウムイオン二次電池の正極活物質となるリン酸鉄リチウムに代表されるLiMPO4やLiaM1bM2c(PO4)dの原料となるリン酸第二鉄等のリン酸金属塩の効率的製造方法に利用できる。 The present invention relates to a method for purifying a sulfur compound-containing phosphoric acid solution, a phosphate produced using the purified phosphoric acid solution, and a method for producing the same. In particular, metal phosphates such as LiMPO 4 typified by lithium iron phosphate, which is a positive electrode active material of lithium ion secondary batteries, and ferric phosphate, which is a raw material of Li a M1 b M2 c (PO4) d , are used. It can be used for an efficient manufacturing method.

リチウムイオン電池の正極活物質として、電池としての性能が安全で原料費が安価であることからリン酸鉄リチウムをはじめとしたLiMPO4が注目され、特許文献1〜4ではリン酸鉄リチウムの前駆体としてリン酸第二鉄の製造方法が開示されている。 As a positive electrode active material of a lithium ion battery, LiMPO 4 including lithium iron phosphate has attracted attention because of its safe battery performance and low raw material cost. A method for producing ferric phosphate as a body is disclosed.

特許文献2には、鉄(II)又は鉄(III)あるいは鉄(II)及び鉄(III)の混合物を5〜50質量%のリン酸と反応させ、酸化剤を添加することで鉄(II)を鉄(III)に変換する方法が記載されているが、反応は激しい撹拌を必要とし、得られるオルトリン酸鉄(III)の結晶寸法は、100nm未満の平均一次粒子径を有しており、非常に微細な一次粒子径を持つ。また、熱水反応容器にてリン酸鉄二水和物を合成しており、スケールアップする場合の設備としては費用がかかる。 In Patent Document 2, iron (II) or iron (III) or a mixture of iron (II) and iron (III) is reacted with 5 to 50% by mass of phosphoric acid, and an oxidizing agent is added to thereby add iron (II ) Is converted to iron (III), but the reaction requires vigorous stirring, and the resulting iron (III) orthophosphate crystal size has an average primary particle size of less than 100 nm. It has a very fine primary particle size. Moreover, since iron phosphate dihydrate is synthesized in a hot water reaction vessel, it is expensive as equipment for scale-up.

特許文献3には、塩化鉄あるいは硫酸鉄の水溶液を用い、リン酸との反応時に界面活性剤を添加する方法が記載されており、平均粒径が0.2〜1μmのナノ粒子が得られている。
特許文献4では、緩衝液を使うことによりpH変動が小さく微粒で粒径の揃ったリン酸鉄粉末が得られることが記載されている。これらの方法は硫酸鉄や塩化鉄を出発原料とするため、電池特性に悪影響を及ぼす硫酸塩あるいは塩化物を不純物として包含し、また、きわめて微細な粉末として得られる。微細性は正極材の導電性向上に作用するが、製造工程においては濾過漏れを起こしやすく作業性や効率が悪く、また、正極材作製の際に粉塵が発生しやすく、吸引防止や飛散防止等、作業環境の整備が必要となる。
Patent Document 3 describes a method in which an aqueous solution of iron chloride or iron sulfate is used and a surfactant is added at the time of reaction with phosphoric acid, and nanoparticles having an average particle size of 0.2 to 1 μm are obtained. .
Patent Document 4 describes that by using a buffer solution, an iron phosphate powder having a small pH variation and a uniform particle size can be obtained. Since these methods use iron sulfate or iron chloride as starting materials, they contain sulfates or chlorides that have an adverse effect on battery characteristics as impurities, and can be obtained as extremely fine powders. Fineness affects the conductivity of the positive electrode material, but in the manufacturing process, filtration leakage is likely to occur, workability and efficiency are poor, dust is easily generated during the production of the positive electrode material, prevention of suction and scattering, etc. The work environment needs to be improved.

