JP2012209648A - 立体撮影装置、およびそれを備えた電子機器 - Google Patents

立体撮影装置、およびそれを備えた電子機器 Download PDF

Info

Publication number
JP2012209648A
JP2012209648A JP2011071990A JP2011071990A JP2012209648A JP 2012209648 A JP2012209648 A JP 2012209648A JP 2011071990 A JP2011071990 A JP 2011071990A JP 2011071990 A JP2011071990 A JP 2011071990A JP 2012209648 A JP2012209648 A JP 2012209648A
Authority
JP
Japan
Prior art keywords
image
polarization
light
polarized
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011071990A
Other languages
English (en)
Inventor
Takahiro Miyake
隆浩 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2011071990A priority Critical patent/JP2012209648A/ja
Publication of JP2012209648A publication Critical patent/JP2012209648A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Stereoscopic And Panoramic Photography (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Studio Devices (AREA)

Abstract

【課題】立体像をつくるための視差のある2つの画像を同時に撮像できる立体カメラを実現することを目的とする。
【解決手段】
被写体0の像を取り込む2か所の光入射部10、12と、光入射部10から入射した入射画像と光入射部12から入射した入射画像の光線の位相をそれぞれλ/4ずらした後に、それぞれがλ/2位相がずれた成分を取り出して合成して、カメラ光学系部3に導く偏光合成部2と、
合成されて入射した像を所望の倍率で撮像センサ上に結像するように結像画像を出射するカメラ光学系部3と、カメラ光学系部3を出射した結像画像を偏光の違いにより2つの撮像センサ(素子)5、6方向に分離する偏光分離部4と分離した像を撮像(光電変換)した後A/D変換して得たデジタル画像データから画像を形成する画像処理装置7とから成る。
【選択図】図1

