JPH09327627A - Catalyst and manufacture thereof - Google Patents

Catalyst and manufacture thereof

Info

Publication number
JPH09327627A
JPH09327627A JP8146232A JP14623296A JPH09327627A JP H09327627 A JPH09327627 A JP H09327627A JP 8146232 A JP8146232 A JP 8146232A JP 14623296 A JP14623296 A JP 14623296A JP H09327627 A JPH09327627 A JP H09327627A
Authority
JP
Japan
Prior art keywords
honeycomb structure
catalyst
metal
base material
catalyst member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8146232A
Other languages
Japanese (ja)
Inventor
Tetsuo Terajima
徹生 寺島
Kiyoshi Taguchi
清 田口
Kunio Kimura
邦夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8146232A priority Critical patent/JPH09327627A/en
Publication of JPH09327627A publication Critical patent/JPH09327627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst exhibiting an excellent performance in heat exchanging efficiency, life and other characteristics. SOLUTION: A honeycomb structured body 1 made of ceramics having a large number of narrow holes oriented in a same direction is penetrated by a tubular metal 2 in a direction in which the narrow holes extend so that the honeycomb structured body 1 and the tubular metal are integrated, and the ceramic honeycomb structured body 1 having a small heat capacity is used as a catalyst carrier and the tubular metal 2 is used as a side which gets in close contact with a wall face of a heat exchanger in order to enhance thermal conductivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主に触媒燃焼、排
気ガス浄化、脱臭等に用いられる触媒部材に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst member mainly used for catalytic combustion, exhaust gas purification, deodorization and the like.

【0002】[0002]

【従来の技術】一般に、これらの用途の触媒部材には、
セラミックスや金属からなるハニカム構造体などの担体
基材上に、ディップ法、スプレー法などの手段により、
触媒活性金属を担持した無機酸化物を含む触媒層を形成
したものが用いられている。セラミックス製のハニカム
構造体を用いた触媒部材は、ほとんどの場合、無機層状
化合物などからなるシール部材やスプリングなどの支持
材を用いて触媒反応器へ固定していた。
2. Description of the Related Art Generally, catalyst members for these applications include
On a carrier substrate such as a honeycomb structure made of ceramics or metal, by a method such as a dip method or a spray method,
What formed the catalyst layer containing the inorganic oxide carrying the catalytically active metal is used. In most cases, the catalyst member using the ceramic honeycomb structure is fixed to the catalytic reactor by using a supporting member such as a seal member made of an inorganic layered compound or a spring, and a spring.

【0003】[0003]

【発明が解決しようとする課題】しかし、発熱装置など
において触媒燃焼させる場合には、これら、触媒部材の
支持材が断熱層として働くため、燃焼熱を熱利用部分に
伝達する効率、すなわち熱交換効率を低下させる原因と
なっていた。
However, in the case of catalytic combustion in a heat generating device or the like, since the support member of the catalyst member acts as a heat insulating layer, the efficiency of transferring combustion heat to the heat utilization portion, that is, heat exchange. It was a cause of lowering the efficiency.

【0004】また、熱交換効率を高めるために、通常、
空気過剰率(燃料に対する供給空気流量と化学量論的空
気流量の比)を1.0〜1.5に設定し、流速を極力低
下させる手段が用いられるが、このような条件下では、
燃料供給方向に対して触媒部材の上流側で燃焼熱は発生
することになる。しかし、セラミックス製のハニカム構
造体を用いた場合は、ハニカム構造体の材質自体に起因
して熱伝達率が低く、触媒温度が局部的に高温化し、触
媒および触媒担体の劣化を引き起こしていた。そのた
め、積極的に放熱させ、触媒部材を冷却する必要があっ
た。一方、金属製のハニカム構造体を用いた場合には、
高い機械的強度が得られるとともに、燃焼機器に比較的
密に接触させることができるため、高い熱伝達効率が得
られ、これにより、触媒部材内の温度格差が緩和され、
触媒層の熱劣化を抑制することができる。しかし、ハニ
カム構造体を構成する金属板と、一般に多孔質である無
機酸化物からなる触媒層は、密着性が低いため、触媒層
が金属板から剥離しやすく、また、厚い触媒層を形成す
ることが困難であるといった欠点があった。
In addition, in order to improve heat exchange efficiency,
A means for setting the excess air ratio (ratio of the supply air flow rate to the fuel and the stoichiometric air flow rate) to 1.0 to 1.5 and reducing the flow velocity as much as possible is used.
Combustion heat is generated on the upstream side of the catalyst member with respect to the fuel supply direction. However, when a ceramic honeycomb structure is used, the heat transfer coefficient is low due to the material itself of the honeycomb structure, and the catalyst temperature locally rises, causing deterioration of the catalyst and catalyst carrier. Therefore, it is necessary to positively dissipate heat and cool the catalyst member. On the other hand, when using a metal honeycomb structure,
In addition to high mechanical strength, it can be brought into relatively close contact with the combustion equipment, resulting in high heat transfer efficiency, which reduces the temperature difference within the catalyst member,
The thermal deterioration of the catalyst layer can be suppressed. However, since the metal plate that constitutes the honeycomb structure and the catalyst layer that is generally made of a porous inorganic oxide have low adhesion, the catalyst layer is easily separated from the metal plate, and a thick catalyst layer is formed. It had the drawback of being difficult.

【0005】ディップ法、スプレー法などの手段によ
り、担体基材表面に触媒層を均一に形成するためには、
これら加工の際の液垂れを防止する必要があり、一度に
付着させる量が制限される。そのため、同様の工程を複
数回、繰り返し行わなければならず、高コストとなる原
因になっていた。
In order to uniformly form a catalyst layer on the surface of a carrier substrate by means of a dipping method, a spray method, etc.,
It is necessary to prevent dripping during these processings, and the amount to be attached at one time is limited. Therefore, the same process has to be repeated a plurality of times, which causes a high cost.

【0006】さらに、触媒部材の性能として、これらの
用途において、触媒部材の温度が触媒活性化温度まで昇
温する時間ができるだけ短いことが望まれる。しかし、
コージェライトなどの押し出し成形体や金属製のハニカ
ム構造体を担体基材に用いた場合には、これら担体基材
自体の熱容量が大きいため、昇温に長時間を要する。そ
れに対して、シリカアルミナファイバーなどの無機繊維
から構成される担体基材は、熱容量は小さいが、機械的
強度が弱いため、任意の形状に加工することが困難であ
った。本発明は、熱交換効率、寿命等の諸特性に優れた
触媒部材を提供することを目的とする。
Further, as the performance of the catalyst member, in these applications, it is desired that the temperature of the catalyst member rises to the catalyst activation temperature as short as possible. But,
When an extruded body such as cordierite or a honeycomb structure made of metal is used as the carrier substrate, the heat capacity of the carrier substrate itself is large, and thus it takes a long time to raise the temperature. On the other hand, a carrier substrate composed of inorganic fibers such as silica-alumina fibers has a small heat capacity, but has a weak mechanical strength, so that it is difficult to process it into an arbitrary shape. An object of the present invention is to provide a catalyst member having excellent properties such as heat exchange efficiency and life.

【0007】[0007]

【課題を解決するための手段】本発明の触媒部材は、セ
ラミックス製のハニカム構造体を触媒担体基材に用い、
その熱交換器壁面に密着させる側面を筒状の金属基材に
より構成することにより、触媒部材自身あるいは燃焼機
器との熱伝導を向上させるものである。本発明による
と、セラミックス製のハニカム構造体を筒状の金属基材
で打ち抜くことにより、ハニカム構造体と金属基材を容
易に密着性よく一体化することができる。ハニカム構造
体への触媒層の形成は、金属基材との一体化の前後のい
ずれに行っても、優れた特性の触媒部材を得ることがで
きる。
A catalyst member of the present invention uses a ceramic honeycomb structure as a catalyst carrier substrate,
By forming the side surface which is in close contact with the wall surface of the heat exchanger with a cylindrical metal base material, heat conduction with the catalyst member itself or the combustion device is improved. According to the present invention, by punching a ceramic honeycomb structure with a cylindrical metal base material, the honeycomb structure and the metal base material can be easily integrated with good adhesion. The formation of the catalyst layer on the honeycomb structure can be carried out either before or after the integration with the metal base material to obtain a catalyst member having excellent characteristics.

【0008】[0008]

【発明の実施の形態】本発明の触媒部材は、軸方向に多
数の貫通した細孔を有するセラミックス製のハニカム構
造体と、ハニカム構造体の表面を被覆する触媒層と、軸
方向に対してハニカム構造体の外周側面を囲む筒状の金
属基材を具備するものである。セラミックス製のハニカ
ム構造体の外周側面に筒状の金属基材を密着して固定す
ることにより、ハニカム構造体の寸法精度を向上させる
ことができるとともに、金属基材を熱伝導体として作用
させることができる。すなわち、金属基材を熱交換器壁
面に密着させることにより、燃焼によって触媒部材で発
生する熱を、速やかに触媒部材外部に伝達させることが
できる。また、触媒部材の下流側に熱を伝達することが
容易になるため、触媒部材のガスの流通方向の温度勾配
を緩和することができる。
BEST MODE FOR CARRYING OUT THE INVENTION A catalyst member of the present invention comprises a ceramic honeycomb structure having a large number of pores penetrating in the axial direction, a catalyst layer covering the surface of the honeycomb structure, and an axial direction. It is provided with a cylindrical metal base material that surrounds the outer peripheral side surface of the honeycomb structure. By adhering and fixing the cylindrical metal base material to the outer peripheral side surface of the ceramic honeycomb structure, the dimensional accuracy of the honeycomb structure can be improved and the metal base material acts as a heat conductor. You can That is, by bringing the metal base material into close contact with the wall surface of the heat exchanger, the heat generated in the catalyst member due to combustion can be quickly transferred to the outside of the catalyst member. Further, since it becomes easy to transfer heat to the downstream side of the catalyst member, the temperature gradient in the gas flow direction of the catalyst member can be eased.

