JP2012207845A - Heat-conducting material - Google Patents

Heat-conducting material Download PDF

Info

Publication number
JP2012207845A
JP2012207845A JP2011073500A JP2011073500A JP2012207845A JP 2012207845 A JP2012207845 A JP 2012207845A JP 2011073500 A JP2011073500 A JP 2011073500A JP 2011073500 A JP2011073500 A JP 2011073500A JP 2012207845 A JP2012207845 A JP 2012207845A
Authority
JP
Japan
Prior art keywords
fluid
metal tube
ceramic body
cylindrical ceramic
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011073500A
Other languages
Japanese (ja)
Inventor
Hironori Takahashi
博紀 高橋
Minoru Imaeda
美能留 今枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2011073500A priority Critical patent/JP2012207845A/en
Publication of JP2012207845A publication Critical patent/JP2012207845A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat-conducting material in which cracks and fracture are hardly produced in a tubular ceramics body.SOLUTION: The heat-conducting material 10 includes the tubular ceramics body 11 having a flow path penetrating from one end surface to another end surface and allowing first fluid as a heating element to flow therein, a metal pipe 12 fitted to an outer circumferential surface of the tubular ceramics body 11 and having an annular crease part 15 surrounding the outer circumference of the tubular ceramics body 11, and an intermediate material 13 sandwiched between the tubular ceramics body 11 and the metal pipe 12 and joined to the tubular ceramics body 11 and the metal pipe 12, wherein first fluid is caused to flow in the tubular ceramics body 11, and second fluid at a temperature lower than that of the first fluid is caused to flow on the outer circumferential surface 12h side of the metal pipe 12, thus performing heat exchange between the first fluid and the second fluid.

Description

本発明は、筒状セラミックス体を金属管で被覆した熱伝導部材に関する。   The present invention relates to a heat conducting member in which a cylindrical ceramic body is covered with a metal tube.

高温の流体から低温の流体へ熱交換することにより、熱を有効利用することができる。例えば、エンジンなどの燃焼排ガスなどの高温気体からの熱を回収する熱回収技術がある。気体/液体熱交換器としては、自動車のラジエター、空調室外機などのフィン付チューブ型熱交換器が一般的である。しかしながら、例えば自動車排ガスのような気体から熱を回収するには、一般的な金属製熱交換器では耐熱性に乏しく、高温での使用が困難である。そこで、耐熱性、耐熱衝撃、耐腐食などを有する耐熱金属やセラミックス材料などが適している。しかし耐熱金属は、価格が高い上に加工が難しい、密度が高く重い、熱伝導が低いなどの課題がある。   By exchanging heat from a high temperature fluid to a low temperature fluid, heat can be effectively utilized. For example, there is a heat recovery technique for recovering heat from a high-temperature gas such as combustion exhaust gas from an engine. As the gas / liquid heat exchanger, a tube-type heat exchanger with fins such as an automobile radiator or an air conditioner outdoor unit is generally used. However, in order to recover heat from a gas such as automobile exhaust gas, a general metal heat exchanger has poor heat resistance and is difficult to use at high temperatures. Therefore, a heat-resistant metal or ceramic material having heat resistance, heat shock, corrosion resistance, or the like is suitable. However, refractory metals have problems such as high price and difficulty in processing, high density and heavyness, and low heat conduction.

そこで、セラミックス材料を用いた熱回収技術が開発されている。例えば、筒状セラミックス体を用いて熱交換を行う技術がある。この場合、筒状セラミックス体の内部に第一の流体を流通させ、外部に第二の流体を流通させることにより、熱交換を行う。気体と液体とで筒状セラミックス体を用いて熱交換する場合、筒状セラミックス体が液体漏れを起こし2つの流体が混ざり合うことがないように、筒状セラミックス体をシールドする必要がある。   Therefore, a heat recovery technique using a ceramic material has been developed. For example, there is a technique for performing heat exchange using a cylindrical ceramic body. In this case, heat exchange is performed by circulating the first fluid inside the cylindrical ceramic body and circulating the second fluid outside. When heat is exchanged between a gas and a liquid using a cylindrical ceramic body, it is necessary to shield the cylindrical ceramic body so that the cylindrical ceramic body does not leak and the two fluids do not mix.

そこで、筒状セラミックス体であるセラミックス製のハニカム構造体と金属基材(金属管)とを一体化させることにより、熱を回収する技術が開示されている(例えば、特許文献1)。   Thus, a technique for recovering heat by integrating a ceramic honeycomb structure, which is a cylindrical ceramic body, and a metal substrate (metal tube) is disclosed (for example, Patent Document 1).

特開平9−327627号公報JP-A-9-327627

しかしながら、セラミックス製のハニカム構造体と金属基材(金属管)とを一体化させた場合には、ハニカム構造体と金属基材(金属管)との間で熱膨張率が異なるので、金属基材(金属管)とハニカム構造体との間で膨張や収縮の度合いが大きく異なる時があり、このような時にはハニカム構造体に過剰な応力が生じてしまう。   However, when the ceramic honeycomb structure and the metal substrate (metal tube) are integrated, the thermal expansion coefficient differs between the honeycomb structure and the metal substrate (metal tube). In some cases, the degree of expansion or contraction differs greatly between the material (metal tube) and the honeycomb structure, and in such a case, excessive stress is generated in the honeycomb structure.

特に、特に、ロウ付けや溶湯接合等によって接合する場合には、筒状セラミックス体や金属管をこれらの隙間に設けられた金属と化学的に結合させることができる。このような接合形態の場合には、伝熱特性を非常に良好にできる一方で、セラミクスと金属の熱膨張係数の違いから、冷却時に大きな熱(残留)応力がかかる。また、熱回収目的で使用される場合の様に、製品の少なくても一部が高温になる場合などは、その応力状態が複合されるため複雑になり、熱サイクルの繰返しによって破損してしまう問題が生じやすい。特に、長手方向(軸方向)については対策が求められている。   In particular, particularly when joining by brazing, molten metal joining, etc., the cylindrical ceramic body and the metal tube can be chemically bonded to the metal provided in these gaps. In the case of such a joining form, heat transfer characteristics can be made very good, but a large thermal (residual) stress is applied during cooling due to the difference in thermal expansion coefficient between ceramics and metal. Also, when at least a part of the product becomes hot, such as when used for heat recovery purposes, it becomes complicated because the stress state is compounded, and it is damaged by repeated heat cycles. Problems are likely to occur. In particular, measures are required for the longitudinal direction (axial direction).

また、焼きばめにより筒状セラミックスと金属管とを一体化させる手法もあるが、筒状セラミックスと筒状金属管については、外径・内径公差を正確に管理しなくてはならず、セラミックスの加工が必須となり、コスト高だという欠点がある。また、焼きばめの場合には、化学的な結合が伴わないため、伝熱特性がロウ付けや溶湯接合ほど良好ではない。   There is also a method of integrating cylindrical ceramics and metal tubes by shrink fitting, but for cylindrical ceramics and cylindrical metal tubes, the outer and inner diameter tolerances must be managed accurately, and ceramics However, there is a disadvantage that it is expensive. In addition, in the case of shrink fitting, since there is no chemical bonding, the heat transfer characteristics are not as good as those of brazing or molten metal bonding.

本発明の課題は、筒状セラミックス体を金属管で被覆する場合において、熱的な結合状態を良好に保ちつつ、セラミックスと金属の熱膨張係数の違いに起因する熱応力を緩和し、より熱交換効率が高く耐久性の高い熱伝導部材を提供することである。   The object of the present invention is to reduce the thermal stress caused by the difference in the thermal expansion coefficient between ceramic and metal while maintaining a good thermal bonding state when the cylindrical ceramic body is covered with a metal tube. An object of the present invention is to provide a heat conduction member having high exchange efficiency and high durability.

本発明は、上記課題を解決するものである。具体的には、本発明は以下の熱伝導部材である。   The present invention solves the above problems. Specifically, the present invention is the following heat conducting member.

[1] 一方の端面から他方の端面まで貫通し、加熱体である第一の流体が流通する流路を有する筒状セラミックス体と、前記筒状セラミックス体の外周面に嵌合するとともに前記筒状セラミックス体の外周を囲む環状のひだ部を有する金属管と、前記筒状セラミックス体と前記金属管とに挟まれつつ前記筒状セラミックス体および前記金属管に接合する中間材と、を備え、前記筒状セラミックス体の内部に前記第一の流体を、前記金属管の外周面側に前記第一の流体よりも低温の第二の流体を流通させ、前記第一の流体と前記第二の流体との熱交換を行う熱伝導部材。 [1] A cylindrical ceramic body having a flow path that penetrates from one end face to the other end face and through which a first fluid that is a heating body circulates, and is fitted to the outer peripheral face of the cylindrical ceramic body and the cylinder A metal tube having an annular pleat surrounding the outer periphery of the cylindrical ceramic body, and an intermediate material joined to the cylindrical ceramic body and the metal tube while being sandwiched between the cylindrical ceramic body and the metal tube, The first fluid is circulated in the cylindrical ceramic body, the second fluid having a temperature lower than that of the first fluid is circulated on the outer peripheral surface side of the metal tube, and the first fluid and the second fluid are circulated. A heat conduction member that exchanges heat with a fluid.

[2] 前記金属管は、前記ひだ部が外側に突出している前記[1]に記載の熱伝導部材。 [2] The heat conduction member according to [1], wherein the fold portion protrudes outward from the metal tube.

[3] 前記金属管の前記ひだ部の内面と前記中間材との隙間に充填材を備える前記[2]に記載の熱伝導部材。 [3] The heat conducting member according to [2], wherein a filler is provided in a gap between the inner surface of the pleated portion of the metal tube and the intermediate material.

[4] 前記金属管は、前記ひだ部が内側に窪んでいる前記[1]に記載の熱伝導部材。 [4] The heat conducting member according to [1], wherein the fold portion is recessed inward.