一方、特許文献1には、酸化鉄又は含水酸化鉄とリン化合物を比較的薄い水溶液中で反応させ、反応濃度が鉄0.1〜3.0モル/L、P/Feモル比が1〜10、pH3以下で反応させることにより、微細な一次粒子が凝集した、比表面積が高く、不純物も極めて少ないリン酸第二鉄が数〜数十μmといった二次凝集粒子の形で得られ、設備的にも加熱できる反応容器と撹拌装置のみで合成することが可能である。この製造方法で得られるリン酸第二鉄は、一次粒子が微細であるため、正極材としたときの電池性能は良好であり、凝集した二次粒子のため取扱いやすいサイズとなる利点があるが、リン酸過剰反応であり、未反応のリン酸をその都度廃棄することは経済的でないばかりか、中和や沈殿処理が必要となり、廃棄物も発生する。一方、繰り返し使用した場合には、鉄原料やリン酸中に含まれる不純物が系内に蓄積し、生成するリン酸第二鉄中に不純物が残存することとなる。 On the other hand, in Patent Document 1, iron oxide or hydrous iron oxide and a phosphorus compound are reacted in a relatively thin aqueous solution, the reaction concentration is iron 0.1 to 3.0 mol / L, the P / Fe molar ratio is 1 to 10, and the pH is 3 or less. By reacting with, fine primary particles are agglomerated, ferric phosphate with high specific surface area and very few impurities can be obtained in the form of secondary agglomerated particles such as several to several tens of μm. It is possible to synthesize with only a reaction vessel and a stirring device that can be used. The ferric phosphate obtained by this production method has fine primary particles, so the battery performance when used as a positive electrode material is good, and there is an advantage that the size becomes easy to handle because of the aggregated secondary particles. In addition, it is an excessive reaction of phosphoric acid, and it is not economical to discard unreacted phosphoric acid each time, and neutralization and precipitation are required, and waste is also generated. On the other hand, when repeatedly used, impurities contained in the iron raw material and phosphoric acid accumulate in the system, and the impurities remain in the ferric phosphate produced.

リン酸第二鉄を二次電池の正極材原料とする場合、電池の短絡防止や容量の向上のため、不純物混入量がより少ないことが求められる。原料となるリン酸では高純度品を使用することができるが、鉄原料となる酸化鉄または含水酸化鉄の高純度品は高価であり、また、一般品を用いた場合にはリン酸第二鉄析出後の脱水母液を繰り返し使用していくと、反応液中や生成物中のS、Na、Mn、Ni等の不純物量が、繰り返し回数と共に増大し、反応や生成物の品質に悪影響を及ぼす。特に硫黄は多くの場合硫酸塩の形態で存在し、正極材中では望ましくないレドックス反応を引き起こすとして、硫黄化合物含有量の低いもの、少なくとも300ppm以下のものが求められている。また、Na、Mn、Niは金属原料中に不純物として存在し、更に、製造装置からの溶出によっても生成物の不純物となる。Naは、正極材中ではLiサイトを占有するので、容量低下を引き起こし、少なくとも100ppm以下のものが求められており、また、MnやNi等は電池性能に影響を及ぼすので、品質を安定させるためには、できるだけ低減されなければならない。 When ferric phosphate is used as a positive electrode material of a secondary battery, it is required that the amount of impurities mixed is smaller in order to prevent short-circuiting of the battery and improve capacity. High-purity products can be used as the raw material phosphoric acid, but high-purity products of iron oxide or hydrous iron oxide as the iron raw material are expensive. If the dehydrated mother liquor after iron precipitation is used repeatedly, the amount of impurities such as S, Na, Mn, and Ni in the reaction solution and in the product will increase with the number of repetitions, adversely affecting the quality of the reaction and product. Effect. In particular, sulfur is often present in the form of a sulfate, and in order to cause an undesirable redox reaction in the positive electrode material, a sulfur compound having a low content, that is, at least 300 ppm or less is required. Further, Na, Mn, and Ni are present as impurities in the metal raw material, and further become product impurities by elution from the production apparatus. Since Na occupies the Li site in the positive electrode material, it causes a decrease in capacity and is required to be at least 100 ppm or less, and Mn, Ni, etc. affect the battery performance, so that the quality is stabilized. Must be reduced as much as possible.

リン酸から硫酸根を除去する方法として、特許文献5にはバリウム塩を添加した後、硫酸バリウムを除去する方法があるが、この方法によるリン酸精製では添加したバリウム塩が汚染の原因となる可能があり、リチウムイオン二次電池正極材料用として不適切である。また、リン酸からNa、Mn、Ni等の不純物を同時に低減する方法は知られていない。 As a method for removing sulfate radicals from phosphoric acid, Patent Document 5 has a method of removing barium sulfate after adding a barium salt. In the phosphoric acid purification by this method, the added barium salt causes contamination. It is possible and is inappropriate for the positive electrode material of a lithium ion secondary battery. In addition, there is no known method for simultaneously reducing impurities such as Na, Mn, and Ni from phosphoric acid.