【0009】また、ハニカム構造体が、軸方向を一致さ
せ、かつ同方向に対してて並列または直列に一体化され
た複数個からなることが好ましい。担体基材として、複
数個のハニカム構造体をガスの流通方向に対して直列方
向あるいは並列方向に一体化させて用いることにより、
触媒構成の自由度が増す。それにより、例えば、複数個
の担体基材を並列方向に一体化させて設置した場合に
は、燃焼面積を大きくとることができ、熱交換効率を維
持した状態で、より高い燃焼負荷、あるいは、より大き
な空間速度のガスにも対応することが可能となる。
Further, it is preferable that the honeycomb structure is composed of a plurality of pieces which are aligned in the axial direction and are integrated in parallel or in series with respect to the same direction. As the carrier substrate, by using a plurality of honeycomb structures integrated in the gas flow direction in series or in parallel,
The degree of freedom in catalyst configuration is increased. Thereby, for example, when a plurality of carrier base materials are integrated and installed in the parallel direction, a large combustion area can be secured, and a higher combustion load, or, while maintaining heat exchange efficiency, or It becomes possible to cope with a gas having a larger space velocity.

【0010】さらに、複数個のハニカム構造体が、開口
率の異なる二種類以上からなることが好ましい。複数個
の担体基材を一体化して用いる場合、ガスの流れ方向に
直列あるいは並列に配されたハニカム構造体の開口率を
変化させることにより、それぞれガスの流れ方向、ある
いは流れに対して垂直方向の触媒部材内の温度勾配を小
さくすることができる。例えば、比較的高温となりやす
い上流側のハニカム構造体の開口率を高くし、相対的に
低温となる下流側の触媒部材の開口率を低くすることに
より、温度分布を均一化して触媒の反応率を均一化する
ことができ、これにより触媒の熱劣化を防止することが
できる。また、外周側のハニカム構造体の開口率を内部
のハニカム構造体の開口率と比べて相対的に低くしても
よい。これらの手段は、ハニカム構造体のセル(細孔)
数やセル間の隔壁の肉厚を変化させることによって対応
することができる。
Further, it is preferable that the plurality of honeycomb structures are made of two or more kinds having different aperture ratios. When a plurality of carrier base materials are used in an integrated manner, by changing the aperture ratio of the honeycomb structure arranged in series or in parallel in the gas flow direction, the gas flow direction or the direction perpendicular to the gas flow direction, respectively. The temperature gradient in the catalyst member can be reduced. For example, by increasing the aperture ratio of the upstream honeycomb structure, which is likely to reach a relatively high temperature, and lowering the aperture ratio of the downstream catalyst member, which is relatively low temperature, the temperature distribution is made uniform and the reaction rate of the catalyst is increased. Can be made uniform, and thus thermal deterioration of the catalyst can be prevented. Further, the aperture ratio of the honeycomb structure on the outer peripheral side may be relatively lower than the aperture ratio of the honeycomb structure inside. These means are the cells (pores) of the honeycomb structure.
This can be dealt with by changing the number or the thickness of the partition walls between cells.

【0011】また、複数個のハニカム構造体のうちの少
なくとも一つが、金属製であることが好ましい。例え
ば、触媒担体基材として、金属製のハニカム構造体とセ
ラミックス製のハニカム構造体を併用し、触媒部材の上
流側にセラミックス製のハニカム構造体を用い、下流側
に金属製ハニカム構造体を用いることによって、触媒部
材の外部への熱伝達効率を高めることができる。一方、
燃焼量が比較的大きい場合には、上流側に熱伝達率の高
い金属製ハニカム構造体を、下流側にセラミックス製ハ
ニカム構造体をそれぞれ用いることにより、触媒部材の
上流側の温度上昇を抑制し、触媒の燃焼劣化を防止する
ことができる。また、相対的に高温となりやすい触媒部
材の中央部に金属製のハニカム構造体を用い、外側にセ
ラミックス製ハニカム構造体を用いることにより、触媒
の反応率を維持した状態で触媒の熱劣化を防止すること
ができる。
At least one of the plurality of honeycomb structures is preferably made of metal. For example, as a catalyst carrier substrate, a metal honeycomb structure and a ceramic honeycomb structure are used together, a ceramic honeycomb structure is used on the upstream side of the catalyst member, and a metal honeycomb structure is used on the downstream side. As a result, the efficiency of heat transfer to the outside of the catalyst member can be increased. on the other hand,
When the amount of combustion is relatively large, a metal honeycomb structure having a high heat transfer coefficient is used on the upstream side and a ceramic honeycomb structure is used on the downstream side to suppress the temperature rise on the upstream side of the catalyst member. The combustion deterioration of the catalyst can be prevented. Also, by using a metal honeycomb structure in the center of the catalyst member that tends to reach a relatively high temperature and a ceramic honeycomb structure on the outside, thermal deterioration of the catalyst is prevented while maintaining the reaction rate of the catalyst. can do.

【0012】さらに、複数個のハニカム構造体の表面の
触媒層が、触媒の異なる二種類以上からなることが好ま
しい。高温耐久性、反応速度、反応物質の選択性など、
異なった反応特性を有する触媒を、予測されるガスの流
れ方向の温度分布にしたがって配置することができる。
これにより、同一の触媒部材内で相異なる触媒特性を発
揮させることができ、触媒部材の性能を向上させること
ができる。これら燃料に対する触媒の反応特性は、触媒
活性種によって大きく異なるため、触媒担体基材に担持
させる触媒は、燃料の種類より選択して用いる。一例と
してメタンの燃焼に用いられる触媒活性金属である白金
族金属を挙げると、Pdは、低温活性に優れるが、高温
での反応速度はPtに劣り、排気ガス中に未反応物質が
排出される。一方、Ptは、低温活性はPdに劣るが、
触媒活性化温度以上での反応速度が大きい。PtとPd
を同一のハニカム構造体に担持させると、高温での焼成
において合金化するため、得られた触媒部材は十分な特
性が得られない。これに対して、複数個のハニカム構造
体にPtとPdをそれぞれ担持させ、これらを一体化し
て用いることにより、優れた触媒特性を発揮する触媒部
材を得ることができる。
Further, it is preferable that the catalyst layers on the surfaces of the plurality of honeycomb structures are made of two or more kinds having different catalysts. High temperature durability, reaction rate, selectivity of reactants, etc.
Catalysts with different reaction characteristics can be arranged according to the expected temperature distribution in the gas flow direction.
As a result, different catalyst characteristics can be exhibited within the same catalyst member, and the performance of the catalyst member can be improved. Since the reaction characteristics of the catalyst with respect to these fuels greatly differ depending on the catalytically active species, the catalyst to be supported on the catalyst carrier base material is selected and used according to the type of fuel. Taking platinum group metals, which are catalytically active metals used for combustion of methane, as an example, Pd has excellent low-temperature activity, but its reaction rate at high temperatures is inferior to Pt, and unreacted substances are discharged into exhaust gas. . On the other hand, Pt is inferior to Pd in low temperature activity,
The reaction rate is high above the catalyst activation temperature. Pt and Pd
When the same is carried on the same honeycomb structure, it is alloyed by firing at a high temperature, so that the obtained catalyst member cannot obtain sufficient characteristics. On the other hand, by supporting Pt and Pd on a plurality of honeycomb structures and using them integrally, it is possible to obtain a catalyst member exhibiting excellent catalytic properties.

【0013】また、金属基材が、側面に貫通した複数の
空孔を有することが好ましい。ハニカム構造体の外周側
面に配する金属基材に、パンチングメタルやエキスパン
ドメタルなど、多数の空孔を有するものを用いることに
より、空孔分の金属基材に相当する熱容量を減少させ、
触媒部材の加熱速度をより大きくすることができる。
Further, it is preferable that the metal base material has a plurality of holes penetrating the side surface. By using a metal base material arranged on the outer peripheral side surface of the honeycomb structure having a large number of holes such as punching metal or expanded metal, the heat capacity corresponding to the metal base material of the holes is reduced,
The heating rate of the catalyst member can be increased.

【0014】さらに、金属基材が、側面に凹凸を有する
ことが好ましい。金属基材の側面に波形などの凹凸をつ
けることにより、熱交換器との接触度合いを調節でき
る。例えば、相対的に温度の高い部分では、積極的に熱
交換器内壁に接触させ、一方で相対的に温度の低い部分
は、熱交換器内壁との接触面積を小さくし、熱伝達率を
低くすることによって、触媒部材内のガスの流れ方向の
温度勾配を緩和し、触媒の熱劣化を防止するとともに、
触媒活性を発揮できる温度帯に任意に設定できる。
Further, it is preferable that the metal base material has irregularities on its side surface. The degree of contact with the heat exchanger can be adjusted by forming corrugations on the side surface of the metal base material. For example, a relatively high temperature portion is positively brought into contact with the heat exchanger inner wall, while a relatively low temperature portion has a small contact area with the heat exchanger inner wall and a low heat transfer coefficient. By so doing, the temperature gradient in the gas flow direction in the catalyst member is relaxed, and thermal deterioration of the catalyst is prevented, and
It can be arbitrarily set to a temperature range where the catalytic activity can be exhibited.

【0015】また、ハニカム構造体に、軸方向に貫通し
て挿入された金属棒を具備することが好ましい。セラミ
ックス製のハニカム構造体に、細孔の延伸方向、すなわ
ちガスの流れ方向に、一つ以上の金属棒を貫通させて挿
入することにより、金属棒の優れた熱伝導によってガス
の流れ方向の温度勾配を緩和することができる。
Further, it is preferable that the honeycomb structure is provided with a metal rod inserted through the honeycomb structure in the axial direction. By inserting one or more metal rods through the ceramic honeycomb structure in the direction of extension of the pores, that is, in the gas flow direction, the temperature in the gas flow direction is excellent due to the excellent heat conduction of the metal rods. The gradient can be relaxed.

【0016】さらに、金属基材の長さが、ハニカム構造
体の軸方向の長さよりも長いことが好ましい。筒状の金
属基材の長さをハニカム構造体の長さよりも長くするこ
とにより、金属基材と熱交換器の接触面積を広くとるこ
とができ、熱交換効率を向上させることができる。
Furthermore, it is preferable that the length of the metal base material is longer than the axial length of the honeycomb structure. By making the length of the cylindrical metal base material longer than the length of the honeycomb structure, the contact area between the metal base material and the heat exchanger can be widened, and the heat exchange efficiency can be improved.

