JP2012207851A - Boiler - Google Patents

Boiler Download PDF

Info

Publication number
JP2012207851A
JP2012207851A JP2011073759A JP2011073759A JP2012207851A JP 2012207851 A JP2012207851 A JP 2012207851A JP 2011073759 A JP2011073759 A JP 2011073759A JP 2011073759 A JP2011073759 A JP 2011073759A JP 2012207851 A JP2012207851 A JP 2012207851A
Authority
JP
Japan
Prior art keywords
water
boiler
preheater
heat exchange
exchange coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011073759A
Other languages
Japanese (ja)
Inventor
Noritoshi Ando
則俊 安藤
Nobumoto Akio
伸基 明尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMSON CO Ltd
Original Assignee
SAMSON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMSON CO Ltd filed Critical SAMSON CO Ltd
Priority to JP2011073759A priority Critical patent/JP2012207851A/en
Publication of JP2012207851A publication Critical patent/JP2012207851A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a boiler with a supplied water preheater at a low cost.SOLUTION: The boiler includes a water heating boiler 1, a supplied water tank 2 storing water for the boiler, an exhaust flue 5 exhausting flue gas generated in the boiler, and the supplied water preheater 6 installed in the exhaust flue, where a pipe 3 supplying water into the boiler 1 and circulation piping 7 supplying the water for the boiler into the supplied water preheater 6 and returning the preheated water for the boiler from the supplied water preheater to the supplied water tank are connected to the supplied water tank 2 to continuously circulate the water for the boiler between the supplied water tank 2 and the supplied water preheater 6 separated from water supplied to the boiler. The supplied water preheater 6 is of a type that a heat exchange coil 8 with tubes wound like a coil is installed in the exhaust flue 5. A lid is disposed at an outer peripheral part of the exhaust flue containing the heat exchange coil and a take-out port for taking out an end of the heat exchange coil from the exhaust flue is formed in a lid to take out the heat exchange coil 8 from the exhaust flue by opening the lid.

Description

本発明は、給水予熱器を持ったボイラに関するものである。   The present invention relates to a boiler having a feed water preheater.

蒸気を発生するボイラでは、ボイラ内で熱交換を行った後に排出している排ガスにも熱が残っているため、排ガスの熱によってボイラ給水の予熱を行うことによってボイラの効率を向上させることが広く行われている。一般的な給水予熱器は、ボイラの燃焼排ガスを通す排気筒内に多数の水管を設置し、各水管は連結することで一続きの流路を形成しておき、ボイラへの給水は給水タンクから給水予熱器を経由した後にボイラ内へ入る構成としている。給水予熱器によって、15℃程度の給水を100℃程度まで予熱することができると、ボイラで同じ量の蒸気を発生する場合でも燃焼量が少なくてすむため、燃料消費量を削減することができる。   In boilers that generate steam, heat remains in the exhaust gas discharged after heat exchange in the boiler, so it is possible to improve boiler efficiency by preheating boiler feedwater with the heat of the exhaust gas. Widely done. A typical water supply preheater has a large number of water pipes installed in the exhaust pipe through which the combustion exhaust gas from the boiler passes, and each water pipe is connected to form a continuous flow path. It enters into the boiler after passing through the feed water preheater. If the feed water preheater can preheat the feed water at about 15 ° C. to about 100 ° C., the amount of combustion can be reduced even when the same amount of steam is generated in the boiler, so the fuel consumption can be reduced. .

ボイラへの給水は間欠給水が多く、給水が停止すると給水予熱器内の水流は停止するが、給水予熱器内では排ガスによる給水の加熱が続くため、給水予熱器内で給水温度が上昇して沸騰するおそれがある。そのため給水予熱器には耐圧性が必要であり、その分コストも高いものになっていた。また、給水温度が低いと、給水予熱器の水管表面で燃焼排ガスが結露温度以下となって結露水が発生することになる。燃焼排ガスにはNOxやSOxが含まれており、結露によって硝酸や硫酸が発生すると水管を腐食させるため、給水予熱器の寿命はボイラ本体部の寿命に比べて短いものとなる。給水予熱器を設置するとボイラの効率が向上するために燃料費を削減することができるが、イニシャルコストや交換コストが大きくなるということが問題となっていた。   Water supply to the boiler is intermittent, and when the water supply stops, the water flow in the water supply preheater stops, but heating of the water supply with exhaust gas continues in the water supply preheater, so the water supply temperature rises in the water supply preheater. There is a risk of boiling. For this reason, the water supply preheater needs to have pressure resistance, and the cost is increased accordingly. In addition, if the feed water temperature is low, the flue gas becomes below the dew condensation temperature on the surface of the water pipe of the feed water preheater, and dew condensation water is generated. The combustion exhaust gas contains NOx and SOx, and when nitric acid or sulfuric acid is generated due to condensation, the water pipe is corroded. Therefore, the life of the feed water preheater is shorter than that of the boiler body. When the feed water preheater is installed, the efficiency of the boiler is improved, so that the fuel cost can be reduced. However, the initial cost and the replacement cost are increased.