[5] 前記筒状セラミックス体は、熱伝導率が100W/m・K以上である前記[1]〜[4]のいずれかに記載の熱伝導部材。 [5] The thermal conductive member according to any one of [1] to [4], wherein the cylindrical ceramic body has a thermal conductivity of 100 W / m · K or more.

[6] 前記筒状セラミックス体は、隔壁を有し、前記隔壁によって、流体の流路となる多数のセルが区画形成されたハニカム構造体である前記[1]〜[5]のいずれかに記載の熱伝導部材。 [6] The tubular ceramic body according to any one of [1] to [5], wherein the cylindrical ceramic body is a honeycomb structure including partition walls, and a plurality of cells serving as fluid flow paths are defined by the partition walls. The heat conduction member as described.

[7] 前記ハニカム構造体は、炭化珪素を含む前記[6]に記載の熱伝導部材。 [7] The heat conduction member according to [6], wherein the honeycomb structure includes silicon carbide.

本発明の熱伝導部材は、筒状セラミックス体にひびや割れが生じにくく、耐久性が高い。   The heat conducting member of the present invention is highly resistant to cracking and cracking in the cylindrical ceramic body.

本発明の熱伝導部材の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the heat conductive member of this invention. 図1中のA−A’断面の図である。FIG. 2 is a cross-sectional view taken along line A-A ′ in FIG. 1. 図1に示された熱伝導部材を製造するための方法の一例を説明する図である。It is a figure explaining an example of the method for manufacturing the heat conductive member shown by FIG. 本発明の熱伝導部材の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the heat conductive member of this invention. 図4に示された熱伝導部材を製造するための方法の一例を説明する図である。It is a figure explaining an example of the method for manufacturing the heat conductive member shown by FIG. 図5中のB−B’断面の図である。It is a figure of the B-B 'cross section in FIG. 本発明の熱伝導部材のさらに別の実施形態を軸方向の一方の端面から見た模式図である。It is the schematic diagram which looked at another embodiment of the heat conductive member of this invention from the one end surface of the axial direction. 本発明の熱伝導部材を含む熱交換器を示す模式図である。It is a schematic diagram which shows the heat exchanger containing the heat conductive member of this invention.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the present invention.

本発明の熱伝導部材は、一方の端面から他方の端面まで貫通し、加熱体である第一の流体が流通する流路を有する筒状セラミックス体と、筒状セラミックス体の外周面に嵌合するとともに筒状セラミックス体の外周を囲む環状のひだ部を有する金属管と、筒状セラミックス体と金属管とに挟まれつつ筒状セラミックス体および金属管に接合する中間材と、を備える。そして、本発明の熱伝導部材は、筒状セラミックス体の内部に第一の流体を、金属管の外周面側に第一の流体よりも低温の第二の流体を流通させ、第一の流体と第二の流体との熱交換を行うことができる。本発明の熱伝導部材では、金属管と筒状セラミックス体とを中間材を介して接合し、一体化することにより、第一の流体と第二の流体とが混ざり合うことを防止することができる。   The heat conducting member of the present invention is fitted to a cylindrical ceramic body having a flow path through which a first fluid as a heating body flows from one end surface to the other end surface, and an outer peripheral surface of the cylindrical ceramic body. And a metal tube having an annular pleat surrounding the outer periphery of the cylindrical ceramic body, and an intermediate material joined to the cylindrical ceramic body and the metal tube while being sandwiched between the cylindrical ceramic body and the metal tube. The heat conducting member of the present invention causes the first fluid to flow inside the cylindrical ceramic body, and the second fluid having a temperature lower than that of the first fluid to circulate on the outer peripheral surface side of the metal tube. Heat exchange with the second fluid. In the heat conducting member of the present invention, the first fluid and the second fluid can be prevented from being mixed by joining and integrating the metal tube and the cylindrical ceramic body via an intermediate material. it can.

本発明の熱伝導部材では、金属管は、ひだ部を有しているので、軸方向(一方の端面と他方の端面とを結ぶ方向)に沿って伸縮することができる。そのため、本発明の熱伝導部材では、金属管における伸縮の大きさが筒状セラミックス体や中間材における伸縮の大きさと異なる状態の時でも、金属管がひだ部の働きによって軸方向に沿って自在に伸縮するので、金属管から筒状セラミックス体へと大きな応力が及びにくい。その結果、本発明の熱伝導部材は、筒状セラミックス体にひびや割れが生じにくい。   In the heat conducting member of the present invention, since the metal tube has a pleat portion, it can expand and contract along the axial direction (the direction connecting one end surface and the other end surface). Therefore, in the heat conducting member of the present invention, the metal tube can freely move along the axial direction by the action of the pleats even when the expansion and contraction in the metal tube is different from the expansion and contraction in the cylindrical ceramic body or intermediate material. Therefore, it is difficult to apply a large stress from the metal tube to the cylindrical ceramic body. As a result, the heat conductive member of the present invention is less likely to crack or crack in the cylindrical ceramic body.

また、本発明の熱伝導部材が備える金属管では、ひだ部は、1個であっても、複数個であってもよい。また、ひだ部が複数個ある場合には、軸方法に沿った各位置で金属管の伸縮の度合いが異なる態様も可能になるので、金属管の伸縮がさらに自在になる。その結果として、金属管から中間材や筒状セラミックス体に大きな応力が加わりにくくなる。また、本発明の熱伝導部材では、金属管は、ひだ部が軸方向に沿って繰り返し作られている蛇腹構造であってもよい。このように金属管が蛇腹構造である場合には、金属管における伸縮の大きさが筒状セラミックス体や中間材における伸縮の大きさと異なる状態の時でも、金属管から筒状セラミックス体へと大きな応力が加わることがより一層抑えられ、その結果、筒状セラミックス体にひびや割れがより一層生じにくくなる。   Moreover, in the metal tube with which the heat conductive member of this invention is provided, the pleat part may be one piece or plural pieces. Further, when there are a plurality of pleat portions, it is possible to adopt a mode in which the degree of expansion and contraction of the metal tube is different at each position along the axial method, so that the metal tube can be further expanded and contracted. As a result, it is difficult to apply a large stress from the metal tube to the intermediate material or the cylindrical ceramic body. In the heat conductive member of the present invention, the metal tube may have a bellows structure in which the pleats are repeatedly formed along the axial direction. Thus, when the metal tube has a bellows structure, even when the expansion and contraction in the metal tube is different from the expansion and contraction in the cylindrical ceramic body or the intermediate material, the metal tube is greatly increased from the metal tube to the cylindrical ceramic body. Stress is further suppressed, and as a result, cracks and cracks are further less likely to occur in the cylindrical ceramic body.

本発明の熱伝導部材では、金属管は、ひだ部が外側に突出している形態でもよい。あるいは、金属管は、ひだ部が内側に窪んでいる形態でもよい。次に、これらの2つのひだ部形態について具体例を挙げて説明する。   In the heat conducting member of the present invention, the metal tube may have a configuration in which the pleat portion protrudes outward. Alternatively, the metal tube may have a shape in which the fold portion is recessed inward. Next, these two pleat portions will be described with specific examples.

まず、ひだ部が外側に突出している形態について説明する。図1は、本発明の熱伝導部材の一実施形態を示す斜視図である。本熱伝導部材10は、一方の端面2から他方の端面2まで貫通し、加熱体である第一の流体が流通する流路を有する筒状セラミックス体11と、筒状セラミックス体11の外周面7hに嵌合する金属管12と、筒状セラミックス体11と金属管12とに挟まれつつ筒状セラミックス体11および金属管12に接合する中間材13と、を備える。そして、筒状セラミックス体11の内部に第一の流体を、金属管12の外周面12h側に第一の流体よりも低温の第二の流体を流通させることにより、第一の流体と第二の流体との熱交換を行うことができる。   First, a form in which the pleat portion protrudes outward will be described. FIG. 1 is a perspective view showing an embodiment of a heat conducting member of the present invention. This heat conducting member 10 penetrates from one end surface 2 to the other end surface 2 and has a cylindrical ceramic body 11 having a flow path through which a first fluid as a heating body flows, and an outer peripheral surface of the cylindrical ceramic body 11 A metal tube 12 fitted to 7h, and an intermediate member 13 joined to the cylindrical ceramic body 11 and the metal tube 12 while being sandwiched between the cylindrical ceramic body 11 and the metal tube 12. Then, the first fluid and the second fluid are circulated inside the cylindrical ceramic body 11 and the second fluid having a temperature lower than that of the first fluid is circulated on the outer peripheral surface 12 h side of the metal tube 12. Heat exchange with the fluid can be performed.

さらに、本熱伝導部材10では、金属管12は、筒状セラミックス体11の外周を囲む環状のひだ部15を有する。ひだ部15は、金属管12が外周側に折れ曲がって突出することにより形作られている。このひだ部15により、金属管12は軸方向(一方の端面2と他方の端面2とを結ぶ方向)に沿って伸縮することができる。   Further, in the heat conducting member 10, the metal tube 12 has an annular pleat 15 surrounding the outer periphery of the cylindrical ceramic body 11. The pleat portion 15 is formed by the metal tube 12 being bent toward the outer peripheral side and protruding. By this pleat 15, the metal tube 12 can be expanded and contracted along the axial direction (the direction connecting the one end surface 2 and the other end surface 2).

