JP2012209482A - Non-aqueous solvent for electrochemical device, nonaqueous electrolyte for electrochemical device and electrochemical device - Google Patents

Non-aqueous solvent for electrochemical device, nonaqueous electrolyte for electrochemical device and electrochemical device Download PDF

Info

Publication number
JP2012209482A
JP2012209482A JP2011075106A JP2011075106A JP2012209482A JP 2012209482 A JP2012209482 A JP 2012209482A JP 2011075106 A JP2011075106 A JP 2011075106A JP 2011075106 A JP2011075106 A JP 2011075106A JP 2012209482 A JP2012209482 A JP 2012209482A
Authority
JP
Japan
Prior art keywords
experimental example
oxide compound
solvent
aqueous solvent
electrochemical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011075106A
Other languages
Japanese (ja)
Inventor
Takeo Tsuzuki
武男 続木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2011075106A priority Critical patent/JP2012209482A/en
Publication of JP2012209482A publication Critical patent/JP2012209482A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous solvent for electrochemical device capable of increasing energy density by increasing charging voltage.SOLUTION: The non-aqueous solvent for electrochemical device includes an N-phosphine-oxide compound. Since the N-phosphine-oxide has a higher oxidation potential, even when the charging voltage is increased, oxidative decomposition occurs more slowly than propylene carbonate. The N-phosphine-oxide is a high-polarity compound in which nitrogen atoms are charged positively and oxygen atoms are charged negatively, and since the solubility of the supporting electrolyte is high, the nonaqueous electrolyte has a high electrical conductivity. Accordingly, the nonaqueous electrolyte is more advantageous than sulfolane for reducing the resistance value of an electrochemical capacitor.

Description

本発明は、電気化学デバイス用非水溶媒と、該非水溶媒を用いた電気化学デバイス用非水系電解液と、該非水系電解液を用いた電気化学デバイスに関する。   The present invention relates to a nonaqueous solvent for an electrochemical device, a nonaqueous electrolytic solution for an electrochemical device using the nonaqueous solvent, and an electrochemical device using the nonaqueous electrolytic solution.

電気二重層キャパシタやリチウムイオンキャパシタ等の電気化学デバイスに用いられる電解液としては、強酸又は強アルカリから成る水系電解液と、非水溶媒に支持電解質を溶解して成る非水系電解液とがある。水系電解液は、電気化学デバイスの内部抵抗を低く抑えることができるメリットや、安価に製造できるメリット等がある。一方、非水系電解液は、水系電解液を用いた電気化学デバイスに比べて高い電圧で充電することができ、これによりエネルギー密度を高くすることができるメリットや、水系電解液を用いた電気化学デバイスに比べて使用温度を高くすることができるメリット等がある。   Electrolytic solutions used in electrochemical devices such as electric double layer capacitors and lithium ion capacitors include aqueous electrolytes composed of strong acids or strong alkalis and nonaqueous electrolytes obtained by dissolving a supporting electrolyte in a nonaqueous solvent. . The aqueous electrolyte solution has a merit that the internal resistance of the electrochemical device can be kept low and a merit that it can be manufactured at a low cost. On the other hand, non-aqueous electrolytes can be charged at a higher voltage than electrochemical devices that use aqueous electrolytes, which can increase the energy density, and electrochemical using aqueous electrolytes. There are advantages such as higher operating temperature than devices.

非水系電解液の非水溶媒としては、例えば特許文献1に示されているように、エチレンカーボネート、プロピレンカーボネート等の環状炭酸エステルや、ジメチルカーボネート、ジエチルカーボネート等の鎖状炭酸エステルや、γ−ブチロラクトン等の環状エステルや、アセトニトリル等のニトリル類や、ジメトキシエタン等の鎖状エーテルや、テトラヒドロフラン、ジオキサン等の環状エーテルや、スルホラン等の含イオウ化合物が挙げられ、これらの中でもプロピレンカーボネートは他の非水溶媒に比べて多用されている。その理由は、支持電解質であるアンモニウム塩やホスホニウム塩等の溶解性が良好で、耐熱温度、粘度、誘電率等のバランスが得易いことにある。   As the nonaqueous solvent of the nonaqueous electrolytic solution, for example, as shown in Patent Document 1, cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate and diethyl carbonate, γ- Examples include cyclic esters such as butyrolactone, nitriles such as acetonitrile, chain ethers such as dimethoxyethane, cyclic ethers such as tetrahydrofuran and dioxane, and sulfur-containing compounds such as sulfolane. Among these, propylene carbonate is another type. More frequently used than non-aqueous solvents. The reason is that the solubility of the supporting electrolyte, such as ammonium salt and phosphonium salt, is good, and it is easy to obtain a balance of heat-resistant temperature, viscosity, dielectric constant, and the like.

ところで、非水系電解液を用いた電気化学デバイスには、体積エネルギー密度や重量エネルギー密度を向上するために、充電電圧の向上という課題が従来からある。   By the way, an electrochemical device using a non-aqueous electrolyte has a problem of improving a charging voltage in order to improve volume energy density and weight energy density.

非水系電解液の非水溶媒としてプロピレンカーボネートを用いた電気二重層キャパシタを例に挙げて説明すると、該電気二重層キャパシタの充電電圧が2.5Vの場合、正極の電位は+4.25Vになり、負極の電位は+1.75Vになる。この正極の+4.25Vと言う値はプロピレンカーボネートが酸化分解し始める電圧であるため、2.5Vよりも高い電圧で充電すると、または、該充電を繰り返すと、プロピレンカーボネートが酸化分解してガスが発生して内部抵抗の上昇や静電容量の低下を生じる恐れがある。つまり、電気二重層キャパシタの充電電圧を高くするには、非水溶媒として分解電位の高いものが必要となる。   The electric double layer capacitor using propylene carbonate as the nonaqueous solvent of the nonaqueous electrolytic solution will be described as an example. When the charging voltage of the electric double layer capacitor is 2.5V, the potential of the positive electrode becomes + 4.25V. The potential of the negative electrode becomes + 1.75V. Since the value of +4.25 V of this positive electrode is a voltage at which propylene carbonate begins to undergo oxidative decomposition, when charged at a voltage higher than 2.5 V, or when this charge is repeated, propylene carbonate oxidizes and decomposes to generate gas. Occurring and increasing the internal resistance and decreasing the capacitance may occur. That is, in order to increase the charging voltage of the electric double layer capacitor, a non-aqueous solvent having a high decomposition potential is required.

また、リチウムイオンキャパシタにあっては、例えば特許文献1に示されるように、負極を構成する活物質に予めリチウムイオンを吸蔵(以下、「プレドープ」とも言う)させることにより、正極と負極との電位差を高くする試みも為されているが、充電時に前記同様の酸化分解が発生して内部抵抗の上昇や静電容量の低下を生じる恐れがあるため、このようなリチウムイオンキャパシタにあっても非水溶媒として分解電位の高いものが必要となる。   In addition, in a lithium ion capacitor, for example, as disclosed in Patent Document 1, an active material constituting a negative electrode is preliminarily occluded (hereinafter also referred to as “pre-dope”) to obtain a positive electrode and a negative electrode. Although attempts have been made to increase the potential difference, the same oxidative decomposition as described above may occur during charging, leading to an increase in internal resistance and a decrease in capacitance. A nonaqueous solvent having a high decomposition potential is required.

国際公開番号WO2003/003395International Publication Number WO2003 / 003395

本発明の目的は、充電電圧を高めてエネルギー密度を向上できる電気化学デバイス用非水溶媒、電気化学デバイス用非水系電解液及び電気化学デバイスを提供することにある。   An object of the present invention is to provide a non-aqueous solvent for an electrochemical device, a non-aqueous electrolyte solution for an electrochemical device, and an electrochemical device that can increase the charging voltage and improve the energy density.

本発明(電気化学デバイス用非水溶媒)は、N−オキシド化合物を含有している、ことをその特徴とする。   The present invention (non-aqueous solvent for electrochemical devices) is characterized by containing an N-oxide compound.

前記N−オキシド化合物の一例は、下記式(1)で表され、且つ、該式(1)中のR1〜R3がそれぞれ炭素数が2〜6の一価の飽和炭化水素基又は一価のヘテロ原子含有飽和炭化水素基である、N−オキシド化合物である。 An example of the N-oxide compound is represented by the following formula (1), and R 1 to R 3 in the formula (1) are each a monovalent saturated hydrocarbon group having 2 to 6 carbon atoms or one It is an N-oxide compound which is a saturated hetero atom-containing saturated hydrocarbon group.

Figure 2012209482
前記N−オキシド化合物の他の一例は、下記式(2)で表され、且つ、該式(2)中のR4が炭素数が3〜6の一価の飽和炭化水素基又は一価のヘテロ原子含有飽和炭化水素基であり、Xが二価の飽和炭化水素基で窒素原子と共に環員数5又は6のヘテロ環を形成している、N−オキシド化合物である。
Figure 2012209482
Another example of the N-oxide compound is represented by the following formula (2), and R 4 in the formula (2) is a monovalent saturated hydrocarbon group having 3 to 6 carbon atoms or a monovalent group. It is an N-oxide compound which is a heteroatom-containing saturated hydrocarbon group, and X is a divalent saturated hydrocarbon group and forms a heterocycle having 5 or 6 ring members together with a nitrogen atom.

Figure 2012209482
前記N−オキシド化合物の他の一例は、下記式(3)で表され、且つ、該式(3)中のR5が炭素数が1〜6の一価の飽和炭化水素基で、R6、R7がそれぞれ炭素数が3〜6の一価の飽和炭化水素基である、N−オキシド化合物である。
Figure 2012209482
Another example of the N- oxide compound is represented by the following formula (3), and, R 5 in formula (3) is a saturated monovalent hydrocarbon group having 1 to 6 carbon atoms, R 6 , R 7 are each an N-oxide compound which is a monovalent saturated hydrocarbon group having 3 to 6 carbon atoms.

Figure 2012209482
前記N−オキシド化合物の他の一例は、下記式(4)で表され、且つ、該式(4)中のR8が炭素数が3〜6の一価の飽和炭化水素基又は一価のヘテロ原子含有飽和炭化水素基である、N−オキシド化合物である。
Figure 2012209482
Another example of the N-oxide compound is represented by the following formula (4), and R 8 in the formula (4) is a monovalent saturated hydrocarbon group having 3 to 6 carbon atoms or a monovalent group. It is an N-oxide compound which is a heteroatom-containing saturated hydrocarbon group.

Figure 2012209482
前記N−オキシド化合物の他の一例は、下記式(5)で表され、且つ、該式(5)中のR9が炭素数が3〜6の一価の飽和炭化水素基又は一価のヘテロ原子含有飽和炭化水素基である、N−オキシド化合物である。
Figure 2012209482
Another example of the N-oxide compound is represented by the following formula (5), and R 9 in the formula (5) is a monovalent saturated hydrocarbon group having 3 to 6 carbon atoms or a monovalent group. It is an N-oxide compound which is a heteroatom-containing saturated hydrocarbon group.