Description

本発明は、静止画または動画のステレオ撮影が可能な偏光合成式ステレオカメラ、特に、同一被写体の2つの偏光画像を合成し光学系を通して再び2つの偏光画像を得ることができる偏光合成式ステレオカメラに関する。
被写体を立体的にディスプレイに表示する方法として被写体の画像を異なる2方向から撮影し、ステレオ画像を生成することが提案されている。また、被写体までの距離の測定のための1つの方法としても被写体のステレオ画像を生成し被写体のズレから、三角測量の原理を用いて被写体までの距離を測定することが行われている。
このステレオ画像を撮影する一般的な方式としては以下のものがある。
(1)カメラを2台使用するもの。
(2)左右で対となる反射手段を使用してカメラの撮影素子を半分に分けて撮影するもの。
(1)のカメラを2台使用する方式では、全く同じ特性のカメラ2台が必要であり、とくに、2台のカメラの取り付け、即ち光軸合わせを精度よく行う必要がある。また、2台のカメラに外部信号に同期させて映像を取り込む機構も必要である。例えば、特許文献1に記載されたものでは、左右カメラに夫々治具上に配置された位置決め装置を備え、この治具と平行に配置された白板に設けた参照点と参照水平線を用いて、カメラの光軸と水平角度を調節するようにしている。
また(2)の左右で対となる反射手段を使用して、カメラの撮影素子を半分に分けて左右別々の撮像素子を使用して撮影する方式としては、例えば、2つの被写体光入射窓を持つステレオアダプタをステレオ撮影可能なカメラに取り付け、ステレオフォーマットの画面を2分割して右目用、左目用の写真を並べて露光するもの(特許文献2参照)、或いは、カメラの撮影素子を左右(水平方向)半分に分けて撮像を行った場合、左右の視野が狭くなるため、左右二つの撮影レンズの光路を回転ミラーと湾曲(凸面)ミラーを用いて左右方向に圧縮して撮像した後、画像処理で伸張して撮像素子全体を用いて撮像したときと同じアスペクト比にしたステレオアダプタ及びステレオ画像撮像装置(特許文献3参照)が知られている。
ただ、このように撮像素子を左右に分割して使用すると、左右で同じ撮影対象(被写体)を取り込む光軸が異なる(物理的に離れた位置にある)ため、レンズの歪みをうち消すように撮像した左右画像を補正する必要があるだけではなく、撮像画像の左右方向の視野が狭くなるため、これを回避しようとすれば、例えば、特許文献3に記載されているような複雑な補正手段が必要になる。また左右の画像は撮像素子の半分で撮像するため、全体画素を用いて撮像する場合に比して、画像が粗くなるという問題もある。
また、それ以外に、特許文献4として、右目用の像としてP偏光像、左目用の像としてS偏光像とし、偏光の違いにより撮像することも考えられるが、S偏光は反射しやすく、水面やガラス窓を写すと反射光がよく写り、P偏光は反射光が写りにくいため、P偏光像とS偏光像では同じ像を写しても見え方に違いが発生し左右の像が異なり、2つの像を合成しても立体像としては認識しにくくなる。
特開平7−229736号公報 特開平7−77747号公報 特開2003−140280号公報 特開昭64−54438公報
本発明は、ステレオ画像を撮影するための従来の方式の問題を解消するためなされたものであって、その目的は、一旦ステレオアダプタで左右に分けた画像を、カメラの撮像画素全体で撮像して1枚の画像を形成することで従来の撮像画素を左右に分けた場合の問題を解決し、偏光の偏りがある像(特に水面、ガラスの反射光、液晶の表示画面など)で左右の画像の画質が変わり立体像として認識しにくいという問題に対して入射光の偏光の偏りがなく、同じ位相の光を偏光合成部へ入射すべく、像を取り込むことができ、左右の画像の画質が均一になり良好な立体像が得られる。そのため、従来のように光学系の補正や撮像画像の補正を必要とすることなく、ぶれや歪みのないステレオ画像を容易に得られるようにすることである。
本課題を解決するために本発明の立体撮像装置は、同一被写体像からそれぞれ異なる視差の偏光画像光線を取り出して、異なる偏光成分を分離する偏光分離膜を備えた第1のプリズムにより同一光軸上に合成画像光線を形成する偏光合成部と、前記偏光合成部で形成される合成画像光線を後記する複数の撮像素子に結像するカメラ光学系部と、第2のプリズムにより前記合成画像光線から異なる光軸方向に偏光画像光線を分離して複数の撮像素子に結像させる偏光分離部と、を有する立体撮影装置であって、偏光合成部より被写体像側に位相シフト手段を配置した。
上記構成によれば、撮像素子への入射光の偏光の偏りがなく、同じ位相の光を偏光合成部へ入射すべく、像を取り込むことができ、左右の画像の画質が均一になり良好な立体像が得られるとともに1台のカメラでぶれのない視差を持った立体画像を得ることができ、左右の撮像画像に歪みが発生することもないため、歪み補正のための装置や画像処理も必要としない。
また、本発明の立体撮像装置は、前記位相シフト手段に、液晶ディスプレイ等で使用される位相差板、位相差フィルムとも呼ばれる400〜700nm前後の波長をカバーした広帯域の位相差シートを用いる。
上記構成によれば、光ピックアップ等で使用される単波長若しくは狭帯域の波長板に対して、可視光域全域にわたりほぼ均一に位相を遅相可能となる。
また、本発明の立体撮像装置では、前記位相シフト手段の位相シフト量は、(2n+1)*λ/4とする。