給水予熱器に供給する給水の温度を上昇させると、水管表面での結露が発生しにくくなる。そのため、特開平9−236207号公報において、給水予熱器の給水出口と給水入口を接続する循環流路を設け、給水予熱器で加熱を行った予熱水の一部は給水予熱器の入口側へ戻すようにしておき、給水予熱器内に入る給水の温度を上昇させるようにしたボイラの記載がある。給水の一部を循環させると、給水予熱器入口の給水温度を上昇させることができるため、結露を防止でき低温腐食を防止することができる。ただしこの場合、給水の一部はボイラへ送られないために給水能力が低下することになる。また、この場合でも給水予熱器内での沸騰する可能性があるため、給水予熱器は耐圧性の高いものでなければならないということは変わらない。   When the temperature of the feed water supplied to the feed water preheater is increased, condensation on the surface of the water pipe is less likely to occur. Therefore, in Japanese Patent Laid-Open No. 9-236207, a circulation flow path connecting the water supply outlet and the water supply inlet of the water supply preheater is provided, and a part of the preheated water heated by the water supply preheater is directed to the inlet side of the water supply preheater. There is a description of the boiler which is made to return and raises the temperature of the feed water entering the feed water preheater. Circulating a part of the feed water can raise the feed water temperature at the feed water preheater inlet, thereby preventing condensation and preventing low temperature corrosion. However, in this case, since a part of the water supply is not sent to the boiler, the water supply capacity is reduced. Further, even in this case, since there is a possibility of boiling in the feed water preheater, the fact that the feed water preheater must have a high pressure resistance remains the same.

特開平9−236207号公報JP-A-9-236207

本発明が解決しようとする課題は、給水予熱器を持ったボイラを低コストで提供することができるようにすることにある。   The problem to be solved by the present invention is to provide a boiler having a feed water preheater at a low cost.

内部で燃焼を行うことで水を加熱して蒸気を発生するボイラ、ボイラへ供給するボイラ用水をためておく給水タンク、ボイラ内で発生した燃焼排ガスを排出する排気筒、排気筒内に設置しておき燃焼排ガスの熱によってボイラ用水の予熱を行う給水予熱器を持ち、給水タンクにはボイラへボイラ用水を供給する給水管と、給水予熱器へボイラ用水を供給し、予熱したボイラ用水を給水予熱器から給水タンクへ戻す循環配管を接続しておき、ボイラへの給水とは切り離して給水タンクと給水予熱器の間でボイラ用水を連続的に循環させることができるようにしているボイラにおいて、給水予熱器はチューブをコイル状に巻いた熱交換コイルを排気筒内に設置したものであって、熱交換コイルを収容する排気筒の外周部には蓋を設け、蓋部分に熱交換コイルの端部を排気筒内から取り出す取り出し口を設けておき、蓋を開くことで熱交換コイルを排気筒内から容易に取り出すことができるようにしていることを特徴とする。   It is installed in a boiler that heats water by burning inside and generates steam, a water supply tank that stores boiler water to be supplied to the boiler, an exhaust pipe that discharges combustion exhaust gas generated in the boiler, and an exhaust pipe It has a feed water preheater that preheats boiler water using the heat of combustion exhaust gas. The feed water tank supplies the boiler water to the boiler, and supplies the boiler water to the feed water preheater and feeds the preheated boiler water. In the boiler that connects the circulation pipe returning from the preheater to the water supply tank, and separates the water supply to the boiler so that the boiler water can be continuously circulated between the water supply tank and the water supply preheater. The feed water preheater has a heat exchange coil in which a tube is wound in a coil shape installed in an exhaust pipe. A lid is provided on the outer periphery of the exhaust pipe that houses the heat exchange coil, and the lid portion is heated. May be provided a take-out port for taking out the end of the conversion coil from the exhaust cylinder, characterized in that as the heat exchange coils can be easily taken out from the exhaust cylinder by opening the lid.

給水タンクと給水予熱器の間でボイラ用水の循環を行う場合、給水タンクは解放タンクであるために給水予熱器への給水には高い圧力を掛けなくてもボイラ用水を循環させることができる。そして循環は連続的に行うため、給水予熱器内にボイラ用水が滞留している間に沸騰温度まで加熱されるといったことにはならない。そのため給水予熱器内でボイラ用水が沸騰するようなことはなく、給水予熱器の耐圧性はあまり高くする必要がなくなり、例えばフレキシブルチューブのような耐圧性の低いパイプを使用することが可能となり、給水予熱器の低コスト化が可能となる。また、排気筒に熱交換コイルを設置するものであるため、既設のボイラに後付けで追加することも可能となる。本発明を実施することで、大きなコストを掛けずにボイラの効率を高めることができる。   When the boiler water is circulated between the feed water tank and the feed water preheater, since the feed water tank is a release tank, the boiler water can be circulated without applying high pressure to the feed water to the feed water preheater. Since the circulation is continuously performed, the boiler water is not heated to the boiling temperature while the boiler water stays in the feed water preheater. Therefore, the boiler water does not boil in the feed water preheater, the pressure resistance of the feed water preheater need not be so high, and it becomes possible to use a pipe with low pressure resistance such as a flexible tube, It is possible to reduce the cost of the feed water preheater. Moreover, since the heat exchange coil is installed in the exhaust pipe, it can be added later to the existing boiler. By implementing this invention, the efficiency of a boiler can be improved without incurring big cost.