WO2011/030786号公報WO2011 / 030786 Publication 特表2011-500492号公報Special table 2011-500492 特表2011-505332号公報Special table 2011-505332 gazette WO2001/067839号公報WO2001 / 067839 Publication 特開昭52-97390号公報JP 52-97390 A

本発明は、リン酸液から硫黄化合物、更にはNa、Mn、Ni等の不純物を低減し、精製することを課題とする。特にリン酸液と金属原料を比較的薄い水溶液中でリン酸過剰で反応させて、リン酸第二鉄等のリン酸金属塩を製造する方法において、リン酸金属塩ろ過後の硫黄化合物含有リン酸液を精製し、反応工程へリサイクルして使用し、かつ、不純物の少ないリン酸第二鉄等のリン酸金属塩を提供することを課題とする。 It is an object of the present invention to reduce and purify sulfur compounds and further impurities such as Na, Mn and Ni from a phosphoric acid solution. In particular, in a method of producing a phosphoric acid metal salt such as ferric phosphate by reacting a phosphoric acid solution with a metal raw material in a relatively thin aqueous solution in an excessive amount of phosphoric acid, the sulfur compound-containing phosphorus after filtration of the phosphoric acid metal salt is used. It is an object of the present invention to provide a phosphate metal salt such as ferric phosphate that is purified from an acid solution, recycled to the reaction step, and used with less impurities.

本発明者らは、先の課題を解決すべく鋭意研究を重ねた結果、陰イオンであるリン酸イオンが多量に存在する中で、硫酸イオンの形態で存在すると思われる硫黄化合物を陰イオン交換樹脂で低減できることを発見し、本発明に至った。
すなわち、本発明は以下のとおりである。
(1)硫黄化合物含有リン酸液を陰イオン交換樹脂に接触させることにより、硫黄化合物を低減することを特徴とするリン酸液の精製方法。
(2)陰イオン交換樹脂が弱塩基性陰イオン交換樹脂であることを特徴とする上記(1)記載のリン酸の精製方法。
(3)さらに強酸性陽イオン交換樹脂に接触させることによりNa、Mn、Niを低減することを特徴とする、上記(1)または(2)記載のリン酸液の精製方法。
(4)前記強酸性陽イオン交換樹脂への通液がSV=2以下で処理することを特徴とする上記(3)記載のリン酸液の精製方法。
(5)上記(1)〜(4)のいずれかに記載のリン酸液の精製方法によって得られるリン酸液を用いて、金属原料と反応させてリン酸金属塩を製造する方法。
(6)前記金属原料が酸化鉄および/または酸化水酸化鉄であることを特徴とする請求項5記載のリン酸第二鉄を製造する方法。
(7)上記(5)または(6)記載の方法により製造されるリン酸金属塩。
As a result of intensive studies to solve the above problems, the present inventors have conducted anion exchange on sulfur compounds that are thought to exist in the form of sulfate ions in the presence of a large amount of anion phosphate ions. It discovered that it could reduce with resin and came to this invention.
That is, the present invention is as follows.
(1) A method for purifying a phosphoric acid solution, comprising reducing a sulfur compound by bringing a sulfur compound-containing phosphoric acid solution into contact with an anion exchange resin.
(2) The method for purifying phosphoric acid according to the above (1), wherein the anion exchange resin is a weakly basic anion exchange resin.
(3) The method for purifying a phosphoric acid solution according to (1) or (2) above, wherein Na, Mn, and Ni are further reduced by contacting with a strongly acidic cation exchange resin.
(4) The method for purifying a phosphoric acid solution according to the above (3), wherein the liquid passing through the strongly acidic cation exchange resin is treated with SV = 2 or less.
(5) A method for producing a metal phosphate metal salt by reacting with a metal raw material using a phosphoric acid solution obtained by the method for purifying a phosphoric acid solution according to any one of (1) to (4) above.
(6) The method for producing ferric phosphate according to claim 5, wherein the metal raw material is iron oxide and / or iron oxide hydroxide.
(7) A metal phosphate produced by the method described in (5) or (6) above.

本発明によれば、硫黄化合物含有リン酸液を精製できる。また、精製されたリン酸液を原料としてリン酸塩を製造でき、特に、不純物量が少なく、リチウムイオン電池正極材の前駆体に適した金属リン酸塩を提供することができる。   According to the present invention, a sulfur compound-containing phosphoric acid solution can be purified. In addition, a phosphate can be produced using a purified phosphoric acid solution as a raw material, and in particular, a metal phosphate having a small amount of impurities and suitable for a precursor of a lithium ion battery positive electrode material can be provided.