図2は、図1中のA−A’断面の図である(当断面の位置は、図1において金属管12の外周面12h上にある点線で示す)。図示されるように、本熱伝導部材10を軸方向(中心軸20の延びる方向)に沿った切り口の断面からみると、ひだ部15は、頂部(峰)を境に、一方の端面2の側の面と、もう一方の端面2の側の面とが向かい合うかたちになっている。金属管12において軸方向に沿った応力が作用すると、ひだ部15は、頂部(峰)を境に向かい合う2つ面の間を開いたり、閉じたりしながら伸縮することができる。また、ひだ部15の内面15sには中間材13と接合していない部分があり、この中間材13と接合していないひだ部15の内面15sは、頂部(峰)を境に向かい合う2つ面の内面にあたる。言い換えると、中間材13においては、ひだ部15の2つの面に挟まれた領域に、金属管12と接合していない部分がある。この接合していない部分で中間材13が伸縮する場合、ひだ部15の2つの面の開き度合いを変化させることにより、金属管12は中間材13との接合状態を保ち続けることができる。   2 is a cross-sectional view taken along line A-A ′ in FIG. 1 (the position of this cross-section is indicated by a dotted line on the outer peripheral surface 12 h of the metal tube 12 in FIG. 1). As shown in the drawing, when the heat conducting member 10 is viewed from a cross-section of the cut along the axial direction (the direction in which the central axis 20 extends), the pleat 15 is formed on the one end face 2 with the top (peak) as a boundary. The side surface and the other end surface 2 side face each other. When stress along the axial direction is applied to the metal tube 12, the pleat portion 15 can expand and contract while opening or closing between two surfaces facing the top (peak). Further, the inner surface 15s of the pleat portion 15 has a portion that is not joined to the intermediate member 13, and the inner surface 15s of the pleat portion 15 that is not joined to the intermediate member 13 has two surfaces facing the top (peak) as a boundary. It is the inside. In other words, in the intermediate member 13, there is a portion that is not joined to the metal tube 12 in a region sandwiched between the two surfaces of the pleat portion 15. When the intermediate member 13 expands and contracts at the unbonded portion, the metal tube 12 can continue to maintain the bonded state with the intermediate member 13 by changing the degree of opening of the two surfaces of the pleat portion 15.

本伝導部材10では、ひだ部15が2つの面の開き度合いを変化させることにより、金属管12から中間材13や筒状セラミックス体11に大きな応力が加わることを抑えている。中間材13や筒状セラミックス体11が伸長する場合には、金属管12は自身もひだ部15の働きによって伸長することにより、中間材13や筒状セラミックス体11を収縮させようとする応力が加わることを抑えている。また、中間材13や筒状セラミックス体11が収縮する場合には、金属管12は自身もひだ部15の働きによって収縮することにより、中間材13や筒状セラミックス体11を伸長させようとする応力が加わることを抑えている。このように、本熱伝導部材10では、金属管12における伸縮の大きさが筒状セラミックス体11や中間材13における伸縮の大きさと異なる状態の時でも、金属管12がひだ部15の働きによって軸方向に沿って自在に伸縮するので、金属管12から筒状セラミックス体11へと大きな応力が及びにくい。その結果、本熱伝導部材10は、筒状セラミックス体11にひびや割れが生じにくい。   In the conductive member 10, the pleat 15 changes the degree of opening of the two surfaces, thereby suppressing a large stress from being applied to the intermediate member 13 and the cylindrical ceramic body 11 from the metal tube 12. When the intermediate material 13 and the cylindrical ceramic body 11 are stretched, the metal tube 12 itself is also stretched by the action of the pleats 15, so that the stress for contracting the intermediate material 13 and the cylindrical ceramic body 11 is exerted. I'm keeping you from joining. Further, when the intermediate material 13 and the cylindrical ceramic body 11 contract, the metal tube 12 itself contracts by the action of the pleats 15, thereby trying to extend the intermediate material 13 and the cylindrical ceramic body 11. The application of stress is suppressed. Thus, in the present heat conducting member 10, even when the expansion / contraction magnitude of the metal tube 12 is different from the expansion / contraction magnitude of the cylindrical ceramic body 11 or the intermediate material 13, the metal tube 12 is moved by the action of the pleat portion 15. Since it expands and contracts freely along the axial direction, a large stress is hardly applied from the metal tube 12 to the cylindrical ceramic body 11. As a result, the heat conducting member 10 is less likely to crack or crack in the cylindrical ceramic body 11.

本熱伝導部材10が備える金属管12のようにひだ部15が外側に突出している形態の場合においては、ひだ部15は、1個であっても、複数個であってもよい。また、ひだ部15が複数個ある場合には、各ひだ部15の内面に中間材13と接合していない部分があっても良い。このように金属管12と中間材13との非接合部分の数が多くなると、上述したようなひだ部15による応力の緩和作用が増すので、金属管12から中間材13や筒状セラミックス体11に大きな応力が加わりにくくなる。   In the case where the pleat portion 15 protrudes outward as in the metal tube 12 included in the heat conducting member 10, the pleat portion 15 may be one or plural. Further, when there are a plurality of pleat portions 15, there may be a portion that is not joined to the intermediate member 13 on the inner surface of each pleat portion 15. When the number of non-joined portions between the metal tube 12 and the intermediate material 13 increases as described above, the stress relaxation action by the pleats 15 as described above increases, so that the intermediate material 13 and the cylindrical ceramic body 11 from the metal tube 12 are increased. It becomes difficult to apply a large stress to.

また、ひだ部15の高さは、0.1mm〜20mmであることが好ましく、1mm〜10mmであることがより好ましく、1mm〜5mmであることが特に好ましい。また、ひだ部15の幅は、0.1mm〜20mmであることが好ましく、1mm〜10mmであることがより好ましく、1mm〜5mmであることが特に好ましい。ひだ部15の高さやひだ部15の幅が0.1mmよりも小さくなると、ひだ部15による応力の緩和作用が十分に得られなくなる場合があり、20mmよりも大きくなると熱伝導効率が低下するため好ましくない。なお、ひだ部15の高さとは、金属管12の外周面の平滑な面からひだ部15の頂部(峰)までの高さを意味する。また、ひだ部15の幅とは、金属管12の外周面の平滑な面から、ひだ部15の高さにして2分の1の高さの位置におけるひだ部15の幅を意味する。   Further, the height of the pleat portion 15 is preferably 0.1 mm to 20 mm, more preferably 1 mm to 10 mm, and particularly preferably 1 mm to 5 mm. Further, the width of the pleat portion 15 is preferably 0.1 mm to 20 mm, more preferably 1 mm to 10 mm, and particularly preferably 1 mm to 5 mm. If the height of the pleat portion 15 and the width of the pleat portion 15 are smaller than 0.1 mm, the stress relaxation action by the pleat portion 15 may not be sufficiently obtained, and if it exceeds 20 mm, the heat conduction efficiency is reduced. It is not preferable. In addition, the height of the pleat portion 15 means the height from the smooth surface of the outer peripheral surface of the metal tube 12 to the top (peak) of the pleat portion 15. Further, the width of the pleat portion 15 means the width of the pleat portion 15 at a position half the height of the pleat portion 15 from the smooth outer peripheral surface of the metal tube 12.

また、本熱伝導部材10が備える金属管12のようにひだ部15が外側に突出している形態の場合においては、金属管12は、ひだ部15が軸方向に沿って繰り返し作られている蛇腹構造であってもよい。金属管12が蛇腹構造である場合には、金属管12は、中間材13と接合状態を保ったままでも、より一層自在に伸縮可能になる。このように金属管12が蛇腹構造である場合には、金属管12における伸縮の大きさが筒状セラミックス体11や中間材13における伸縮の大きさと異なる状態の時でも、金属管12から筒状セラミックス体11へと大きな応力が加わることがより一層抑えられ、その結果、筒状セラミックス体11にひびや割れがより一層生じにくくなる。   Further, in the case where the pleat portion 15 protrudes outward like the metal tube 12 provided in the heat conducting member 10, the metal tube 12 has a bellows in which the pleat portion 15 is repeatedly formed along the axial direction. It may be a structure. In the case where the metal tube 12 has a bellows structure, the metal tube 12 can be expanded and contracted even more freely even if the metal tube 12 is kept in the joined state with the intermediate member 13. Thus, when the metal tube 12 has a bellows structure, even when the expansion and contraction in the metal tube 12 is different from the expansion and contraction in the cylindrical ceramic body 11 and the intermediate member 13, the metal tube 12 is cylindrical. It is further suppressed that a large stress is applied to the ceramic body 11, and as a result, cracks and cracks are more unlikely to occur in the cylindrical ceramic body 11.

本熱伝導部材10では、中間材13については、金属を溶融させて溶湯を作製し、この溶湯を金属管12と筒状セラミックス体11との隙間に充填し、固化させることにより形成することができる。図3は、熱伝導部材10を製造するための方法、具体的には、溶湯80を金属管12と筒状セラミックス体11との隙間に充填する方法の一例を示す模式図である。図示されたように、金属管12と筒状セラミックス体11との間隙に溶湯80を流入する際には、軸方向の一方の端面2から他方の端面2まで長手方向に向かって溶湯80を射出することにより、溶湯80を充填することができる。このとき、筒状セラミックス体11を挿入した金属管12の内部に挿入しておき、さらに筒状セラミックス体11の両端面2を蓋71で塞いだ状態で溶湯80を射出する台72の上に置いた後、溶湯80を金属管12と筒状セラミックス体11との間隙に射出するとよい。   In the present heat conductive member 10, the intermediate material 13 can be formed by melting a metal to produce a molten metal, filling the molten metal in a gap between the metal tube 12 and the cylindrical ceramic body 11, and solidifying the molten metal. it can. FIG. 3 is a schematic diagram showing an example of a method for manufacturing the heat conducting member 10, specifically, a method of filling the gap between the metal tube 12 and the cylindrical ceramic body 11 with the molten metal 80. As shown in the drawing, when the molten metal 80 flows into the gap between the metal tube 12 and the cylindrical ceramic body 11, the molten metal 80 is ejected in the longitudinal direction from one end surface 2 in the axial direction to the other end surface 2. By doing so, the molten metal 80 can be filled. At this time, the cylindrical ceramic body 11 is inserted into the inserted metal tube 12, and the both ends 2 of the cylindrical ceramic body 11 are covered with the lids 71, and the molten metal 80 is injected onto the table 72. After placing, the molten metal 80 may be injected into the gap between the metal tube 12 and the cylindrical ceramic body 11.

