JP2012208123A - 原子力燃料集合体の支持グリッド - Google Patents

原子力燃料集合体の支持グリッド Download PDF

Info

Publication number
JP2012208123A
JP2012208123A JP2012071103A JP2012071103A JP2012208123A JP 2012208123 A JP2012208123 A JP 2012208123A JP 2012071103 A JP2012071103 A JP 2012071103A JP 2012071103 A JP2012071103 A JP 2012071103A JP 2012208123 A JP2012208123 A JP 2012208123A
Authority
JP
Japan
Prior art keywords
fuel assembly
support grid
grid
elongated
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012071103A
Other languages
English (en)
Inventor
Joonhyung Choi
チョイ ジョンヒュング
Yu Chung Lee
チュング リー ユ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Electric Co LLC
Original Assignee
Westinghouse Electric Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Co LLC filed Critical Westinghouse Electric Co LLC
Publication of JP2012208123A publication Critical patent/JP2012208123A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/34Spacer grids
    • G21C3/356Spacer grids being provided with fuel element supporting members
    • G21C3/3563Supporting members formed only by deformations in the strips
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/34Spacer grids
    • G21C3/352Spacer grids formed of assembled intersecting strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

【課題】破砕強さが大きい原子燃料集合体のスペーサグリッドを提供する。
【解決手段】各グリッドストラップは燃料棒を支持する結合部に、輸送及び取扱い時または地震時に想定される外部負荷下で燃料棒を支持するばねまたはディンプルを有する。各グリッドストラップの燃料棒支持部には圧印加工による1またはそれ以上の細長いリブが設けられており、グリッドストラップの結合部を種々の形状にしてその慣性モーメントを増加させる。リブを過大な圧力降下を防止するべく流線形にするのが好ましい。このようにして、従来型の短いグリッドストラップの破砕強度を製造コストを有意に増加させずまたはグリッドの中性子経済に悪影響を与えずに増加させる。
【選択図】図5