まず、本発明に係るリン酸液について述べる。本発明に使用するリン酸液は、硫黄化合物含有リン酸液であり、組成、不純物含量、および最終用途に応じて適宜選択できるが、例えば、酸化金属又は含水酸化金属とリン酸をリン酸過剰で反応させてリン酸金属塩を製造した後の母液を用いる。リン酸金属塩としては、リン酸鉄、リン酸マンガン、リン酸バナジウム、リン酸スズ、リン酸チタン、リン酸クロム、リン酸マグネシウム、リン酸コバルト、リン酸ニッケル、リン酸亜鉛等を挙げることができるが、以下ではリン酸第二鉄を代表例として説明する。
酸化鉄又は含有酸化鉄とリン酸からリン酸過剰に反応させてリン酸第二鉄を製造する場合、リン酸第二鉄含水和物製造後の母液中に含まれる不純物は、主に原料中に含まれる不純物に起因し、加えて、製造設備に由来する不純物もある。例えば含水酸化鉄中に多く存在する不純物には、硫黄、ナトリウム、マンガン等があり、反応母液の繰り返し使用により、リン酸第二鉄中に不純物として増大する。これら不純物をリン酸第二鉄等のリン酸塩中に混入させないために、脱水母液等リン酸液をイオン交換樹脂で処理し、不純物を低減することができる。リン酸第二鉄を製造する場合、例えば、BET比表面積が50m2/g以上の微細な酸化鉄粒子粉末または含水酸化鉄粒子粉末とリン化合物とを溶液中で60〜100℃の温度領域で撹拌しながら、モル換算でP/Fe比が1〜10の範囲、pH3以下、反応濃度0.1〜3.0モル/L(Fe濃度換算)で反応させた後の脱水母液を用いることができる。この場合、リン酸濃度は30質量%以下となるが、リン酸濃度が5質量%未満では原料としては薄い。したがって、リン酸濃度5〜30質量%のものをを用いることが好ましい。脱水母液に新品のリン酸を追加して反応させることができ、脱水母液をその都度イオン交換樹脂で処理することにより、不純物の極めて少ない品質の安定したリン酸第二鉄が得られるので極めて好ましいが、生成するリン酸第二鉄の品質に影響を及ぼさない範囲で、脱水母液に新品のリン酸を追加して反応させることを、複数回繰り返した後イオン交換樹脂で処理することもできる。
First, the phosphoric acid solution according to the present invention will be described. The phosphoric acid solution used in the present invention is a sulfur compound-containing phosphoric acid solution, and can be appropriately selected according to the composition, impurity content, and end use. For example, a metal oxide or a hydrated metal and phosphoric acid may contain excess phosphoric acid. The mother liquor after producing the metal phosphate by reacting with is used. Examples of metal phosphates include iron phosphate, manganese phosphate, vanadium phosphate, tin phosphate, titanium phosphate, chromium phosphate, magnesium phosphate, cobalt phosphate, nickel phosphate, zinc phosphate, etc. In the following, ferric phosphate will be described as a representative example.
When ferric phosphate is produced by reacting iron oxide or contained iron oxide and phosphoric acid in excess, the impurities contained in the mother liquor after the production of ferric phosphate hydrate is mainly contained in the raw material. In addition, there are also impurities derived from manufacturing equipment. For example, there are sulfur, sodium, manganese, and the like that are abundantly present in hydrous iron oxide, and increase as impurities in ferric phosphate by repeated use of the reaction mother liquor. In order not to mix these impurities into a phosphate such as ferric phosphate, the impurities can be reduced by treating a phosphoric acid solution such as a dehydrated mother liquor with an ion exchange resin. When manufacturing ferric phosphate, for example, fine iron oxide particle powder having a BET specific surface area of 50 m 2 / g or more or hydrous iron oxide particle powder and a phosphorus compound in a solution in a temperature range of 60 to 100 ° C. While stirring, a dehydrated mother liquor after reacting at a P / Fe ratio in the range of 1 to 10 in terms of mole, pH 3 or less, and a reaction concentration of 0.1 to 3.0 mol / L (in terms of Fe concentration) can be used. In this case, the phosphoric acid concentration is 30% by mass or less, but if the phosphoric acid concentration is less than 5% by mass, the raw material is thin. Accordingly, it is preferable to use a phosphoric acid concentration of 5 to 30% by mass. New phosphoric acid can be added to the dehydrated mother liquor for reaction, and each time the dehydrated mother liquor is treated with an ion exchange resin, a stable ferric phosphate with very few impurities can be obtained, which is extremely preferable. However, the addition of new phosphoric acid to the dehydrated mother liquor and the reaction may be repeated a plurality of times within a range that does not affect the quality of the ferric phosphate produced, and then treated with an ion exchange resin.