さらには、本発明の立体撮像装置では、前記位相シフト手段の位相シフト量は、左右で同一とする。
上記構成によれば、偏光の違いによる像の見え方の違いを、最も解消でき、2つの画像を使って良好な立体画像が得られる。その遅相量は前記液晶ディスプレイ用に使用され入手が容易な、λ/4左右同一位相分遅相させるのがコスト面で好ましい。左右が同一であるのがコスト面で好ましいが、異なる視差の偏光画像光線のうち右側を右回りλ/4遅相、左側を左回りλ/4遅相させても良い。また、その逆も可能である。更には、遅相量は、λ/4でなくともnを任意の整数とすると(2n+1)*λ/4を満たせば良い。更には、(2n+1)*λ/4を満たせば左右同一でなくとも可能である。
また、本発明の立体撮像装置は、前記第1のプリズムは、クロスプリズムとする。
上記構成によれば、後述する理由により、光学系の配置をシンプルにできコンパクト化が可能となる。
また、本発明の立体撮像装置は、前記カメラ光学系部は像の結像倍率を変更できるズーム光学系とする。
上記構成によれば、本発明を活かしてズーム光学系を1組で構成でき、撮像倍率を用意に可変できる。2組で構成する方式に比べて調整容易性やロバスト性で勝る。
また、本発明の立体撮像装置は、前記偏光分離部は、一方の偏光画像と他方の偏光画像とを分離し、分離した一方の偏光画像を対応する撮像素子に結像させ、分離した他方の偏光画像を他方の対応する撮像素子に結像させるプリズムで構成されていることを特徴とする。
また、本発明の立体撮像装置搭載した電子機器は1台のカメラでぶれのない視差を持った立体画像を得ることができる。
また、本発明の立体撮像装置において、分離した二枚の画像に基づき被写体までの距離を算出する距離測定手段を有することにより、三角測量の原理に基づき、画像上に区切った小領域毎演算処理を施すことで、その小領域に含まれる物体までの距離を求めることができる。
本発明によれば、1台のカメラでぶれのない視差を持った立体画像を得ることができるため、従来のように2台のカメラを用いた場合のように、全く同じ特性のカメラを2台用意する必要がなく、2台のカメラの取り付け、即ち光軸合わせ等の調整作業や、2台のカメラの同期機構等を必要としない。
また、左右の撮像画像に歪みが発生することがないから、歪み補正のための装置や画像処理も必要としない。したがって、本発明によれば、コストだけではなくステレオ画像を得るための設備や処理負担も大幅に軽減できる。
また、本発明によれば、二つの光入射部の距離に応じた視差を備えた同一被写体の同一偏光の画像光線を、両方の視差の画像光線の位相を(2n+1)*λ/4ずらすことで、異なる偏光の画像光線として合成し、この合成画像光線を偏光分離素子で、互いに異なる偏光の画像光線に分離し、それぞれに対応した撮像素子に結像するため、偏光の違いによる像の見え方の違いも解消でき、2つの画像を使って良好な立体画像が得られる。
本発明の実施形態に係る立体撮影装置の概略図である。 本発明の実施形態に係る立体撮影装置を説明する平面図(a)および斜視図(b)である。 本発明の第2の実施形態に係る立体撮影装置の概略図である。 本発明の他の偏光合成部の図である。 画像処理装置の構造を説明するブロック図である。 本発明の実施形態に係る立体撮影装置を電子機器に搭載した実施例である。
<実施の形態1>
本発明の1実施形態について図面を参照して説明する。本実施形態に係る立体撮影装置は、二つの入射面の距離の差に応じた視差を備えた同一被写体の同一偏光の画像光線の両方の位相をλ/4厳密には(2n+1)*λ/4ずらして円偏光とし、画像合成部である偏光分離膜部で、それぞれS偏光、P偏光として取り出し合成する。
前記S偏光、P偏光は、位相がλ/4ずれた結果でのS偏光、P偏光であるため、実際の画像光線はそれぞれS偏光成分:P偏光成分が1:1である。よって、偏光による見え方の偏りがない画像光線を取り込んでいることになる。
以下、その構成について具体的に説明する。
図1は、本発明の実施形態に係る偏光合成式立体撮影装置を概略的に示す概念図である。即ち、偏光合成式立体撮影装置は、概略的には被写体0の像を、光線α1、α2としてそれぞれ異なる視差で取り込む2か所の光入射部10、12と、光入射部10へ入射する画像光線α1と、光入射部12へ入射する画像光線α2の位相を、位相シフト手段である例えば位相差シート11により、それぞれλ/4ずらした後に合成して、光線α1と光線α2の光軸が一致するようにカメラ光学系3に導く偏光合成部2と、合成されて入射した合成画像光線を所望の倍率で撮像センサ上に結像するように結像画像を出射するカメラ光学系3と、カメラ光学系3を出射した結像画像を偏光の違いにより2つの撮像センサ(素子)5、6の方向に分離する偏光分離部4と分離した像を撮像(光電変換)した後A/D変換して得たデジタル画像データから画像を形成する画像処理装置7とから成っている。
尚、ずらす位相の量は、λ/4が光の吸収や前記位相差シートのコストの観点から理想であるが、厳密にはnを任意の整数とすると(2n+1)*λ/4を満たす位相であればよい。