Figure 2012209482
また、本発明(電気化学デバイス用非水系電解液)は、前記の何れかの非水溶媒と、支持電解質とを含有している、ことをその特徴とする。
Figure 2012209482
Moreover, the present invention (non-aqueous electrolyte solution for electrochemical devices) is characterized by containing any of the non-aqueous solvents described above and a supporting electrolyte.

さらに、本発明(電気化学デバイス)は、電極と、前記の電気化学デバイス用非水系電解液とを備えている、ことをその特徴とする。   Furthermore, the present invention (electrochemical device) is characterized by comprising an electrode and the non-aqueous electrolyte for electrochemical device described above.

本発明に係る電気化学デバイス用非水溶媒、電気化学デバイス用非水系電解液及び電気化学デバイスによれば、充電電圧を高めてエネルギー密度を向上できる。   According to the non-aqueous solvent for electrochemical devices, the non-aqueous electrolyte solution for electrochemical devices and the electrochemical device according to the present invention, the energy density can be improved by increasing the charging voltage.

本発明の前記目的とそれ以外の目的と、構成特徴と、作用効果は、以下の説明と添付図面によって明らかとなる。   The above object and other objects, structural features, and operational effects of the present invention will become apparent from the following description and the accompanying drawings.

電気二重層キャパシタの側面断面図Side cross-sectional view of electric double layer capacitor 図1に示した電気二重層キャパシタの平面図Plan view of the electric double layer capacitor shown in FIG. フィルムパッケージが膨張した状態の図1及び図2に示した電気二重層キャパシタの側面断面図Side sectional view of the electric double layer capacitor shown in FIGS. 1 and 2 with the film package expanded. 式(1)のN−オキシド化合物の例Examples of N-oxide compounds of formula (1) 式(2)のN−オキシド化合物の例Examples of N-oxide compounds of formula (2) 式(3)のN−オキシド化合物の例Examples of N-oxide compounds of formula (3) 式(4)のN−オキシド化合物の例Examples of N-oxide compounds of formula (4) 式(5)のN−オキシド化合物の例Examples of N-oxide compounds of formula (5) 実験結果を示す表Table showing experimental results 実験結果を示す表Table showing experimental results 実験結果を示す表Table showing experimental results リチウムイオンキャパシタの側面断面図Side cross-sectional view of lithium ion capacitor 実験結果を示す表Table showing experimental results

《電気二重層キャパシタへの適用》
以下、本発明を電気二重層キャパシタ用非水系電解液に適用した具体例について、図1〜図11を引用して説明する。
<Application to electric double layer capacitors>
Hereinafter, a specific example in which the present invention is applied to a non-aqueous electrolyte for an electric double layer capacitor will be described with reference to FIGS.

〈電気二重層キャパシタの構造〉
図1及び図2に示したように、電気二重層キャパシタは、正極10、負極20、及び正極10と負極20との間に介在するセパレータ30を有する蓄電素子Bと、非水溶媒に電解質が溶解している非水系電解液と、ラミネートフィルムから形成され蓄電素子B及び非水系電解液が封入されているフィルムパッケージ40と、一端が蓄電素子Bに接続され他端がフィルムパッケージ40から導出している一対の端子50とを有する。
<Structure of electric double layer capacitor>
As shown in FIGS. 1 and 2, the electric double layer capacitor includes a positive electrode 10, a negative electrode 20, an electricity storage element B having a separator 30 interposed between the positive electrode 10 and the negative electrode 20, and an electrolyte in a nonaqueous solvent. The dissolved non-aqueous electrolyte, the film package 40 formed of a laminate film and encapsulating the storage element B and the non-aqueous electrolyte, one end connected to the storage element B, and the other end led out from the film package 40 And a pair of terminals 50.

正極10及び負極20は、例えばアルミニウム等の金属箔から成る集電体11,21の表面に分極性電極層12,22を形成して構成され、分極性電極層12,22はセパレータ30を介して向き合っている。非水系電解液は、分極性電極層12,22とセパレータ30に含浸している。   The positive electrode 10 and the negative electrode 20 are configured by forming polarizable electrode layers 12 and 22 on the surfaces of current collectors 11 and 21 made of a metal foil such as aluminum, and the polarizable electrode layers 12 and 22 are interposed via a separator 30. Are facing each other. The non-aqueous electrolyte solution is impregnated into the polarizable electrode layers 12 and 22 and the separator 30.

分極性電極層12,22は、例えばポリアセン(PAS)、ポリアニリン(PAN)、活性炭等の主材料の他に、カーボンブラックやグラファイトや金属粉末等の導電助剤や、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVDF)やスチレンブタジエンゴム(SBR)等のバインダー等を必要に応じて含んでいる。活性炭の原料には、例えばおが屑、椰子殻、フェノール樹脂、各種耐熱性プラスチック、ピッチ等が利用でき、該各種耐熱性プラスチックには、例えばポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリエーテルケトン、ビスマレイミドトリアジン、アラミド、フッ素樹脂、ポリフェニレン、ポリフェニレンスルフィド等の1種または2種以上が利用できる。勿論、分極性電極層12,22の材料は前記に限られるものではなく、公知のものが適宜利用できる。   The polarizable electrode layers 12 and 22 are made of, for example, main materials such as polyacene (PAS), polyaniline (PAN), activated carbon, and the like, conductive assistants such as carbon black, graphite, and metal powder, and polytetrafluoroethylene (PTFE). And a binder such as polyvinylidene fluoride (PVDF) and styrene butadiene rubber (SBR) as necessary. As the raw material of activated carbon, sawdust, coconut shell, phenol resin, various heat-resistant plastics, pitch, etc. can be used, for example, polyimide, polyamide, polyamideimide, polyetherimide, polyethersulfone, One kind or two or more kinds of polyether ketone, bismaleimide triazine, aramid, fluororesin, polyphenylene, polyphenylene sulfide and the like can be used. Of course, the material of the polarizable electrode layers 12 and 22 is not limited to the above, and known materials can be used as appropriate.

セパレータ30は、非水系電解液を含浸できるシート状物であって、該シート状物は、例えばセルロース、ポリプロピレン、ポリエチレン、フッ素系樹脂等から成る。勿論、セパレータ30の材料は前記に限られるものではなく、公知のものが適宜利用できる。   The separator 30 is a sheet-like material that can be impregnated with a non-aqueous electrolyte solution, and the sheet-like material is made of, for example, cellulose, polypropylene, polyethylene, fluorine resin, or the like. Of course, the material of the separator 30 is not limited to the above, and known materials can be used as appropriate.

因みに、図3は、図1及び図2に示した電気二重層キャパシタのフィルムパッケージ40が膨張して、該フィルムパッケージ40の厚みT1が厚みT2に増加した状態を示してある。   Incidentally, FIG. 3 shows a state in which the film package 40 of the electric double layer capacitor shown in FIGS. 1 and 2 is expanded and the thickness T1 of the film package 40 is increased to the thickness T2.

〈非水系電解液の組成〉
前記非水系電解液は、非水溶媒に支持電解質が溶解したものである。支持電解質には公知の支持電解質、例えばアンモニウム塩やホスホニウム塩を使用できる。アンモニウム塩の例としては、4フッ化ほう酸4ブチルアンモニウム((C494NBF4)、4フッ化ほう酸4エチルアンモニウム((C254NBF4)、4フッ化ほう酸3エチルメチルアンモニウム((C253CH3NBF4)、4フッ化ほう酸−1,1’−スピロビピロリジニウム((C482NBF4)、6フッ化リン酸4ブチルアンモニウム((C494NPF6)、6フッ化リン酸4エチルアンモニウム((C254NPF6)等が挙げられる。ホスホニウム塩の例としては、4フッ化ほう酸4ブチルホスホニウム((C494PBF4)、4フッ化ほう酸4エチルホスホニウム((C254PBF4)、6フッ化リン酸4ブチルホスホニウム((C494PPF6)、6フッ化リン酸4エチルホスホニウム((C254PPF6)等が挙げられる。支持電解質の濃度は非水系電解液1リットルに対し、例えば1.0モル以上2.5モル以下である。
<Composition of non-aqueous electrolyte>
The non-aqueous electrolyte is a solution in which a supporting electrolyte is dissolved in a non-aqueous solvent. As the supporting electrolyte, a known supporting electrolyte such as an ammonium salt or a phosphonium salt can be used. Examples of ammonium salts include tetrabutylammonium tetrafluoroborate ((C 4 H 9 ) 4 NBF 4 ), 4-ethylammonium tetrafluoroborate ((C 2 H 5 ) 4 NBF 4 ), tetrafluoroborate 3 Ethylmethylammonium ((C 2 H 5 ) 3 CH 3 NBF 4 ), tetrafluoroboric acid-1,1′-spirobipyrrolidinium ((C 4 H 8 ) 2 NBF 4 ), hexafluorophosphoric acid 4 Examples include butylammonium ((C 4 H 9 ) 4 NPF 6 ), 4-ethylammonium hexafluorophosphate ((C 2 H 5 ) 4 NPF 6 ), and the like. Examples of phosphonium salts include 4-butylphosphonium tetrafluoroborate ((C 4 H 9 ) 4 PBF 4 ), 4-ethylphosphonium tetrafluoroborate ((C 2 H 5 ) 4 PBF 4 ), and hexafluorophosphoric acid. Examples thereof include 4-butylphosphonium ((C 4 H 9 ) 4 PPF 6 ) and 4-ethylphosphonium hexafluorophosphate ((C 2 H 5 ) 4 PPF 6 ). The concentration of the supporting electrolyte is, for example, 1.0 mol or more and 2.5 mol or less with respect to 1 liter of the nonaqueous electrolytic solution.

一方、非水溶媒は、N−オキシド化合物を少なくとも含有している。N−オキシド化合物の一例として、式(1)のN−オキシド化合物を含有しており、該式(1)中のR1〜R3はそれぞれ炭素数が2〜6の一価の飽和炭化水素基又は一価のヘテロ原子含有飽和炭化水素基である。 On the other hand, the non-aqueous solvent contains at least an N-oxide compound. As an example of the N-oxide compound, an N-oxide compound of the formula (1) is contained, and R 1 to R 3 in the formula (1) are monovalent saturated hydrocarbons having 2 to 6 carbon atoms, respectively. Or a monovalent heteroatom-containing saturated hydrocarbon group.

Figure 2012209482
式(1)のN−オキシド化合物の具体例は図4に示した通りであり、同図4の例1〜例5は、R1〜R3のそれぞれが炭素数2〜6の一価の飽和炭化水素基である例を示し、例6〜例8は、R1〜R3のそれぞれが炭素数2〜6の一価のヘテロ原子含有飽和炭化水素基である例を示す。
Figure 2012209482
Specific examples of the N-oxide compound of the formula (1) are as shown in FIG. 4, and Examples 1 to 5 in FIG. 4 are monovalent monovalent C 2-6 in R 1 to R 3 . The example which is a saturated hydrocarbon group is shown, and Examples 6 to 8 show examples in which each of R 1 to R 3 is a monovalent heteroatom-containing saturated hydrocarbon group having 2 to 6 carbon atoms.