本発明を実施しているボイラのフロー図Flow diagram of boiler implementing the present invention 本発明の一実施例での給水予熱器組み立て状況を示した説明図Explanatory drawing which showed the water supply preheater assembly condition in one Example of this invention 本発明の一実施例での燃焼排ガスフローを示した給水予熱器の断面図Sectional drawing of the feed water preheater which showed the combustion exhaust gas flow in one Example of this invention

本発明の一実施例を図面を用いて説明する。図1は本発明を実施しているボイラのフロー図、図2は本発明の一実施例での給水予熱器組み立て状況を示した説明図、図3は本発明の一実施例での燃焼排ガスフローを示した給水予熱器の断面図である。ボイラ1は、内部で燃焼を行うことでボイラ水を加熱し、蒸気を発生するものである。ボイラ用水は解放タンクである給水タンク2にためておき、給水タンク2とボイラ1の間をつないでいる給水管3を通して給水する。ボイラ内の水位が給水開始水位まで低下すると、給水管3の途中に設けている給水ポンプの作動を行ってボイラへの給水を行い、ボイラ内水位が給水停止水位まで上昇すると給水ポンプの作動を停止して給水を終了する。給水タンク2への給水は、軟水器(図示せず)で軟化処理を行った軟化水を供給する軟化水配管4を通じて行っている。給水タンク2でも水位が低下すると給水を行って水位を上昇させ、水位が所定水位まで上昇すると給水を停止する。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a flow chart of a boiler implementing the present invention, FIG. 2 is an explanatory diagram showing an assembly state of a feed water preheater in one embodiment of the present invention, and FIG. 3 is a combustion exhaust gas in one embodiment of the present invention. It is sectional drawing of the feed water preheater which showed the flow. The boiler 1 generates steam by heating boiler water by performing combustion inside. Boiler water is stored in a water supply tank 2 which is a release tank, and is supplied through a water supply pipe 3 connecting between the water supply tank 2 and the boiler 1. When the water level in the boiler falls to the water supply start water level, the water supply pump provided in the middle of the water supply pipe 3 is operated to supply water to the boiler, and when the boiler water level rises to the water supply stop water level, the water supply pump is operated. Stop and end water supply. Water is supplied to the water supply tank 2 through a softened water pipe 4 that supplies softened water that has been softened by a water softener (not shown). Even in the water supply tank 2, when the water level drops, water is supplied to raise the water level, and when the water level rises to a predetermined water level, the water supply is stopped.

ボイラ1では燃焼を行うことで熱を発生し、火炎からの輻射熱と高温の燃焼ガスによってボイラ水を加熱して蒸気を発生する。そして熱交換を終えた後の燃焼排ガスはボイラ内から取り出し、排気筒5を通して戸外へ排出している。燃焼排ガスはボイラ内での熱交換を行ったことで温度は低下するが、ボイラから取り出される時点では数百℃程度の熱を保有しているために給水を予熱する用途には使用することができる。排気筒5の途中には給水予熱器6を設置しておき、燃焼排ガスは給水予熱器6との間でも熱交換を行う。給水予熱器6は給水タンク2との間を往路と復路からなる循環配管7で接続しており、給水タンク2にためておいたボイラ用水は循環配管7の往路を通して給水予熱器6へ送り、給水予熱器6で加熱を行った後に循環配管7の復路を通して給水タンク2へ戻すようにしている。   In the boiler 1, heat is generated by performing combustion, and steam is generated by heating the boiler water with radiant heat from the flame and high-temperature combustion gas. Then, the combustion exhaust gas after the heat exchange is taken out from the boiler, and is discharged outside through the exhaust pipe 5. Although the temperature of combustion exhaust gas decreases due to heat exchange in the boiler, it retains heat of about several hundred degrees Celsius when it is taken out of the boiler, so it can be used for applications that preheat feed water. it can. A feed water preheater 6 is installed in the middle of the exhaust pipe 5, and the combustion exhaust gas also exchanges heat with the feed water preheater 6. The feed water preheater 6 is connected to the feed water tank 2 by a circulation pipe 7 consisting of a forward path and a return path, and boiler water stored in the feed water tank 2 is sent to the feed water preheater 6 through the forward path of the circulation pipe 7. After heating with the feed water preheater 6, the water is returned to the feed water tank 2 through the return path of the circulation pipe 7.