上記実施の形態では、画像光線α1、画像光線α2の位相をそれぞれ同一位相であるλ/4ずらして合成したが、位相のずれ量は(2n+1)*λ/4を満たせば、左右同一でなくとも良い。また、光入射部10、12に対して同一部品である方が配置し易ければ、図1のように位相差シート11は左右同一部品で良い。配置等の関係で位相差シートが左右別々の部品の方が好ましければ、後記する図2のように、位相差シート11a、11bとして別々に配置することも可能である。
図2は、偏光合成式立体撮影装置1の具体的な実施形態を模式的に示した図であり、図2(a)は平面図、図2(b)は斜視図を表す。偏光合成部2は、光の入射側からみて、光入射部であるレンズ10、12と、第1のプリズム13とからなっている。
前記第1のプリズム13は、レンズから入射した画像を折り曲げ、伝搬させるプリズム部と、一方の偏光を反射し、他方の偏光を透過(例えば、S偏光を反射し、P偏光を透過)する第1の偏光分離膜13’からなる。また、カメラ光学系部3と対向する側の反対面側にλ/4膜(λ/4シート、λ/4位相差シート)17(λは可視波長域としλ=450nm〜700nm)と画像を反射する反射面として反射ミラー18が配置されている。
また、光入射部10、12の前面には、光入射部10へ入射する画像光線α1と、光入射部12へ入射する画像光線α2の位相をシフトさせる位相シフト手段である例えば位相差シート11aと位相差シート11bが設けられている。
次に画像光線α1とα2について、図2(a)を用いて説明する。画像光線α1は実線、α2は破線でそれぞれ記載している。画像光線α1とα2は、前記位相シフト手段である例えば位相差シート11aと位相差シート11bにより、位相をそれぞれλ/4ずらす。なお、前記λ/4であるが、厳密にはnを任意の整数とすると(2n+1)*λ/4を満たせばよい。また、左右で前記nが同じであることが理想であるが、違っていても特に構わない。
前記位相差シート11a、11bを透過してZ方向からレンズ10、12に入射した光線α1、α2はその下のプリズム部で第1の偏光分離膜13’の方向に反射する。ここで第1の偏光分離膜13’は、S偏光を反射し、P偏光を透過する偏光分離膜とした場合について説明する。
レンズ10側から第1の偏光分離膜13’に入射する光線α1のうちS偏光成分からなる偏光画像光線は、反射して―Y方向のカメラ光学系部3の方向に向かう。一方、光線α2のうちP偏光成分からなる偏光画像光線に関しては、第1の偏光分離膜13’を透過し、カメラ光学系部3の方向に向かわず結像に寄与しない。つまり、実線で示した光線α1は、レンズ10から偏光分離膜13’まではP偏光とS偏光からなるが、偏光分離膜13’からカメラ光学系部3へ至る光路中では、光線α1はS偏光のみからなる。
また、レンズ12側から第1の偏光分離膜13’に入射する光線α2のうちS偏光成分からなる偏光画像光線は、Y方向に反射してλ/4シート17を透過することで、たとえば右回り円偏光に変換され、さらに反射ミラー18で反射することで左回り円偏光になり、再びλ/4シート17を透過することでP偏光になる。P偏光になった偏光画像光線は、第1の偏光分離膜13’を透過し、カメラ光学系部3の方向に出射する。
レンズ12側から第1の偏光分離膜13’に入射する画像光線のうちP偏光成分からなる偏光画像光線は、第1の偏光分離膜13’を透過し、カメラ光学系部3の方向に向かわず結像に寄与しない。つまり、破線で示した光線α2は、レンズ12から偏光分離膜13’まではP偏光とS偏光からなり、偏光分離膜13’で反射されたS偏光はλ/4シート17を透過し、反射ミラー18で反射し、再びλ/4シート17を透過することでP偏光となって偏光分離膜13’を透過し、偏光分離膜13’からカメラ光学系部3へは、光線α2はP偏光のみからなる。
また、光学特性上、レンズ10側からカメラ光学系部3の方向に出射する画像光線とレンズ12側からカメラ光学系部3の方向に出射する画像光線の光路長を同一にすることが望ましく、レンズ10側のプリズム長をレンズ12側に比べて長くし光路長をそろえている。つまり、レンズ12側から入射した画像光線α2のうちS偏光が偏光分離膜13’で反射されてから、λ/4シート17、反射ミラー18を経てP偏光となって反射分離膜13’を透過するまでの間の光路長の分だけ、レンズ10側のプリズム長を長くしている。
図2(a)の立体撮影装置では、画像光線α2のS偏光をP偏光とするためにレンズ12側にλ/4シート17および反射ミラー18を設けた構成とした。別の構成としては、偏光分離膜13’がP偏光を反射し、S偏光を透過する構成とし、レンズ10側の画像光線α1のS偏光をP偏光とするλ/2シートを偏光分離膜13’の手前に設けることで、画像光線α1のP偏光となった偏光画像光線が偏光分離膜13’で反射されカメラ光学系部3に向かい、一方、レンズ12側の画像光線α2を反射ミラー18の方向からカメラ光学系部3に入射させ、偏光分離膜13’でP偏光を反射してカメラ光学系部3の方向と異なる方向に向かわすと共に、S偏光をカメラ光学系部3に向かう構成としても構わない。
これまでに説明したP偏光とS偏光との関係は、偏光分離膜13’等の構成も含めてP偏光とS偏光を逆としても良い。また、光入射部のレンズ10、12は後述するカメラ光学系部3の光学特性を得やすく、あるいは偏光合成部2を伝搬する光束径を小さくすることができる効果があるが、組立性を良くする、部品削減によるコスト削減、装置厚みを薄くするために光入射部であるレンズ10、12をなくすこともできる。