陰イオン交換樹脂は特に限定されないが、好ましくは弱塩基性陰イオン交換樹脂を用いる。弱塩基性陰イオン交換樹脂の例としては、三菱化学社製ダイヤイオン(登録商標)WA10,WA20,WA21J,WA30(商品名)、オルガノ社販売アンバーライト(登録商標)IRA96SB,IRA900J Cl,IRA98,XE538(商品名)、ダウエックス(登録商標)66等が挙げられる。硫黄は多くの場合硫酸イオンの形態で存在し、陰イオン交換樹脂で処理することにより、リン酸液の濃度にもよるが、硫黄化合物を低減することができ、特に弱塩基性陰イオン交換樹脂で処理すると低減効果が大きい。通液速度は特に限定されないが、空間速度を表すSVが10以下、特にSV 2以下が選択性の点で好ましい。SVとは、1時間当たり樹脂量の何倍量を通液するかを表示する。 The anion exchange resin is not particularly limited, but a weakly basic anion exchange resin is preferably used. Examples of weakly basic anion exchange resins include Diaion (registered trademark) WA10, WA20, WA21J, WA30 (trade name) manufactured by Mitsubishi Chemical Corporation, Amberlite (registered trademark) IRA96SB, IRA900J Cl, IRA98, XE538 (trade name), Dowex (registered trademark) 66 and the like. Sulfur is often present in the form of sulfate ions, and treatment with an anion exchange resin can reduce the amount of sulfur compounds, depending on the concentration of the phosphoric acid solution, especially weakly basic anion exchange resins. The effect of reduction is great when treated with. The liquid passing speed is not particularly limited, but SV representing space velocity is preferably 10 or less, particularly SV 2 or less from the viewpoint of selectivity. SV indicates how many times the resin volume per hour is passed.

更に陽イオン交換樹脂で処理することにより、ナトリウム、マンガン等の不純物を吸着除去することができる。陽イオン交換樹脂は特に限定されないが、強酸性陽イオン交換樹脂で処理することが好ましく、三菱化学社製ダイヤイオン(登録商標)PK228LH(商品名)、オルガノ社販売アンバーライト(登録商標)200CT(商品名)がある。このような陽イオン交換樹脂で処理することにより、Naイオン、Mnイオン等の陽イオン濃度が低減される。陽イオン交換樹脂は塩酸溶液によって、陰イオン交換樹脂はNaOH溶液によって再生し、繰り返し使用できるため、経済的である。 Further, by treating with a cation exchange resin, impurities such as sodium and manganese can be adsorbed and removed. The cation exchange resin is not particularly limited, but is preferably treated with a strongly acidic cation exchange resin. Diaion (registered trademark) PK228LH (trade name) manufactured by Mitsubishi Chemical Corporation, Amberlite (registered trademark) 200CT (trade name) sold by Organo Corporation Product name). By treating with such a cation exchange resin, the concentration of cations such as Na ions and Mn ions is reduced. Since the cation exchange resin can be regenerated and reused with a hydrochloric acid solution and the anion exchange resin with a NaOH solution, it is economical.

イオン交換樹脂処理の順番は特に限定はされないが、陰イオン交換樹脂の前段に陽イオン交換樹脂で処理することにより、ニッケルなどの重金属の水酸化物生成による通水阻害を防止できるので、好ましい。 The order of the ion exchange resin treatment is not particularly limited, but treatment with a cation exchange resin in the previous stage of the anion exchange resin is preferable because water passage inhibition due to the formation of hydroxides of heavy metals such as nickel can be prevented.

次に実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these.