ボイラ1が運転を行っている場合、給水タンク2にためているボイラ用水を連続的に給水予熱器6へ送ることでボイラ用水の予熱を行う。ボイラ運転中は排気筒5内を燃焼排ガスが流れているため、循環配管7に設けている循環ポンプを作動し、循環配管7を通して給水予熱器6へ水を送ると、熱交換コイル8内を水が流れる際に熱交換コイル8の周囲を流れている燃焼排ガスによって加熱される。循環配管7は給水予熱器6から給水タンク2へ戻すようにしており、熱交換コイル8で温度の上昇した水は給水タンク2へ戻る。ボイラ1への給水は、給水予熱器6で予熱した水を送ることになるため、ボイラの効率は向上する。   When the boiler 1 is operating, the boiler water stored in the feed water tank 2 is continuously sent to the feed water preheater 6 to preheat the boiler water. Since the combustion exhaust gas flows through the exhaust pipe 5 during the boiler operation, the circulation pump provided in the circulation pipe 7 is operated to send water to the feed water preheater 6 through the circulation pipe 7. When water flows, it is heated by the combustion exhaust gas flowing around the heat exchange coil 8. The circulation pipe 7 is returned from the feed water preheater 6 to the feed water tank 2, and the water whose temperature has risen by the heat exchange coil 8 returns to the feed water tank 2. Since the water supplied to the boiler 1 sends the water preheated by the feed water preheater 6, the efficiency of the boiler is improved.

給水タンク2と給水予熱器6の間で水の循環を行う循環配管7は、ボイラへの給水とは別系統であるため、ボイラへの給水が停止している時間帯であっても循環配管7での通水は連続的に行うことができる。そして循環配管7は、解放タンクである給水タンク2と給水予熱器6の間で水を循環するものであり、水の循環に必要な水圧は高くない。そのため循環配管7では多くの水を連続的に流すことができ、熱交換コイル8内で水が沸騰するようなことはないため、耐圧性の低いフレキシブルチューブを使用しても問題にはならず、安価に製造できることは有利となる。   Since the circulation pipe 7 that circulates water between the water supply tank 2 and the water supply preheater 6 is a separate system from the water supply to the boiler, the circulation pipe is used even when the water supply to the boiler is stopped. The water flow at 7 can be carried out continuously. And the circulation piping 7 circulates water between the water supply tank 2 which is a release tank, and the water supply preheater 6, and the water pressure required for the circulation of water is not high. Therefore, a large amount of water can flow continuously in the circulation pipe 7 and the water does not boil in the heat exchange coil 8, so there is no problem even if a flexible tube with low pressure resistance is used. It is advantageous that it can be manufactured at low cost.

給水予熱器6は、フレキシブルチューブによる熱交換コイル8、熱交換コイル8の外側を囲む外筒9、熱交換コイル8内に挿入する内筒10からなっている。熱交換コイル8は、燃焼排ガス流の下流側となる図の上方から水を供給し、予熱を行った水は下方から取り出すようにしている。熱交換コイル8の径は、外筒9部分の径をL、給水予熱器以外の排気筒5部分の径をlとした場合、排気筒径lより大きく、外筒径Lよりは小さなものとしておき、内筒10と外筒9の間にできる環状の空間に設置する。   The water supply preheater 6 includes a heat exchange coil 8 using a flexible tube, an outer cylinder 9 that surrounds the outside of the heat exchange coil 8, and an inner cylinder 10 that is inserted into the heat exchange coil 8. The heat exchange coil 8 supplies water from above in the figure on the downstream side of the combustion exhaust gas flow, and the preheated water is taken out from below. The diameter of the heat exchange coil 8 is larger than the exhaust cylinder diameter l and smaller than the outer cylinder diameter L, where L is the diameter of the outer cylinder 9 and l is the diameter of the exhaust cylinder 5 other than the feed water preheater. And installed in an annular space formed between the inner cylinder 10 and the outer cylinder 9.

熱交換コイル8は、図3を見ると分かるように複数本のフレキシブルチューブからなっており、図では上段側2本と下段側2本で合計4本のフレキシブルチューブによって熱交換コイル8を構成している。循環配管7の給水予熱器直前部分には、給水タンクから送られてきたボイラ用水を分割して給水予熱器へ供給する循環配管分岐部15を設け、並列設置した複数本のチューブに分割してボイラ用水を供給するようにしている。循環配管7の給水予熱器直後部分には、熱交換コイル8では分割して流れてきたボイラ用水を合流させる循環配管合流部16を設け、予熱を行ったボイラ用水は共通の循環配管7を通して給水タンク2へ戻す。   As can be seen from FIG. 3, the heat exchange coil 8 is composed of a plurality of flexible tubes. In the figure, the heat exchange coil 8 is composed of a total of four flexible tubes, two on the upper side and two on the lower side. ing. A circulation pipe branching portion 15 for dividing the boiler water sent from the feed water tank and supplying it to the feed water preheater is provided in the portion immediately before the feed water preheater of the circulation pipe 7, and divided into a plurality of tubes installed in parallel. Boiler water is supplied. In the circulation pipe 7 immediately after the feed water preheater, there is provided a circulation pipe joining portion 16 for joining the boiler water that has been divided and flowing in the heat exchange coil 8, and the preheated boiler water is fed through the common circulation pipe 7. Return to tank 2.