上記の方法にて、レンズ10側とレンズ12側から取り込んだ2つの像を1つの光軸上に合成してカメラ光学系部3に合成画像光線として出射することができる。また、像の合成にはP偏光とS偏光の違いを利用しているが、取り込んでいる像はいずれももともとは直線偏光から位相がλ/4ずれた円偏光像である。そのうち一方のS偏光成分像を装置内部で位相をλ/2ずらして、P偏光に変換しているのは、偏光分離膜13’でのどちらか一方の偏光を透過し、他方の偏光を反射させすることで、偏光光線を合成画像光線として合成すたるためである。
以上の構成とすることで、たとえば水面、ガラスの反射光、液晶の表示画面等2つの像間で偏光の違いによる像の違いが発生せず、後述の立体像を生成した場合にも違和感のない像が得られる。
また、実際には像としては、P偏光のみ、S偏光のみの像ではなく、直線偏光からλ/4ずれた円偏光像を取り込むことで、自然と殆ど同じ状態の画像が得られる。本発明は偏光の偏りによる見え方の違いを補正し、自然と殆ど同じ状態の画像が得る点に特徴がある。
なお、位相差シートの位置は、上の説明では、レンズ10、12の前段に挿入したが、第1の偏光分離膜13’の前段であれば問題ない。
また、第1の偏光分離膜13’の特性としては、可視光波長帯域λ(450nm〜700nm)を用い、第1の偏光分離膜13’への入射角45±10度の範囲でP偏光透過率80%以上、S偏光反射率80%以上が望ましい。
次に、カメラ光学系部3は、複数のレンズ群8から構成されており、これらのレンズ群8の一部が駆動することにより焦点距離を変更できるズーム光学系となっている。このため入力された2種類の偏光像はこの1組のズームレンズユニットで同時にズーミング、フォーカシングが行われるとともに、光学系のもつ収差の影響は2つの像に対して同じように働くため、2つの像間の画像の違いが発生せず、さらに、撮像系として最もコストがかかり、サイズアップの影響があるカメラ光学系部分に対してコストダウンとサイズの最小化の効果が大きいこととなる。
カメラ光学系部3から出射した2種類の偏光像光線は偏光分離部4に入射し、第2のプリズム4’(例えば、PBS 偏光ビームスプリッタ Polarizing Beam Splitter)で元のP偏光像とS偏光像に分離され撮像センサ5に結像する。このとき第2のプリズム4’の特性は可視光波長帯域λ(450nm〜700nm)、第2の偏光分離膜4”への入射角45±10度の範囲でP偏光透過率80%以上、S偏光反射率80%以上が望ましい。また、第2の偏光分離膜4”と撮像センサ5、6の間に偏光シートを配置することにより、偏光分離時のクロストークを低減することも可能である。
撮像センサ5、6は、例えばCCDイメージセンサやCMOSイメージセンサ等の撮像素子(センサ)、サンプルホールド回路、A/D変換器等を備えており、上記P偏光及びS偏光の分離画像に基づく撮像素子の出力に基づいて画像データを生成する。また、カメラ装置は、自身が撮影した画像に関する情報を記録する内蔵メモリを有し、双方向パラレルインターフェースやSCSIインターフェース等の、高速で画像転送可能な汎用インターフェースやUSB(Universal Series Bus)によって画像処理装置7のコンピュータに接続される。
<実施の形態2>
次に、本発明の立体撮影装置に関わる実施の形態2を図3〜図4を用いて説明する。実施の形態1では、S偏光像のうち一方のS偏光像を偏光合成部によってP偏光に変換するための手段として、λ/4シート17と反射ミラーを用いた構成について説明したが、本実施の形態2では、実施の形態1のλ/4シート17と反射ミラー18を用いない構成である。その他の構成については実施の形態1と同一であるため、同一の符号を付してその詳細な説明を省略する。
図3は、偏光合成部2の他の実施例である。偏光合成部2は、画像の入射側からみて光入射部であるレンズ10、12と、第1のプリズム13とからなっている。また、レンズ10、12の前段には位相差シート11が設けられている。
前記位相差シート11は、偏光分離膜13’までの偏光合成部2であれば、何れに設けても良い。このときレンズ10、12から入射した画像は、位相差シート11(λ/4位相差シート)によりS偏光成分あるいはP偏光成分の偏り成分(特に水面、ガラスの反射光、液晶の表示画面など)が円偏光成分に変換され、偏光の偏りが補正された均一な画像になる。なおこの位相差シート11はλ/4位相差シートに限るものではなく、厳密にはnを任意の整数とすると(2n+1)*λ/4を満たせばよい。また、左右で前記nが同じであることが理想であるが、違っていても特に構わない。
前記位相差シート11により、偏光分離膜13’の偏光分離膜面に対して光入射時にS偏光成分だった光の偏光方向が45度回転することによりP偏光成分50%、S偏光成分50%に変換され、同様に光入射時にP偏光成分だった光が45度回転することによりP偏光成分50%、S偏光成分50%に変換される。その結果、偏光分離膜13’の偏光分離膜面で反射するS偏光は光入射時S偏光だった光の50%と光入射時P偏光だった光の50%分からなり、入射光の偏光の偏り(P偏光だけ、あるいはS偏光だけ)がなく取り込むことができる。