【0017】なお、これらの触媒部材の間に熱交換パイ
プを設置し、水などの熱媒体を通すことにより、燃焼熱
をより有効に利用することができる。また、電気ヒータ
ーを設け、触媒部材を加熱することにより、触媒に熱を
速やかに伝達させ、触媒の活性温度まで短時間で昇温さ
せることも可能となる。
By installing a heat exchange pipe between these catalyst members and passing a heat medium such as water, the combustion heat can be used more effectively. Further, by providing an electric heater and heating the catalyst member, it is possible to quickly transfer heat to the catalyst and raise the temperature to the activation temperature of the catalyst in a short time.

【0018】本発明の触媒部材の製造法は、特定方向に
貫通した多数の細孔を有するセラミックス製のハニカム
構造体を、貴金属塩を溶解した水溶液に無機酸化物を分
散させたスラリー、または水に貴金属を担持した無機酸
化物を分散させたスラリーに浸漬した後、乾燥、焼成す
ることにより、ハニカム構造体の表面に貴金属を含む触
媒層を形成する工程と、ハニカム構造体および筒状の金
属基材を、ハニカム構造体の細孔の延伸方向と金属基材
の長さ方向を一致させて同方向に重ね合わせて加圧する
ことにより、ハニカム構造体を金属基材の内側面形状に
一致した筒状に切り出すとともに、金属基材の内側面に
固定する工程を含むものである。筒状の金属部材を、必
要に応じて治具に装着し、セラミックス製のハニカム構
造体と重ね合わせた後、両者を加圧することにより、ハ
ニカム構造体を金属基材で打ち抜き、ハニカム構造体の
外周側面を金属基材の内側面に一致させて、両者を一体
化させる。これにより、ハニカム構造体とその周囲を囲
む金属部材の間に高い密着性が得られ、高い熱交換効率
が得られる。また、この方法によると、金属基材の外周
側面に触媒層が形成されないため、熱交換器内壁に触媒
部材をより密に接触させることができる。このとき、ハ
ニカム構造体の切り出された残りの部分、すなわち、筒
状金属基材の外側に残された部分は廃棄されることにな
る。
The method for producing a catalyst member of the present invention is a slurry in which an inorganic oxide is dispersed in an aqueous solution in which a noble metal salt is dissolved in a ceramic honeycomb structure having a large number of pores penetrating in a specific direction, or water. A step of forming a catalyst layer containing a noble metal on the surface of the honeycomb structure by immersing in a slurry in which an inorganic oxide carrying a noble metal is dispersed, followed by drying and firing, and a honeycomb structure and a tubular metal By aligning the stretching direction of the pores of the honeycomb structure with the length direction of the metal base material and overlapping and pressing the base material in the same direction, the honeycomb structure conformed to the inner surface shape of the metal base material. It includes a step of cutting it into a tubular shape and fixing it to the inner surface of the metal base material. A cylindrical metal member is mounted on a jig as required, and after overlapping with a ceramic honeycomb structure, the both are pressed to punch the honeycomb structure with a metal base material to form a honeycomb structure. The outer peripheral side surface is made to coincide with the inner side surface of the metal base material to integrate them. Thereby, high adhesion can be obtained between the honeycomb structure and the metal members surrounding the honeycomb structure, and high heat exchange efficiency can be obtained. Further, according to this method, since the catalyst layer is not formed on the outer peripheral side surface of the metal base material, the catalyst member can be brought into closer contact with the inner wall of the heat exchanger. At this time, the remaining cut-out portion of the honeycomb structure, that is, the portion left outside the tubular metal substrate is discarded.

【0019】本発明の他の触媒部材の製造法は、特定方
向に貫通した多数の細孔を有するセラミックス製のハニ
カム構造体を、貴金属塩を溶解した水溶液に無機酸化物
を分散させたスラリー、または水に貴金属を担持した無
機酸化物を分散させたスラリーに浸漬した後、乾燥、焼
成することにより、ハニカム構造体の表面に貴金属を含
む触媒層を形成する工程と、表面に触媒層を形成された
ハニカム構造体を複数個、細孔の延伸方向を一致させて
積層する工程と、積層された複数のハニカム構造体およ
び筒状の金属基材を、ハニカム構造体の細孔の延伸方向
と金属基材の長さ方向を一致させて同方向に重ね合わせ
て加圧することにより、ハニカム構造体を金属基材の内
側面形状に一致した筒状に切り出すとともに、金属基材
の内側面に固定する工程を含むものである。ハニカム構
造体に触媒を担持させ、これを積層した後、切り出すこ
とによって、ガスの流れ方向に異なる触媒を担持させた
複数のハニカム構造体を一体化した触媒部材を容易に作
製することができる。また、ハニカム構造体に貴金属を
含むスラリーを含浸させた後、これを乾燥し、金属基材
で打ち抜いてから、焼成を行っても良い。
Another method for producing a catalyst member according to the present invention is a slurry in which an inorganic oxide is dispersed in an aqueous solution in which a precious metal salt is dissolved in a ceramic honeycomb structure having a large number of pores penetrating in a specific direction. Alternatively, a step of forming a catalyst layer containing a noble metal on the surface of the honeycomb structure by immersing in a slurry in which an inorganic oxide carrying a noble metal is dispersed in water, followed by drying and firing, and forming a catalyst layer on the surface A plurality of the honeycomb structure, the step of stacking the pores in the same direction as the pores, and the plurality of stacked honeycomb structures and the tubular metal substrate, and the direction in which the pores of the honeycomb structure are stretched. By aligning the length direction of the metal base material and overlapping and pressing in the same direction, the honeycomb structure is cut out into a cylinder shape that matches the shape of the inner side surface of the metal base material, and is fixed to the inner side surface of the metal base material. You It is intended to include the process. By supporting the catalyst on the honeycomb structure, stacking the catalyst, and cutting it out, it is possible to easily produce a catalyst member in which a plurality of honeycomb structures supporting different catalysts in the gas flow direction are integrated. Alternatively, the honeycomb structure may be impregnated with a slurry containing a noble metal, dried, punched with a metal base material, and then fired.

【0020】さらに、本発明の他の触媒部材の製造法
は、特定方向に貫通した多数の細孔を有するセラミック
ス製のハニカム構造体および筒状の金属基材を、ハニカ
ム構造体の細孔の延伸方向と金属基材の長さ方向を一致
させて同方向に重ね合わせて加圧することにより、ハニ
カム構造体を金属基材の内側面形状に一致した筒状に切
り出すとともに、金属基材の内側面に固定して金属基材
とハニカム構造体を一体化した担体基材を作製する工程
と、担体基材を、貴金属塩を溶解した水溶液に無機酸化
物を分散させたスラリー、または水に貴金属を担持した
無機酸化物を分散させたスラリーに浸漬した後、乾燥、
焼成することにより、担体基材の表面に貴金属を含む触
媒層を形成する工程を含むものである。この方法による
と、高価な貴金属を触媒成分として用いる場合などに、
製造工程における触媒成分の損失を減少させることがで
きる。
Further, in another method for producing a catalyst member of the present invention, a ceramic honeycomb structure having a large number of pores penetrating in a specific direction and a cylindrical metal base material By aligning the stretching direction and the length direction of the metal base material and stacking and pressing in the same direction, the honeycomb structure is cut out into a tubular shape that matches the inner surface shape of the metal base material, and A step of preparing a carrier substrate which is fixed on the side surface and where the metal substrate and the honeycomb structure are integrated, and the carrier substrate is a slurry in which an inorganic oxide is dispersed in an aqueous solution of a noble metal salt, or a noble metal in water. After being immersed in a slurry in which an inorganic oxide carrying is dispersed, dried,
It includes a step of forming a catalyst layer containing a noble metal on the surface of the carrier substrate by firing. According to this method, when using an expensive precious metal as a catalyst component,
It is possible to reduce the loss of catalyst components in the manufacturing process.

【0021】なお、セラミックス製ハニカム構造体の材
料としては、コージェライト、チタン酸アルミニウム、
ムライトなどを主成分とする焼結体や、シリカアルミナ
などの無機繊維などを使用することができるが、後者の
ほうが、金属基材により切削しやすく、作業性が高い。
また、金属基材は、耐熱性、腐食性に優れたものから任
意に選択することができるが、アルミニウムを含有する
フェライト系ステンレス鋼が好ましい。また、触媒活性
種は、白金族金属、複合酸化物などから対象となるガス
に応じて選択することができる。
The materials of the ceramic honeycomb structure are cordierite, aluminum titanate,
Although a sintered body containing mullite as a main component or an inorganic fiber such as silica-alumina can be used, the latter is easier to cut with a metal base material and has higher workability.
The metal base material can be arbitrarily selected from those having excellent heat resistance and corrosion resistance, but ferritic stainless steel containing aluminum is preferable. The catalytically active species can be selected from platinum group metals, complex oxides, etc. according to the target gas.

【0022】本発明によると、触媒層を備えたハニカム
構造体を積層した触媒部材を容易に作製することができ
るため、触媒組成あるいは担体構成を用途に対して最適
化することにより、触媒の熱劣化を抑制し、反応活性を
向上させることができる。セラミックス繊維を主成分と
するハニカム構造体は、熱容量が比較的小さく、また形
状の自由度が大きいため、これを用いることにより、触
媒部材をより短時間で昇温することが可能となる。
According to the present invention, a catalyst member in which a honeycomb structure provided with a catalyst layer is laminated can be easily produced. Therefore, the catalyst composition or the carrier structure can be optimized for the application to improve the heat of the catalyst. It is possible to suppress deterioration and improve reaction activity. Since the honeycomb structure containing ceramic fibers as a main component has a relatively small heat capacity and a large degree of freedom in shape, it is possible to raise the temperature of the catalyst member in a shorter time by using this.