Description

本発明は一般的に原子炉の燃料集合体に係り、さらに詳細には、頑丈なスペーサグリッドを用いる原子燃料集合体に係る。
加圧水により冷却される原子力発電システムの一次側は、有用なエネルギーを発生させるために二次側と熱交換関係にあるが該二次側から隔離された閉回路を形成する。一次側は、核分裂性物質を含む複数の燃料集合体を支持する炉心内部構造を取り囲む原子炉容器と、熱交換蒸気発生器内の一次回路と、加圧水を循環させる加圧器、ポンプ及び配管類の内部空間と、蒸気発生器及びポンプをそれぞれ別個に原子炉容器に接続する配管類とより成る。蒸気発生器、ポンプ及び原子炉容器に接続された配管類より成る一次側の各部品は一次側ループを形成する。
説明目的のために、図1は、ほぼ円筒形の原子炉圧力容器10と、炉心14を密封するための蓋ヘッド12とを備えた原子炉一次系を単純化したものである。水のような液体の原子炉冷却材は、ポンプ16により圧力容器10内に圧送されるが、炉心14を通過する際熱エネルギーを吸収し、一般的に蒸気発生器と呼ぶ熱交換器18へ送られ、熱交換器で交換された熱が蒸気駆動タービン発電機のような利用回路(図示せず)へ送られる。原子炉冷却材はその後、ポンプ16へ戻って一次側ループが完成する。一般的に、上述したような複数のループが原子炉冷却材の配管20により単一の原子炉容器10に接続されている。
図2は原子炉の一設計例をさらに詳細に示すものである。説明の目的で、垂直方向に平行に延びる複数の燃料集合体22より成る炉心14とは別に、容器内の他の内部構造は下方の内部構造24と、上方の内部構造26とに分けることができる。従来設計では、下方の内部構造の機能は容器内において流れを所定の方向に差し向けるだけでなく炉心コンポーネント及び計測手段を支持し、整列させ且つ案内することである。上方の内部構造は燃料集合体22(図2に簡略化のため2個だけ示す)を拘束し、または二次的に拘束し、計測手段及び制御棒28のようなコンポーネントを支持し、案内する。図2に示す原子炉の一例において、冷却材は1またはそれ以上の入口ノズル30から原子炉容器10に流入した後、容器と炉心槽32との間の環状空間を下降し、下部プレナム34で180°方向転換した後、燃料集合体が載置された下部支持板37及び下部炉心板36を通って燃料集合体の周りを上方に流れる。炉心及びその周辺域38を流動する冷却材の流量は大きく、典型的には毎秒約20フィートの速度で毎分400,000ガロンのオーダーである。その結果生じる圧力降下及び摩擦力は燃料集合体を浮揚させようとするが、この動きは円形の上部炉心板40を含む上部炉内構造物によって制限される。炉心14を出た冷却材は上部炉心板40の下側に沿って流れ、複数の細孔42を通って上昇する。冷却材はその後、上方及び半径方向に流れて1またはそれ以上の出口ノズル44へ到達する。
上方の内部構造26は容器または容器ヘッドにより支持することが可能であり、上部支持集合体46を含む。荷重は主として複数の支柱48により上部支持集合体46と、上部炉心板40との間を伝達される。支柱は所定の燃料集合体22と上部炉心板40の開口42の上方で整列関係にある。
一般的に、直線方向に移動可能な制御棒28は駆動シャフト50及び中性子毒物棒のスパイダ集合体52を含み、制御棒案内管54により上方の内部構造26を通って、整列関係にある燃料集合体22内に案内される。案内管は上部支持集合体46と、上部炉心板4
0の頂部に接続されている。支柱48は制御棒の挿入能力に悪影響を与えかねない事故状態の下で案内管の変形を遅らせる働きがある。
図3は、参照数字22で総括表示する燃料集合体を垂直方向に短縮した形で示す立面図である。燃料集合体22は加圧水型原子炉に用いるタイプであり、下端部に下部ノズル58を備えた構造躯体を有する。下部ノズル58は原子炉の炉心領域において下部炉心板36上に燃料集合体22を支持する。燃料集合体22の構造躯体は、下部ノズル58とは別に、上端部の上部ノズル62と、上方の内部構造の案内管54と整列する多数の案内管またはシンブル84とを有する。案内管またはシンブル84は下部ノズル58と、上部ノズル62との間を縦方向に延び、両端部がそれらのノズルに剛性的に固着されている。