次に偏光の偏りが補正された均一な画像は、レンズ10、12から入射した画像を折り曲げ、伝搬させるプリズム部で90度光軸が曲げられ、一方の偏光を透過し、他方の偏光を反射するプリズム部(例えば、PBS 偏光ビームスプリッタ Polarizing Beam Splitter、以下PBSと表記する。)に入射する。PBSの特性としては可視光波長帯域λ(450nm〜700nm)、第1の偏光分離膜13’への入射角45±10度の範囲でP偏光透過率80%以上、S偏光反射率80%以上が望ましい。
また更に偏光合成時のクロストークを減らすためにλ/4位相差シート11と第1の偏光分離膜13’の間に撮像に寄与しない側の偏光成分をカットする偏光シートを配置しても良い。
レンズ10側からの画像のうち、前記λ/4位相差シート11により位相がずれた後のS偏光成分は、第1のプリズム13で反射してカメラ光学系部3方向に進み、レンズ12側からの画像のうち前記λ/4位相差シート11により位相がずれた後のP偏光成分は、第1のプリズム13を透過しカメラ光学系部3方向に進む。
これによりカメラ光学系部3に対してレンズ10側からのS偏光像とレンズ12側からのP偏光像が偏光合成部2で合成され、光軸が一致して入力され合成画像光線となる。なお、前記S偏光とP偏光の関係は左右入れ替わっても特に構わない。
さらに、基線長を長くとりながら、プリズムの大きさをできるだけ小さくする実施例として図4のような構成も可能となる。図4ではZ方向からレンズ10、12に入射した画像はλ/4位相差シート11によりS偏光成分あるいはP偏光成分の偏り成分(特に水面、ガラスの反射光、液晶の表示画面など)が円偏光成分に変換され、偏光の偏りが補正されその下のプリズム14でプリズム方向に反射する。この時、プリズムはS偏光反射、P偏光透過する偏光膜15とS偏光透過、P偏光反射する偏光膜16から形成されているクロスプリズムの構造を有する。
これにより、レンズ10側からプリズムに入射する画像のうちS偏光成分は偏光膜16を透過し、偏光膜15で反射して―Y方向のカメラ光学系部方向に向かい、レンズ12側からプリズムに入射する画像のうちP偏光成分は偏光膜15を透過し、偏光膜16で反射して―Y方向のカメラ光学系部方向に向かう。このような構成にすることにより、より小型化された立体撮影装置を提供できる。
<実施の形態3>
次に、本発明の立体撮影装置を搭載した電子機器について、図5、図6を用いて説明する。立体撮影装置の構成については実施の形態1または実施の形態2と同一であるため、同一の符号を付してその詳細な説明および図面を省略する。図5は画像処理装置7の構造を説明するブロック図である。
画像処理装置7は、演算処理を実行し命令を出力する等の機能を備えたCPU71と、画像処理のための手順をCPU71に実行させるためのプログラム等を格納したROM72と、CPUの処理動作のために、ROM72から読み出した上記プログラムや、CPUの処理のために必要なデータ等を一時的に格納しておくRAM73からなるコンピュータ70と、データやコマンド等を入力するための入力部74と、CPUの出力を表示するための表示部75、更に必要に応じて画像データを収納するための記憶手段(図示せず)を備えている。
以上の構成において、各光入射部10及び12を通った入射画像α1及びα2は、それぞれ偏光合成部2、カメラ光学系部3、偏光分離部4を通して、その撮像センサ上にそれぞれP偏光及びS偏光に分離した画像を結像する。このP、S偏光画像は上記光入射部10及び12の視差に応じてそれぞれ互いに僅かにずれている。
画像は撮像センサで電気信号に変換されて、A/D変換した後、内蔵の画像信号処理回路に入りシェーディング補正やγ補正等の処理を行った後、その内蔵メモリに記録される。この内蔵メモリに記録された画像データは、画像処理装置7からの画像データ要求に応じて画像処理装置7に入力される。画像処理装置7に入力された画像データは、そのコンピュータ70で画像2枚のステレオ画像に形成される。画像処理装置7のコンピュータ70はこのようにして得られた2つの画像から、例えば被写体までの距離を演算し、図示しない出力装置に出力することもできる。
図6は、本発明の偏光合成式立体撮影装置1を携帯電話あるいはポケットムービー、デジカメの等の電子機器の筐体に組み込んだときの実施例である。図6(a)の電子機器は、図2の実施例の立体撮影装置のように、光入射部10,12が、偏光合成部2、カメラ光学系部3、偏光分離部4から成る平面に直交する側に配置されている場合の搭載例を表したものであり、図6(b)の電子機器は、図1のように光入射部10,12が、偏光合成部2、カメラ光学系部3、偏光分離部4から成る平面方向に配置されている場合の搭載例を表したものである。
また、本発明の立体撮影装置は、距離測定に必要な構成をさらに設け電子機器に搭載することにより距離測定を可能にすることが出来る。偏光合成式ステレオカメラによる距離計測は、既に知られた三角測量の原理に基づいて行う。画像上に区切った小領域毎に三角測量の原理に基づく演算処理を施すことで、その小領域に含まれる物体までの距離を求めることができる。
1 偏光合成式立体撮影装置
2 偏光合成部
3 カメラ光学系部
4 偏光分離部
4’ 第2のプリズム
4” 偏光分離膜
5,6 撮像センサ
7 画像処理装置
70 コンピュータ
71 CPU
72 ROM
73 RAM
74 入力部
75 表示部
10、12 光入射部
11 位相差シート
13 第1のプリズム
13' 偏光分離膜