また、N−オキシド化合物の他の一例として、式(2)のN−オキシド化合物を含有しており、該式(2)中のR4は炭素数が3〜6の一価の飽和炭化水素基又は一価のヘテロ原子含有飽和炭化水素基であり、Xは二価の飽和炭化水素基で窒素原子と共に環員数5又は6のヘテロ環を形成している。 Further, as another example of the N-oxide compound, the N-oxide compound of the formula (2) is contained, and R 4 in the formula (2) is a monovalent saturated hydrocarbon having 3 to 6 carbon atoms. Or a monovalent heteroatom-containing saturated hydrocarbon group, and X is a divalent saturated hydrocarbon group that forms a 5- or 6-membered heterocyclic ring together with a nitrogen atom.

Figure 2012209482
式(2)のN−オキシド化合物の具体例は図5に示した通りであり、同図5の例9〜例12及び例14〜例17は、R4が炭素数が3〜6の一価の飽和炭化水素基で、Xが二価の飽和炭化水素基で、結合している窒素原子と共に環員数5又は6のヘテロ環を形成している例を示し、例13及び例18は、R4が炭素数が3〜6の一価のヘテロ原子含有飽和炭化水素基で、Xが二価の飽和炭化水素基で、結合している窒素原子と共に環員数5又は6のヘテロ環を形成している例を示す。
Figure 2012209482
Specific examples of the N- oxide compound of formula (2) is as shown in FIG. 5, Examples 9 to 12 and Examples 14 to Example 17 of FIG. 5 shows one R 4 is a 3-6 carbon atoms A valent saturated hydrocarbon group, wherein X is a divalent saturated hydrocarbon group and forms a heterocyclic ring having 5 or 6 ring members together with the nitrogen atom bonded thereto, Examples 13 and 18 are R 4 is a monovalent heteroatom-containing saturated hydrocarbon group having 3 to 6 carbon atoms, X is a divalent saturated hydrocarbon group, and forms a heterocycle having 5 or 6 ring members together with the nitrogen atom to which R 4 is bonded. An example is shown.

さらに、N−オキシド化合物の他の一例として、式(3)のN−オキシド化合物を含有しており、該式(3)中のR5は炭素数が1〜6の一価の飽和炭化水素基で、R6、R7はそれぞれ炭素数が3〜6の一価の飽和炭化水素基である。 Further, as another example of the N-oxide compound, the N-oxide compound of the formula (3) is contained, and R 5 in the formula (3) is a monovalent saturated hydrocarbon having 1 to 6 carbon atoms. R 6 and R 7 are each a monovalent saturated hydrocarbon group having 3 to 6 carbon atoms.

Figure 2012209482
式(3)のN−オキシド化合物の具体例は図6に示した通りであり、同図6の例19〜例22は、R5が炭素数が1〜6の一価の飽和炭化水素基で、R6、R7がそれぞれ炭素数が3〜6の一価の飽和炭化水素基である例を示す。
Figure 2012209482
Specific examples of the N-oxide compound of the formula (3) are as shown in FIG. 6. Examples 19 to 22 of FIG. 6 are monovalent saturated hydrocarbon groups in which R 5 has 1 to 6 carbon atoms. In the examples, R 6 and R 7 are each a monovalent saturated hydrocarbon group having 3 to 6 carbon atoms.

さらに、N−オキシド化合物の他の一例として、式(4)のN−オキシド化合物を含有しており、該式(4)中のR8は炭素数が3〜6の一価の飽和炭化水素基又は一価のヘテロ原子含有飽和炭化水素基である。 Furthermore, as another example of the N-oxide compound, the N-oxide compound of the formula (4) is contained, and R 8 in the formula (4) is a monovalent saturated hydrocarbon having 3 to 6 carbon atoms. Or a monovalent heteroatom-containing saturated hydrocarbon group.

Figure 2012209482
式(4)のN−オキシド化合物の具体例は図7に示した通りであり、同図7の例23〜例26は、R8が炭素数が3〜6の一価の飽和炭化水素基である例を示し、例27はR8が炭素数が3〜6の一価のヘテロ原子含有飽和炭化水素基である例を示す。
Figure 2012209482
Specific examples of the N-oxide compound of the formula (4) are as shown in FIG. 7. Examples 23 to 26 in FIG. 7 are monovalent saturated hydrocarbon groups in which R 8 has 3 to 6 carbon atoms. Example 27 shows an example where R 8 is a monovalent heteroatom-containing saturated hydrocarbon group having 3 to 6 carbon atoms.

さらに、N−オキシド化合物の他の一例として、式(5)のN−オキシド化合物を含有しており、該式(5)中のR9は炭素数が3〜6の一価の飽和炭化水素基又は一価のヘテロ原子含有飽和炭化水素基である。 Furthermore, as another example of the N-oxide compound, the N-oxide compound of the formula (5) is contained, and R 9 in the formula (5) is a monovalent saturated hydrocarbon having 3 to 6 carbon atoms. Or a monovalent heteroatom-containing saturated hydrocarbon group.

Figure 2012209482
式(5)のN−オキシド化合物の具体例は図8に示した通りであり、同図8の例28〜例31は、R9が炭素数が3〜6の一価の飽和炭化水素基である例を示し、例32はR9が炭素数が3〜6の一価のヘテロ原子含有飽和炭化水素基である例を示す。
Figure 2012209482
Specific examples of the N-oxide compound of the formula (5) are as shown in FIG. 8, and Examples 28 to 31 of FIG. 8 are monovalent saturated hydrocarbon groups having 9 to 6 carbon atoms in R 9. Example 32 shows an example where R 9 is a monovalent heteroatom-containing saturated hydrocarbon group having 3 to 6 carbon atoms.

〈実験例1〜実験例40と比較例1〜比較例6の説明〉
図9及び図10は、非水溶媒としてN−オキシド化合物を単独で用いた実験例1〜実験例40とその比較例1〜比較例6を示す。
<Explanation of Experimental Examples 1 to 40 and Comparative Examples 1 to 6>
9 and 10 show Experimental Examples 1 to 40 and Comparative Examples 1 to 6 using an N-oxide compound alone as a nonaqueous solvent.

(実験例1)
非水系電解液として、非水溶媒が例1のN−オキシド化合物で、且つ、支持電解質である4フッ化ほう酸3エチルメチルアンモニウム(TEMABF4)を非水系電解液1リットルに対して1.2モル溶解させたものを用意し、該非水系電解液を、正極10及び負極20の分極性電極層12,22がPASから成る電気二重層キャパシタに封入して、後記評価を行った。
(Experimental example 1)
As the non-aqueous electrolyte, the non-aqueous solvent is the N-oxide compound of Example 1 and the supporting electrolyte is triethylmethylammonium tetrafluoroborate (TEMAF 4 ), which is 1.2 liters per liter of the non-aqueous electrolyte. A non-aqueous electrolyte solution was prepared and sealed in an electric double layer capacitor in which the polarizable electrode layers 12 and 22 of the positive electrode 10 and the negative electrode 20 were made of PAS, and the evaluation described below was performed.

(実験例2)
非水系電解液として、実験例1の非水溶媒を例2のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 2)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the nonaqueous solvent of Experimental Example 1 was changed to the N-oxide compound of Example 2 as the nonaqueous electrolytic solution.

(実験例3)
非水系電解液として、実験例1の非水溶媒を例3のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 3)
The following evaluation was performed in the same manner as in Experimental Example 1 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 1 was changed to the N-oxide compound in Example 3 was prepared.

(実験例4)
非水系電解液として、実験例1の非水溶媒を例4のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 4)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the non-aqueous electrolyte was prepared by changing the non-aqueous solvent of Experimental Example 1 to the N-oxide compound of Example 4.

(実験例5)
非水系電解液として、実験例1の非水溶媒を例5のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 5)
The following evaluation was performed in the same manner as in Experimental Example 1 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 1 was changed to the N-oxide compound in Example 5 was prepared.

(実験例6)
非水系電解液として、実験例1の非水溶媒を例6のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 6)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the non-aqueous electrolyte prepared by changing the non-aqueous solvent of Experimental Example 1 to the N-oxide compound of Example 6 was prepared.

(実験例7)
非水系電解液として、実験例1の非水溶媒を例7のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 7)
The following evaluation was performed in the same manner as in Experimental Example 1 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 1 was changed to the N-oxide compound in Example 7 was prepared.

(実験例8)
非水系電解液として、実験例1の非水溶媒を例8のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 8)
The following evaluation was performed in the same manner as in Experimental Example 1 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 1 was changed to the N-oxide compound in Example 8 was prepared.

(実験例9)
非水系電解液として、実験例1の非水溶媒を例9のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 9)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the nonaqueous electrolytic solution prepared by changing the nonaqueous solvent in Experimental Example 1 to the N-oxide compound in Example 9 was prepared.

(実験例10)
非水系電解液として、実験例1の非水溶媒を例10のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 10)
Evaluation as described below was performed in the same manner as in Experimental Example 1 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 1 was changed to the N-oxide compound in Example 10 was prepared.

(実験例11)
非水系電解液として、実験例1の非水溶媒を例11のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 11)
Evaluation as described below was performed in the same manner as in Experimental Example 1 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 1 was changed to the N-oxide compound in Example 11 was prepared.

(実験例12)
非水系電解液として、実験例1の非水溶媒を例12のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 12)
Evaluation as described below was performed in the same manner as in Experimental Example 1 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 1 was changed to the N-oxide compound in Example 12 was prepared.

(実験例13)
非水系電解液として、実験例1の非水溶媒を例13のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 13)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the non-aqueous electrolyte prepared by changing the non-aqueous solvent of Experimental Example 1 to the N-oxide compound of Example 13 was prepared.

(実験例14)
非水系電解液として、実験例1の非水溶媒を例14のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 14)
The following evaluation was performed in the same manner as in Experimental Example 1 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 1 was changed to the N-oxide compound in Example 14 was prepared.

(実験例15)
非水系電解液として、実験例1の非水溶媒を例15のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 15)
The following evaluation was performed in the same manner as in Experimental Example 1 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 1 was changed to the N-oxide compound in Example 15 was prepared.

(実験例16)
非水系電解液として、実験例1の非水溶媒を例16のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 16)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the nonaqueous solvent of Experimental Example 1 was changed to the N-oxide compound of Example 16 as the nonaqueous electrolytic solution.

(実験例17)
非水系電解液として、実験例1の非水溶媒を例17のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 17)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the non-aqueous electrolyte was changed from the non-aqueous solvent of Experimental Example 1 to the N-oxide compound of Example 17.

(実験例18)
非水系電解液として、実験例1の非水溶媒を例18のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experiment 18)
Evaluation as described below was performed in the same manner as in Experimental Example 1 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 1 was changed to the N-oxide compound in Example 18 was prepared.