燃料集合体22はさらに、案内シンブル84にそれに沿う軸方向離隔位置で取付けられた複数の横方向グリッド64と、グリッド64により横方向に離隔して支持された細長い燃料棒66の整列アレイとを有する。図4は案内シンブル84及び燃料棒66を省略したグリッド64の平面図である。案内シンブル84は96で示したセルを貫通し、燃料棒66はセル94を占有する。図4からは分かるように、グリッド64は直交するストラップ86、88を相互に差し込んで卵箱パターンを形成した従来型アレイであり、4つのストラップの隣接する境界が、その内部で燃料棒66が横方向に離隔した関係で支持されるほぼ正方形の支持セル94を画定する。多くの設計例において、支持セル94を形成するストラップの対向壁にはばね及びディンプルが打抜き加工により形成されている。ばね及びディンプルは支持セル内を半径方向に延びてそれらの間で燃料棒を捕捉し、燃料棒の被覆に圧力を加えてその棒が定位置で保持されるようにする。ストラップ86、88の直交アレイを各ストラップの端部で境界ストラップに溶接すると、グリッド構造64が完成する。図3に示すように、燃料集合体22はまた、中心部を下部ノズル58と上部ノズル62との間で延びてそれらにより捕捉される計測管68を有する。部品のかかる組合せにより、燃料集合体22は取扱いが便利で部品の組立体に損傷を与えることがない一体的ユニットを形成する。
上述したように、燃料集合体22のアレイ状の燃料棒66は燃料集合体の長手方向に離隔したグリッド64により互いに離隔関係に保持される。各燃料棒66は複数の原子燃料ペレット70を有し、両端部は上部端栓72及び下部端栓74により閉じられている。ペレット70は上部端栓72と、積重ねたペレットの上部との間に位置するプレナムばね76により積重ねた形で維持される。核分裂性物質より成る燃料ペレット70は原子炉の核反応を発生させる元である。ペレットを取り囲む被覆は核分裂反応の副成物が冷却材に侵入して原子炉システムをさらに汚染するのを防止する隔壁として機能する。
核分裂プロセスを制御するために、多数の制御棒78が燃料集合体22の所定位置にある案内シンブル84内を往復移動可能である。案内シンブルの位置は図4において参照番号96で特に示すが、例外として中央位置は計測管68により占有される。詳説すると、上部ノズル62の上方に位置する棒クラスタ制御機構80は複数の制御棒78を支持する。この制御機構は内部にねじ山を有するハブ部材82と、図2に関連して上述したスパイダを形成する半径方向に延びる複数のアーム52とを有する。各アーム52は制御棒78に連結されており、このため、制御棒機構80は、制御棒のハブ82に結合された制御棒駆動シャフト50の動力により、全て周知の態様で、制御棒を案内シンブル84内において垂直方向に移動させ、燃料集合体22の核分裂プロセスを制御することができる。
上述したように、燃料集合体は燃料棒の重量を超えるため燃料棒及び集合体に有意な力を及ぼす液圧力を受ける。加えて、炉心内の冷却材には、燃料棒の被覆から冷却材への熱伝達を促進する多くのグリッドのストラップの上部表面上に設けられた混合翼により有意な乱流が生じる。冷却材の有意な流速及びこの乱流はグリッドのストラップに実質的な力
を及ぼす。さらに、グリッドのストラップは輸送または取扱い時若しくは地震及び冷却材喪失事故のような想定される全ての事故で生じる外部的負荷に耐える必要がある。最近、原子力発電所の地震に対する懸念に多くの注目が集まっており、燃料集合体が満足しなければならない耐震要件が厳しくなっている。一般的に、燃料集合体のグリッドはストラップの高さまたは厚さを大きくするか溶接部を増やすことにより強化されてきた。しかしながら、これらの改良型設計はそれぞれ燃料集合体にまたがる冷却材の圧力降下を増加させるだけでなく製造プロセスのコストを上昇させる。例えば、標準の高さ1.50インチ(3.81cm)の1.5倍である高さ2.25インチ(5.72cm)の高強度ストラップのグリッド集合体にまたがる圧力降下はほぼ10%増加する。加えて、破砕強さを増加させるためにグリッドストラップの交差部の中間に溶接部を加えると製造コストが増加する。
従って、製造コストまたはグリッドにまたがる圧力降下を有意に増加させずにグリッドの強度を増加させる燃料集合体グリッドの新型設計が求められている。
本発明は上記目的を達成する原子燃料集合体の新型支持グリッドを提供する。長手方向に沿って細長い燃料要素を支持する新型支持グリッドは、一部を貫通して燃料要素がそれぞれ支持される複数のセルを画定する格子構造を含む。他のセルはそれぞれ制御棒用の案内管を支持する。各セルの複数の壁はセルの隅部で交差し、支持位置で対応の燃料要素または案内管を取り囲む。燃料要素を支持する各セルの少なくとも1つの壁には押込み加工により形成された細長いリブがある。即ち、このリブは押込み部に沿って実質的に穿孔していない壁の一体的部分である。