フレキシブルチューブを分割しておき、予熱する水は分散させて流すようにすることで熱交換コイル8内を流す水の圧力損失を低減し、小さな力で大きな量の水を流すことができるようになる。なお、フレキシブルチューブの分割本数と長さは、熱回収量と流路抵抗の大きさに基づいて適宜選択することになる。目標とする熱回収量が多ければフレキシブルチューブの総延長は長くなり、フレキシブルチューブの長さが長くなると流路抵抗が大きくなるために分割本数を多くことが必要になる。   Dividing the flexible tube and distributing the preheated water to reduce the pressure loss of the water flowing in the heat exchange coil 8 so that a large amount of water can flow with a small force Become. In addition, the division | segmentation number and length of a flexible tube will be suitably selected based on the amount of heat recovery, and the magnitude | size of flow-path resistance. If the target heat recovery amount is large, the total extension of the flexible tube becomes long. If the length of the flexible tube becomes long, the flow resistance becomes large, so that the number of divisions needs to be increased.

外筒9には蓋11を設けており、外周を形成する板の半分は外筒9から取り外すことができるようにしている。蓋11には熱交換コイル8の端部を引き出すための取り出し口12を設けている。取り出し口12は、複数本設置している各フレキシブルチューブでそれぞれ入口と出口が必要なため、図2では合計8箇所分設けている。   The outer cylinder 9 is provided with a lid 11 so that half of the plate forming the outer periphery can be removed from the outer cylinder 9. The lid 11 is provided with a take-out port 12 for drawing out the end of the heat exchange coil 8. Since a plurality of take-out ports 12 are required for each flexible tube having an inlet and an outlet, a total of eight take-out ports 12 are provided in FIG.

排気筒5内に熱交換コイル8を設置すると、熱交換コイル8の分だけ燃焼排ガスが流れる流路の断面積が小さくなる。そのため給水予熱器6を設置している部分では排気筒の径を大きくする必要がある。このとき、排気筒径の拡大幅は、熱交換コイル8によって減少する分に対応する断面積分だけでもよいが、あえて必要量以上に径を大きくする。その理由は、熱吸収量の増加と結露水のボイラへの侵入を防止するためである。   When the heat exchange coil 8 is installed in the exhaust cylinder 5, the cross-sectional area of the flow path through which the combustion exhaust gas flows is reduced by the heat exchange coil 8. Therefore, it is necessary to increase the diameter of the exhaust pipe at the portion where the feed water preheater 6 is installed. At this time, the expanded width of the exhaust cylinder diameter may be only the cross-sectional integral corresponding to the amount reduced by the heat exchange coil 8, but the diameter is intentionally increased beyond a necessary amount. The reason is to prevent an increase in the amount of heat absorption and intrusion of condensed water into the boiler.

給水予熱器6の部分をそれ以外の排気筒5の径よりも大きくすると、外筒9には排気筒5での径との間をつなぐ部分が必要となり、外筒9の上下に環状の天板と底板を設けることで排気筒5の外周との間をつないでいる。外筒9と排気筒5をつなぐために設けている環状の底板には、ドレン(凝縮水)を排出するためのドレン抜き穴13と、ドレンが給水予熱器6より下方の排気筒5内に入ることを防止するためのドレン流入防止壁14を設ける。ドレン流入防止壁14は底板に対して垂直に立てた板であって、排気筒の径に沿って環状に設けている。ドレン抜き穴13は、ドレン流入防止壁14と外筒9の間に設けており、底板部分に落下した凝縮水はボイラにつながる排気筒5へは流れず、ドレン抜き穴13を通して外部へ排出されることになる。ただし、排気筒5の中心軸付近に熱交換コイル8を設置していると、ドレン流入防止壁14よりも内側に凝縮水が落下するため、ドレン流入防止壁14及びドレン抜き穴13を設けていても凝縮水がボイラ内へ流入することは防止できないということが問題となる。   When the portion of the water supply preheater 6 is made larger than the diameter of the other exhaust cylinder 5, the outer cylinder 9 needs to have a portion connecting with the diameter of the exhaust cylinder 5. By providing the plate and the bottom plate, the outer periphery of the exhaust pipe 5 is connected. An annular bottom plate provided to connect the outer cylinder 9 and the exhaust cylinder 5 is provided with a drain hole 13 for discharging drain (condensed water), and the drain in the exhaust cylinder 5 below the water supply preheater 6. A drain inflow prevention wall 14 is provided to prevent entry. The drain inflow prevention wall 14 is a plate which stands upright with respect to the bottom plate, and is provided in an annular shape along the diameter of the exhaust pipe. The drain hole 13 is provided between the drain inflow prevention wall 14 and the outer cylinder 9, and the condensed water falling on the bottom plate portion does not flow to the exhaust cylinder 5 connected to the boiler, but is discharged to the outside through the drain hole 13. Will be. However, if the heat exchange coil 8 is installed in the vicinity of the central axis of the exhaust cylinder 5, the condensed water falls inside the drain inflow prevention wall 14, so the drain inflow prevention wall 14 and the drain hole 13 are provided. However, there is a problem that the condensed water cannot be prevented from flowing into the boiler.