【0023】[0023]

【実施例】以下、本発明の実施例を図面を用いて詳細に
説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0024】《実施例1》本実施例では、一定方向に3
50セル/inch2の貫通した細孔を有するセラミッ
クス製ハニカム板を用いた。このセラミックス製ハニカ
ム板は、ともにシリカアルミナファイバーおよびアルミ
ナゾルを主成分とする厚さ0.5mmの平板状および波
板状のセラミックス製シートを交互に積層して成形した
ものである。図1に示すように、縦および横が100m
mの正方形で、厚さが20mmであり、厚さ方向に貫通
した孔が形成されたセラミックス製ハニカム板1aを固
定して、このセラミックス製ハニカム板1a上に厚さ1
00μmのFeCrAl鋼板を直径10mm、長さ25
mmの円筒状に加工した金属基材2を重ね合わせ、矢印
方向に加圧して、セラミックス製ハニカム板1aを打ち
抜くことにより、図2および図3に示すようにセラミッ
クス製ハニカム構造体1とその周囲に一体化された金属
基材2からなる担体基材3を得た。
<< Embodiment 1 >> In this embodiment, 3
A ceramic honeycomb plate having penetrating pores of 50 cells / inch 2 was used. This ceramic honeycomb plate is formed by alternately laminating flat and corrugated ceramic sheets having a thickness of 0.5 mm and containing silica-alumina fiber and alumina sol as main components. As shown in Figure 1, 100m in length and width
A ceramic honeycomb plate 1a having a square shape of m and a thickness of 20 mm and having holes penetrating in the thickness direction is fixed, and the ceramic honeycomb plate 1a has a thickness of 1 mm.
FeCrAl steel plate of 00 μm, diameter 10 mm, length 25
mm metal-cylindrical processed metal bases 2 are stacked, pressed in the direction of the arrow, and the ceramic honeycomb plate 1a is punched out, so that the ceramic honeycomb structure 1 and its surroundings as shown in FIGS. 2 and 3. A carrier substrate 3 composed of the metal substrate 2 integrated with the above was obtained.

【0025】一方、活性アルミナ粉末100gをジニト
ロジアンミン白金水溶液に含浸し、乾燥した後、500
℃で1時間焼成することにより、表面にPtを2wt%
担持した触媒粉末(以下、Pt/活性アルミナ粉末とす
る)を得た。このPt/活性アルミナ粉末100g、ア
ルミナゾル(固形分20wt%)10gおよび水200
gを混合してPt触媒スラリーを調製した。担体基材3
に、このPt触媒スラリーを含浸させ、乾燥後、500
℃で10分焼成することにより、担体基材3の表面にP
tを5mg含む触媒層を形成して、触媒部材を得た。
On the other hand, 100 g of activated alumina powder was impregnated with a dinitrodiammineplatinum aqueous solution and dried, and then 500
2% by weight of Pt on the surface by firing at ℃ for 1 hour
A supported catalyst powder (hereinafter referred to as Pt / activated alumina powder) was obtained. 100 g of this Pt / activated alumina powder, 10 g of alumina sol (solid content 20 wt%) and water 200
g was mixed to prepare a Pt catalyst slurry. Carrier substrate 3
Of the Pt catalyst slurry, and after drying, 500
By baking at 10 ° C. for 10 minutes, P is formed on the surface of the carrier substrate 3.
A catalyst layer containing 5 mg of t was formed to obtain a catalyst member.

【0026】このようにして得られた触媒部材28を、
図4に示す触媒燃焼装置に装着し、以下のようにして燃
焼試験を行った。ただし、図3の(b)における矢印方
向と燃料の供給方向が一致するように装着した。まず、
触媒部材28を、燃焼室23内部に装着した。燃料供給
口21から、毎分、都市ガス80cc(約50kcal
/h相当)および空気8.8リットルを混合した空気過
剰率1の混合気を、触媒部材28に供給した。イグナイ
タ22により、混合気に点火されると、触媒部材28の
下流側に火炎が形成される。これにより、触媒部材28
表面の触媒層に含まれる触媒活性金属であるPtが予熱
され、活性化温度まで到達すると、燃焼室23内で触媒
燃焼が開始される。このとき、火炎着火から、触媒燃焼
によって燃焼室23の外壁温度が200℃まで上昇する
までに要する時間(昇温時間)を熱電対24で測定し
た。また、燃焼室23の外周側面に螺旋状に捲回して設
けられた熱交換パイプ25に、図中、白ヌキの矢印で示
すように水を2cc/minで供給し、入口と出口の水
の温度差より、熱交換効率を求めた。さらに、排気口2
6から排気されたガス組成をガスクロマトグラフィで分
析し、CO2と未燃炭化水素濃度より、燃焼率を求め
た。また、触媒部材28の上流側の温度は、触媒部材2
8の上流側端面の中心より1mm内側に配された熱電対
27により測定した。
The catalyst member 28 thus obtained is
The catalyst was mounted on the catalytic combustion apparatus shown in FIG. 4 and a combustion test was conducted as follows. However, it was mounted so that the arrow direction in FIG. First,
The catalyst member 28 was mounted inside the combustion chamber 23. 80 cc (approximately 50 kcal) of city gas per minute from the fuel supply port 21
(Corresponding to / h) and an air mixture having an excess air ratio of 1 and 8.8 liters of air were supplied to the catalyst member 28. When the mixture gas is ignited by the igniter 22, a flame is formed on the downstream side of the catalyst member 28. Thereby, the catalyst member 28
When Pt, which is a catalytically active metal contained in the surface catalyst layer, is preheated and reaches the activation temperature, catalytic combustion is started in the combustion chamber 23. At this time, the time (temperature rising time) required for the outer wall temperature of the combustion chamber 23 to rise to 200 ° C. due to catalytic combustion from flame ignition was measured by the thermocouple 24. Water is supplied at a rate of 2 cc / min to the heat exchange pipe 25, which is spirally wound around the outer peripheral side surface of the combustion chamber 23, as shown by the white arrow in the figure, and the water at the inlet and the outlet is discharged. The heat exchange efficiency was calculated from the temperature difference. Furthermore, exhaust port 2
The gas composition exhausted from No. 6 was analyzed by gas chromatography, and the burning rate was calculated from the CO 2 and unburned hydrocarbon concentrations. Further, the temperature on the upstream side of the catalyst member 28 is equal to the temperature of the catalyst member 2
The measurement was performed with a thermocouple 27 arranged 1 mm inside from the center of the upstream end face of No. 8.

【0027】《実施例2》実施例1と同様のセラミック
ス製ハニカム板に、実施例1と同様のPt触媒スラリー
を含浸し、乾燥後、500℃で10分熱処理することに
より、ハニカム板表面にPtを0.6mg含む触媒層を
形成した。続いて、実施例1と同様の円筒状金属基材を
用いて、このセラミックス製ハニカム板を打ち抜くこと
によって、触媒層を備えたセラミックス製ハニカム構造
体とその周囲を囲む金属基材からなる触媒部材を得た。
得られた触媒部材を図4に示す触媒燃焼装置に装着し、
実施例1と同様の燃焼試験を行った。
Example 2 A ceramic honeycomb plate similar to that of Example 1 was impregnated with the same Pt catalyst slurry as that of Example 1, dried and then heat-treated at 500 ° C. for 10 minutes to form a honeycomb plate surface. A catalyst layer containing 0.6 mg of Pt was formed. Then, the same cylindrical metal substrate as in Example 1 was used to punch this ceramic honeycomb plate to form a catalyst member comprising a ceramic honeycomb structure having a catalyst layer and a metal substrate surrounding the ceramic honeycomb structure. Got
The obtained catalyst member was attached to the catalytic combustion device shown in FIG.
The same combustion test as in Example 1 was performed.

【0028】《実施例3》実施例1で用いたものと同様
で厚さのみ異なるセラミックス製ハニカム板(350セ
ル/inch2、縦および横が100mmの正方形で、
厚さが10mm)、およびこれと材質が等しく、より開
口率の低いセラミックス製ハニカム板(480セル/i
nch2、縦および横が100mmの正方形で、厚さが
10mm)に、実施例1と同様のPt触媒スラリーを含
浸させ、乾燥したのち、500℃で10分熱処理するこ
とにより、これらハニカム板の表面にそれぞれPtを約
0.6g含む触媒層を形成した。続いて、これらのハニ
カム板を重ね合わせて、実施例1と同様の円筒状金属基
材6を用いて同様に打ち抜くことによって、図5に示す
ように、ともに等しい触媒層を備えたセラミックス製ハ
ニカム構造体4およびこれより開口率の低いセラミック
ス製ハニカム構造体5と、その周囲を囲む金属基材6を
一体化した触媒部材を得た。得られた触媒部材を、開口
率の高いハニカム構造体4が燃料供給方向に対して上流
となるように、図4に示す触媒燃焼装置に装着し、実施
例1と同様の燃焼試験を行った。
Example 3 A ceramic honeycomb plate similar to that used in Example 1 but having a different thickness (350 cells / inch 2 , squares 100 mm in length and width,
10 mm thick) and a ceramic honeycomb plate (480 cells / i) having the same material and a lower aperture ratio
nch 2 , a square of 100 mm in length and width, and a thickness of 10 mm) was impregnated with the same Pt catalyst slurry as in Example 1, dried, and then heat-treated at 500 ° C. for 10 minutes to form a honeycomb plate of these honeycomb plates. A catalyst layer containing about 0.6 g of Pt was formed on each surface. Subsequently, these honeycomb plates are stacked and punched out in the same manner using the same cylindrical metal substrate 6 as in Example 1, so that as shown in FIG. 5, both ceramic honeycombs having the same catalyst layer are provided. A catalyst member was obtained by integrating the structure 4 and the ceramic honeycomb structure 5 having a lower aperture ratio with the metal substrate 6 surrounding the structure. The obtained catalyst member was mounted on the catalytic combustion apparatus shown in FIG. 4 so that the honeycomb structure 4 having a high aperture ratio was upstream with respect to the fuel supply direction, and the same combustion test as in Example 1 was conducted. .