1つの実施例において、支持グリッドのこの細長いリブは実質的に水平方向を向いている。望ましくは、この細長いリブは壁の隅部間の幅全体を実質的に延びる。好ましくは、この押込みは実質的に隅部で切れている。好ましい実施例において、燃料要素を支持する各セルは上流側端部と下流側端部を有し、燃料集合体が運転中の原子炉内に置かれると上流側端部が最初に原子炉の冷却材の流れに遭遇する。好ましくは、押込みの表面は上流側で丸み付けられており、より望ましくは、押込みの全ての表面は圧力降下を減少するために丸み付けられている。
別の実施例において、その少なくとも1つの壁は複数の細長いリブを有し、好ましくは、これらのリブは燃料棒の垂直方向の移動を制限するために用いられるディンプルまたはばねの何れかの側の或る高さ位置にある。
別の実施例において、格子構造の一部は交差する2つの平行アレイより成り、燃料棒を支持する隣接セルのストラップ上の壁には異なる方向に形成された細長いリブがある。好ましくは、燃料要素を支持する各セルの全ての壁に細長いリブがある。
好ましい実施例の以下の説明を添付図面を参照しながら読むと本発明のさらなる理解が得られるであろう。
図1は本発明を適用可能な原子炉システムの単純化した概略図である。 図2は本発明を適用可能な原子炉圧力容器及び内部コンポーネントの部分断面立面図である。 図3は図示を明解にするため一部を破断し、垂直方向に短縮した形で示す燃料集合体の部分断面立面図である。 図4は本発明の卵箱型支持グリッドの平面図である。 図5は図4に示すグリッドの1つのグリッドストラップの2つのセル部分の斜視図であり、このストラップ部分は2つの燃料支持セルの境界を画定し、本発明のリブを示す。 図6は図5に示すグリッドストラップ部分を後から見た斜視図である。 図7は図5に示すグリッドストラップセル部分を前から見た斜視図であり、細長リブが対角線方向を向いている。 図8は図7に示すグリッドストラップセル部分を後から見た斜視図である。 図9A−Gは本発明に従って適用可能なグリッドストラップのリブの種々の形状を示す側部断面図である。
本発明は原子炉の燃料集合体の新型設計、さらに詳細には、原子燃料集合体のスペーサグリッドの改良型設計を提供する。改良型グリッドは一般的に、ほぼ正方形(または六角形)のセルのマトリックスより成り、その一部(94)は燃料棒を支持し、他の一部(96)は案内シンブル及び中央の計測管に接続されている。本明細書に記載した実施例の特徴を組み込んだ個々のグリッドストラップ86、88の形状は図4の平面図からは容易に分からず、従来型グリッドに非常によく似ているように見えるが、図5−9からよく理解できるであろう。この実施例のグリッドは、従来のように互いに差し込まれた直交する2つの平行離隔関係のストラップ86、88のセットが外側ストラップ98により取り囲まれてグリッド64の構造を形成するものである。実質的に正方形の燃料棒支持セルを形成する直交ストラップ86、88をこの実施例に示すが、本発明は他のグリッド構成、例えば六角形セルのグリッドにも等しく利用可能であることを理解されたい。直交ストラップ86、88と、外側列の場合の外側ストラップ98とは原子燃料棒66を取り囲むそれぞれ四つの隣接ストラップとの交差部において支持セル94を画定する。4つの隣接ストラップの交差部間のストラップの長手方向に沿う各ストラップの長さが燃料棒支持セル94の壁100を形成する。
図5及び6と、図7及び8とはそれぞれ、図4に示す従来型グリッドストラップ86または88の多くの特徴を備えた燃料棒を支持する隣接セル94の2つの壁100を示す。図4は17x17アレイのセルを示すが、本発明の原理の適用については集合体の燃料要素の数には影響されないことを理解されたい。図4に示す直交部材86、88を形成する格子ストラップは実質的に同一設計である。格子ストラップ86、88は実質的に同一であるが、一部の格子ストラップの設計は参照番号96で示す案内管及び計測シンブルの場所に適応するよう他の格子ストラップとは異なることを理解されたい。図5−8を参照すればわかるように、燃料要素を収容するセル94の壁100の大部分には当業界で公知公用のように適当な型を用いて打抜き加工された多数の突出セグメントが設けられている。上部及び下部の打抜きセグメント92は1つの方向に膨出し、セルの対向壁から並置関係で突出する斜めばね90との間で燃料要素を支持するディンプルを形成する。前述したディンプル92と同じ壁100の中央に位置する残りの打抜き部分90は隣接するセル内へ反対方向に膨出し、その対向壁からその隣接セル内に突出するディンプル92に対し燃料要素を圧接させる斜めばね90を形成する。斜めばねの好ましい設計については2000年11月7日発行の米国特許第6,144,716号を参照すれば良く理解できるであろう。