また、本熱伝導部材10が備える金属管12のようにひだ部15が外側に突出している形態の場合においては、金属管12のひだ部15の内面15sと中間材13との隙間に充填材を備えることも好ましい様態である。特に、充填材が軟質の材質によって作られている場合には、熱交換効率を維持しつつひだ部15による応力の緩和作用を発揮することができる。本発明の熱伝導部材10に使用できる充填材としては、膨張黒鉛、またはアルミナ、カーボン、シリカなどのセラミック繊維からなるものを挙げることができる。   Further, in the case where the pleat portion 15 protrudes outward like the metal tube 12 provided in the heat conducting member 10, a filler is provided in the gap between the inner surface 15 s of the pleat portion 15 of the metal tube 12 and the intermediate member 13. It is also a preferable aspect to provide. In particular, when the filler is made of a soft material, the stress relaxation effect by the pleats 15 can be exhibited while maintaining the heat exchange efficiency. Examples of the filler that can be used in the heat conductive member 10 of the present invention include expanded graphite or a material made of ceramic fibers such as alumina, carbon, silica, and the like.

次に、ひだ部が内側に窪んでいる形態について説明する。図4は、本発明の熱伝導部材の他の実施形態の断面図である。この図は、本熱伝導部材40は、一方の端面32から他方の端面32まで貫通し、加熱体である第一の流体が流通する流路を有する筒状セラミックス体41と、筒状セラミックス体41の外周面37hに嵌合する金属管42と、筒状セラミックス体41と金属管42とに挟まれつつ筒状セラミックス体41および金属管42に接合する中間材43と、を備える。   Next, the form in which the pleats are recessed inward will be described. FIG. 4 is a cross-sectional view of another embodiment of the heat conducting member of the present invention. This figure shows that the present heat conducting member 40 penetrates from one end face 32 to the other end face 32 and has a cylindrical ceramic body 41 having a flow path through which a first fluid as a heating body flows, and a cylindrical ceramic body. And a metal tube 42 fitted to the outer peripheral surface 37h of 41, and an intermediate member 43 joined to the cylindrical ceramic body 41 and the metal tube 42 while being sandwiched between the cylindrical ceramic body 41 and the metal tube 42.

さらに、本熱伝導部材40では、金属管42は、筒状セラミックス体41の外周を囲む環状のひだ部45を有する。ひだ部45は、金属管42が内側に折れ曲がって窪むことにより形作られている。このひだ部45により、金属管42は軸方向(一方の端面32と他方の端面32とを結ぶ方向)に沿って伸縮することができる。   Further, in the present heat conducting member 40, the metal tube 42 has an annular pleat 45 surrounding the outer periphery of the cylindrical ceramic body 41. The pleat portion 45 is formed by the metal tube 42 being bent inward and recessed. By this pleat 45, the metal tube 42 can expand and contract along the axial direction (the direction connecting the one end face 32 and the other end face 32).

また、図示されるように、本熱伝導部材40を軸方向(中心軸50の延びる方向)に沿った切り口の断面からみると、ひだ部45は、溝形状になっている。この溝形状の底部を境に、一方の端面32の側の面(側面45s)と、もう一方の端面32の側の面(側面45s)とが向かい合うかたちになっている。金属管42において軸方向に沿った応力が作用すると、ひだ部45は、溝形状の底部を境に向かい合う2つ面(側面45s)の間を開いたり、閉じたりしながら伸縮することができる。   Further, as shown in the figure, the pleat portion 45 has a groove shape when the heat conducting member 40 is viewed from a cross-section of the cut along the axial direction (the direction in which the central axis 50 extends). The surface (side surface 45s) on the side of one end surface 32 and the surface (side surface 45s) on the side of the other end surface 32 face each other with the bottom of the groove shape as a boundary. When stress along the axial direction acts on the metal tube 42, the pleat 45 can expand and contract while opening or closing between two surfaces (side surfaces 45 s) facing the groove-shaped bottom.

本熱伝導部材40では、溝形状のひだ部45が向かい合った2つの側面45sの開き度合いを変化させることにより、金属管42から中間材43や筒状セラミックス体41に大きな応力が加わることを抑えている。中間材43や筒状セラミックス体41が伸長する場合には、金属管42は自身もひだ部45の働きによって伸長することにより、中間材43や筒状セラミックス体41を収縮させようとする応力が加わることを抑えている。また、中間材43や筒状セラミックス体41が収縮する場合には、金属管12は自身もひだ部45の働きによって収縮することにより、中間材43や筒状セラミックス体41を伸長させようとする応力が加わることを抑えている。このように、本熱伝導部材40では、金属管42における伸縮の大きさが筒状セラミックス体41や中間材43における伸縮の大きさと異なる状態の時でも、金属管42がひだ部45の働きによって軸方向に沿って自在に伸縮するので、金属管42から筒状セラミックス体41へと大きな応力が及びにくい。その結果、本熱伝導部材40は、筒状セラミックス体41にひびや割れが生じにくい。   In the present heat conductive member 40, by changing the degree of opening of the two side surfaces 45s where the groove-shaped pleat portions 45 face each other, it is possible to suppress a large stress from being applied to the intermediate material 43 and the cylindrical ceramic body 41 from the metal tube 42. ing. When the intermediate material 43 and the cylindrical ceramic body 41 are extended, the metal tube 42 itself is extended by the action of the pleats 45, so that a stress for contracting the intermediate material 43 and the cylindrical ceramic body 41 is exerted. I'm keeping you from joining. Further, when the intermediate material 43 and the cylindrical ceramic body 41 contract, the metal tube 12 itself contracts by the action of the pleats 45 so as to extend the intermediate material 43 and the cylindrical ceramic body 41. The application of stress is suppressed. As described above, in the present heat conductive member 40, even when the expansion / contraction magnitude of the metal tube 42 is different from the expansion / contraction magnitude of the cylindrical ceramic body 41 or the intermediate member 43, the metal tube 42 is operated by the function of the fold 45. Since it expands and contracts freely along the axial direction, a large stress is not easily applied from the metal tube 42 to the cylindrical ceramic body 41. As a result, the heat conductive member 40 is less likely to crack or crack in the cylindrical ceramic body 41.

本熱伝導部材40が備える金属管42のようにひだ部45が内側に窪んでいる形態の場合においては、ひだ部45は、1個であっても、複数個であってもよい。ひだ部45の数が多くなると、上述したようなひだ部45による応力の緩和作用が増すので、金属管42から中間材43や筒状セラミックス体41に大きな応力が加わりにくくなる。   In the case where the pleat portion 45 is recessed inward as in the metal tube 42 provided in the heat conducting member 40, the pleat portion 45 may be one or plural. When the number of the pleat portions 45 increases, the stress relieving action by the pleat portions 45 as described above increases, so that it is difficult for large stress to be applied from the metal tube 42 to the intermediate member 43 and the cylindrical ceramic body 41.

また、ひだ部45の深さは、0.1mm〜20mmであることが好ましく、1mm〜10mmであることがより好ましく、1mm〜5mmであることが特に好ましい。また、ひだ部45の幅は、0.1mm〜20mmであることが好ましく、1mm〜10mmであることがより好ましく、1mm〜5mmであることが特に好ましい。ひだ部45の高さやひだ部45の幅が0.1mmよりも小さくなると、ひだ部45による応力の緩和作用が十分に得られなくなる場合があり、20mmよりも大きくなると熱伝導効率が低下するため好ましくない。なお、ひだ部45の深さとは、金属管42の外周面の平滑な面からひだ部45の底部までの深さを意味する。また、ひだ部45の幅とは、金属管42の外周面の平滑な面から、ひだ部45の深さにして2分の1の深さの位置におけるひだ部45の幅を意味する。   Moreover, the depth of the pleat 45 is preferably 0.1 mm to 20 mm, more preferably 1 mm to 10 mm, and particularly preferably 1 mm to 5 mm. Further, the width of the pleat portion 45 is preferably 0.1 mm to 20 mm, more preferably 1 mm to 10 mm, and particularly preferably 1 mm to 5 mm. If the height of the pleat portion 45 and the width of the pleat portion 45 are smaller than 0.1 mm, the stress relaxation action by the pleat portion 45 may not be sufficiently obtained, and if it exceeds 20 mm, the heat conduction efficiency is lowered. It is not preferable. The depth of the pleat portion 45 means the depth from the smooth surface of the outer peripheral surface of the metal tube 42 to the bottom portion of the pleat portion 45. The width of the pleat portion 45 means the width of the pleat portion 45 at a position that is half the depth of the pleat portion 45 from the smooth outer peripheral surface of the metal tube 42.

本熱伝導部材40では、中間材43については、金属を溶融させて溶湯を作製し、この溶湯を金属管12と筒状セラミックス体11との隙間に充填し、固化させることにより形成することができる。図5は、熱伝導部材40を製造するための方法、具体的には、溶湯80を金属管12と筒状セラミックス体11との隙間に充填する方法の一例を示す模式図である。また、図6は、図5中のB−B’断面の図である。図示されたように、金属管42と筒状セラミックス体41との間隙に溶湯80を流入する際には、金属管42の側面に流入口85を設けておき、この金属管42の内部に筒状セラミックス体11を挿入した状態で、流入口85から金属管12と筒状セラミックス体11との間隙に溶湯80を注入するとよい。本熱伝導部材40では、金属管42のひだ部45の底部が筒状セラミックス体の外周面37hに接触しているので、ひだ部45によって溶湯80の流れが遮られてしまう。このような場合には、ひだ部45に挟まれた領域のそれぞれに少なくとも1つの流入口85を設けておき、各流入口85から金属管12と筒状セラミックス体11との間隙に溶湯80を注入するとよい。なお、金属管42には、流入口85の他に、通気口を設けておくと、溶湯80を注入した際に金属管12と筒状セラミックス体11との間隙に存在する空気を排出できるので、溶湯80を注入しやすくなる。   In this heat conducting member 40, the intermediate material 43 can be formed by melting a metal to produce a molten metal, filling the molten metal in the gap between the metal tube 12 and the cylindrical ceramic body 11, and solidifying the molten metal. it can. FIG. 5 is a schematic view showing an example of a method for manufacturing the heat conducting member 40, specifically, a method of filling the gap between the metal tube 12 and the cylindrical ceramic body 11 with the molten metal 80. FIG. 6 is a cross-sectional view taken along the line B-B ′ in FIG. 5. As shown in the drawing, when the molten metal 80 flows into the gap between the metal tube 42 and the cylindrical ceramic body 41, an inflow port 85 is provided on the side surface of the metal tube 42, and the tube is placed inside the metal tube 42. The molten metal 80 may be injected into the gap between the metal tube 12 and the cylindrical ceramic body 11 from the inlet 85 with the cylindrical ceramic body 11 inserted. In this heat conducting member 40, the bottom of the pleat portion 45 of the metal tube 42 is in contact with the outer peripheral surface 37h of the cylindrical ceramic body, so that the flow of the molten metal 80 is blocked by the pleat portion 45. In such a case, at least one inflow port 85 is provided in each of the regions sandwiched between the folds 45, and the molten metal 80 is inserted into the gap between the metal tube 12 and the cylindrical ceramic body 11 from each inflow port 85. Inject. If a vent is provided in addition to the inlet 85 in the metal pipe 42, air existing in the gap between the metal pipe 12 and the cylindrical ceramic body 11 can be discharged when the molten metal 80 is injected. It becomes easy to pour the molten metal 80.