また、煙突部材の長さは定まっており、予熱器6の長さは煙突部材と同じにしておくと、既設煙突に後から給水予熱器6を加える場合でも、給水予熱器6の設置工事費を低く抑えることができる。給水予熱器の高さが決まると、熱交換コイル8の高さの最大値が定まり、熱交換コイル8でのフレキシブルチューブの長さは熱交換コイル8の高さと径から定まる。フレキシブルチューブの長さは、長くするほど熱吸収量が増加するが、熱交換コイル8高さに制限があれば一定以上の長さにすることはできない。また、中心軸付近にフレキシブルチューブのコイルを設置すると、先に記載したように凝縮水がボイラ内へ送られるため、ボイラの腐食を招くことになる。そのために、熱交換コイル8を中心軸付近にも設置することでフレキシブルチューブの長さを長くするということはできない。   In addition, if the length of the chimney member is fixed and the length of the preheater 6 is the same as that of the chimney member, even if the feed water preheater 6 is added to the existing chimney later, the installation cost of the feed water preheater 6 Can be kept low. When the height of the feed water preheater is determined, the maximum value of the height of the heat exchange coil 8 is determined, and the length of the flexible tube in the heat exchange coil 8 is determined from the height and diameter of the heat exchange coil 8. As the length of the flexible tube increases, the amount of heat absorption increases. However, if the height of the heat exchange coil 8 is limited, it cannot be made longer than a certain length. Moreover, if the coil of a flexible tube is installed in the vicinity of the central axis, the condensed water is sent into the boiler as described above, which causes corrosion of the boiler. Therefore, it is not possible to increase the length of the flexible tube by installing the heat exchange coil 8 also in the vicinity of the central axis.

これらの問題のため、外筒9の径は排気筒5の径よりも大幅に大きなものとしておく。給水予熱器6部分での外筒9の径を大きくすると、熱交換コイル8の径を大きくすることができ、熱交換コイル8の高さは同じであってもフレキシブルチューブ長さは長くなるため、熱吸収量を増加することができる。ただし、熱交換コイル8による燃焼排ガスの流路面積減少分よりも排気筒径の拡大による流路面積の増加が大きくなると、燃焼排ガスは給水予熱器6の部分で広く薄く流れるために熱交換コイル8での熱吸収効率が低下することが新たな問題となる。   Because of these problems, the diameter of the outer cylinder 9 is set to be significantly larger than the diameter of the exhaust cylinder 5. If the diameter of the outer cylinder 9 in the feed water preheater 6 is increased, the diameter of the heat exchange coil 8 can be increased, and the length of the flexible tube is increased even if the height of the heat exchange coil 8 is the same. , Heat absorption can be increased. However, if the increase in the flow path area due to the expansion of the exhaust cylinder diameter is larger than the decrease in the flow path area of the combustion exhaust gas by the heat exchange coil 8, the combustion exhaust gas flows widely and thinly in the portion of the feed water preheater 6; Decreasing the heat absorption efficiency at 8 is a new problem.

そこで本発明では、熱交換コイル8の中心軸付近には内筒10を設置するようにしている。内筒10は、上方に蓋を付け下方は開口した円筒形構造であり、内筒10と外筒9の間に環状の空間ができるようにする。内筒は上方を蓋でふさいでいるため、燃焼排ガスは内筒10と外筒9の間にできる環状の空間を流れることになる。熱交換コイル8は、内筒10と外筒9の間にできる環状空間に設置しておくと、燃焼排ガスは熱交換コイル8の部分に集中的に流れることになり、熱交換コイル8を効率よく加熱することができる。   Therefore, in the present invention, the inner cylinder 10 is installed near the central axis of the heat exchange coil 8. The inner cylinder 10 has a cylindrical structure with a lid on the upper side and an opening on the lower side so that an annular space is formed between the inner cylinder 10 and the outer cylinder 9. Since the upper side of the inner cylinder is covered with a lid, the combustion exhaust gas flows through an annular space formed between the inner cylinder 10 and the outer cylinder 9. If the heat exchange coil 8 is installed in an annular space formed between the inner cylinder 10 and the outer cylinder 9, the combustion exhaust gas will flow intensively in the heat exchange coil 8, and the heat exchange coil 8 is made efficient. Can be heated well.