混合翼102は燃料要素が通過するセル94の壁である一部のセグメントにおいて格子ストラップの上方端縁部から延びている。制御棒及び炉内計測手段が通過する案内管及び計測シンブルを支持するセル96と、燃料要素を支持するセル94との相違点は、前者にはそれらの内部に突出する支持部材90、92もしくはそれらの壁から延びる混合翼102がないことである。セル96の別の相違点は、2003年2月25日発行の米国特許第6,526,116号に記載されるような、セル壁の中央を格子ストラップの下部から頂部へ延びる窪んだ圧印加工部分がある点である。
本明細書に記載する実施例によると、スペーサグリッドの壁の破砕強度は図5、6、7及び8に示すように1またはそれ以上の壁100上の1またはそれ以上の圧印加工によるリブ104が付加されたことにより大きい。図6及び8はそれぞれ図5及び7を後から見た図である。好ましくは、圧印加工によるリブ104は燃料支持セル94を画定する直交ストラップの交差部間を水平に延びる。望ましくは、リブ104はばね90の両側の、ディンプル92とばね90の間に位置する。しかしながら、グリッドストラップ86または88の強度を増加するために1またはそれ以上の壁100に1またはそれ以上のリブ104を設けても良いことを理解されたい。さらに、リブが斜めに延びる図7及び8に示すように、リブ104を図5及び6に示す水平方向以外の方向に設けても良い。これらの図に示す浅いドームまたは円筒形のリブ104は製造プロセスのコストをそれほど増加させずにストラップ打抜きプロセスで容易に形成できる。圧力降下の過大な増加を防止するために、リブ104の端縁部を冷却材の上流側において図5−8に示すように流線形にするのが好ましく、望ましくはリブの全ての端縁部を流線形にすると良い。また、圧印加工によるリブ104の向きを交互に、即ち、隣接セルのグリッドストラップの交互の側で、変えてストラップの反りまたはかき混ぜ作用を最小限に抑えることができる。本発明のリブはディンプル及びばねの形成に用いる打抜き加工時の望ましくない変形を阻止またはそれを最小限に抑えるものである。燃料棒支持セルの壁を形成する薄板のストラップにはこれまで望ましくない変形が生じるという問題がある。この変形によりストラップを交差部で溶接し組み立てるのが難しくなる。従来、ストラップをハンマーで圧延してこの問題を克服していた。本発明のリブはこのハンマーによる圧延を不要にする。従来のオイラー座屈理論に基づき、座屈強度は、慣性モーメントの線形関数である。従って、圧印加工されたリブ104より慣性モーメントが増加するとスペーサグリッドの破砕強度が増加する。
以下の表1に示すように、慣性モーメントはストラップの高さに基づき、幾何学的形状、場所、方向及びリブの数の関数である。
Figure 2012208123
図9A−9Gに示すリブの形状に対応する表1は、リブのおおよその慣性モーメントと投影面積を図示の各形状について示すものである。図9Aは基準としてリブのない真直ぐなストラップを示す。図9Bは単一のリブの形状A、ストラップの上部領域の場所A、方向A、即ち、ストラップの左側への突出方向を示す。図9Cは2つのリブの形状A、場所A、しかしながらストラップの上部及び下部領域の場所、方向Aを示す。図9Dは2つのリブの形状B、即ち形状Aよりも角度が鋭い形状、場所A、方向Aを示す。図9Eは2つのリブの形状B、場所B、即ちストラップの中心により近い場所、方向Aを示す。図9Fは2つのリブの形状A、場所A、方向B、即ちストラップの両側への突出方向を示す。図9Gは2つのリブの形状B、場所B、方向Bを示す。従って、表1のパラメータを圧力降
下の許容限界を満足することによって最適化できるが、その理由はグリッドストラップの慣性モーメントが大きくなればなるほど圧力降下が大きくなるからである。もう1つ考慮しなければならないのはストラップの打抜き加工時における割れ、反り及びかき混ぜ作用に関する製造上の懸念である。
かくして、本発明はストラップの高さを増加させずに、そして/または製造コストを有意に増加させずにスペーサグリッドの破砕強度を増加するものである。
かくして、本発明を特定の実施例につき詳細に説明したが、本明細書の開示全体に照らしてそれらの詳細事項に対する種々の変形例及び設計変更を想到できることが当業者にわかるであろう。従って、図示説明した特定の実施例は例示に過ぎず、本発明の範囲を限定するものではなく、その範囲は添付の特許請求の範囲及びその任意且つ全ての均等物の全幅を与えられるべきである。