次に、本発明の熱伝導部材が備える筒状セラミックス体や金属管について図2(熱伝導部材10)を参照しつつ説明する(なお、図4に示した熱伝導部材40のような形態についても、以下に説明する内容を適用することができる)。   Next, the cylindrical ceramic body and the metal tube provided in the heat conducting member of the present invention will be described with reference to FIG. 2 (heat conducting member 10) (Note that the form like the heat conducting member 40 shown in FIG. 4). Also, the contents described below can be applied).

筒状セラミックス体11は、熱伝導率が100W/m・K以上であることが好ましい。より好ましくは、120〜300W/m・K、さらに好ましくは、150〜300W/m・Kである。この範囲とすることにより、熱伝導性が良好となり、効率的に筒状セラミックス体11内の熱を金属管12の外側に放出できる。   The cylindrical ceramic body 11 preferably has a thermal conductivity of 100 W / m · K or more. More preferably, it is 120-300 W / m * K, More preferably, it is 150-300 W / m * K. By setting it as this range, heat conductivity becomes favorable and the heat | fever in the cylindrical ceramic body 11 can be discharge | released to the outer side of the metal tube 12 efficiently.

筒状セラミックス体11は、耐熱性に優れるセラミックスを用いることが好ましく、特に伝熱性を考慮すると、熱伝導性が高いSiC(炭化珪素)が主成分であることが好ましい。なお、主成分とは、筒状セラミックス体11の50質量%以上がSiC(炭化珪素)であることを意味する。   The cylindrical ceramic body 11 is preferably made of ceramics having excellent heat resistance, and considering heat conductivity in particular, it is preferable that SiC (silicon carbide) having high thermal conductivity is the main component. The main component means that 50% by mass or more of the cylindrical ceramic body 11 is SiC (silicon carbide).

ただし、必ずしも筒状セラミックス体11の全体がSiC(炭化珪素)で構成されている必要はなく、SiC(炭化珪素)が本体中に含まれていれば良い。即ち、筒状セラミックス体11は、SiC(炭化珪素)を含むセラミックスからなるものであることが好ましい。   However, the entire cylindrical ceramic body 11 does not necessarily need to be composed of SiC (silicon carbide), and SiC (silicon carbide) may be included in the main body. That is, the cylindrical ceramic body 11 is preferably made of a ceramic containing SiC (silicon carbide).

また、SiC(炭化珪素)であっても多孔体の場合は高い熱伝導率が得られないため、筒状セラミックス体11の作製過程でシリコンを含浸させて緻密体構造とすることが好ましい。緻密体構造にすることで高い熱伝導率が得られる。例えば、SiC(炭化珪素)の多孔体の場合、20W/m・K程度であるが、緻密体とすることにより、150W/m・K程度とすることができる。   Moreover, even if it is SiC (silicon carbide), in the case of a porous body, high thermal conductivity cannot be obtained. Therefore, it is preferable to impregnate silicon in the process of producing the cylindrical ceramic body 11 to obtain a dense structure. High heat conductivity can be obtained by using a dense structure. For example, in the case of a porous body of SiC (silicon carbide), it is about 20 W / m · K, but by making it a dense body, it can be about 150 W / m · K.

筒状セラミックス体11としては、Si含浸SiC、(Si+Al)含浸SiC、金属複合SiC、再結晶SiC、Si、及びSiC等を採用することができるが、高い熱交換率を得るための緻密体構造とするためにSi含浸SiC、(Si+Al)含浸SiCを採用することができる。Si含浸SiCは、SiC粒子表面を金属珪素融体の凝固物が取り囲むとともに、金属珪素を介してSiCが一体に接合した構造を有するため、炭化珪素が酸素を含む雰囲気から遮断され、酸化から防止される。さらに、SiCは、熱伝導率が高く、放熱しやすいという特徴を有するが、Siを含浸するSiCは、高い熱伝導率や耐熱性を示しつつ、緻密に形成され、伝熱部材として十分な強度を示す。つまり、Si−SiC系[Si含浸SiC、(Si+Al)含浸SiC]材料からなる筒状セラミックス体11は、耐熱性、耐熱衝撃性、耐酸化性をはじめ、酸やアルカリなどに対する耐蝕性に優れた特性を示すとともに、高熱伝導率を示す。 As the cylindrical ceramic body 11, Si-impregnated SiC, (Si + Al) -impregnated SiC, metal composite SiC, recrystallized SiC, Si 3 N 4 , SiC, or the like can be adopted, but a high heat exchange rate can be obtained. Si-impregnated SiC and (Si + Al) -impregnated SiC can be employed to obtain a dense structure. Si-impregnated SiC has a structure in which the SiC particle surface is surrounded by solidified metal-silicon melt and SiC is integrally bonded via metal silicon, so that silicon carbide is shielded from an oxygen-containing atmosphere and prevented from oxidation. Is done. Furthermore, SiC has the characteristics of high thermal conductivity and easy heat dissipation, but SiC impregnated with Si is densely formed while exhibiting high thermal conductivity and heat resistance, and has sufficient strength as a heat transfer member. Indicates. That is, the cylindrical ceramic body 11 made of a Si—SiC-based [Si-impregnated SiC, (Si + Al) -impregnated SiC] material has excellent heat resistance, thermal shock resistance, oxidation resistance, and corrosion resistance against acids and alkalis. In addition to showing properties, it exhibits high thermal conductivity.

なお、筒状セラミックス体11とは、セラミックスで筒状に形成され、軸方向の一方の端面2から他方の端面2まで貫通する流体の流路を有するものである。筒状とは、円筒状(円柱状)に限らず、軸(長手)方向に垂直な断面が四角形、またはその他の多角形の、角柱状であってもよい。   The cylindrical ceramic body 11 is formed of ceramics in a cylindrical shape and has a fluid flow path penetrating from one end surface 2 in the axial direction to the other end surface 2. The cylindrical shape is not limited to a cylindrical shape (columnar shape), but may be a prismatic shape having a quadrangular cross section perpendicular to the axial (longitudinal) direction or other polygonal shape.

図7は、多数のセルが形成されたハニカム構造体1を筒状セラミックス体11として用いた実施形態を示す。筒状セラミックス体11は、隔壁4を有し、隔壁4によって、流体の流路となる多数のセルが区画形成されたハニカム構造体1であることが好ましい。隔壁4を有することにより、筒状セラミックス体11の内部を流通する流体からの熱を効率よく集熱し、外部に伝達することができる。   FIG. 7 shows an embodiment in which the honeycomb structure 1 in which a large number of cells are formed is used as the cylindrical ceramic body 11. The cylindrical ceramic body 11 is preferably a honeycomb structure 1 that has partition walls 4 and a plurality of cells that serve as fluid flow paths are partitioned by the partition walls 4. By having the partition wall 4, heat from the fluid flowing through the inside of the cylindrical ceramic body 11 can be efficiently collected and transmitted to the outside.

筒状セラミックス体11を、隔壁4によって流路となる複数のセル3が区画形成されたハニカム構造体1として形成する場合、セル形状は、円形、楕円形、三角形、四角形、その他の多角形等の中から所望の形状を適宜選択すればよい。   When the cylindrical ceramic body 11 is formed as the honeycomb structure 1 in which a plurality of cells 3 serving as flow paths are partitioned by the partition walls 4, the cell shape may be a circle, an ellipse, a triangle, a quadrangle, other polygons, etc. A desired shape may be selected as appropriate from the above.

ハニカム構造体1のセル密度(即ち、単位断面積当たりのセルの数)については特に制限はなく、目的に応じて適宜設計すればよいが、25〜2000セル/平方インチ(4〜320セル/cm)の範囲であることが好ましい。セル密度が25セル/平方インチより小さくなると、隔壁4の強度、ひいてはハニカム構造体1自体の強度及び有効GSA(幾何学的表面積)が不足するおそれがある。一方、セル密度が2000セル/平方インチを超えると、熱媒体が流れる際の圧力損失が大きくなるおそれがある。 The cell density of the honeycomb structure 1 (that is, the number of cells per unit cross-sectional area) is not particularly limited, and may be appropriately designed according to the purpose, but is 25 to 2000 cells / in 2 (4 to 320 cells / cm 2 ) is preferable. When the cell density is smaller than 25 cells / square inch, the strength of the partition walls 4, and consequently the strength of the honeycomb structure 1 itself and the effective GSA (geometric surface area) may be insufficient. On the other hand, if the cell density exceeds 2000 cells / square inch, the pressure loss when the heat medium flows may increase.