(実験例19)
非水系電解液として、実験例1の非水溶媒を例19のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 19)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the non-aqueous electrolyte prepared by changing the non-aqueous solvent of Experimental Example 1 to the N-oxide compound of Example 19 was prepared.

(実験例20)
非水系電解液として、実験例1の非水溶媒を例20のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experiment 20)
The following evaluation was performed in the same manner as in Experimental Example 1 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 1 was changed to the N-oxide compound in Example 20 was prepared.

(実験例21)
非水系電解液として、実験例1の非水溶媒を例21のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 21)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the non-aqueous electrolyte was changed from the non-aqueous solvent of Experimental Example 1 to the N-oxide compound of Example 21.

(実験例22)
非水系電解液として、実験例1の非水溶媒を例22のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 22)
The following evaluation was performed in the same manner as in Experimental Example 1 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 1 was changed to the N-oxide compound in Example 22 was prepared.

(実験例23)
非水系電解液として、実験例1の非水溶媒を例23のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 23)
The following evaluation was performed in the same manner as in Experimental Example 1 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 1 was changed to the N-oxide compound in Example 23 was prepared.

(実験例24)
非水系電解液として、実験例1の非水溶媒を例24のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 24)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the non-aqueous electrolyte was changed from the non-aqueous solvent of Experimental Example 1 to the N-oxide compound of Example 24.

(実験例25)
非水系電解液として、実験例1の非水溶媒を例25のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 25)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the non-aqueous electrolyte was changed from the non-aqueous solvent of Experimental Example 1 to the N-oxide compound of Example 25.

(実験例26)
非水系電解液として、実験例1の非水溶媒を例26のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 26)
The following evaluation was performed in the same manner as in Experimental Example 1 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 1 was changed to the N-oxide compound in Example 26 was prepared.

(実験例27)
非水系電解液として、実験例1の非水溶媒を例27のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experiment 27)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the non-aqueous electrolyte was changed from the non-aqueous solvent of Experimental Example 1 to the N-oxide compound of Example 27.

(実験例28)
非水系電解液として、実験例1の非水溶媒を例28のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 28)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the non-aqueous electrolyte was changed from the non-aqueous solvent of Experimental Example 1 to the N-oxide compound of Example 28.

(実験例29)
非水系電解液として、実験例1の非水溶媒を例29のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 29)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the non-aqueous electrolyte was changed from the non-aqueous solvent of Experimental Example 1 to the N-oxide compound of Example 29.

(実験例30)
非水系電解液として、実験例1の非水溶媒を例30のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 30)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the non-aqueous electrolyte prepared by changing the non-aqueous solvent of Experimental Example 1 to the N-oxide compound of Example 30 was prepared.

(実験例31)
非水系電解液として、実験例1の非水溶媒を例31のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 31)
The following evaluation was performed in the same manner as in Experimental Example 1 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 1 was changed to the N-oxide compound in Example 31 was prepared.

(実験例32)
非水系電解液として、実験例1の非水溶媒を例32のN−オキシド化合物に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 32)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the non-aqueous electrolyte was changed from the non-aqueous solvent of Experimental Example 1 to the N-oxide compound of Example 32.

(実験例33)
非水系電解液として、実験例1の支持電解質を4フッ化ほう酸4エチルアンモニウム(TEABF4)に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 33)
The following evaluation was performed in the same manner as in Experimental Example 1 except that a non-aqueous electrolytic solution prepared by changing the supporting electrolyte of Experimental Example 1 to tetraethylammonium tetrafluoroborate (TEABF 4 ) was prepared.

(実験例34)
非水系電解液として、実験例1の非水溶媒を例3のN−オキシド化合物に変更し、且つ、支持電解質を4フッ化ほう酸4エチルアンモニウム(TEABF4)に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 34)
The nonaqueous electrolyte solution was prepared by changing the nonaqueous solvent of Experimental Example 1 to the N-oxide compound of Example 3 and changing the supporting electrolyte to tetraethylammonium tetrafluoroborate (TEABF 4 ). The following evaluation was performed in the same manner as in Experimental Example 1.

(実験例35)
非水系電解液として、実験例1の非水溶媒を例9のN−オキシド化合物に変更し、且つ、支持電解質を4フッ化ほう酸4エチルアンモニウム(TEABF4)に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 35)
As the non-aqueous electrolyte solution, except that the non-aqueous solvent of Experimental Example 1 was changed to the N-oxide compound of Example 9 and the supporting electrolyte was changed to 4-ethylammonium tetrafluoroborate (TEABF 4 ) The following evaluation was performed in the same manner as in Experimental Example 1.

(実験例36)
非水系電解液として、実験例1の非水溶媒を例19のN−オキシド化合物に変更し、且つ、支持電解質を4フッ化ほう酸4エチルアンモニウム(TEABF4)に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 36)
As the nonaqueous electrolyte solution, except that the nonaqueous solvent of Experimental Example 1 was changed to the N-oxide compound of Example 19 and the supporting electrolyte was changed to tetraethylammonium tetrafluoroborate (TEABF 4 ), The following evaluation was performed in the same manner as in Experimental Example 1.

(実験例37)
非水系電解液として、実験例1の支持電解質を4フッ化ほう酸−1,1’−スピロビピロリジニウム(SBPBF4)に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 37)
As described in Experimental Example 1, the following evaluation was made except that a non-aqueous electrolytic solution prepared by changing the supporting electrolyte of Experimental Example 1 to tetrafluoroboric acid-1,1′-spirobipyrrolidinium (SBPBF 4 ) was prepared. Went.

(実験例38)
非水系電解液として、実験例1の非水溶媒を例3のN−オキシド化合物に変更し、且つ、支持電解質を4フッ化ほう酸−1,1’−スピロビピロリジニウム(SBPBF4)に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experiment 38)
As the non-aqueous electrolyte, the non-aqueous solvent of Experimental Example 1 was changed to the N-oxide compound of Example 3, and the supporting electrolyte was changed to tetrafluoroboric acid-1,1′-spirobipyrrolidinium (SBPBF 4 ). The following evaluation was performed in the same manner as in Experimental Example 1 except that a modified one was prepared.

(実験例39)
非水系電解液として、実験例1の非水溶媒を例9のN−オキシド化合物に変更し、且つ、支持電解質を4フッ化ほう酸−1,1’−スピロビピロリジニウム(SBPBF4)に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 39)
As the non-aqueous electrolyte, the non-aqueous solvent of Experimental Example 1 was changed to the N-oxide compound of Example 9, and the supporting electrolyte was tetrafluoroboric acid-1,1′-spirobipyrrolidinium (SBPBF 4 ). The following evaluation was performed in the same manner as in Experimental Example 1 except that a modified one was prepared.

(実験例40)
非水系電解液として、実験例1の非水溶媒を例19のN−オキシド化合物に変更し、且つ、支持電解質を4フッ化ほう酸−1,1’−スピロビピロリジニウム(SBPBF4)に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Experimental example 40)
As the non-aqueous electrolyte, the non-aqueous solvent of Experimental Example 1 was changed to the N-oxide compound of Example 19, and the supporting electrolyte was tetrafluoroboric acid-1,1′-spirobipyrrolidinium (SBPBF 4 ). The following evaluation was performed in the same manner as in Experimental Example 1 except that a modified one was prepared.

(比較例1)
非水系電解液として、実験例1の非水溶媒をプロピレンカーボネート(PC)に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Comparative Example 1)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the nonaqueous electrolytic solution prepared by changing the nonaqueous solvent in Experimental Example 1 to propylene carbonate (PC) was prepared.

(比較例2)
非水系電解液として、実験例1の非水溶媒をスルホラン(SL)に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Comparative Example 2)
The following evaluation was performed in the same manner as in Experimental Example 1 except that the nonaqueous electrolytic solution prepared by changing the nonaqueous solvent in Experimental Example 1 to sulfolane (SL) was prepared.

(比較例3)
非水系電解液として、実験例1の非水溶媒をプロピレンカーボネート(PC)に変更し、且つ、支持電解質を4フッ化ほう酸4エチルアンモニウム(TEABF4)に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Comparative Example 3)
As a non-aqueous electrolyte solution, except that the non-aqueous solvent of Experimental Example 1 was changed to propylene carbonate (PC) and the supporting electrolyte was changed to tetraethylammonium tetrafluoroborate (TEABF 4 ) The evaluation described below was conducted in the same manner as in Example 1.

(比較例4)
非水系電解液として、実験例1の非水溶媒をスルホラン(SL)に変更し、且つ、支持電解質を4フッ化ほう酸4エチルアンモニウム(TEABF4)に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Comparative Example 4)
Experimental examples except that the nonaqueous solvent of Experimental Example 1 was changed to sulfolane (SL) and the supporting electrolyte was changed to tetraethylammonium tetrafluoroborate (TEABF 4 ) as the nonaqueous electrolytic solution. The evaluation described below was performed in the same manner as in 1.

(比較例5)
非水系電解液として、実験例1の非水溶媒をプロピレンカーボネート(PC)に変更し、且つ、支持電解質を4フッ化ほう酸−1,1’−スピロビピロリジニウム(SBPBF4)に変更したものを用意した他は、実験例1と同様に後記評価を行った。
(Comparative Example 5)
As the non-aqueous electrolyte, the non-aqueous solvent of Experimental Example 1 was changed to propylene carbonate (PC), and the supporting electrolyte was changed to tetrafluoroboric acid-1,1′-spirobipyrrolidinium (SBPBF 4 ). The following evaluation was performed in the same manner as in Experimental Example 1 except that the sample was prepared.

(比較例6)
非水系電解液として、実験例1の非水溶媒をスルホラン(SL)に変更し、且つ、支持電解質を4フッ化ほう酸−1,1’−スピロビピロリジニウム(SBPBF4)に変更したたものを用意した他は、実験例1と同様に後記評価を行った。
(Comparative Example 6)
As the non-aqueous electrolyte, the non-aqueous solvent of Experimental Example 1 was changed to sulfolane (SL), and the supporting electrolyte was changed to tetrafluoroboric acid-1,1′-spirobipyrrolidinium (SBPBF 4 ). The following evaluation was performed in the same manner as in Experimental Example 1 except that the sample was prepared.

〈評価方法の説明〉
図9及び図10中の「初期値・静電容量」と「初期値・インピーダンス(1kHz)」は、実施例1〜実施例40と比較例1〜比較例6の非水系電解液を封入した電気二重層キャパシタそれぞれを25℃雰囲気中で12時間放置後、同雰囲気内でLCRメータによって静電容量及びインピーダンス(測定周波数1kHz)を測定した値を示してある。
<Description of evaluation method>
The “initial value / capacitance” and “initial value / impedance (1 kHz)” in FIGS. 9 and 10 enclose the non-aqueous electrolytes of Examples 1 to 40 and Comparative Examples 1 to 6. The values obtained by measuring the capacitance and impedance (measurement frequency: 1 kHz) with an LCR meter in the same atmosphere after leaving the electric double layer capacitors in an atmosphere at 25 ° C. for 12 hours are shown.