Claims (9)

  1. 同一被写体像からそれぞれ異なる視差の偏光画像光線を取り出して第1のプリズムにより同一光軸上に合成画像光線を形成する偏光合成部と、
    前記偏光合成部で形成される合成画像光線を結像するカメラ光学系部と、
    第2のプリズムにより前記合成画像光線から異なる光軸方向に偏光画像光線を分離して複数の撮像素子に結像させる偏光分離部とを有する立体撮影装置であって、
    前記偏光合成部より被写体像側に位相シフト手段を配置したことを特徴とする立体撮影装置。
  2. 前記位相シフト手段は、位相差シートであることを特徴とする、請求項1記載の立体撮影装置。
  3. 前記位相シフト手段の位相シフト量は、(2n+1)*λ/4であることを特徴とする、請求項1記載の立体撮影装置。
  4. 前記位相シフト手段の位相シフト量は、前記それぞれ異なる視差の偏光画像光線の光路で同一であることを特徴とする、請求項3記載の立体撮影装置。
  5. 前記第1のプリズムは、クロスプリズムであることを特徴とする、請求項1記載の立体撮影装置。
  6. 前記カメラ光学系部は像の結像倍率を変更できるズーム光学系からなることを特徴とする請求項1ないし請求項5記載の立体撮影装置。
  7. 前記偏光分離部は、一方の偏光画像と他方の偏光画像とを分離し、分離した一方の偏光画像を対応する撮像素子に結像させ、分離した他方の偏光画像を他方の対応する撮像素子に結像させるプリズムで構成されていることを特徴とする請求項1ないし6記載の立体撮影装置。
  8. 請求項1ないし7記載の立体撮影装置を搭載したことを特徴とする電子機器。
  9. 請求項1ないし8記載の立体撮影装置において、分離した二枚の画像に基づき被写体までの距離を算出する距離測定手段を有することを特徴とする立体撮影装置。
JP2011071990A 2011-03-29 2011-03-29 立体撮影装置、およびそれを備えた電子機器 Withdrawn JP2012209648A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011071990A JP2012209648A (ja) 2011-03-29 2011-03-29 立体撮影装置、およびそれを備えた電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011071990A JP2012209648A (ja) 2011-03-29 2011-03-29 立体撮影装置、およびそれを備えた電子機器