また、ハニカム構造体1の1つ当たりのセル数は、1〜10,000が望ましく、200〜2,000が特に望ましい。セル数が多すぎるとハニカム自体が大きくなるため第一の流体側から第二の流体側までの熱伝導距離が長くなり、熱伝導ロスが大きくなり熱流束が小さくなる。またセル数が少ない時には第一の流体側の熱伝達面積が小さくなり第一の流体側の熱抵抗を下げることが出来ず熱流束が小さくなる。   The number of cells per honeycomb structure 1 is preferably 1 to 10,000, and particularly preferably 200 to 2,000. If the number of cells is too large, the honeycomb itself becomes large, so the heat conduction distance from the first fluid side to the second fluid side becomes long, the heat conduction loss becomes large, and the heat flux becomes small. In addition, when the number of cells is small, the heat transfer area on the first fluid side becomes small, the heat resistance on the first fluid side cannot be lowered, and the heat flux becomes small.

ハニカム構造体1のセル3の隔壁4の厚さ(壁厚)についても、目的に応じて適宜設計すればよく、特に制限はない。壁厚を50μm〜2mmとすることが好ましく、60〜500μmとすることが更に好ましい。壁厚を50μm未満とすると、機械的強度が低下して衝撃や熱応力によって破損することがある。一方、2mmを超えると、ハニカム構造体側に占めるセル容積の割合が低くなったり、流体の圧力損失が大きくなったり、熱媒体が透過する熱交換率が低下するといった不具合が発生するおそれがある。   The thickness (wall thickness) of the partition walls 4 of the cells 3 of the honeycomb structure 1 may be appropriately designed according to the purpose, and is not particularly limited. The wall thickness is preferably 50 μm to 2 mm, and more preferably 60 to 500 μm. If the wall thickness is less than 50 μm, the mechanical strength may be reduced, and damage may be caused by impact or thermal stress. On the other hand, if it exceeds 2 mm, there is a possibility that problems such as a decrease in the cell volume ratio on the honeycomb structure side, an increase in fluid pressure loss, and a decrease in the heat exchange rate through which the heat medium permeates may occur.

ハニカム構造体1のセル3の隔壁4の密度は、0.5〜5g/cmであることが好ましい。0.5g/cm未満の場合、隔壁4は強度不足となり、第一流体が流路内を通り抜ける際に圧力により隔壁4が破損する可能性がある。また、5g/cmを超えると、ハニカム構造体1自体が重くなり、軽量化の特徴が損なわれる可能性がある。上記の範囲の密度とすることにより、ハニカム構造体1を強固なものとすることができる。また、熱伝導率を向上させる効果も得られる。 The density of the partition walls 4 of the cells 3 of the honeycomb structure 1 is preferably 0.5 to 5 g / cm 3 . When it is less than 0.5 g / cm 3 , the partition wall 4 has insufficient strength, and the partition wall 4 may be damaged by pressure when the first fluid passes through the flow path. On the other hand, if it exceeds 5 g / cm 3 , the honeycomb structure 1 itself becomes heavy, and the characteristics of weight reduction may be impaired. By setting the density within the above range, the honeycomb structure 1 can be strengthened. Moreover, the effect which improves heat conductivity is also acquired.

金属管12としては、耐熱性、耐蝕性のあるものが好ましく、例えば、SUS管、銅管、真鍮管等を用いることができる。   As the metal tube 12, one having heat resistance and corrosion resistance is preferable. For example, a SUS tube, a copper tube, a brass tube, or the like can be used.

また、金属管12の肉厚については、0.1mm〜2mmが好ましく、0.15〜1.0mmがより好ましい。0.1mmよりも小さいと、溶接・加工等が難しくなるためコスト高になる場合があり、2mmよりも大きいとひだ部15による応力の緩和作用が十分に得られなくなる場合がある。   Moreover, about the thickness of the metal pipe 12, 0.1 mm-2 mm are preferable, and 0.15-1.0 mm is more preferable. If it is smaller than 0.1 mm, welding / working and the like become difficult, so that the cost may be increased.

次に、本発明の熱伝導部材10の製造方法を説明する(ここでは筒状)。まず、セラミックス粉末を含む坏土を所望の形状に押し出し、ハニカム成形体を作製する。ハニカム構造体1の材料としては、前述のセラミックスを用いることができるが、例えば、Si含浸SiC複合材料を主成分とするハニカム構造体1を製造する場合、所定量のC粉末、SiC粉末、バインダー、水又は有機溶媒を混練し坏土とし、成形して所望形状のハニカム成形体を得る。   Next, the manufacturing method of the heat conductive member 10 of this invention is demonstrated (here cylindrical shape). First, a clay containing ceramic powder is extruded into a desired shape to produce a honeycomb formed body. As the material of the honeycomb structure 1, the above-described ceramics can be used. For example, when manufacturing the honeycomb structure 1 mainly composed of a Si-impregnated SiC composite material, a predetermined amount of C powder, SiC powder, binder Then, water or an organic solvent is kneaded to form a clay and molded to obtain a honeycomb molded body having a desired shape.

そしてハニカム成形体を乾燥し、Si含浸焼成することによって、隔壁4によってガスの流路となる複数のセル3が区画形成されたハニカム構造体1を得ることができる。   The honeycomb formed body is dried and fired by impregnation with Si, whereby the honeycomb structure 1 in which a plurality of cells 3 serving as gas flow paths are partitioned by the partition walls 4 can be obtained.

続いて、金属を溶融させて溶湯を作製し、この溶湯を金属管12とハニカム構造体1との隙間に充填し、次いで溶湯を固化させることにより、中間材13を金属管12とハニカム構造体1との間に設けることができる。このように溶湯を用いると、中間材13を介した金属管12とハニカム構造体1との接合を強めることができる。なお、本明細書にいう溶融状態とは、完全溶融状態のみならず、半溶融状態(固体から、固液共存になった状態)、半凝固状態(一度液体にしてから、液固共存になった状態)のセミソリッドも含む。   Subsequently, the metal is melted to produce a molten metal, and this molten metal is filled in the gap between the metal tube 12 and the honeycomb structure 1, and then the molten metal is solidified, so that the intermediate material 13 is made into the metal tube 12 and the honeycomb structure. 1 can be provided. When the molten metal is used as described above, the bonding between the metal tube 12 and the honeycomb structure 1 through the intermediate material 13 can be strengthened. In addition, the molten state referred to in this specification is not only a completely molten state, but also a semi-molten state (a state in which solid is solid-liquid coexistence), a semi-solid state (once a liquid is used once, then it becomes liquid-solid coexistence) Including semi-solids).

金属管12とハニカム構造体1との間隙に溶湯を充填する方法としては、重力鋳造、低圧鋳造、ダイキャスト(高圧鋳造)等を用いることができる。ダイキャストは、サイクルタイム(コスト)に優れ、狭い隙間に溶湯を充填しやすい。また、低圧鋳造は、サイクルタイムは長くなるが、品質、材料歩留り等に優れる。   As a method of filling the gap between the metal tube 12 and the honeycomb structure 1 with a molten metal, gravity casting, low pressure casting, die casting (high pressure casting) or the like can be used. Die-casting is excellent in cycle time (cost), and it is easy to fill molten metal in a narrow gap. In addition, the low pressure casting has a long cycle time but is excellent in quality, material yield and the like.

あるいは、中間材13としてろう材を用いてもよい。この方法では、金属管12の内面とハニカム構造体1の外周面7hとをろう付けする。ハニカム構造体1に金属管12を被せて、ハニカム構造体1と金属管12との間隙にろう材を充填する。ろう材としては、銀ろう材、銅ろう材、黄銅ろう材、アルミろう材、Niろう材等を用いることができる。ろう材は、ペースト状、シート状のものを利用することができる。常温で入らない場合は、金属管12を温めるとよい。そして、真空中でろう材の固相線温度℃以上に昇温してろう付けする。その際に、金属間12の外側から型で圧縮、矯正した状態でろう付けしても良い。間隙に充填されたろう材は、昇温、冷却により中間材13となり、金属管12とハニカム構造体1とが接合される。   Alternatively, a brazing material may be used as the intermediate material 13. In this method, the inner surface of the metal tube 12 and the outer peripheral surface 7 h of the honeycomb structure 1 are brazed. The honeycomb structure 1 is covered with a metal tube 12 and a gap between the honeycomb structure 1 and the metal tube 12 is filled with a brazing material. As the brazing material, a silver brazing material, a copper brazing material, a brass brazing material, an aluminum brazing material, a Ni brazing material, or the like can be used. The brazing material can be a paste or a sheet. If it does not enter at room temperature, the metal tube 12 may be warmed. Then, brazing is performed by raising the temperature to a solidus temperature of the brazing material in vacuum or higher. In that case, you may braze in the state compressed and corrected with the type | mold from the outer side of 12 between metals. The brazing material filled in the gap becomes the intermediate material 13 by heating and cooling, and the metal tube 12 and the honeycomb structure 1 are joined.

また、金属管12の外面に突出したひだ部15を有する場合は、金属管12の内面は、ひだ部15が窪んでいる。この窪んだ部分に充填材を予め入れておき、その後、金属管12とハニカム構造体1とを中間材13を介して接合してもよい。この方法により、金属管12のひだ部15の内面15sと中間材13との隙間に充填材を備えた熱伝導部材10を製造することができる。   In addition, in the case where the pleated portion 15 protrudes from the outer surface of the metal tube 12, the pleated portion 15 is recessed on the inner surface of the metal tube 12. A filler may be put in the recessed portion in advance, and then the metal tube 12 and the honeycomb structure 1 may be joined via the intermediate material 13. With this method, it is possible to manufacture the heat conducting member 10 including a filler in the gap between the inner surface 15s of the pleat portion 15 of the metal tube 12 and the intermediate member 13.