また、図9及び図10中の「信頼性試験後・静電容量変化率」と「信頼性試験後・インピーダンス変化率」は、「初期値・静電容量」と「初期値・インピーダンス(1kHz)」を測定した後、70℃の雰囲気中で充電電圧3.3Vを500時間印加し続ける信頼性試験を実施し、その後に25℃雰囲気中でLCRメータによって静電容量及びインピーダンス(測定周波数1kHz)を測定し、各測定値を「初期値・静電容量」と「初期値・インピーダンス(1kHz)」の値でそれぞれ除算して百分率で表した値を示してある。   Further, “after reliability test / capacitance change rate” and “after reliability test / impedance change rate” in FIGS. 9 and 10 are “initial value / capacitance” and “initial value / impedance (1 kHz). ) ”, A reliability test was performed in which a charging voltage of 3.3 V was continuously applied for 500 hours in an atmosphere at 70 ° C., and thereafter the capacitance and impedance (measurement frequency: 1 kHz) were measured by an LCR meter in an atmosphere at 25 ° C. ), And each measured value is divided by the values of “initial value / capacitance” and “initial value / impedance (1 kHz)”, and the value is expressed as a percentage.

さらに、図9及び図10中の「信頼性試験後・パッケージ厚み変化率」は、信頼性試験後のフィルムパッケージ40の厚みT2(図3を参照)を初期のフィルムパッケージ40の厚みT1(図1を参照)で除算して百分率で表した値を示してある。   Further, “after reliability test / package thickness change rate” in FIG. 9 and FIG. 10 is the same as the thickness T2 (see FIG. 3) of the film package 40 after the reliability test. (See 1), and the percentage values are shown.

〈評価結果の説明〉
図9及び図10から分かるように、非水溶媒にN−オキシド化合物を用いた非水系電解液(実験例1〜実験例40)の方が、非水溶媒にプロピレンカーボネート(PC)を用いた非水系電解液(比較例1、比較例3及び比較例5)よりも、信頼性試験後の静電容量変化率とインピーダンス変化率とパッケージ厚み変化率が格段小さくなる傾向がある。このような結果が得られた理由は定かではないが以下のように推測される。
<Explanation of evaluation results>
As can be seen from FIG. 9 and FIG. 10, the nonaqueous electrolytic solution (Experimental Examples 1 to 40) using an N-oxide compound as the nonaqueous solvent used propylene carbonate (PC) as the nonaqueous solvent. There is a tendency that the capacitance change rate, the impedance change rate, and the package thickness change rate after the reliability test are remarkably smaller than the non-aqueous electrolyte solutions (Comparative Example 1, Comparative Example 3 and Comparative Example 5). The reason why such a result was obtained is not clear, but is presumed as follows.

即ち、電気二重層キャパシタに充電電圧3.3Vを印加すると、正極10の電位は例えば+4.65Vに上昇し負極の電位が例えば+1.35Vに低下するが、非水溶媒であるN−オキシド化合物の酸化電位がプロピレンカーボネート(PC)のそれよりも高いため、充電電圧3.3Vを印加しても非水溶媒の酸化分解の発生が無く又は少なく、これにより信頼性試験後の静電容量変化率とインピーダンス変化率とパッケージ厚み変化率が抑制されたものと考えられる。また、N−オキシド化合物は還元電位も低く、電気化学的に安定していることも前記結果に影響していると考えられる。   That is, when a charging voltage of 3.3 V is applied to the electric double layer capacitor, the potential of the positive electrode 10 increases to, for example, +4.65 V and the potential of the negative electrode decreases to, for example, +1.35 V. Since the oxidation potential of is higher than that of propylene carbonate (PC), there is little or no occurrence of oxidative decomposition of the non-aqueous solvent even when a charging voltage of 3.3 V is applied, thereby changing the capacitance after the reliability test It is considered that the rate, impedance change rate, and package thickness change rate were suppressed. Moreover, it is thought that the N-oxide compound has a low reduction potential and is electrochemically stable.

また、図9及び図10から分かるように、非水溶媒にN−オキシド化合物を用いた非水系電解液(実験例1〜実験例40)の方が、非水溶媒にスルホラン(SL)を用いた非水系電解液(比較例2、比較例4及び比較例6)よりも、初期のインピーダンスと信頼性試験後のインピーダンス変化率が小さくなる傾向がある。このような結果が得られた理由は定かではないが以下のように推測される。   Further, as can be seen from FIG. 9 and FIG. 10, the non-aqueous electrolyte solution using the N-oxide compound as the non-aqueous solvent (Experimental Examples 1 to 40) uses sulfolane (SL) as the non-aqueous solvent. The initial impedance and the impedance change rate after the reliability test tend to be smaller than the non-aqueous electrolyte solutions (Comparative Example 2, Comparative Example 4 and Comparative Example 6). The reason why such a result was obtained is not clear, but is presumed as follows.

即ち、非水溶媒であるN−オキシド化合物は窒素原子が正に帯電して酸素原子が負に帯電する高極性化合物であって、支持電解質の溶解性が高いことから非水系電解液の電気伝導度が高く、これにより初期のインピーダンスと信頼性試験後のインピーダンス変化率が抑制されたものと考えられる。   That is, the N-oxide compound which is a non-aqueous solvent is a highly polar compound in which nitrogen atoms are positively charged and oxygen atoms are negatively charged, and the electroconductivity of the non-aqueous electrolyte is high because the solubility of the supporting electrolyte is high. It is considered that the initial impedance and the impedance change rate after the reliability test were suppressed.

このように、非水溶媒としてN−オキシド化合物を単独で用いた非水系電解液は、従前の非水系電解液に比べて、充電電圧を高めてエネルギー密度を向上させるのに有用であることが理解できよう。   As described above, the non-aqueous electrolyte using the N-oxide compound alone as the non-aqueous solvent is useful for increasing the charging voltage and improving the energy density as compared with the conventional non-aqueous electrolyte. I understand.

〈実験例41〜実験例44と比較例7及び比較例8の説明〉
図11は、非水溶媒としてN−オキシド化合物と公知の非水溶媒との混合溶媒を用いた実験例41〜実験例44とその比較例7及び比較例8を示す。
<Explanation of Experimental Example 41 to Experimental Example 44, Comparative Example 7 and Comparative Example 8>
FIG. 11 shows Experimental Examples 41 to 44 and Comparative Examples 7 and 8 using a mixed solvent of an N-oxide compound and a known nonaqueous solvent as the nonaqueous solvent.

(実験例41)
非水系電解液として、非水溶媒が例23のN−オキシド化合物90重量%とジメチルスルホン(DMS)10重量%の混合溶媒で、且つ、支持電解質である4フッ化ほう酸3エチルメチルアンモニウム(TEMABF4)を非水系電解液1リットルに対して1.2モル溶解させたものを用意し、該非水系電解液を、正極10及び負極20の分極性電極層12,22がPASから成る電気二重層キャパシタに封入して、後記評価を行った。
(Experimental example 41)
As the non-aqueous electrolyte, the non-aqueous solvent was a mixed solvent of 90% by weight of the N-oxide compound of Example 23 and 10% by weight of dimethyl sulfone (DMS), and 3 ethylmethylammonium tetrafluoroborate (TEMABF) as the supporting electrolyte. 4 ) prepared by dissolving 1.2 mol of 1 liter of non-aqueous electrolyte solution, and preparing the non-aqueous electrolyte solution as an electric double layer in which the polarizable electrode layers 12 and 22 of the positive electrode 10 and the negative electrode 20 are made of PAS. The evaluation was performed after sealing in a capacitor.

(実験例42)
非水系電解液として、非水溶媒が例23のN−オキシド化合物80重量%とエチルメチルスルホン(EMS)20重量%の混合溶媒で、且つ、支持電解質である4フッ化ほう酸3エチルメチルアンモニウム(TEMABF4)を非水系電解液1リットルに対して1.2モル溶解させたものを用意し、該非水系電解液を、正極10及び負極20の分極性電極層12,22がPASから成る電気二重層キャパシタに封入して、後記評価を行った。
(Experimental example 42)
As the non-aqueous electrolyte, the non-aqueous solvent is a mixed solvent of 80% by weight of the N-oxide compound of Example 23 and 20% by weight of ethyl methyl sulfone (EMS), and the supporting electrolyte is 3 ethyl methyl ammonium tetrafluoroborate ( A solution prepared by dissolving 1.2 mol of TEMABF 4 ) with respect to 1 liter of a non-aqueous electrolyte solution is prepared, and the non-aqueous electrolyte solution is an electric two-phase electrode layer 12, 22 of the positive electrode 10 and the negative electrode 20. The evaluation was conducted after enclosing in a multilayer capacitor.

(実験例43)
非水系電解液として、非水溶媒が例23のN−オキシド化合物80重量%とエチルイソプロピルスルホン(EIPS)20重量%の混合溶媒で、且つ、支持電解質である4フッ化ほう酸3エチルメチルアンモニウム(TEMABF4)を非水系電解液1リットルに対して1.2モル溶解させたものを用意し、該非水系電解液を、正極10及び負極20の分極性電極層12,22がPASから成る電気二重層キャパシタに封入して、後記評価を行った。
(Experimental example 43)
As the non-aqueous electrolyte, the non-aqueous solvent is a mixed solvent of 80% by weight of the N-oxide compound of Example 23 and 20% by weight of ethyl isopropyl sulfone (EIPS), and the supporting electrolyte is 3-ethylmethylammonium tetrafluoroborate ( A solution prepared by dissolving 1.2 mol of TEMABF 4 ) with respect to 1 liter of a non-aqueous electrolyte solution is prepared, and the non-aqueous electrolyte solution is an electric two-phase electrode layer 12, 22 of the positive electrode 10 and the negative electrode 20. The evaluation was conducted after enclosing in a multilayer capacitor.

(実験例44)
非水系電解液として、非水溶媒が例23のN−オキシド化合物80重量%とスルホラン(SL)20重量%の混合溶媒で、且つ、支持電解質である4フッ化ほう酸3エチルメチルアンモニウム(TEMABF4)を非水系電解液1リットルに対して1.2モル溶解させたものを用意し、該非水系電解液を、正極10及び負極20の分極性電極層12,22がPASから成る電気二重層キャパシタに封入して、後記評価を行った。
(Experimental example 44)
As the non-aqueous electrolyte, the non-aqueous solvent is a mixed solvent of 80% by weight of the N-oxide compound of Example 23 and 20% by weight of sulfolane (SL), and the supporting electrolyte is 3-ethylmethylammonium tetrafluoroborate (TEMAF 4). ) Is dissolved in 1.2 mol per liter of non-aqueous electrolyte, and the non-aqueous electrolyte is used as an electric double layer capacitor in which the polarizable electrode layers 12 and 22 of the positive electrode 10 and the negative electrode 20 are made of PAS. The following evaluation was performed.

(比較例7)
非水系電解液として、実験例41の非水溶媒をエチルイソプロピルスルホン(EIPS)の単独としたものを用意した他は、実験例41と同様に後記評価を行った。
(Comparative Example 7)
The following evaluation was performed in the same manner as in Experimental Example 41, except that the non-aqueous electrolyte was prepared by using only ethyl isopropyl sulfone (EIPS) as the non-aqueous solvent of Experimental Example 41.