【0029】《実施例4》実施例1と同様のPt/活性
アルミナ粉末100g、アルミナゾル(固形分20wt
%)10gおよび水150gを混合してPt触媒スラリ
ーを調製した。実施例3で用いたものと同様のセラミッ
クス製のハニカム板(350セル/inch2、縦およ
び横が100mmの正方形で、厚さが10mm)に、上
記のPt触媒スラリーを含浸させ、乾燥した後、500
℃で10分熱処理することにより、ハニカム板の表面に
Ptを0.3g含む触媒層を形成した。また、実施例1
で用いたものと同様の活性アルミナ粉末100gをジニ
トロジアンミンパラジウム水溶液に含浸させ、乾燥した
後、500℃で1時間焼成することによって、活性アル
ミナ粉末にPdを2wt%担持させた。以下、この粉末
をPd/活性アルミナ粉末とする。このPd/活性アル
ミナ粉末100g、アルミナゾル(固形分20wt%)
10gおよび水150gを混合し、Pd触媒スラリーを
調製した。上記と同様のセラミックス製のハニカム板
に、このPd触媒スラリーを含浸させ、乾燥後、500
℃で10分熱処理することにより、ハニカム板の表面に
Pdを0.3g含む触媒層を形成した。
Example 4 100 g of Pt / activated alumina powder similar to that of Example 1, alumina sol (solid content 20 wt.
%) And 150 g of water to prepare a Pt catalyst slurry. A ceramic honeycomb plate similar to that used in Example 3 (350 cells / inch 2 , square with 100 mm in length and width, 10 mm in thickness) was impregnated with the Pt catalyst slurry described above, and dried. , 500
By performing heat treatment at 10 ° C. for 10 minutes, a catalyst layer containing 0.3 g of Pt was formed on the surface of the honeycomb plate. In addition, Example 1
100 g of activated alumina powder similar to that used in 1. was impregnated in an aqueous dinitrodiamminepalladium solution, dried, and then baked at 500 ° C. for 1 hour, so that 2% by weight of Pd was supported on the activated alumina powder. Hereinafter, this powder is referred to as Pd / activated alumina powder. 100g of this Pd / activated alumina powder, alumina sol (solid content 20wt%)
10 g and 150 g of water were mixed to prepare a Pd catalyst slurry. A ceramic honeycomb plate similar to the above is impregnated with the Pd catalyst slurry, dried, and then dried.
By performing heat treatment at 10 ° C. for 10 minutes, a catalyst layer containing 0.3 g of Pd was formed on the surface of the honeycomb plate.

【0030】これらのハニカム板を、厚さ方向に重ね合
わせた後、実施例1と同様の金属基材9を用いて打ち抜
くことによって、図6に示すように、Ptを含む触媒層
を備えたセラミックス製ハニカム構造体7およびPdを
含む触媒層を備えたセラミックス製ハニカム構造体8と
その周囲を囲む金属基材9を一体化した触媒部材を得
た。得られた触媒部材を、Ptを含む触媒層を備えたハ
ニカム構造体7が燃料供給方向に対して上流となるよう
に、図3の触媒燃焼装置に装着し、実施例1と同様の燃
焼試験を行った。
After stacking these honeycomb plates in the thickness direction and punching them using the same metal base material 9 as in Example 1, as shown in FIG. 6, a catalyst layer containing Pt was provided. A catalyst member was obtained by integrating the ceramic honeycomb structure 7 and the ceramic honeycomb structure 8 including the catalyst layer containing Pd, and the metal base material 9 surrounding the ceramic honeycomb structure 8. The obtained catalyst member was mounted in the catalytic combustion apparatus of FIG. 3 so that the honeycomb structure 7 provided with the catalyst layer containing Pt was upstream in the fuel supply direction, and the same combustion test as in Example 1 was performed. I went.

【0031】《実施例5》実施例1で用いたものと同様
の円筒状の金属基材12の内側に、外径が金属基材12
の内周と一致し、厚さ10mmの円筒状の金属製ハニカ
ム構造体10を固定した。この金属製ハニカム構造体1
0は、FeCrAl鋼製で、隔壁の厚さが50μmで、
厚さ方向に400セル/inch2の貫通孔を有する。
この金属製ハニカム構造体10と一体化された金属基材
12を用いて、実施例4で用いたものと同様のセラミッ
クス製ハニカム板(厚さ10mm)を同様に打ち抜くこ
とによって、図7に示すように金属製ハニカム構造体1
0、セラミックス製ハニカム構造体11およびこれらの
周囲に固定された金属基材12からなる担体基材を得
た。この担体基材に実施例1と同様のPt触媒スラリー
を含浸させ、乾燥した後、500℃で10分時間焼成す
ることにより、表面にPtを5mg含む触媒層を形成
し、図7に示すような触媒部材を得た。得られた触媒部
材を、金属製ハニカム構造体10を燃料供給方向に対し
て上流側として、図4に示す触媒燃焼装置に装着し、実
施例1と同様の燃焼試験を行った。
<Embodiment 5> A cylindrical metal base 12 similar to that used in Embodiment 1 is provided with an outer diameter of metal base 12 inside.
A cylindrical metal honeycomb structure 10 having a thickness of 10 mm which coincides with the inner circumference of was fixed. This metallic honeycomb structure 1
0 is made of FeCrAl steel, the partition wall thickness is 50 μm,
It has a through hole of 400 cells / inch 2 in the thickness direction.
Using the metal base material 12 integrated with the metal honeycomb structure 10, a ceramic honeycomb plate (thickness 10 mm) similar to that used in Example 4 is punched out in the same manner as shown in FIG. Metal honeycomb structure 1
No. 0, a ceramic honeycomb structure 11 and a metal substrate 12 fixed around these were obtained. This carrier substrate was impregnated with the same Pt catalyst slurry as in Example 1, dried and then baked at 500 ° C. for 10 minutes to form a catalyst layer containing 5 mg of Pt on the surface, as shown in FIG. A catalyst member was obtained. The obtained catalyst member was mounted on the catalytic combustion apparatus shown in FIG. 4 with the metal honeycomb structure 10 upstream with respect to the fuel supply direction, and the same combustion test as in Example 1 was performed.

【0032】《実施例6》実施例4で用いたものと同様
のセラミックス製ハニカム板(厚さ10mm)に、実施
例1と同様のPt触媒スラリーを含浸させ、乾燥した
後、500℃で10分熱処理することにより、ハニカム
板表面にPtを0.6g含む触媒層を形成した。続い
て、実施例5で作製したものと同様の金属基材と金属製
ハニカム構造体の結合体を用いて、同様に、上記の触媒
層を設けたセラミックス製ハニカム板を打ち抜くことに
よって、触媒部材を得た。得られた触媒部材を、燃料供
給方向に対して、金属製ハニカム構造体が下流側になる
ように図4に示す触媒燃焼装置に装着し、実施例1と同
様の燃焼試験を行った。
Example 6 A ceramic honeycomb plate (thickness: 10 mm) similar to that used in Example 4 was impregnated with the same Pt catalyst slurry as in Example 1, dried and then dried at 500 ° C. for 10 minutes. By performing heat treatment for minutes, a catalyst layer containing 0.6 g of Pt was formed on the surface of the honeycomb plate. Subsequently, a catalyst member was prepared by similarly punching out a ceramic honeycomb plate provided with the above-mentioned catalyst layer, using the same combination of the metal base material and the metal honeycomb structure as that manufactured in Example 5. Got The obtained catalyst member was attached to the catalytic combustion apparatus shown in FIG. 4 so that the metal honeycomb structure was on the downstream side in the fuel supply direction, and the same combustion test as in Example 1 was conducted.

【0033】《実施例7》実施例1と同様のセラミック
ス製ハニカム板(厚さ20mm)に、実施例1と同様の
Pt触媒スラリーを含浸させ、乾燥した後、500℃で
10分熱処理することにより、ハニカム板表面にPtを
0.6g含む触媒層を形成した。一方、厚さ100μm
で、その表面にパンチング加工により形成された直径2
mmの円形の孔を81個/m2備えたFeCrAl鋼薄
板を、縦25mm、直径10mmの円筒状に加工して金
属基材を得た。この金属基材を用いて、実施例1と同様
に、上記の触媒層を備えたセラミックス製ハニカム板を
打ち抜くことによって、表面に触媒層を備えたセラミッ
クス製ハニカム構造体とその周囲に一体化された金属基
材からなる触媒部材を得た。得られた触媒を図4に示す
触媒燃焼装置に装着し、実施例1と同様の燃焼試験を行
った。
Example 7 A ceramic honeycomb plate (thickness 20 mm) similar to that of Example 1 was impregnated with the same Pt catalyst slurry as that of Example 1, dried and then heat treated at 500 ° C. for 10 minutes. Thus, a catalyst layer containing 0.6 g of Pt was formed on the surface of the honeycomb plate. On the other hand, the thickness is 100 μm
The diameter of the surface formed by punching is 2
A FeCrAl steel thin plate having 81 mm circular holes / m 2 was processed into a cylindrical shape having a length of 25 mm and a diameter of 10 mm to obtain a metal substrate. Using this metal base material, a ceramic honeycomb plate having a catalyst layer on the surface and a ceramic honeycomb structure having a catalyst layer on its surface are integrated by punching out a ceramic honeycomb plate having the catalyst layer as in Example 1. A catalyst member composed of a metal base material was obtained. The obtained catalyst was mounted on the catalytic combustion apparatus shown in FIG. 4, and the same combustion test as in Example 1 was conducted.