Publications (1)

Publication Number Publication Date
JP2012209648A true JP2012209648A (ja) 2012-10-25

Family

ID=47189070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011071990A Withdrawn JP2012209648A (ja) 2011-03-29 2011-03-29 立体撮影装置、およびそれを備えた電子機器

Country Status (1)

Country Link
JP (1) JP2012209648A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016162983A1 (ja) * 2015-04-08 2017-12-07 マクセルホールディングス株式会社 車両搭載カメラ
CN107948478A (zh) * 2017-12-06 2018-04-20 信利光电股份有限公司 一种潜望式变焦双摄像头模组及其加工方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016162983A1 (ja) * 2015-04-08 2017-12-07 マクセルホールディングス株式会社 車両搭載カメラ
CN107948478A (zh) * 2017-12-06 2018-04-20 信利光电股份有限公司 一种潜望式变焦双摄像头模组及其加工方法
CN107948478B (zh) * 2017-12-06 2020-08-14 信利光电股份有限公司 一种潜望式变焦双摄像头模组及其加工方法

Similar Documents

Publication Publication Date Title
JP5213998B2 (ja) 立体撮影装置、およびそれを備えた電子機器
EP2875315B1 (en) Stereo camera
JP5421364B2 (ja) 3次元撮像装置
JP5827988B2 (ja) 立体画像撮像装置
US9008412B2 (en) Image processing device, image processing method and recording medium for combining image data using depth and color information
TW201132937A (en) Ranging camera apparatus
US20160120397A1 (en) Endoscope image-acquisition device
JP2009211012A (ja) 広角複眼撮像装置
US20150301313A1 (en) Stereoscopic lens for digital cameras
JP2012124766A5 (ja)
JP2009088844A (ja) 色分解式ステレオカメラ
JP2010181826A (ja) 立体画像形成装置
US20150077523A1 (en) Stereo imaging apparatus and stereo image generating method
JP2012209648A (ja) 立体撮影装置、およびそれを備えた電子機器
JP2012242488A (ja) 撮像装置、立体撮像光学系、およびプログラム
JP4452681B2 (ja) Ccdを用いた像合致式距離計および距離計付きカメラ並びに撮影システム
JP2011215545A (ja) 視差画像取得装置
JP2013097079A (ja) 立体像撮影装置および電子機器
KR20110105830A (ko) 단일 센서 병렬식 입체영상 촬영방법
JP2015191186A (ja) ステレオアダプタ及びステレオ撮像装置
KR101220921B1 (ko) 입체 영상 촬영장치
JP2009232278A (ja) パノラマ撮像装置
JP2013044893A (ja) 複眼撮像装置及び距離画像取得装置
JP2013044827A (ja) 撮像装置
JP2013046081A (ja) 撮影装置および映像生成方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130131

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603