(比較例8)
非水系電解液として、実験例41の非水溶媒をスルホラン(SL)の単独としたものを用意した他は、実験例41と同様に後記評価を行った。
(Comparative Example 8)
The following evaluation was performed in the same manner as in Experimental Example 41 except that the non-aqueous electrolyte was prepared by using only sulfolane (SL) as the non-aqueous solvent of Experimental Example 41.

〈評価方法の説明〉
図11中の「初期値・静電容量」と「初期値・インピーダンス(1kHz)」は、実施例41〜実施例44と比較例7及び8の非水系電解液を封入した電気二重層キャパシタそれぞれを25℃雰囲気中で12時間放置後、同雰囲気内でLCRメータによって静電容量及びインピーダンス(測定周波数1kHz)を測定した値を示してある。
<Description of evaluation method>
“Initial value / capacitance” and “initial value / impedance (1 kHz)” in FIG. 11 are the electric double layer capacitors enclosing the non-aqueous electrolytes of Examples 41 to 44 and Comparative Examples 7 and 8, respectively. Is a value obtained by measuring the capacitance and impedance (measurement frequency: 1 kHz) with an LCR meter in the atmosphere after standing for 12 hours in a 25 ° C. atmosphere.

また、図11中の「信頼性試験後・静電容量変化率」と「信頼性試験後・インピーダンス変化率」は、「初期値・静電容量」と「初期値・インピーダンス(1kHz)」を測定した後、70℃の雰囲気中で充電電圧3.3Vを500時間印加し続ける信頼性試験を実施し、その後に25℃雰囲気中でLCRメータによって静電容量及びインピーダンス(測定周波数1kHz)を測定し、各測定値を「初期値・静電容量」と「初期値・インピーダンス(1kHz)」の値でそれぞれ除算して百分率で表した値を示してある。   Further, “after reliability test / capacitance change rate” and “after reliability test / impedance change rate” in FIG. 11 are “initial value / capacitance” and “initial value / impedance (1 kHz)”. After the measurement, a reliability test is performed in which a charging voltage of 3.3 V is continuously applied for 500 hours in an atmosphere at 70 ° C., and then the capacitance and impedance (measurement frequency: 1 kHz) are measured with an LCR meter in an atmosphere at 25 ° C. Each measured value is divided by the values of “initial value / capacitance” and “initial value / impedance (1 kHz)”, and the value is expressed as a percentage.

さらに、図11中の「信頼性試験後・パッケージ厚み変化率」は、信頼性試験後のフィルムパッケージ40の厚みT2(図3を参照)を初期のフィルムパッケージ40の厚みT1(図1を参照)で除算して百分率で表した値を示してある。   Further, “after reliability test / package thickness change rate” in FIG. 11 is the same as the thickness T2 (see FIG. 3) of the film package 40 after the reliability test (see FIG. 1). ), And the percentage value is shown.

〈評価結果の説明〉
図11から分かるように、非水溶媒にN−オキシド化合物と公知の非水溶媒との混合溶媒を用いた非水系電解液(実験例41〜実験例44)の方が、非水溶媒にスルホラン(SL)を用いた非水系電解液(比較例8)よりも、初期のインピーダンスが小さくなる傾向がある。このような結果が得られた理由は定かではないが以下のように推測される。
<Explanation of evaluation results>
As can be seen from FIG. 11, the non-aqueous electrolyte solution (Experimental Examples 41 to 44) using a mixed solvent of an N-oxide compound and a known non-aqueous solvent as the non-aqueous solvent is sulfolane as the non-aqueous solvent. The initial impedance tends to be smaller than that of the non-aqueous electrolyte using (SL) (Comparative Example 8). The reason why such a result was obtained is not clear, but is presumed as follows.

即ち、非水溶媒に含有されるN−オキシド化合物は窒素原子が正に帯電して酸素原子が負に帯電する高極性化合物であって、支持電解質の溶解性が高いことから非水系電解液の電気伝導度が高く、これにより初期のインピーダンスが抑制されたものと考えられる。また、N−オキシド化合物の存在によって非水系電解液の粘度が低下していることも前記結果に影響していると考えられる。   That is, the N-oxide compound contained in the nonaqueous solvent is a highly polar compound in which the nitrogen atom is positively charged and the oxygen atom is negatively charged, and the solubility of the supporting electrolyte is high. It is considered that the electrical conductivity is high and the initial impedance is thereby suppressed. Moreover, it is thought that the viscosity of the non-aqueous electrolyte is lowered due to the presence of the N-oxide compound, which also affects the result.

このように、非水溶媒としてN−オキシド化合物と公知の非水溶媒との混合溶媒を用いた非水系電解液は、従前の非水系電解液に比べて、充電電圧を高めてエネルギー密度を向上させるのに有用であることが理解できよう。   In this way, the non-aqueous electrolyte using a mixed solvent of an N-oxide compound and a known non-aqueous solvent as the non-aqueous solvent increases the charging voltage and improves the energy density compared to the conventional non-aqueous electrolyte. It will be understood that it is useful for

《リチウムイオンキャパシタへの適用》
以下、本発明をリチウムイオンキャパシタ用非水系電解液に適用した具体例について、図12及び図13を引用して説明する。
<Application to lithium ion capacitors>
Hereinafter, a specific example in which the present invention is applied to a non-aqueous electrolyte for a lithium ion capacitor will be described with reference to FIGS. 12 and 13.

〈リチウムイオンキャパシタの構造〉
図12に示したように、リチウムイオンキャパシタは、前記電気二重層キャパシタと同様に、正極10、負極20、及びセパレータ30を有する蓄電素子Bと、非水系電解液と、フィルムパッケージ40と、一対の端子50とを有する。このリチウムイオンキャパシタの充電前の正極10と負極20との電位差は3V程度である。
<Structure of lithium ion capacitor>
As shown in FIG. 12, the lithium ion capacitor is similar to the electric double layer capacitor in that the storage element B having the positive electrode 10, the negative electrode 20, and the separator 30, the non-aqueous electrolyte, the film package 40, and the pair Terminal 50. The potential difference between the positive electrode 10 and the negative electrode 20 before charging of the lithium ion capacitor is about 3V.

このリチウムイオンキャパシタが前記電気二重層キャパシタと異なるところは、
・負極20が、例えば銅の金属箔から成る集電体21の表面に分極性電極層22ではなく 活物質層23を形成して構成されている点
・蓄電素子Bと非水系電解液をフィルムパッケージ40内に封入する際に、リチウム金属 のシート(図示省略)が負極20の近傍に配置されている点
にある。非水系電解液は、分極性電極層12と活物質層23とセパレータ30に含浸している。
Where this lithium ion capacitor differs from the electric double layer capacitor,
-Negative electrode 20 is formed by forming active material layer 23 instead of polarizable electrode layer 22 on the surface of current collector 21 made of, for example, copper metal foil-Film of storage element B and non-aqueous electrolyte solution The lithium metal sheet (not shown) is arranged in the vicinity of the negative electrode 20 when encapsulating in the package 40. The nonaqueous electrolytic solution is impregnated in the polarizable electrode layer 12, the active material layer 23, and the separator 30.

活物質層23は、例えば難黒鉛化炭素、グラファイト、錫酸化物、珪素酸化物等の主材料の他に、カーボンブラックや金属粉末等の導電助剤や、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVDF)やスチレンブタジエンゴム(SBR)等のバインダーを必要に応じて含んでいる。勿論、活物質層23の材料は前記に限られるものではなく、公知のものが適宜利用できる。   The active material layer 23 includes, for example, non-graphitizable carbon, graphite, tin oxide, silicon oxide, and other main materials, conductive assistants such as carbon black and metal powder, polytetrafluoroethylene (PTFE), and polyfluoride. Binders such as vinylidene chloride (PVDF) and styrene butadiene rubber (SBR) are included as necessary. Of course, the material of the active material layer 23 is not limited to the above, and a known material can be used as appropriate.

リチウム金属シートのリチウムは非水系電解液に溶解すると共に、そのリチウムイオンが負極20の活物質層23にプレドープされ、これにより充電前の状態で負極20の電位が正極10の電位に比べて例えば3V程度低くなる。   The lithium of the lithium metal sheet is dissolved in the non-aqueous electrolyte, and the lithium ions are pre-doped in the active material layer 23 of the negative electrode 20, whereby the potential of the negative electrode 20 is, for example, compared with the potential of the positive electrode 10 in a state before charging. It will be about 3V lower.

〈非水系電解液の組成〉
前記非水系電解液は、非水溶媒に支持電解質が溶解したものである。支持電解質には公知の支持電解質、即ち、非水系電解液にカチオンとしてLi+を提供でき、且つ、アニオンとしてPF6 +やBF4 -等を供給できる支持電解質を使用できる。また、カチオンとしてリチウムイオンを提供できる公知のイオン性液体を使用することもできる。支持電解質の濃度は非水系電解液1リットルに対し、例えば1.0モル以上2.0モル以下である。
<Composition of non-aqueous electrolyte>
The non-aqueous electrolyte is a solution in which a supporting electrolyte is dissolved in a non-aqueous solvent. As the supporting electrolyte, a known supporting electrolyte, that is, a supporting electrolyte capable of providing Li + as a cation and supplying PF 6 + , BF 4 - or the like as an anion can be used. Moreover, the well-known ionic liquid which can provide a lithium ion as a cation can also be used. The concentration of the supporting electrolyte is, for example, 1.0 mol or more and 2.0 mol or less with respect to 1 liter of the nonaqueous electrolytic solution.

一方、非水溶媒は、N−オキシド化合物の何れか1つを少なくとも含有している。N−オキシド化合物については先に説明した通りであるのでここでの説明を省略する。   On the other hand, the non-aqueous solvent contains at least one of N-oxide compounds. Since the N-oxide compound is as described above, the description thereof is omitted here.

〈実験例45〜実験例53と比較例9〜比較例10の説明〉
図13は、非水溶媒としてN−オキシド化合物を単独で用いた実験例45〜53とその比較例9及び比較例10を示す。
<Explanation of Experimental Example 45 to Experimental Example 53 and Comparative Example 9 to Comparative Example 10>
FIG. 13 shows Experimental Examples 45 to 53 and Comparative Examples 9 and 10 using an N-oxide compound alone as a nonaqueous solvent.

(実験例45)
非水系電解液として、非水溶媒が例1のN−オキシド化合物で、且つ、支持電解質であるLiPF6を非水系電解液1リットルに対して1.2モル溶解させたものを用意し、該非水系電解液を、正極10の分極性電極層12がPASから成り負極20の活物質層23が難黒鉛化炭素から成るリチウムイオンキャパシタに封入して、後記評価を行った。
(Experimental example 45)
As the non-aqueous electrolyte solution, a non-aqueous solvent is prepared by dissolving the N-oxide compound of Example 1 and 1.2 mol of LiPF 6 as the supporting electrolyte in 1 liter of the non-aqueous electrolyte solution. The aqueous electrolyte was encapsulated in a lithium ion capacitor in which the polarizable electrode layer 12 of the positive electrode 10 was made of PAS and the active material layer 23 of the negative electrode 20 was made of non-graphitizable carbon, and the following evaluation was performed.