図8に本発明の熱伝導部材10を含む熱交換器30の斜視図を示す。図8に示すように、熱交換器30は、熱伝導部材10(ハニカム構造体1+中間材13+金属管12)と、熱伝導部材10を内部に含むケーシング21とによって形成されている。筒状セラミックス体11のハニカム構造体1のセル3が第一の流体が流通する第一流体流通部5となる。熱交換器30は、ハニカム構造体1のセル3内を、第二の流体よりも高温の第一の流体が流通するように構成されている。また、ケーシング21に第二の流体の入口22及び出口23が形成されており、第二の流体は、熱伝導部材10の金属管12の外周面12h上を流通する。   FIG. 8 shows a perspective view of a heat exchanger 30 including the heat conducting member 10 of the present invention. As shown in FIG. 8, the heat exchanger 30 is formed by the heat conducting member 10 (honeycomb structure 1 + intermediate material 13 + metal tube 12) and the casing 21 including the heat conducting member 10 inside. The cells 3 of the honeycomb structure 1 of the cylindrical ceramic body 11 serve as the first fluid circulation part 5 through which the first fluid flows. The heat exchanger 30 is configured such that a first fluid having a temperature higher than that of the second fluid flows in the cells 3 of the honeycomb structure 1. In addition, an inlet 22 and an outlet 23 for the second fluid are formed in the casing 21, and the second fluid circulates on the outer peripheral surface 12 h of the metal tube 12 of the heat conducting member 10.

つまり、ケーシング21の内側面24と金属管12の外周面12hとによって第二流体流通部6が形成されている。第二流体流通部6は、ケーシング21と金属管12の外周面12hとによって形成された第二の流体の流通部であり、第一流体流通部5とハニカム構造体1の隔壁4、中間材13、金属管12によって隔たれて熱伝導可能とされており、第一流体流通部5を流通する第一の流体の熱を隔壁4、中間材13、金属管12を介して受け取り、流通する第二の流体である被加熱体へ熱を伝達する。第一の流体と第二の流体とは、完全に分離されており、これらの流体は混じり合わないように構成されている。   That is, the second fluid circulation portion 6 is formed by the inner surface 24 of the casing 21 and the outer peripheral surface 12 h of the metal tube 12. The second fluid circulation part 6 is a second fluid circulation part formed by the casing 21 and the outer peripheral surface 12h of the metal tube 12, and includes the first fluid circulation part 5, the partition wall 4 of the honeycomb structure 1, and the intermediate material. 13, which is separated by the metal pipe 12 and can conduct heat, receives heat of the first fluid flowing through the first fluid circulation portion 5 through the partition wall 4, the intermediate material 13, and the metal pipe 12, and circulates the first fluid. Heat is transferred to the heated object which is the second fluid. The first fluid and the second fluid are completely separated, and these fluids are configured not to mix.

第一流体流通部5は、ハニカム構造として形成されており、ハニカム構造の場合、流体
がセル3の中を通り抜ける時には、流体は隔壁4により別のセル3に流れ込むことが出来ず、ハニカム構造体1の入口から出口へと直線的に流体が進む。また、本発明の熱交換器30内のハニカム構造体1は、目封止されておらず、流体の伝熱面積が増し熱交換器30のサイズを小さくすることができる。これにより、熱交換器30の単位体積あたりの伝熱量を大きくすることができる。さらに、ハニカム構造体1に目封止部の形成やスリットの形成等の加工を施すことが不要なため、熱交換器30は、製造コストを低減することができる。
The first fluid circulation portion 5 is formed as a honeycomb structure, and in the case of the honeycomb structure, when the fluid passes through the cell 3, the fluid cannot flow into another cell 3 by the partition wall 4, and the honeycomb structure The fluid travels linearly from one inlet to the outlet. Moreover, the honeycomb structure 1 in the heat exchanger 30 of the present invention is not plugged, so that the heat transfer area of the fluid is increased and the size of the heat exchanger 30 can be reduced. Thereby, the amount of heat transfer per unit volume of the heat exchanger 30 can be increased. Furthermore, since it is not necessary to process the honeycomb structure 1 such as forming plugged portions or forming slits, the heat exchanger 30 can reduce the manufacturing cost.

熱交換器30は、第二の流体よりも高温である第一の流体を流通させ、第一の流体から第二の流体へ熱伝導するようにすることが好ましい。第一の流体として気体を流通させ、第二の流体として液体を流通させると、第一の流体と第二の流体の熱交換を効率よく行うことができる。つまり、本発明の熱交換器30は、気体/液体熱交換器として適用することができる。   It is preferable that the heat exchanger 30 circulates the first fluid having a temperature higher than that of the second fluid and conducts heat from the first fluid to the second fluid. When gas is circulated as the first fluid and liquid is circulated as the second fluid, heat exchange between the first fluid and the second fluid can be performed efficiently. That is, the heat exchanger 30 of the present invention can be applied as a gas / liquid heat exchanger.

以上のような構成の本発明の熱交換器30に流通させる第一の流体である加熱体としては、熱を有する媒体であれば、気体、液体等、特に限定されない。例えば、気体であれば自動車の排ガス等が挙げられる。また、加熱体から熱を奪う(熱交換する)第二の流体である被加熱体は、加熱体よりも低い温度であれば、媒体としては、気体、液体等、特に限定されない。   The heating element that is the first fluid to be circulated through the heat exchanger 30 of the present invention having the above configuration is not particularly limited as long as it is a medium having heat. For example, if it is gas, the exhaust gas of a motor vehicle etc. are mentioned. In addition, the medium to be heated, which is the second fluid that takes heat from the heating body (exchanges heat), is not particularly limited as a medium, as long as the temperature is lower than that of the heating body.

また、熱交換器30(図8参照)に流通させる第一の流体(高温側)が排ガスの場合、第一の流体(高温側)が通過するハニカム構造体1のセル3内部の壁面には、触媒が担持されていることが好ましい。これは、排ガス浄化の役割に加えて、排ガス浄化の際に発生する反応熱(発熱反応)も熱交換することが可能になるためである。貴金属(白金、ロジウム、パラジウム、ルテニウム、インジウム、銀、及び金)、アルミニウム、ニッケル、ジルコニウム、チタン、セリウム、コバルト、マンガン、亜鉛、銅、亜鉛、スズ、鉄、ニオブ、マグネシウム、ランタン、サマリウム、ビスマス及びバリウムからなる群から選択された元素を少なくとも一種を含有すると良い。これらは金属、酸化物、及びそれ以外の化合物であっても良い。   Further, when the first fluid (high temperature side) to be circulated through the heat exchanger 30 (see FIG. 8) is exhaust gas, the inner wall surface of the cell 3 of the honeycomb structure 1 through which the first fluid (high temperature side) passes is provided. The catalyst is preferably supported. This is because in addition to the role of exhaust gas purification, reaction heat (exothermic reaction) generated during exhaust gas purification can also be exchanged. Noble metals (platinum, rhodium, palladium, ruthenium, indium, silver, and gold), aluminum, nickel, zirconium, titanium, cerium, cobalt, manganese, zinc, copper, zinc, tin, iron, niobium, magnesium, lanthanum, samarium, It is preferable to contain at least one element selected from the group consisting of bismuth and barium. These may be metals, oxides, and other compounds.

第一の流体(高温側)が通過するハニカム構造体1の第一流体流通部5のセル3の隔壁4に担持される触媒(触媒金属+担持体)の担持量としては、10〜400g/Lであることが好ましく、貴金属であれば0.1〜5g/Lであることが更に好ましい。触媒(触媒金属+担持体)の担持量を10g/L未満とすると、触媒作用が発現し難いおそれがある。一方、400g/Lを超えると、圧損が大きくなる他、製造コストが上昇するおそれがある。   The supported amount of the catalyst (catalyst metal + support) supported on the partition walls 4 of the cells 3 of the first fluid circulation part 5 of the honeycomb structure 1 through which the first fluid (high temperature side) passes is 10 to 400 g / It is preferable that it is L, and if it is a noble metal, it is still more preferable that it is 0.1-5 g / L. If the supported amount of the catalyst (catalyst metal + support) is less than 10 g / L, the catalytic action may not be easily exhibited. On the other hand, if it exceeds 400 g / L, the pressure loss increases and the manufacturing cost may increase.

本発明の熱伝導部材は、加熱体(高温側)と被加熱体(低温側)との間で熱交換する用途に利用することが可能である。   The heat conducting member of the present invention can be used for heat exchange between a heated body (high temperature side) and a heated body (low temperature side).

1:ハニカム構造体、2:(軸方向の)端面、3:セル、4:隔壁、5:第一流体流通部、6:第二流体流通部、7:外周壁、7h:(筒状セラミックス体の)外周面、10:熱伝導部材、11:筒状セラミックス体、12:金属管、12h:(金属管の)外周面、13:中間材、15:ひだ部、15s:(ひだ部の)内面、19:隙間、20:中心軸、21:ケーシング、22:(第二の流体の)入口、23:(第二の流体の)出口、24:(ケーシングの)内側面、30:熱交換器、32:(軸方向の)端面、37h:(筒状セラミックス体の)外周面、40:熱伝導部材、41:筒状セラミックス体、42:金属管、43:中間材、45:ひだ部、45s:(ひだ部の)側面、49:隙間、50:中心軸、71:蓋、72:台、80:溶湯、85:流入口。 1: honeycomb structure, 2: end face (in axial direction), 3: cell, 4: partition, 5: first fluid circulation part, 6: second fluid circulation part, 7: outer peripheral wall, 7h: (tubular ceramics) Of the body, 10: heat conducting member, 11: cylindrical ceramic body, 12: metal tube, 12h: outer surface of (metal tube), 13: intermediate material, 15: pleat portion, 15s: (please portion) ) Inner surface, 19: gap, 20: central axis, 21: casing, 22: inlet of (second fluid), 23: outlet of (second fluid), 24: inner surface of (casing), 30: heat Exchanger, 32: end surface (in the axial direction), 37h: outer peripheral surface (of the cylindrical ceramic body), 40: heat conducting member, 41: cylindrical ceramic body, 42: metal tube, 43: intermediate material, 45: pleats Part, 45s: side surface (of the pleat part), 49: gap, 50: central axis, 71: lid, 72: stand, 80: Yu, 85: inlet.