【0034】《実施例8》実施例1で用いたものと同様
のセラミックス製ハニカム板(厚さ20mm)に、実施
例1と同様のPt触媒スラリーを含浸させ、乾燥した
後、500℃で10分熱処理することにより、Ptを
0.6gを含む触媒層を形成した。一方、厚さ100μ
mのFeCrAl鋼薄板を波形状に加工した後、図8に
示すように長さ25mm、最大外径10mmの略円筒状
の金属基材14を作製した。この金属基材14を用いて
Ptを含む触媒層を備えたセラミックス製ハニカム板を
打ち抜くことによって、図8に示すように、触媒層を備
えたセラミックス製ハニカム構造体13とその周囲に一
体化された金属基材14からなる触媒部材を得た。得ら
れた触媒を図4の触媒燃焼装置に装着し、実施例1と同
様の燃焼試験を行った。
Example 8 A ceramic honeycomb plate (thickness 20 mm) similar to that used in Example 1 was impregnated with the same Pt catalyst slurry as in Example 1, dried and then dried at 500 ° C. for 10 hours. By performing heat treatment for minutes, a catalyst layer containing 0.6 g of Pt was formed. On the other hand, thickness 100μ
After processing the FeCrAl steel thin plate of m into a corrugated shape, a substantially cylindrical metal substrate 14 having a length of 25 mm and a maximum outer diameter of 10 mm was prepared as shown in FIG. By punching out a ceramic honeycomb plate provided with a catalyst layer containing Pt using this metal base material 14, as shown in FIG. 8, the ceramic honeycomb structure 13 provided with the catalyst layer and the periphery thereof are integrated. A catalyst member composed of the metal base material 14 was obtained. The obtained catalyst was mounted on the catalytic combustion apparatus of FIG. 4, and the same combustion test as in Example 1 was conducted.

【0035】《実施例9》実施例1で用いたものと同様
のセラミックス製ハニカム板(厚さ20mm)に対し、
実施例1と同様のPt触媒スラリーを含浸させ、乾燥し
た後、500℃で10分熱処理することにより、ハニカ
ム板の表面にPtを0.6gを含む触媒層を形成した。
続いて、図9に示すように、実施例7で用いたものと同
様のFeCrAl鋼製の金属基材16を用いて、このセ
ラミックス製ハニカム板を打ち抜いて、セラミックス製
ハニカム構造体15と金属基材16を一体化するととも
に、これらの中心軸方向に、直径4mmで長さ25mm
の刃を用いて直径4mmの円形の貫通孔17を形成し
た。この貫通孔17にステンレス鋼(SUS304)製
で、直径4mm、長さ20mmの金属棒を挿入し、触媒
部材とした。得られた触媒部材を図4に示す触媒燃焼装
置に装着し、実施例1と同様の燃焼試験を行った。
Example 9 For a ceramic honeycomb plate (thickness 20 mm) similar to that used in Example 1,
The same Pt catalyst slurry as in Example 1 was impregnated, dried, and then heat-treated at 500 ° C. for 10 minutes to form a catalyst layer containing 0.6 g of Pt on the surface of the honeycomb plate.
Subsequently, as shown in FIG. 9, using the same FeCrAl steel metal substrate 16 as that used in Example 7, this ceramic honeycomb plate was punched to obtain the ceramic honeycomb structure 15 and the metal substrate. The material 16 is integrated, and the diameter is 4 mm and the length is 25 mm in the central axis direction.
A circular through hole 17 having a diameter of 4 mm was formed by using the blade. A metal rod made of stainless steel (SUS304) having a diameter of 4 mm and a length of 20 mm was inserted into the through hole 17 to form a catalyst member. The obtained catalyst member was mounted on the catalytic combustion apparatus shown in FIG. 4, and the same combustion test as in Example 1 was conducted.

【0036】《比較例1》コージライト製で、隔壁の厚
さ150μm、400セル/inch2の貫通した細孔
を有する、直径10mm、長さ20mmの円筒状セラミ
ックス製ハニカム材に、実施例1と同様のPt触媒スラ
リーを含浸させ、乾燥した後、500℃で10分熱処理
することにより、ハニカム材表面にPtを0.6g含む
触媒層を形成し、触媒部材とした。得られた触媒部材の
外側壁に層状無機化合物からなるシール部材を貼付し
て、図4に示す触媒燃焼装置に装着し、実施例1と同様
の燃焼試験を行った。
Comparative Example 1 A cylindrical ceramic honeycomb material made of cordierite having a partition wall thickness of 150 μm and a penetrating pore of 400 cells / inch 2 and having a diameter of 10 mm and a length of 20 mm was used as Example 1. The same Pt catalyst slurry was impregnated, dried and then heat-treated at 500 ° C. for 10 minutes to form a catalyst layer containing 0.6 g of Pt on the honeycomb material surface to form a catalyst member. A seal member made of a layered inorganic compound was attached to the outer wall of the obtained catalyst member, mounted on the catalytic combustion apparatus shown in FIG. 4, and the same combustion test as in Example 1 was conducted.

【0037】《比較例2》FeCrAl鋼製で、隔壁の
厚さ50μm、400セル/inch2の貫通した細孔
を有する、直径10mm、長さ20mmの円筒状の金属
ハニカム材に、実施例1と同様のPt触媒スラリーを含
浸させ、乾燥した後、500℃で10分熱処理する工程
を3回繰り返すことにより、ハニカム材表面にPtを5
mg含む触媒層を形成し、触媒部材とした。得られた触
媒部材の外側壁に層状無機化合物からなるシール部材を
貼付して、図4に示す触媒燃焼装置に装着し、実施例1
と同様の燃焼試験を行った。
Comparative Example 2 A cylindrical metal honeycomb material having a diameter of 10 mm and a length of 20 mm made of FeCrAl steel and having a partition wall thickness of 50 μm and penetrating pores of 400 cells / inch 2 was used. After impregnating with the same Pt catalyst slurry as above and drying, the process of heat treatment at 500 ° C. for 10 minutes is repeated three times, whereby Pt is added to the surface of the honeycomb material by 5 times.
A catalyst layer containing mg was formed and used as a catalyst member. A seal member made of a layered inorganic compound was attached to the outer wall of the obtained catalyst member and mounted on the catalyst combustion apparatus shown in FIG.
The same burning test was conducted.

【0038】実施例1〜9、比較例1、2の触媒部材を
用いた燃焼試験の結果を表1に示す。
Table 1 shows the results of combustion tests using the catalyst members of Examples 1 to 9 and Comparative Examples 1 and 2.

【0039】[0039]

【表1】 [Table 1]

【0040】表1の結果に示されるように、実施例1〜
9のいずれの触媒部材も、比較例1および2の触媒部材
に比べて昇温時間が短い。これは、実施例1〜9の触媒
部材は、セラミックスファイバーを主成分とするセラミ
ックス製ハニカム構造体とその周囲を覆う円筒状の金属
基材で構成されるため、セラミックス製または金属製の
ハニカム材をそれぞれ単独で触媒担体基材に用いた比較
例1または2の触媒部材に比べて熱容量が小さいことに
よるものと考えられる。実施例5および6の触媒部材
は、体積の半分が金属製ハニカム構造体で構成されてい
るため、実施例9の触媒部材は、金属棒が中心に設けら
れているため、やや昇温速度が遅いものと考えられる。
実施例4の触媒部材では、都市ガスの主成分であるメタ
ンに対して低温で高い活性を示すPdを下流側に用いて
いるため、Pt単独よりも昇温時間を短縮することがで
きる。また、実施例2の触媒部材は、外周に配された金
属基材が直接燃焼室内壁と接触しているため、実施例2
の触媒部材のように、触媒層を介して接触しているもの
に比べてやや昇温に時間を要している。実施例7および
8の触媒部材では、燃焼室壁内に対向する金属基材の側
面のうち、すべてが燃焼室と接触しない構成となってい
るため、昇温時間を短縮することができる。
As shown in the results of Table 1, Examples 1 to 1
In any of the catalyst members of No. 9, the temperature rising time is shorter than that of the catalyst members of Comparative Examples 1 and 2. This is because the catalyst members of Examples 1 to 9 are composed of a ceramic honeycomb structure containing ceramic fibers as a main component and a cylindrical metal base material that covers the periphery thereof. It is considered that this is because the heat capacity is smaller than that of the catalyst member of Comparative Example 1 or 2 in which each of them is used alone as the catalyst carrier substrate. The catalyst members of Examples 5 and 6 had a volume half of which was composed of a metal honeycomb structure. Therefore, the catalyst member of Example 9 was provided with a metal rod at the center, and thus the temperature rising rate was slightly higher. Considered slow.
In the catalyst member of Example 4, since Pd, which has high activity at low temperature with respect to methane which is the main component of city gas, is used on the downstream side, the heating time can be shortened as compared with Pt alone. In addition, in the catalyst member of Example 2, the metal base material arranged on the outer periphery is in direct contact with the inner wall of the combustion chamber, and thus the catalyst member of Example 2 is used.
It takes a little longer to raise the temperature as compared with a catalyst member such as the catalyst member which is in contact with the catalyst member via the catalyst layer. In the catalyst members of Examples 7 and 8, all of the side surfaces of the metal base material facing the inside of the combustion chamber wall do not come into contact with the combustion chamber, so the temperature rise time can be shortened.

【0041】熱交換効率を比較すると、燃焼室内壁と密
に接触している実施例2、3、4および6、比較例2の
触媒部材などが高い値を示した。特に、実施例6の触媒
部材では、高温側となる下流側に設けられた金属製ハニ
カム構造体が高い熱伝達率を有することから、燃焼室内
壁と直接熱交換し、高い熱交換効率が得られたものと考
えられる。
Comparing the heat exchange efficiencies, the catalyst members of Examples 2, 3, 4 and 6 and Comparative Example 2 which are in close contact with the inner wall of the combustion chamber showed high values. In particular, in the catalyst member of Example 6, since the metal honeycomb structure provided on the downstream side, which is the high temperature side, has a high heat transfer coefficient, heat is directly exchanged with the inner wall of the combustion chamber, and high heat exchange efficiency is obtained. It is thought that it was done.