(実験例46)
非水系電解液として、実験例45の非水溶媒を例2のN−オキシド化合物に変更したものを用意した他は、実験例45と同様に後記評価を行った。
(Experimental example 46)
The following evaluation was performed in the same manner as in Experimental Example 45, except that the non-aqueous electrolyte was changed from the non-aqueous solvent of Experimental Example 45 to the N-oxide compound of Example 2.

(実験例47)
非水系電解液として、実験例45の非水溶媒を例3のN−オキシド化合物に変更したものを用意した他は、実験例45と同様に後記評価を行った。
(Experimental example 47)
The following evaluation was performed in the same manner as in Experimental Example 45 except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 45 was changed to the N-oxide compound in Example 3 was prepared.

(実験例48)
非水系電解液として、実験例45の非水溶媒を例6のN−オキシド化合物に変更したものを用意した他は、実験例45と同様に後記評価を行った。
(Experimental example 48)
The following evaluation was performed in the same manner as in Experimental Example 45, except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 45 was changed to the N-oxide compound in Example 6 was prepared.

(実験例49)
非水系電解液として、実験例45の非水溶媒を例9のN−オキシド化合物に変更したものを用意した他は、実験例45と同様に後記評価を行った。
(Experimental example 49)
The following evaluation was performed in the same manner as in Experimental Example 45, except that a non-aqueous electrolyte was prepared by changing the non-aqueous solvent of Experimental Example 45 to the N-oxide compound of Example 9.

(実験例50)
非水系電解液として、実験例45の非水溶媒を例14のN−オキシド化合物に変更したものを用意した他は、実験例45と同様に後記評価を行った。
(Experimental example 50)
The following evaluation was performed in the same manner as in Experimental Example 45 except that a non-aqueous electrolyte was prepared by changing the non-aqueous solvent of Experimental Example 45 to the N-oxide compound of Example 14.

(実験例51)
非水系電解液として、実験例45の非水溶媒を例19のN−オキシド化合物に変更したものを用意した他は、実験例45と同様に後記評価を行った。
(Experimental example 51)
The following evaluation was performed in the same manner as in Experimental Example 45, except that a non-aqueous electrolyte was prepared by changing the non-aqueous solvent of Experimental Example 45 to the N-oxide compound of Example 19.

(実験例52)
非水系電解液として、実験例45の非水溶媒を例23のN−オキシド化合物に変更したものを用意した他は、実験例45と同様に後記評価を行った。
(Experimental example 52)
The following evaluation was performed in the same manner as in Experimental Example 45, except that the non-aqueous electrolyte was changed from the non-aqueous solvent of Experimental Example 45 to the N-oxide compound of Example 23.

(実験例53)
非水系電解液として、実験例45の非水溶媒を例28のN−オキシド化合物に変更したものを用意した他は、実験例45と同様に後記評価を行った。
(Experimental example 53)
The following evaluation was performed in the same manner as in Experimental Example 45, except that a non-aqueous electrolyte was prepared by changing the non-aqueous solvent of Experimental Example 45 to the N-oxide compound of Example 28.

(比較例9)
非水系電解液として、実験例45の非水溶媒をプロピレンカーボネート(PC)に変更したものを用意した他は、実験例45と同様に後記評価を行った。
(Comparative Example 9)
The following evaluation was performed in the same manner as in Experimental Example 45, except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 45 was changed to propylene carbonate (PC) was prepared.

(比較例10)
非水系電解液として、実験例45の非水溶媒をスルホラン(SL)に変更したものを用意した他は、実験例45と同様に後記評価を行った。
(Comparative Example 10)
The following evaluation was performed in the same manner as in Experimental Example 45, except that a nonaqueous electrolytic solution in which the nonaqueous solvent in Experimental Example 45 was changed to sulfolane (SL) was prepared.

〈評価方法の説明〉
図13中の「初期値・静電容量」と「初期値・内部抵抗」は、実施例45〜実施例53と比較例9及び比較例10の非水系電解液を封入したリチウムイオンキャパシタそれぞれを25℃雰囲気中で12時間放置後、同雰囲気内でLCRメータによって静電容量及び内部抵抗を測定した値を示してある。
<Description of evaluation method>
“Initial value / capacitance” and “initial value / internal resistance” in FIG. 13 represent the lithium ion capacitors enclosing the non-aqueous electrolytes of Examples 45 to 53, Comparative Example 9 and Comparative Example 10, respectively. The values obtained by measuring the capacitance and the internal resistance with an LCR meter in the same atmosphere after standing for 12 hours in a 25 ° C. atmosphere are shown.

また、図13中の「信頼性試験後・静電容量変化率」と「信頼性試験後・内部抵抗変化率」は、「初期値・静電容量」と「初期値・内部抵抗」を測定した後、60℃の雰囲気中で充電電圧4.5Vを500時間印加し続ける信頼性試験を実施し、その後に25℃雰囲気中でLCRメータによって静電容量及び内部抵抗を測定し、各測定値を「初期値・静電容量」と「初期値・内部抵抗」の値でそれぞれ除算して百分率で表した値を示してある。   In addition, “After Reliability Test / Capacitance Change Rate” and “After Reliability Test / Internal Resistance Change Rate” in FIG. 13 measure “Initial Value / Capacitance” and “Initial Value / Internal Resistance”. After that, a reliability test was performed in which a charging voltage of 4.5 V was continuously applied for 500 hours in an atmosphere of 60 ° C., and thereafter the capacitance and internal resistance were measured with an LCR meter in an atmosphere of 25 ° C. Are divided by the values of “initial value / capacitance” and “initial value / internal resistance”, respectively, and are expressed as percentages.

さらに、図13中の「信頼性試験後・パッケージ厚み変化率」は、信頼性試験後のフィルムパッケージ40の厚みT2(図3を参照)を初期のフィルムパッケージ40の厚みT1(図1を参照)で除算して百分率で表した値を示してある。   Further, “after reliability test / package thickness change rate” in FIG. 13 is the same as the thickness T2 (see FIG. 3) of the film package 40 after the reliability test (see FIG. 1). ), And the percentage value is shown.

〈評価結果の説明〉
図13から分かるように、非水溶媒にN−オキシド化合物を用いた非水系電解液(実験例45〜実験例53)の方が、非水溶媒にプロピレンカーボネート(PC)を用いた非水系電解液(比較例9)よりも、信頼性試験後の静電容量変化率と抵抗変化率とパッケージ厚み変化率が格段小さくなる傾向がある。このような結果が得られた理由(推測)は先に述べた通りである。
<Explanation of evaluation results>
As can be seen from FIG. 13, the nonaqueous electrolytic solution using the N-oxide compound as the nonaqueous solvent (Experimental Example 45 to Experimental Example 53) is nonaqueous electrolytic using propylene carbonate (PC) as the nonaqueous solvent. The capacitance change rate, resistance change rate, and package thickness change rate after the reliability test tend to be much smaller than the liquid (Comparative Example 9). The reason (guess) for obtaining such a result is as described above.

また、図13から分かるように、非水溶媒にN−オキシド化合物を用いた非水系電解液(実験例45〜実験例53)の方が、非水溶媒にスルホラン(SL)を用いた非水系電解液(比較例10)よりも、初期の内部抵抗と信頼性試験後の内部抵抗変化率が小さくなる傾向がある。このような結果が得られた理由(推測)は先に述べた通りである。   Further, as can be seen from FIG. 13, the non-aqueous electrolyte solution using N-oxide compound as the non-aqueous solvent (Experimental Example 45 to Experimental Example 53) is non-aqueous system using sulfolane (SL) as the non-aqueous solvent. The initial internal resistance and the rate of change of internal resistance after the reliability test tend to be smaller than the electrolytic solution (Comparative Example 10). The reason (guess) for obtaining such a result is as described above.

このように、非水溶媒としてN−オキシド化合物を単独で用いた非水系電解液は、従前の非水系電解液に比べて、充電電圧を高めてエネルギー密度を向上させるのに有用であることが理解できよう。   As described above, the non-aqueous electrolyte using the N-oxide compound alone as the non-aqueous solvent is useful for increasing the charging voltage and improving the energy density as compared with the conventional non-aqueous electrolyte. I understand.

《他の電気化学デバイスへの適用》
(1)前記N−オキシド化合物は、リチウムイオン二次電池の非水系電解液の非水溶媒として用いることもできる。即ち、非水系電解液の非水溶媒として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート等の環状炭酸エステル、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ−ブチロラクトン(γBL)、γ−バレロラクトン(γVL)、3−メチル−γ−ブチロラクトン、2−メチル−γ−ブチロラクトン等の環状エステル、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、酪酸メチル、吉草酸メチル等の鎖状エステル、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、2−メチル−1,3−ジオキソラン等の環状エーテル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジプロピルエーテル等の鎖状エーテル、アセトニトリル(AN)、プロパンニトリル(PN)、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル等のニトリル類、及びスルホラン(SL)、エチルメチルスルホン(EMS)、ジメチルスルホキシド等の含イオウ化合物の何れか1種または複数種の混合溶媒を用いていた従来のリチウムイオン二次電池において、該非水溶媒に前記N−オキシド化合物を混合して用いたり、或いは、該非水溶媒として前記N−オキシド化合物を単独で用いても、リチウムイオン二次電池の充電電圧を高めてエネルギー密度の向上を図ることができる。
<Application to other electrochemical devices>
(1) The N-oxide compound can also be used as a non-aqueous solvent for a non-aqueous electrolyte solution of a lithium ion secondary battery. That is, as nonaqueous solvents for nonaqueous electrolytes, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate (DEC) , Chain carbonates such as methylpropyl carbonate and methylisopropyl carbonate, cyclic esters such as γ-butyrolactone (γBL), γ-valerolactone (γVL), 3-methyl-γ-butyrolactone, 2-methyl-γ-butyrolactone, Chain esters such as methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, methyl butyrate, methyl valerate, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, 2-methylteto Cyclic ethers such as hydrofuran, 3-methyl-1,3-dioxolane, 2-methyl-1,3-dioxolane, chain ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, and dipropyl ether; Nitriles such as acetonitrile (AN), propanenitrile (PN), glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, and sulfur-containing compounds such as sulfolane (SL), ethylmethylsulfone (EMS), dimethylsulfoxide, etc. In a conventional lithium ion secondary battery using one or a plurality of mixed solvents of the compounds, the N-oxide compound is mixed with the non-aqueous solvent, or the N-oxide is used as the non-aqueous solvent. Even if the oxide compound is used alone, the charging power of the lithium ion secondary battery It is possible to improve the energy density enhanced.