また、給水予熱器6は燃焼排ガスの熱を取り込むものであるため、燃焼排ガスは温度が低下して結露が発生することがある。給水予熱器6に入るボイラ用水は予熱して循環させているものであるため、給水予熱器6での結露は発生しにくくなっているが、初起動時であってボイラ用水温度が低いという場合もあるため、結露水の発生を完全になくすことはできない。   Moreover, since the feed water preheater 6 captures the heat of the combustion exhaust gas, the temperature of the combustion exhaust gas may decrease and condensation may occur. Since the boiler water entering the feed water preheater 6 is preheated and circulated, condensation in the feed water preheater 6 is less likely to occur, but the boiler water temperature is low at the first start-up. Therefore, the generation of condensed water cannot be completely eliminated.

熱交換コイル8で発生した結露水は、熱交換コイル8の真下へ落下する。しかし、熱交換コイル8の径を大きくし、給水予熱器6の中心軸付近には内筒10を設けることで中心軸付近に熱交換コイル8を設置しないようにしておくと、熱交換コイル8で発生した凝縮水は外筒9の底部に設けた底板上に落下することになる。給水予熱器6の底部にはドレン流入防止壁14を設けており、結露水はボイラ内へ流れ込むことがないようにしているため、結露水によってボイラの本体部が腐食することを防止する効果を得ることができる。   The condensed water generated in the heat exchange coil 8 falls directly below the heat exchange coil 8. However, if the diameter of the heat exchange coil 8 is increased and the inner cylinder 10 is provided near the central axis of the feed water preheater 6 so that the heat exchange coil 8 is not installed near the central axis, the heat exchange coil 8 The condensed water generated in the above step falls on the bottom plate provided at the bottom of the outer cylinder 9. Since the drain inflow prevention wall 14 is provided at the bottom of the feed water preheater 6 so that the condensed water does not flow into the boiler, the effect of preventing the main body of the boiler from being corroded by the condensed water. Obtainable.

なお、熱交換コイル8部分は結露水に接触するため、熱交換コイル8自体の腐食を防止することはできない。しかし、外筒9には蓋11を設けており、蓋11を取り外すことで給水予熱器6自体は設置したままで熱交換コイル8を容易に交換することができる。フレキシブルチューブによる熱交換コイル8は肉厚が薄いために寿命が短くなる問題はあるが、容易に交換することができるようにしておくと、熱交換コイル8自体のコストは低いため、トータルコストは低く抑えることができる。   In addition, since the heat exchange coil 8 part contacts dew condensation water, corrosion of the heat exchange coil 8 itself cannot be prevented. However, the outer cylinder 9 is provided with a lid 11, and by removing the lid 11, the heat exchange coil 8 can be easily replaced while the water supply preheater 6 itself remains installed. The heat exchange coil 8 made of a flexible tube has a problem that its life is shortened because it is thin. However, if the heat exchange coil 8 can be easily replaced, the cost of the heat exchange coil 8 itself is low. It can be kept low.

また、現時点で給水予熱を行っていないボイラも世間には多数ある。給水予熱器6の排気筒との接続部は一般的な排気筒部材の口径と同じとし、給水予熱器6部分の長さも一般的な排気筒部材の長さと同じにしておくと、既設排気筒に本発明の給水予熱器6を後から加えることは容易に行えるため、既設ボイラの効率向上を容易に行うことができる。   In addition, there are many boilers that are not preheated at the moment. When the connecting portion of the feed water preheater 6 to the exhaust pipe is the same as the diameter of a general exhaust pipe member, and the length of the feed water preheater 6 is also the same as the length of the general exhaust pipe member, the existing exhaust pipe Since it is easy to add the feed water preheater 6 of the present invention later, the efficiency of the existing boiler can be easily improved.

なお、本発明は以上説明した実施例に限定されるものではなく、多くの変形が本発明の技術的5099思想内で当分野において通常の知識を有する者により可能である。   The present invention is not limited to the above-described embodiments, and many modifications can be made by those having ordinary knowledge in the art within the technical 5099 concept of the present invention.