<実施例1>
リン酸と含水酸化鉄を反応させてリン酸第二鉄を製造した後の脱水母液(リン酸濃度13%,S濃度140ppm)を、充填した弱塩基性陰イオン交換樹脂30mlを充填したカラムに通液した。弱塩基性陰イオン交換樹脂は、ダイヤイオンWA21J(三菱化学株式会社製)を用いた。流量は1ml/min(SV=2)とし、処理液のS濃度は、処理前が140ppmであったが、420ml通液後にサンプリングした液は30ppm未満、3240ml通液後にサンプリングした液は31ppmであった。
<Example 1>
Dehydrated mother liquor (phosphoric acid concentration 13%, S concentration 140ppm) after reacting phosphoric acid and hydrous iron oxide to produce ferric phosphate is packed in a column packed with 30ml of weakly basic anion exchange resin. The liquid was passed. Diaion WA21J (manufactured by Mitsubishi Chemical Corporation) was used as the weakly basic anion exchange resin. The flow rate was 1 ml / min (SV = 2), and the S concentration of the treatment solution was 140 ppm before treatment, but the solution sampled after passing 420 ml was less than 30 ppm, and the sampled solution after passing 3240 ml was 31 ppm. It was.

<実施例2>
実施例1の弱塩基性陰イオン交換樹脂を最強塩基性陰イオン交換樹脂に変えた以外は実施例1と同様に行った。最強塩基性陰イオン交換樹脂は、アンバーライトIRA900J(オルガノ株式会社)を用いた。処理液のS濃度は、処理前が140ppmであったが、420ml通液後にサンプリングした液は92ppmであった。
<Example 2>
The same procedure as in Example 1 was conducted except that the weakly basic anion exchange resin of Example 1 was changed to the strongest basic anion exchange resin. Amberlite IRA900J (Organo Corporation) was used as the strongest basic anion exchange resin. The S concentration of the treatment liquid was 140 ppm before treatment, but the liquid sampled after passing 420 ml was 92 ppm.

<実施例3>
リン酸と含水酸化鉄を反応させた後の脱水母液を繰り返し使用した液(リン酸濃度13%)を、弱塩基性陰イオン交換樹脂19mlを充填したカラムに通液した後、強酸性陽イオン交換樹脂23mlを充填したカラムに通液し、イオン交換を行った。弱塩基性陰イオン交換樹脂にはダイヤイオンWA21J(三菱化学株式会社製)を、強酸性陽イオン交換樹脂にはダイヤイオンPK228LH(三菱化学株式会社製)を用いた。流量は1.0ml/min(SV 陰イオン交換樹脂:3.2、陽イオン交換樹脂:2.6)とし、原液と90ml処理後にサンプリングした液のS,Na,Mn,Ni濃度を測定し、表2に示した。
<Example 3>
A solution containing repeatedly used dehydrated mother liquor after reaction of phosphoric acid and hydrous iron oxide (phosphoric acid concentration 13%) was passed through a column packed with 19 ml of weakly basic anion exchange resin, and then strongly acidic cation Ion exchange was performed by passing through a column packed with 23 ml of an exchange resin. Diaion WA21J (Mitsubishi Chemical Corporation) was used as the weakly basic anion exchange resin, and Diaion PK228LH (Mitsubishi Chemical Corporation) was used as the strongly acidic cation exchange resin. The flow rate was 1.0 ml / min (SV anion exchange resin: 3.2, cation exchange resin: 2.6), and S, Na, Mn, Ni concentrations of the stock solution and the sampled solution after 90 ml treatment were measured and shown in Table 2. .

<実施例4>
リン酸と含水酸化鉄を反応させた後の脱水母液を想定した模擬液のリン酸液(リン酸濃度13%,Na濃度530ppm)を強酸性陽イオン交換樹脂ダイヤイオンPK228LH(三菱化学株式会社製)30mlに通過させ、イオン交換を行った。流量は5ml/min(SV=10)とし、原液と300ml処理後にサンプリングした液のNa濃度を測定し、表3に示した。強酸性陽イオン交換樹脂で処理した後のリン酸液を更に弱酸性陰イオン交換樹脂で処理した。
<Example 4>
Simulated phosphoric acid solution (phosphoric acid concentration 13%, Na concentration 530ppm) assuming dehydrated mother liquor after reacting phosphoric acid with hydrous iron oxide is strongly acidic cation exchange resin Diaion PK228LH (Mitsubishi Chemical Corporation) ) It was passed through 30 ml, and ion exchange was performed. The flow rate was 5 ml / min (SV = 10), and the Na concentrations of the stock solution and the sampled solution after 300 ml treatment were measured and are shown in Table 3. The phosphoric acid solution after the treatment with the strong acid cation exchange resin was further treated with the weak acid anion exchange resin.