【0042】燃焼率を比較すると、本実施例1〜9の触
媒部材は、比較例1および2の触媒部材と比較していず
れも高い値を示した。実施例3、7および8の触媒部材
が高い値を示す理由は、触媒層の温度が適度に高温化し
ていることによると考えられる。一方、比較例1の触媒
部材では、温度が1000℃を超えており、気相燃焼を
併発したため、燃焼特性が低下したものと考えられる。
また、比較例1の触媒部材では、COの発生が2000
ppm程度観測された。比較例2の触媒部材では、各実
施例の触媒部材と比べて上流の温度が低いため、下流側
への熱伝達が遅く、燃焼率がやや低くなったことによる
ものと考えられる。
Comparing the burning rates, the catalytic members of Examples 1 to 9 showed higher values than the catalytic members of Comparative Examples 1 and 2. It is considered that the reason why the catalyst members of Examples 3, 7 and 8 show high values is that the temperature of the catalyst layer is appropriately increased. On the other hand, in the catalyst member of Comparative Example 1, the temperature exceeded 1000 ° C., and it was considered that the combustion characteristics deteriorated because the gas phase combustion occurred simultaneously.
Further, in the catalyst member of Comparative Example 1, the generation of CO was 2000
It was observed at about ppm. It is considered that the catalyst member of Comparative Example 2 had a lower upstream temperature than the catalyst members of the respective Examples, and therefore the heat transfer to the downstream side was slow and the burning rate was slightly low.

【0043】なお、比較例1の触媒部材では、燃焼後に
はハニカム構造体にクラックが観察されるとともに、触
媒は著しく白色化し、触媒が劣化していた。これは、セ
ラミックス製ハニカム構造体が直接燃焼室内壁と接触し
ているため、放熱が妨げられ、局所的に高温化したこと
によるものと考えられる。また、実施例9の触媒部材
は、実施例1〜8の触媒部材と比較して燃焼特性はやや
低いものの、触媒温度は低温化しているため、より高負
荷燃焼を行っても、長時間燃焼特性を維持できる。
In the catalyst member of Comparative Example 1, cracks were observed in the honeycomb structure after combustion, and the catalyst was significantly whitened and deteriorated. It is considered that this is because the honeycomb structure made of ceramics is in direct contact with the inner wall of the combustion chamber, which hinders heat radiation and locally raises the temperature. Further, although the catalyst member of Example 9 has slightly lower combustion characteristics than the catalyst members of Examples 1 to 8, since the catalyst temperature is lowered, the catalyst member burns for a long time even if the combustion is performed at a higher load. The characteristic can be maintained.

【0044】《実施例10》実施例1と同様に、厚さ方
向に350セル/inch2の貫通した空孔を有するセ
ラミックス製ハニカム板(縦および横が100mmの正
方形で、厚さが20mm)に、実施例1と同様のPt触
媒スラリーを含浸させ、乾燥した後、500℃で10分
熱処理することにより、ハニカム板表面にPtを0.6
g含む触媒層を形成した。また、厚さ100μmの金属
薄板(FeCrAl鋼)を、断面が縦100mm、横1
00mmの正方形であり、長さ25mmの筒状に加工し
て金属基材19を得た。金属基材19を、縦横にそれぞ
れ7列配置するとともに、この外周を、厚さ100μm
のFeCrAl鋼板製で、断面が縦700mm、横70
0mmの正方形で、長さ25mmの筒状の金属基材20
によって固定した。この一体化された金属基材19およ
び金属基材20をプレスに固定し、上記のPt担持した
セラミックス製ハニカム板と重ね合わせた後、加圧して
ハニカム板を打ち抜くことによって、図10に示すよう
なセラミックス製ハニカム構造体18と金属基材19お
よび20を一体化した触媒部材を得た。
Example 10 Similar to Example 1, a ceramic honeycomb plate having perforated holes of 350 cells / inch 2 in the thickness direction (100 mm square in length and width, 20 mm in thickness) Was impregnated with the same Pt catalyst slurry as in Example 1, dried, and then heat-treated at 500 ° C. for 10 minutes to obtain 0.6 Pt on the honeycomb plate surface.
A catalyst layer containing g was formed. In addition, a metal thin plate (FeCrAl steel) having a thickness of 100 μm has a cross section of 100 mm in length and 1 in width.
A metal substrate 19 was obtained by processing it into a tubular shape having a length of 25 mm and a square of 00 mm. The metal base material 19 is arranged in seven rows in each of the vertical and horizontal directions, and the outer circumference is 100 μm thick.
Made of FeCrAl steel plate, the cross section is 700mm long and 70mm wide.
A cylindrical metal substrate 20 having a length of 25 mm and a square of 0 mm
Fixed by. The metal base material 19 and the metal base material 20 thus integrated are fixed to a press, superposed on the above-mentioned Pt-supported ceramic honeycomb plate, and then pressed to punch the honeycomb plate, as shown in FIG. A catalyst member in which the ceramic honeycomb structure 18 and the metal base materials 19 and 20 are integrated is obtained.

【0045】得られた触媒部材31を、図11に示す触
媒燃焼装置に装着し、燃焼試験を行った。燃料供給口3
2より燃焼室30に燃焼量を3000kcal/hと
し、空気過剰率1.2とした都市ガスと空気の予混合気
を供給した。供給された混合気は、イグナイタ34によ
り着火され、炎口35で燃焼を開始する。この熱により
触媒部材31の温度は上昇し、活性化温度に達すると、
触媒部材31は触媒燃焼を開始する。この間、燃焼室側
壁33に複数配置された熱交換用パイプ36をホース
(図示せず)で直列に接続し、水を300cc/min
で供給して、入口と出口の温度差より、熱交換効率を求
めた。
The obtained catalyst member 31 was mounted on the catalytic combustion apparatus shown in FIG. 11 and a combustion test was conducted. Fuel supply port 3
From No. 2, a premixed mixture of city gas and air having a combustion amount of 3000 kcal / h and an excess air ratio of 1.2 was supplied to the combustion chamber 30. The supplied air-fuel mixture is ignited by the igniter 34 and starts burning at the flame port 35. This heat causes the temperature of the catalyst member 31 to rise, and when it reaches the activation temperature,
The catalyst member 31 starts catalytic combustion. During this time, a plurality of heat exchange pipes 36 arranged on the side wall 33 of the combustion chamber are connected in series by a hose (not shown), and water is added at 300 cc / min.
And the heat exchange efficiency was determined from the temperature difference between the inlet and the outlet.

【0046】《比較例3》実施例1と同様のセラミック
ス製のハニカム板(厚さ20mm)を縦および横がとも
に69mmの正方形に加工したハニカム材を、実施例1
と同様のPt触媒スラリーを含浸させ、乾燥した後、5
00℃で1時間熱処理することにより、ハニカム材表面
にPtを0.6g含む触媒層を形成し、触媒部材とし
た。図2と同様の触媒燃焼装置に上記触媒部材をバーミ
キュライトを主成分とする厚さ0.5mmのシール部材
で固定し、実施例10と同様の燃焼試験を行った。
Comparative Example 3 A honeycomb material obtained by processing a ceramic honeycomb plate (thickness 20 mm) similar to that of Example 1 into a square having a length of 69 mm and a width of 69 mm was used.
After impregnating with the same Pt catalyst slurry and drying, 5
By performing heat treatment at 00 ° C. for 1 hour, a catalyst layer containing 0.6 g of Pt was formed on the surface of the honeycomb material to obtain a catalyst member. The above-mentioned catalyst member was fixed to a catalyst combustion apparatus similar to that shown in FIG. 2 with a sealing member containing vermiculite as a main component and having a thickness of 0.5 mm, and the same combustion test as in Example 10 was conducted.

【0047】実施例10と比較例3の結果を表2に示
す。
The results of Example 10 and Comparative Example 3 are shown in Table 2.

【0048】[0048]

【表2】 [Table 2]

【0049】表2に示されるように、実施例10の触媒
部材では、比較例3の触媒部材に比べて、昇温時間が短
縮されるとともに、熱交換効率が高い。これは、比較例
3の触媒部材では、燃焼器への固定にシール部材を用い
ているために、触媒部材から熱交換パイプまでの熱伝達
が遅くなることによると考えられる。それに対して、実
施例10の触媒部材では、複数の触媒部材の金属基材1
9から外周の金属基材20を経由し、燃焼器内壁への熱
伝導が効率的に行われるためと考えられる。また、比較
例3の触媒部材の上流側端面の中心部の温度を輻射温度
計で測定した結果、1000℃以上に上昇していたのに
対し、同様の測定を実施例10の触媒部材では、850
℃程度であった。これより、比較的大きな燃焼負荷の場
合に、実施例10のような構成の触媒部材を用いること
により、触媒の温度を極力低くすることができる。これ
により、触媒劣化を抑制することができるとともに、昇
温時間を短くし、さらに熱交換効率を向上できる。な
お、実施例10の触媒部材に、実施例1および実施例3
〜9に用いた手段を組み合わせることができる。
As shown in Table 2, the catalyst member of Example 10 has a shorter heating time and higher heat exchange efficiency than the catalyst member of Comparative Example 3. It is considered that this is because the catalyst member of Comparative Example 3 uses the seal member to fix the catalyst member to the combustor, so that the heat transfer from the catalyst member to the heat exchange pipe is delayed. On the other hand, in the catalyst member of Example 10, the metal base materials 1 of a plurality of catalyst members were used.
It is considered that heat is efficiently conducted from 9 to the inner wall of the combustor via the metal base material 20 on the outer periphery. Further, as a result of measuring the temperature of the central portion of the upstream end surface of the catalyst member of Comparative Example 3 with a radiation thermometer, the temperature increased to 1000 ° C. or higher, whereas the same measurement was performed with the catalyst member of Example 10, 850
° C. From this, in the case of a comparatively large combustion load, the temperature of the catalyst can be made as low as possible by using the catalyst member having the structure of the tenth embodiment. As a result, the catalyst deterioration can be suppressed, the temperature rising time can be shortened, and the heat exchange efficiency can be further improved. In addition, in the catalyst member of Example 10, Example 1 and Example 3
The means used for ~ 9 can be combined.