Claims (20)

  1. 原子燃料集合体であって、
    細長い燃料要素の平行アレイと、
    細長い燃料要素をそれらの長手方向に沿って支持する支持グリッドとより成り、
    支持グリッドは、一部が貫通するそれぞれの燃料要素を支持し、他のものがそれぞれ制御棒の案内管を支持する複数のセルを画定する格子構造を有し、各セルは隅部で交差し支持場所で対応の燃料要素または案内管を取り囲む複数の壁を有し、
    燃料要素を支持する各セルの少なくとも1つの壁には壁の一体的部分である押込み加工による細長いリブがあり、押込み加工部の周辺には実質的な穿孔部がないことを特徴とする原子燃料集合体。
  2. 細長いリブは実質的に水平方向である請求項1の原子燃料集合体。
  3. 細長いリブは隅部間の全幅を実質的に延びる請求項2の原子燃料集合体。
  4. 押込み加工部は実質的に隅部で切れている請求項3の原子燃料集合体。
  5. 燃料要素を支持する各セルの壁は上流側端部と下流側端部とを有し、上流側端部は燃料集合体が運転状態の原子炉内に置かれると原子炉の冷却水の流れに最初に遭遇し、押込み加工部の表面は押込みの上流側で丸み付けられている請求項3の原子燃料集合体。
  6. 押込み加工部の実質的に全ての表面は丸み付けられている請求項5の原子燃料集合体。
  7. 前記少なくとも1つの壁は複数の細長いリブを有する請求項1の原子燃料集合体。
  8. 格子構造は交差するストラップの2つの平行アレイより成り、燃料要素を支持する隣接セルのストラップの壁には細長いリブが異なる方向に形成されている請求項1の原子燃料集合体。
  9. 燃料要素を支持する各セルの全ての壁は細長いリブを有する請求項1の原子燃料集合体。
  10. 複数の細長いリブは一部が押込み加工部である壁から延びるばねまたはディンプルの両側に位置する請求項7の原子燃料集合体。
  11. 細長い原子燃料要素をそれらの長手方向に沿って支持する支持グリッドであって、
    一部が貫通するそれぞれの燃料要素を支持し、他のものがそれぞれ制御棒の案内管を支持する複数のセルを画定する格子構造を有し、
    各セルは隅部で交差し支持場所で対応の燃料要素または案内管を取り囲む複数の壁を有し、
    燃料要素を支持する各セルの少なくとも1つの壁には壁の一体的部分である押込み加工による細長いリブがあり、押込み加工部の周辺には実質的な穿孔部がないことを特徴とする支持グリッド。
  12. 細長いリブは実質的に水平方向である請求項11の支持グリッド。
  13. 細長いリブは隅部間の全幅を実質的に延びる請求項12の支持グリッド。
  14. 押込み加工部は実質的に隅部で切れている請求項13の支持グリッド。
  15. 燃料要素を支持する各セルの壁は上流側端部と下流側端部とを有し、上流側端部は燃料集合体が運転状態の原子炉内に置かれると原子炉の冷却水の流れに最初に遭遇し、押込み加工部の表面は押込みの上流側で丸み付けられている請求項13の支持グリッド。
  16. 押込み加工部の実質的に全ての表面は丸み付けられている請求項15の支持グリッド。
  17. 前記少なくとも1つの壁は複数の細長いリブを有する請求項11の支持グリッド。
  18. 格子構造は交差するストラップの2つの平行アレイより成り、燃料要素を支持する隣接セルのストラップの壁には細長いリブが異なる方向に形成されている請求項11の支持グリッド。
  19. 燃料要素を支持する各セルの全ての壁は細長いリブを有する請求項11の支持グリッド。
  20. 複数の細長いリブは一部が押込み加工部である壁から延びるばねまたはディンプルの両側に位置する請求項11の支持グリッド。
JP2012071103A 2011-03-29 2012-03-27 原子力燃料集合体の支持グリッド Pending JP2012208123A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/074,064 2011-03-29
US13/074,064 US20120250814A1 (en) 2011-03-29 2011-03-29 Nuclear fuel assembly support grid