<実施例5>
実施例4の流量を5ml/min(SV 2)に変えた以外は実施例4と同様に行った。
<Example 5>
The same procedure as in Example 4 was performed except that the flow rate in Example 4 was changed to 5 ml / min (SV 2).

不純物濃度は以下の方法で測定した。
(S濃度の測定方法)
イオンクロマトグラフィーにより測定した。カラムは東ソー株式会社製TSKgel SuperIC-AZを用いた。
(Na,Mn,Ni濃度の測定方法)
ICP−MS法により測定した。
The impurity concentration was measured by the following method.
(Measurement method of S concentration)
It was measured by ion chromatography. The column used was TSKgel SuperIC-AZ manufactured by Tosoh Corporation.
(Measurement method of Na, Mn, Ni concentration)
It measured by ICP-MS method.

本発明は、硫黄化合物含有リン酸液中の硫黄分を低減し、必要に応じ、更に、リン酸液中のNa,Ni,Mnを低減し、リン酸塩製造原料として再使用可能な状態に精製する方法であり、精製されたリン酸液は、リチウムイオン電池正極材となるLiMPO4やLiaM1bM2c(PO4)dの原料製造に好適である。 The present invention reduces the sulfur content in the sulfur compound-containing phosphoric acid solution, and further reduces Na, Ni, and Mn in the phosphoric acid solution as necessary, so that it can be reused as a phosphate production raw material. This is a purification method, and the purified phosphoric acid solution is suitable for producing raw materials for LiMPO 4 and Li a M1 b M2 c (PO4) d used as a positive electrode material for a lithium ion battery.

Claims (9)

硫黄化合物含有リン酸液を陰イオン交換樹脂に通過させることにより、硫黄化合物を低減することを特徴とするリン酸液の精製方法。 A method for purifying a phosphoric acid solution, comprising reducing a sulfur compound by passing a sulfur compound-containing phosphoric acid solution through an anion exchange resin. 硫酸塩含有リン酸液を陰イオン交換樹脂に通過させることにより、硫酸塩を低減することを特徴とする請求項1記載のリン酸液の精製方法。 2. The method for purifying a phosphate solution according to claim 1, wherein the sulfate is reduced by passing the sulfate-containing phosphate solution through an anion exchange resin. リン酸液のリン酸濃度が5.0〜30.0質量%であることを特徴とする請求項2または2記載のリン酸液の精製方法 The method for purifying a phosphoric acid solution according to claim 2 or 2, wherein the phosphoric acid concentration of the phosphoric acid solution is 5.0 to 30.0 mass%. 陰イオン交換樹脂が弱塩基性陰イオン交換樹脂であることを特徴とする請求項1〜3記載のリン酸の精製方法。 The method for purifying phosphoric acid according to claim 1, wherein the anion exchange resin is a weakly basic anion exchange resin. さらに強酸性陽イオン交換樹脂に通過させることによりNa、Mn、Niを低減することを特徴とする、請求項1〜4のいずれかに記載のリン酸液の精製方法。 Furthermore, Na, Mn, and Ni are reduced by letting it pass through a strong acidic cation exchange resin, The purification method of the phosphoric acid liquid in any one of Claims 1-4 characterized by the above-mentioned. 前記強酸性陽イオン交換樹脂への通過がSV=2以下で処理することを特徴とする請求項5記載のリン酸液の精製方法。 6. The method for purifying a phosphoric acid solution according to claim 5, wherein the passage to the strongly acidic cation exchange resin is carried out at SV = 2 or less. 請求項1〜6のいずれかに記載のリン酸液の精製方法によって得られるリン酸液を用いて、金属原料とリン酸過剰で反応させてリン酸金属塩を製造する方法。 A method for producing a metal phosphate by reacting a metal raw material with an excess of phosphoric acid using the phosphoric acid solution obtained by the method for purifying a phosphoric acid solution according to claim 1. 前記金属原料が酸化鉄および/または酸化水酸化鉄であることを特徴とする請求項7記載のリン酸第二鉄を製造する方法。 The method for producing ferric phosphate according to claim 7, wherein the metal raw material is iron oxide and / or iron oxide hydroxide. 前記請求項7または8記載の方法により製造されるリン酸金属塩。 A metal phosphate produced by the method according to claim 7 or 8.
JP2012239191A 2012-10-30 2012-10-30 Method for refining phosphoric acid solution, phosphate, and method for producing the same Pending JP2014088284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012239191A JP2014088284A (en) 2012-10-30 2012-10-30 Method for refining phosphoric acid solution, phosphate, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012239191A JP2014088284A (en) 2012-10-30 2012-10-30 Method for refining phosphoric acid solution, phosphate, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2014088284A true JP2014088284A (en) 2014-05-15