1 ボイラ
2 給水タンク
3 給水管
4 軟化水配管
5 排気筒
6 給水予熱器
7 循環配管
8 熱交換コイル
9 外筒
10 内筒
11 蓋
12 取り出し口
13 ドレン抜き穴
14 ドレン流入防止壁
15 循環配管分岐部
16 循環配管合流部
1 boiler
2 Water supply tank
DESCRIPTION OF SYMBOLS 3 Water supply pipe 4 Softened water piping 5 Exhaust pipe 6 Water supply preheater 7 Circulation pipe 8 Heat exchange coil 9 Outer cylinder 10 Inner cylinder 11 Cover 12 Drain outlet 13 Drain drain hole 14 Drain inflow prevention wall
15 Circulation piping branch 16 Circulation piping junction

Claims (1)

内部で燃焼を行うことで水を加熱して蒸気を発生するボイラ、ボイラへ供給するボイラ用水をためておく給水タンク、ボイラ内で発生した燃焼排ガスを排出する排気筒、排気筒内に設置しておき燃焼排ガスの熱によってボイラ用水の予熱を行う給水予熱器を持ち、給水タンクにはボイラへボイラ用水を供給する給水管と、給水予熱器へボイラ用水を供給し、予熱したボイラ用水を給水予熱器から給水タンクへ戻す循環配管を接続しておき、ボイラへの給水とは切り離して給水タンクと給水予熱器の間でボイラ用水を連続的に循環させることができるようにしているボイラにおいて、給水予熱器はチューブをコイル状に巻いた熱交換コイルを排気筒内に設置したものであって、熱交換コイルを収容する排気筒の外周部には蓋を設け、蓋部分に熱交換コイルの端部を排気筒内から取り出す取り出し口を設けておき、蓋を開くことで熱交換コイルを排気筒内から容易に取り出すことができるようにしていることを特徴とする給水予熱器を持ったボイラ。

It is installed in a boiler that heats water by burning inside and generates steam, a water supply tank that stores boiler water to be supplied to the boiler, an exhaust pipe that discharges combustion exhaust gas generated in the boiler, and an exhaust pipe It has a feed water preheater that preheats boiler water using the heat of combustion exhaust gas. The feed water tank supplies the boiler water to the boiler, and supplies the boiler water to the feed water preheater and feeds the preheated boiler water. In the boiler that connects the circulation pipe returning from the preheater to the water supply tank, and separates the water supply to the boiler so that the boiler water can be continuously circulated between the water supply tank and the water supply preheater. The feed water preheater has a heat exchange coil in which a tube is wound in a coil shape installed in an exhaust pipe. A lid is provided on the outer periphery of the exhaust pipe that houses the heat exchange coil, and the lid portion is heated. A feed water preheater characterized in that an outlet for taking out the end portion of the exchange coil from the exhaust pipe is provided and the heat exchange coil can be easily taken out from the exhaust pipe by opening the lid. A boiler with it.

JP2011073759A 2011-03-30 2011-03-30 Boiler Withdrawn JP2012207851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011073759A JP2012207851A (en) 2011-03-30 2011-03-30 Boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011073759A JP2012207851A (en) 2011-03-30 2011-03-30 Boiler

Publications (1)

Publication Number Publication Date
JP2012207851A true JP2012207851A (en) 2012-10-25

Family

ID=47187745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011073759A Withdrawn JP2012207851A (en) 2011-03-30 2011-03-30 Boiler

Country Status (1)

Country Link
JP (1) JP2012207851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101298900B1 (en) * 2013-01-04 2013-08-21 황승하 High efficiency heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101298900B1 (en) * 2013-01-04 2013-08-21 황승하 High efficiency heat exchanger

Similar Documents

Publication Publication Date Title
US9134041B2 (en) Vapor vacuum condensing boiler designs
US9581328B2 (en) High efficiency feedwater heater
US10247409B2 (en) Remote preheat and pad steam generation
JP5733822B2 (en) boiler
JP2014228222A (en) Boiler with water supply preheater
RU2403522C2 (en) Method for heating and/or evaporation of organic medium and heat exchanging unit for extraction of heat from flow of hot gas
WO2014064949A1 (en) Boiler system
KR20120015898A (en) Small boiler waste heat recycle apparatus
JP2012207851A (en) Boiler
JP5733821B2 (en) boiler
JP5041941B2 (en) Once-through exhaust heat recovery boiler
JP5312617B2 (en) How to blow a boiler
RU2662844C2 (en) Heat exchanging system and method for a heat recovery steam generator
US10281139B2 (en) Hot water boiler
JP2014190639A (en) Feed water preheating boiler
US20160025331A1 (en) Condensate preheater for waste heat steam generator
JP6125321B2 (en) Boiler with feed water preheater
CN102322624A (en) System utilizing organic heat carrier furnace flue gas waste heat to produce low-pressure steam
CN111120993A (en) Water supply backflow system of deaerator
JP6172984B2 (en) Water supply preheating boiler
CN104613458B (en) The heat energy comprehensive utilization device of the therrmodynamic system containing steam boiler
KR20120111691A (en) Apparatus for reusing waste heat of boiler
JP2014219126A (en) Boiler with supply water preheating device
US20150053152A1 (en) Boiler with integrated economizer
JP2011127803A (en) Hot-water generator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603