(2)前記N−オキシド化合物は、レドックスキャパシタの非水系電解液の非水溶媒として用いることもできる。即ち、非水系電解液の非水溶媒として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート等の環状炭酸エステル、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ−ブチロラクトン(γBL)、γ−バレロラクトン(γVL)、3−メチル−γ−ブチロラクトン、2−メチル−γ−ブチロラクトン等の環状エステル、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、酪酸メチル、吉草酸メチル等の鎖状エステル、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、2−メチル−1,3−ジオキソラン等の環状エーテル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジプロピルエーテル等の鎖状エーテル、アセトニトリル(AN)、プロパンニトリル(PN)、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル等のニトリル類、及びスルホラン(SL)、エチルメチルスルホン(EMS)、ジメチルスルホキシド等の含イオウ化合物の何れか1種または複数種の混合溶媒を用いていた従来のレドックスキャパシタにおいて、該非水溶媒に前記N−オキシド化合物を混合して用いたり、或いは、該非水溶媒として前記N−オキシド化合物を単独で用いても、レドックスキャパシタの充電電圧を高めてエネルギー密度の向上を図ることができる。   (2) The N-oxide compound can also be used as a non-aqueous solvent for a non-aqueous electrolyte solution of a redox capacitor. That is, as nonaqueous solvents for nonaqueous electrolytes, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate (DEC) , Chain carbonates such as methylpropyl carbonate and methylisopropyl carbonate, cyclic esters such as γ-butyrolactone (γBL), γ-valerolactone (γVL), 3-methyl-γ-butyrolactone, 2-methyl-γ-butyrolactone, Chain esters such as methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, methyl butyrate, methyl valerate, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, 2-methylteto Cyclic ethers such as hydrofuran, 3-methyl-1,3-dioxolane, 2-methyl-1,3-dioxolane, chain ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, and dipropyl ether; Nitriles such as acetonitrile (AN), propanenitrile (PN), glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, and sulfur-containing compounds such as sulfolane (SL), ethylmethylsulfone (EMS), dimethylsulfoxide, etc. In a conventional redox capacitor using one or a plurality of mixed solvents of the compounds, the non-aqueous solvent is mixed with the N-oxide compound, or the N-oxide compound is used as the non-aqueous solvent. Even if used alone, the charging voltage of the redox capacitor It can be improved Umate energy density.

本発明は、電気二重層キャパシタ、リチウムイオンキャパシタ、リチウムイオン二次電池、及びレドックスキャパシタに限らず、非水系電解液を用いる各種の電気化学デバイスに幅広く利用でき、前記同様の効果を得ることができる。   The present invention is not limited to electric double layer capacitors, lithium ion capacitors, lithium ion secondary batteries, and redox capacitors, but can be widely used for various electrochemical devices using non-aqueous electrolytes, and the same effects as described above can be obtained. it can.

10…正極、11…集電体、12…分極性電極層、20…負極、21…集電体、22…分極性電極層、23…活物質層、30…セパレータ、40…フィルムパッケージ、50…端子、B…蓄電素子。   DESCRIPTION OF SYMBOLS 10 ... Positive electrode, 11 ... Current collector, 12 ... Polarizable electrode layer, 20 ... Negative electrode, 21 ... Current collector, 22 ... Polarizable electrode layer, 23 ... Active material layer, 30 ... Separator, 40 ... Film package, 50 ... terminal, B ... electric storage element.

Claims (8)

N−オキシド化合物を含有している、電気化学デバイス用非水溶媒。   A nonaqueous solvent for an electrochemical device containing an N-oxide compound. 請求項1に記載の電気化学デバイス用非水溶媒であって、
前記N−オキシド化合物が、下記式(1)で表され、且つ、該式(1)中のR1〜R3がそれぞれ炭素数が2〜6の一価の飽和炭化水素基又は一価のヘテロ原子含有飽和炭化水素基である、電気化学デバイス用非水溶媒。
Figure 2012209482
The non-aqueous solvent for an electrochemical device according to claim 1,
The N-oxide compound is represented by the following formula (1), and R 1 to R 3 in the formula (1) are each a monovalent saturated hydrocarbon group having a carbon number of 2 to 6 or a monovalent group. A nonaqueous solvent for electrochemical devices, which is a heteroatom-containing saturated hydrocarbon group.
Figure 2012209482
請求項1に記載の電気化学デバイス用非水溶媒であって、
前記N−オキシド化合物が、下記式(2)で表され、且つ、該式(2)中のR4が炭素数が3〜6の一価の飽和炭化水素基又は一価のヘテロ原子含有飽和炭化水素基であり、Xが二価の飽和炭化水素基で窒素原子と共に環員数5又は6のヘテロ環を形成している、電気化学デバイス用非水溶媒。
Figure 2012209482
The non-aqueous solvent for an electrochemical device according to claim 1,
The N-oxide compound is represented by the following formula (2), and R 4 in the formula (2) is a monovalent saturated hydrocarbon group having 3 to 6 carbon atoms or a monovalent heteroatom-containing saturated. A nonaqueous solvent for an electrochemical device, which is a hydrocarbon group, and X is a divalent saturated hydrocarbon group and forms a heterocycle having 5 or 6 ring members together with a nitrogen atom.
Figure 2012209482
請求項1に記載の電気化学デバイス用非水溶媒であって、
前記N−オキシド化合物が、下記式(3)で表され、且つ、該式(3)中のR5が炭素数が1〜6の一価の飽和炭化水素基で、R6、R7がそれぞれ炭素数が3〜6の一価の飽和炭化水素基である、電気化学デバイス用非水溶媒。
Figure 2012209482
The non-aqueous solvent for an electrochemical device according to claim 1,
The N-oxide compound is represented by the following formula (3), and R 5 in the formula (3) is a monovalent saturated hydrocarbon group having 1 to 6 carbon atoms, and R 6 and R 7 are A nonaqueous solvent for electrochemical devices, each of which is a monovalent saturated hydrocarbon group having 3 to 6 carbon atoms.
Figure 2012209482
請求項1に記載の電気化学デバイス用非水溶媒であって、
前記N−オキシド化合物が、下記式(4)で表され、且つ、該式(4)中のR8が炭素数が3〜6の一価の飽和炭化水素基又は一価のヘテロ原子含有飽和炭化水素基である、電気化学デバイス用非水溶媒。
Figure 2012209482
The non-aqueous solvent for an electrochemical device according to claim 1,
The N-oxide compound is represented by the following formula (4), and R 8 in the formula (4) is a monovalent saturated hydrocarbon group having 3 to 6 carbon atoms or a monovalent heteroatom-containing saturated. A non-aqueous solvent for electrochemical devices, which is a hydrocarbon group.
Figure 2012209482
請求項1に記載の電気化学デバイス用非水溶媒であって、
前記N−オキシド化合物が、下記式(5)で表され、且つ、該式(5)中のR9が炭素数が3〜6の一価の飽和炭化水素基又は一価のヘテロ原子含有飽和炭化水素基である、電気化学デバイス用非水溶媒。
Figure 2012209482
The non-aqueous solvent for an electrochemical device according to claim 1,
The N-oxide compound is represented by the following formula (5), and R 9 in the formula (5) is a monovalent saturated hydrocarbon group having 3 to 6 carbon atoms or monovalent heteroatom-containing saturation. A non-aqueous solvent for electrochemical devices, which is a hydrocarbon group.
Figure 2012209482
請求項1〜6の何れか1項に記載の非水溶媒と、支持電解質とを含有している、電気化学デバイス用非水系電解液。   The nonaqueous electrolyte solution for electrochemical devices containing the nonaqueous solvent of any one of Claims 1-6, and a supporting electrolyte. 電極と、請求項7に記載の非水系電解液とを備えている電気化学デバイス。   An electrochemical device comprising an electrode and the nonaqueous electrolytic solution according to claim 7.
JP2011075106A 2011-03-30 2011-03-30 Non-aqueous solvent for electrochemical device, nonaqueous electrolyte for electrochemical device and electrochemical device Withdrawn JP2012209482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011075106A JP2012209482A (en) 2011-03-30 2011-03-30 Non-aqueous solvent for electrochemical device, nonaqueous electrolyte for electrochemical device and electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011075106A JP2012209482A (en) 2011-03-30 2011-03-30 Non-aqueous solvent for electrochemical device, nonaqueous electrolyte for electrochemical device and electrochemical device

Publications (1)

Publication Number Publication Date
JP2012209482A true JP2012209482A (en) 2012-10-25

Family

ID=47188968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011075106A Withdrawn JP2012209482A (en) 2011-03-30 2011-03-30 Non-aqueous solvent for electrochemical device, nonaqueous electrolyte for electrochemical device and electrochemical device

Country Status (1)

Country Link
JP (1) JP2012209482A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020526922A (en) * 2017-06-30 2020-08-31 エイブイエックス コーポレイション Electrode assembly for ultracapacitors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020526922A (en) * 2017-06-30 2020-08-31 エイブイエックス コーポレイション Electrode assembly for ultracapacitors
US11532441B2 (en) 2017-06-30 2022-12-20 KYOCERA AVX Components Corporation Electrode assembly for an ultracapacitor
JP7389739B2 (en) 2017-06-30 2023-11-30 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション Electrode assembly for ultracapacitors

Similar Documents

Publication Publication Date Title
JP5392355B2 (en) Electric double layer capacitor
CN107452511B (en) Lithium ion capacitor
JP6818723B2 (en) Electrolyte for electrochemical devices and electrochemical devices
JP2013051342A (en) Electrochemical device
EP3188203A1 (en) Electrolyte solution and electrochemical device
KR102168368B1 (en) Electrolyte for electrochemical device and electrochemical device
JP2012069576A (en) Nonaqueous electrolytic solution and electrochemical device using the same
JP2012209482A (en) Non-aqueous solvent for electrochemical device, nonaqueous electrolyte for electrochemical device and electrochemical device
JP2011228535A (en) Nonaqueous electrolyte and electrochemical device using same
US20190295783A1 (en) Electrolyte liquid for electrochemical device and electrochemical device
JP2015225920A (en) Electrochemical capacitor
US20170025231A1 (en) Electrolyte solution, and electrochemical device
JP2012089621A (en) Nonaqueous electrolytic solution, electrolyte for electric double layer capacitor, and electric double layer capacitor
JP2014090024A (en) Electrochemical device and separator for use therein
JP2013219187A (en) Electrochemical device
JP2012256789A (en) Active material for electrochemical device, and electrochemical device using the same
JP6314409B2 (en) Electrolytic solution and electrochemical device
JP2012248816A (en) Electrochemical device
KR20110060253A (en) Electrolyte solution and super capacitor including the same
KR101583525B1 (en) electrolytic solution for supercapacitor and supercapacitor use the same
JP2015037125A (en) Electrode active material and electrochemical device including the same
JP2009105028A (en) Ammonium salt, electrolyte using same, electrolyte, additive, and electricity accumulation device
JP2013219188A (en) Electrochemical device
JP2013219186A (en) Electrochemical device
JP2013045887A (en) Electrochemical device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140221

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603