Claims (7)

一方の端面から他方の端面まで貫通し、加熱体である第一の流体が流通する流路を有する筒状セラミックス体と、
前記筒状セラミックス体の外周面に嵌合するとともに前記筒状セラミックス体の外周を囲む環状のひだ部を有する金属管と、
前記筒状セラミックス体と前記金属管とに挟まれつつ前記筒状セラミックス体および前記金属管に接合する中間材と、を備え、
前記筒状セラミックス体の内部に前記第一の流体を、前記金属管の外周面側に前記第一の流体よりも低温の第二の流体を流通させ、前記第一の流体と前記第二の流体との熱交換を行う熱伝導部材。
A cylindrical ceramic body that has a flow path that passes from one end face to the other end face and through which the first fluid that is a heating body flows;
A metal tube having an annular pleat that fits around the outer peripheral surface of the cylindrical ceramic body and surrounds the outer periphery of the cylindrical ceramic body;
An intermediate material joined to the cylindrical ceramic body and the metal tube while being sandwiched between the cylindrical ceramic body and the metal tube,
The first fluid is circulated in the cylindrical ceramic body, the second fluid having a temperature lower than that of the first fluid is circulated on the outer peripheral surface side of the metal tube, and the first fluid and the second fluid are circulated. A heat conduction member that exchanges heat with a fluid.
前記金属管は、前記ひだ部が外側に突出している請求項1に記載の熱伝導部材。   The heat conduction member according to claim 1, wherein the pleat portion protrudes outward from the metal tube. 前記金属管の前記ひだ部の内面と前記中間材との隙間に充填材を備える請求項2に記載の熱伝導部材。   The heat conducting member according to claim 2, wherein a filler is provided in a gap between the inner surface of the pleated portion of the metal tube and the intermediate material. 前記金属管は、前記ひだ部が内側に窪んでいる請求項1に記載の熱伝導部材。   The heat conducting member according to claim 1, wherein the pleat portion is recessed inward. 前記筒状セラミックス体は、熱伝導率が100W/m・K以上である請求項1〜4のいずれか一項に記載の熱伝導部材。   The thermal conductivity member according to any one of claims 1 to 4, wherein the cylindrical ceramic body has a thermal conductivity of 100 W / m · K or more. 前記筒状セラミックス体は、隔壁を有し、前記隔壁によって、流体の流路となる多数のセルが区画形成されたハニカム構造体である請求項1〜5のいずれか一項に記載の熱伝導部材。   The heat conduction according to any one of claims 1 to 5, wherein the cylindrical ceramic body is a honeycomb structure having partition walls, and by the partition walls, a large number of cells serving as fluid flow paths are partitioned and formed. Element. 前記ハニカム構造体は、炭化珪素を含む請求項6に記載の熱伝導部材。   The heat conduction member according to claim 6, wherein the honeycomb structure includes silicon carbide.
JP2011073500A 2011-03-29 2011-03-29 Heat-conducting material Pending JP2012207845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011073500A JP2012207845A (en) 2011-03-29 2011-03-29 Heat-conducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011073500A JP2012207845A (en) 2011-03-29 2011-03-29 Heat-conducting material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015090544A Division JP6012809B2 (en) 2015-04-27 2015-04-27 Thermal conduction member

Publications (1)

Publication Number Publication Date
JP2012207845A true JP2012207845A (en) 2012-10-25

Family

ID=47187740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011073500A Pending JP2012207845A (en) 2011-03-29 2011-03-29 Heat-conducting material

Country Status (1)

Country Link
JP (1) JP2012207845A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090235A (en) * 2013-11-05 2015-05-11 日本碍子株式会社 Heat exchange member
JP2015107494A (en) * 2013-12-03 2015-06-11 三井金属鉱業株式会社 Metal melting member, metal melting member manufacturing method, and molten metal holding furnace
JP2016088771A (en) * 2014-10-30 2016-05-23 イビデン株式会社 Joined body
JP2016088772A (en) * 2014-10-30 2016-05-23 イビデン株式会社 Method for producing joined body
JP2019500564A (en) * 2015-10-14 2019-01-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Heat permeable tube containing composite fiber ceramic

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215914A (en) * 1983-05-24 1984-12-05 Honda Motor Co Ltd Two-stage catalytic converter
JPS603989A (en) * 1983-06-17 1985-01-10 Kuroki Kogyosho:Kk Production of double pipe
JPS6230533A (en) * 1985-07-25 1987-02-09 インテルアトム、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Apparatus and method for holding catalyst carrier of exhaust gas
JPH01111124U (en) * 1988-01-20 1989-07-26
JPH07100390A (en) * 1993-10-01 1995-04-18 Toyota Motor Corp Metallic carrier for exhaust gas purification catalyst
JPH08210128A (en) * 1995-11-22 1996-08-20 Nippon Steel Corp Metal base for catalyst of automobile exhaust gas purification excellent in resistance against thermal fatigue
JPH09164337A (en) * 1995-12-15 1997-06-24 Nippon Steel Corp Metallic carrier for exhaust gas purifying catalyst
JPH09264127A (en) * 1996-01-26 1997-10-07 Toyota Motor Corp Exhaust emission control catalyst device for internal combustion engine
JPH09327627A (en) * 1996-06-07 1997-12-22 Matsushita Electric Ind Co Ltd Catalyst and manufacture thereof
JP2001065336A (en) * 1999-08-24 2001-03-13 Honda Motor Co Ltd Metal carrier catalytic converter
JP2003513190A (en) * 1999-10-28 2003-04-08 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Honeycomb body having a multilayered casing
JP2004509278A (en) * 2000-09-20 2004-03-25 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Device for fixing catalyst carrier to vessel
JP2006200490A (en) * 2005-01-24 2006-08-03 Nissan Diesel Motor Co Ltd Exhaust gas cooling device for exhaust gas recirculating system
US20080138257A1 (en) * 2006-12-07 2008-06-12 Hui Wang Catalytic converter with mid-bed sensor
JP2010271031A (en) * 2009-04-23 2010-12-02 Ngk Insulators Ltd Ceramics heat exchanger and method of manufacturing the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215914A (en) * 1983-05-24 1984-12-05 Honda Motor Co Ltd Two-stage catalytic converter
JPS603989A (en) * 1983-06-17 1985-01-10 Kuroki Kogyosho:Kk Production of double pipe
JPS6230533A (en) * 1985-07-25 1987-02-09 インテルアトム、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Apparatus and method for holding catalyst carrier of exhaust gas
JPH01111124U (en) * 1988-01-20 1989-07-26
JPH07100390A (en) * 1993-10-01 1995-04-18 Toyota Motor Corp Metallic carrier for exhaust gas purification catalyst
JPH08210128A (en) * 1995-11-22 1996-08-20 Nippon Steel Corp Metal base for catalyst of automobile exhaust gas purification excellent in resistance against thermal fatigue
JPH09164337A (en) * 1995-12-15 1997-06-24 Nippon Steel Corp Metallic carrier for exhaust gas purifying catalyst
JPH09264127A (en) * 1996-01-26 1997-10-07 Toyota Motor Corp Exhaust emission control catalyst device for internal combustion engine
JPH09327627A (en) * 1996-06-07 1997-12-22 Matsushita Electric Ind Co Ltd Catalyst and manufacture thereof
JP2001065336A (en) * 1999-08-24 2001-03-13 Honda Motor Co Ltd Metal carrier catalytic converter
JP2003513190A (en) * 1999-10-28 2003-04-08 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Honeycomb body having a multilayered casing
JP2004509278A (en) * 2000-09-20 2004-03-25 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Device for fixing catalyst carrier to vessel
JP2006200490A (en) * 2005-01-24 2006-08-03 Nissan Diesel Motor Co Ltd Exhaust gas cooling device for exhaust gas recirculating system
US20080138257A1 (en) * 2006-12-07 2008-06-12 Hui Wang Catalytic converter with mid-bed sensor
JP2010271031A (en) * 2009-04-23 2010-12-02 Ngk Insulators Ltd Ceramics heat exchanger and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090235A (en) * 2013-11-05 2015-05-11 日本碍子株式会社 Heat exchange member
JP2015107494A (en) * 2013-12-03 2015-06-11 三井金属鉱業株式会社 Metal melting member, metal melting member manufacturing method, and molten metal holding furnace
JP2016088771A (en) * 2014-10-30 2016-05-23 イビデン株式会社 Joined body
JP2016088772A (en) * 2014-10-30 2016-05-23 イビデン株式会社 Method for producing joined body
JP2019500564A (en) * 2015-10-14 2019-01-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Heat permeable tube containing composite fiber ceramic

Similar Documents

Publication Publication Date Title
JP5955775B2 (en) Thermal conduction member
JP6006204B2 (en) HEAT EXCHANGE MEMBER, ITS MANUFACTURING METHOD, AND HEAT EXCHANGER
JP6324150B2 (en) Heat exchange member and ceramic structure
JP2012207845A (en) Heat-conducting material
JP5797740B2 (en) Heat exchange member and heat exchanger
JP6691538B2 (en) Heat exchange parts
JP2010271031A (en) Ceramics heat exchanger and method of manufacturing the same
WO2019135312A1 (en) Heat exchange member, heat exchanger, and heat exchanger having purification means
JP2012037165A (en) Heat exchange member
JP6144937B2 (en) Heat exchange member
JPWO2013140845A1 (en) heater
JP2016102605A (en) Heat exchange component
JP2019120488A (en) Heat exchange member and heat exchanger
JP6043183B2 (en) Heat exchange member
JP5775477B2 (en) Manufacturing method of ceramic metal bonded body
JP6158687B2 (en) Heat exchange member
JP2012202657A (en) Heat conducting member
JP6012809B2 (en) Thermal conduction member
JP5643697B2 (en) Thermal conduction member
JP6023257B2 (en) Thermal conduction member
JP7217654B2 (en) Heat exchanger
JP5843665B2 (en) Ceramic metal bonded body and manufacturing method thereof
JP2018076226A (en) Method for manufacturing heat conducting member, manufacturing apparatus of heat conducting member and jig for manufacturing heat conducting member
JP5667491B2 (en) Thermal conduction member
JP6145001B2 (en) Manufacturing method of heat conduction member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150127