Publications (1)

Publication Number Publication Date
JP2012208123A true JP2012208123A (ja) 2012-10-25

Family

ID=46845547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012071103A Pending JP2012208123A (ja) 2011-03-29 2012-03-27 原子力燃料集合体の支持グリッド

Country Status (3)

Country Link
US (1) US20120250814A1 (ja)
JP (1) JP2012208123A (ja)
FR (1) FR2973556A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521648A (ja) * 2014-06-10 2017-08-03 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 耐圧潰性の原子燃料集合体支持グリッド

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599269B2 (en) * 2014-07-09 2017-03-21 Nadeem Ahmad Malik Sparse 3D-multi-scale grid turbulence generator
US20170032853A1 (en) * 2015-07-29 2017-02-02 Westinghouse Electric Company Llc Nuclear fuel assembly with seismic/loca tolerance grid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1167502A (en) * 1965-11-23 1969-10-15 Atomic Energy Authority Uk Assemblies of Heat Exchange Elements
US4165256A (en) * 1975-03-03 1979-08-21 The Babcock & Wilcox Company Fuel element grid plate with corrugation and bosses
DE2642220A1 (de) * 1976-09-20 1978-03-23 Kraftwerk Union Ag Abstandshalter fuer kernreaktorbrennelemente

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521648A (ja) * 2014-06-10 2017-08-03 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 耐圧潰性の原子燃料集合体支持グリッド

Also Published As

Publication number Publication date
FR2973556A1 (fr) 2012-10-05
US20120250814A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
US8369475B2 (en) Nuclear fuel assembly support grid
JP5627065B2 (ja) 係止支持スペーサグリッドを有する原子燃料集合体
US6606369B1 (en) Nuclear reactor with improved grid
US20080232537A1 (en) Nuclear fuel assembly with an advanced spacer grid
US5303276A (en) Fuel assembly including deflector vanes for deflecting a component of a fluid stream flowing past such fuel assembly
JP2012208123A (ja) 原子力燃料集合体の支持グリッド
US8483349B2 (en) Spacer grid for dual-cooling nuclear fuel rods using intersectional support structures
JP3986096B2 (ja) 燃料保持用斜行ばねを有する核燃料集合体グリッド
KR101749787B1 (ko) 핵연료 조립체 홀드 다운 스프링
US11404176B2 (en) Nuclear fuel assembly support feature
US9536628B2 (en) Nuclear fuel assembly support grid
US20150357053A1 (en) Crush resistant nuclear fuel assembly support grid
US20110002435A1 (en) Nuclear fuel assembly support grid
US20150310940A1 (en) Nuclear fuel element
US20130070890A1 (en) Grooved nuclear fuel assembly component insert
KR101017318B1 (ko) 수력적 균형을 이루는 혼합날개 패턴을 가진 지지격자
JP2018526621A (ja) 地震/loca耐性のあるグリッドを有する原子燃料集合体
KR20130133232A (ko) 핵 연료봉 플레넘 스프링 조립체
KR101711546B1 (ko) 개선된 등방적 지지구조를 갖는 핵연료 집합체용 지지격자
US20130272482A1 (en) Pressurized water reactor fuel assembly grid

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130329