Family

ID=50790554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012239191A Pending JP2014088284A (en) 2012-10-30 2012-10-30 Method for refining phosphoric acid solution, phosphate, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2014088284A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070903A (en) * 2015-07-21 2015-11-18 深圳市贝特瑞新能源材料股份有限公司 Ternary cathode material precursor, preparation method and application thereof
JP2016022477A (en) * 2014-07-18 2016-02-08 オーシーアイ カンパニー リミテッドOCI Company Ltd. Method for removing metal ion in phosphoric acid solution
CN114084878A (en) * 2021-11-18 2022-02-25 广西诺方储能科技有限公司 Preparation method for synthesizing iron phosphate by using double iron sources
CN116514084A (en) * 2023-03-13 2023-08-01 成都盛威兴科新材料研究院合伙企业(有限合伙) Recovery method of valuable resources in high-concentration phosphoric acid system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016022477A (en) * 2014-07-18 2016-02-08 オーシーアイ カンパニー リミテッドOCI Company Ltd. Method for removing metal ion in phosphoric acid solution
CN105314612A (en) * 2014-07-18 2016-02-10 Oci有限公司 Method for removing metal ions from phosphoric acid solution
CN105070903A (en) * 2015-07-21 2015-11-18 深圳市贝特瑞新能源材料股份有限公司 Ternary cathode material precursor, preparation method and application thereof
CN114084878A (en) * 2021-11-18 2022-02-25 广西诺方储能科技有限公司 Preparation method for synthesizing iron phosphate by using double iron sources
CN114084878B (en) * 2021-11-18 2023-07-21 广西诺方储能科技有限公司 Preparation method for synthesizing ferric phosphate by using double iron sources
CN116514084A (en) * 2023-03-13 2023-08-01 成都盛威兴科新材料研究院合伙企业(有限合伙) Recovery method of valuable resources in high-concentration phosphoric acid system

Similar Documents

Publication Publication Date Title
JP6078987B2 (en) Method and apparatus for treating wastewater containing radioactive strontium
CN104498714A (en) Method for removing iron, aluminum, calcium and titanium impurities from scandium-containing solution
JP3211215B2 (en) Method for producing crystalline zirconium phosphate compound
JP2014088284A (en) Method for refining phosphoric acid solution, phosphate, and method for producing the same
US11577215B2 (en) Method for producing absorbent
CN104404274A (en) Method for precipitating, separating and recovering vanadium from vanadium-containing solution
JP2016195981A (en) Adsorbent and production method of adsorbent
Harrison Technologies for extracting valuable metals and compounds from geothermal fluids
JP7256493B2 (en) Method for producing adsorbent containing fine hydrotalcite
CA2953912C (en) Composition including silicotitanate having sitinakite structure, and production method for same
JP6644805B2 (en) Anion adsorption method
CN103014378A (en) Vanadium liquid purification method
CN104724740B (en) A kind of preparation method of high pure and ultra-fine aluminium hydrate powder
JP2013132636A (en) Manufacturing method for phosphorus adsorbent and phosphorus adsorbent
JP2014173924A (en) METHOD FOR TREATING RADIOACTIVE Cs-CONTAMINATED WATER, AND RADIOACTIVE Cs ABSORBENT AND METHOD FOR PRODUCING THE SAME
CN103014377A (en) Vanadium liquid purification method
JP6731934B2 (en) Adsorbent dispersion and adsorption method
WO2010137321A1 (en) Water purification material, water purification method, phosphate fertilizer precursor, and method for manufacturing a phosphate fertilizer precursor
JPWO2017061115A1 (en) Adsorbent particles and granulated adsorbent
WO2012002323A1 (en) Magnesium hydroxide and production method for same
JP5843060B2 (en) Ion adsorbent and method for producing the same
WO2019093008A1 (en) Strontium ion adsorbent material and method for producing same
JP5039624B2 (en) High purity magnesium hydroxide powder
JPH0124728B2 (en)
JP2015108606A (en) METHOD FOR TREATING RADIOACTIVE Cs-CONTAMINATED WATER