【0050】なお、上記実施例では、いずれも金属基材
のガスの流れ方向の長さを、ハニカム構造体の同方向の
長さよりも長くした。これにより、これらの長さが等し
い場合と比べて、ハニカム構造体と金属基材を一体化す
る際の加工性が優れるとともに、熱交換効率が2〜3%
向上する。また、実施例では触媒部材の形状を円柱状あ
るいは四角柱状としたが、その他三角柱状、あるいは楕
円柱状など、任意に選択できる。また、実施例3では、
それぞれPtとPdを担持した二種類のハニカム構造体
を組み合わせて用いたが、組み合わせるハニカム構造体
の数はこの限りではなく、用いる触媒種も、白金族金
属、無機酸化物などから、対象燃料によって任意に選択
することができる。さらに、本実施例では、セラミック
ス繊維を主成分とするハニカム構造体を使用したが、外
周の金属基材の強度を高めることにより、コージェライ
トなどの押し出し成形体にも適用することができる。コ
ージェライト製のハニカム構造体を用いた場合には、セ
ル間の隔壁の肉厚は、熱容量を低下させるため、150
μm以下のものが好ましく、機械的強度を考慮して選択
することができる。
In each of the above examples, the length of the metal base material in the gas flow direction was made longer than the length of the honeycomb structure in the same direction. Thereby, as compared with the case where these lengths are equal, workability in integrating the honeycomb structure and the metal base material is excellent, and the heat exchange efficiency is 2 to 3%.
improves. Further, in the embodiment, the shape of the catalyst member is cylindrical or quadrangular prism, but other triangular prism or elliptic cylinder can be selected. In addition, in Example 3,
Two types of honeycomb structures supporting Pt and Pd respectively were used in combination, but the number of honeycomb structures to be combined is not limited to this, and the catalyst species used are platinum group metals, inorganic oxides, etc., depending on the target fuel. It can be arbitrarily selected. Furthermore, in this embodiment, the honeycomb structure containing ceramic fibers as a main component is used, but by increasing the strength of the metal base material on the outer periphery, it can be applied to an extrusion molded body such as cordierite. When a cordierite honeycomb structure is used, the wall thickness of the partition walls between cells decreases the heat capacity.
It is preferably μm or less, and can be selected in consideration of mechanical strength.

【0051】[0051]

【発明の効果】本発明によると、触媒担体基材となるセ
ラミックス製のハニカム構造体の周囲に金属基材を一体
化して用いることにより、従って信頼性が高く、熱利用
効率の高い触媒部材を提供することができる。
According to the present invention, a catalyst member having high reliability and high heat utilization efficiency is obtained by integrally using a metal base material around a ceramic honeycomb structure which is a base material of a catalyst carrier. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の触媒部材の製造工程を示すの
斜視図である。
FIG. 1 is a perspective view showing a manufacturing process of a catalyst member according to an embodiment of the present invention.

【図2】同実施例の触媒部材の担体基材の斜視図であ
る。
FIG. 2 is a perspective view of a carrier base material of the catalyst member of the example.

【図3】同担体基材を示す図であり、(a)は上面図、
(b)は縦断面図である。
FIG. 3 is a view showing the carrier substrate, (a) is a top view,
(B) is a longitudinal sectional view.

【図4】本発明の実施例1〜9、ならびに比較例1およ
び2の触媒部材の燃焼試験に用いた触媒燃焼装置の概略
した縦断面図である。
FIG. 4 is a schematic vertical cross-sectional view of a catalytic combustion device used in a combustion test of catalytic members of Examples 1 to 9 of the present invention and Comparative Examples 1 and 2.

【図5】本発明の実施例3の触媒部材の縦断面図であ
る。
FIG. 5 is a vertical sectional view of a catalyst member according to a third embodiment of the present invention.

【図6】同実施例4の触媒部材の縦断面図である。FIG. 6 is a vertical sectional view of a catalyst member according to the fourth embodiment.

【図7】同実施例5の触媒部材の縦断面図である。FIG. 7 is a vertical sectional view of a catalyst member according to the fifth embodiment.

【図8】同実施例8の触媒部材の斜視図である。FIG. 8 is a perspective view of a catalyst member according to the eighth embodiment.

【図9】同実施例9の触媒部材の斜視図である。FIG. 9 is a perspective view of a catalyst member according to the ninth embodiment.

【図10】同実施例10の触媒部材の一部を切り欠いた
斜視図である。
FIG. 10 is a perspective view in which a part of the catalyst member of Example 10 is cut away.

【図11】本発明の実施例10および比較例3の触媒部
材の燃焼試験に用いた触媒燃焼装置の概略した断面図で
あり、(a)は縦断面図、(b)は横断面図である。
FIG. 11 is a schematic cross-sectional view of a catalytic combustion device used for a combustion test of catalyst members of Example 10 and Comparative Example 3 of the present invention, (a) is a vertical cross-sectional view, and (b) is a horizontal cross-sectional view. is there.

【符号の説明】 1 セラミックス製ハニカム構造体 1a セラミックス製ハニカム板 2 金属基材 3 担体基材 4 セラミックス製ハニカム構造体 5 セラミックス製ハニカム構造体 6 金属基材 7 セラミックス製ハニカム構造体 8 セラミックス製ハニカム構造体 9 金属基材 10 金属製ハニカム構造体 11 セラミックス製ハニカム構造体 12 金属基材 13 セラミックス製ハニカム構造体 14 金属基材 15 セラミックス製ハニカム構造体 16 金属基材 17 貫通孔 18 セラミックス製ハニカム構造体 19 金属基材 20 金属基材 21 燃料供給口 22 イグナイタ 23 燃焼室 24 熱電対 25 熱交換パイプ 26 排気口 27 熱電対 28 触媒部材 30 燃焼室 31 触媒部材 32 燃料供給口 33 燃焼室側壁 34 イグナイタ 35 炎口 36 熱交換用パイプ[Description of Reference Signs] 1 honeycomb structure made of ceramics 1a honeycomb plate made of ceramics 2 metal substrate 3 carrier substrate 4 honeycomb structure made of ceramics 5 honeycomb structure made of ceramics 6 metal substrate 7 honeycomb structure made of ceramics 8 honeycomb made of ceramics Structure 9 Metal Base Material 10 Metal Honeycomb Structure 11 Ceramic Honeycomb Structure 12 Metal Base Material 13 Ceramic Honeycomb Structure 14 Metal Base Material 15 Ceramic Honeycomb Structure 16 Metal Base Material 17 Through Hole 18 Ceramic Honeycomb Structure Body 19 Metal base material 20 Metal base material 21 Fuel supply port 22 Igniter 23 Combustion chamber 24 Thermocouple 25 Heat exchange pipe 26 Exhaust port 27 Thermocouple 28 Catalyst member 30 Combustion chamber 31 Catalytic member 32 Fuel supply port 33 Combustion chamber side wall 34 Igniter 35 flame Mouth 36 Heat exchange pipe

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 軸方向に多数の貫通した細孔を有するセ
ラミックス製のハニカム構造体と、前記ハニカム構造体
の表面を被覆する触媒層と、前記軸方向に対して前記ハ
ニカム構造体の外周側面を囲む筒状の金属基材を具備す
る触媒部材。
1. A honeycomb structure made of ceramics having a large number of pores penetrating in the axial direction, a catalyst layer covering the surface of the honeycomb structure, and an outer peripheral side surface of the honeycomb structure in the axial direction. A catalyst member comprising a cylindrical metal base material surrounding the.
【請求項2】 前記ハニカム構造体が、軸方向を一致さ
せ、かつ同方向に対して並列または直列に一体化された
複数個からなる請求項1記載の触媒部材。
2. The catalyst member according to claim 1, wherein the honeycomb structure is composed of a plurality of members which are aligned in the axial direction and are integrated in parallel or in series with respect to the same direction.
【請求項3】 前記複数個のハニカム構造体が、開口率
の異なる二種類以上からなる請求項2記載の触媒部材。
3. The catalyst member according to claim 2, wherein the plurality of honeycomb structures are made of two or more kinds having different aperture ratios.
【請求項4】 前記複数個のハニカム構造体のうちの少
なくとも一つが、金属製である請求項2または3に記載
の触媒部材。
4. The catalyst member according to claim 2, wherein at least one of the plurality of honeycomb structures is made of metal.
【請求項5】 前記複数個のハニカム構造体の表面に形
成された触媒層が、触媒の異なる二種類以上からなる請
求項2、3または4に記載の触媒部材。
5. The catalyst member according to claim 2, 3 or 4, wherein the catalyst layers formed on the surfaces of the plurality of honeycomb structures are made of two or more kinds of different catalysts.
【請求項6】 前記金属基材が、側面に貫通した複数の
空孔を有する請求項1〜5のいずれかに記載の触媒部
材。
6. The catalyst member according to claim 1, wherein the metal base material has a plurality of holes penetrating a side surface thereof.
【請求項7】 前記金属基材が、側面に凹凸を有する請
求項1〜6のいずれかに記載の触媒部材。
7. The catalyst member according to claim 1, wherein the metal base material has unevenness on a side surface.
【請求項8】 前記ハニカム構造体に、軸方向に貫通し
て挿入された金属棒を具備する請求項1〜7のいずれか
に記載の触媒部材。
8. The catalyst member according to claim 1, further comprising a metal rod inserted through the honeycomb structure in the axial direction.
【請求項9】 前記金属基材の長さが、前記ハニカム構
造体の軸方向の長さよりも長い請求項1〜8のいずれか
に記載の触媒部材。
9. The catalyst member according to claim 1, wherein the length of the metal substrate is longer than the axial length of the honeycomb structure.
【請求項10】 特定方向に貫通した多数の細孔を有す
るセラミックス製のハニカム構造体を、貴金属塩を溶解
した水溶液に無機酸化物を分散させたスラリー、または
水に貴金属を担持した無機酸化物を分散させたスラリー
に浸漬した後、乾燥、焼成することにより、前記ハニカ
ム構造体の表面に貴金属を含む触媒層を形成する工程
と、前記ハニカム構造体および筒状の金属基材を、前記
ハニカム構造体の細孔の延伸方向と前記金属基材の長さ
方向を一致させて同方向に重ね合わせて加圧することに
より、前記ハニカム構造体を前記金属基材の内側面形状
に一致した筒状に切り出すとともに、前記金属基材の内
側面に固定する工程を含む触媒部材の製造方法。
10. A ceramic honeycomb structure having a large number of pores penetrating in a specific direction, a slurry in which an inorganic oxide is dispersed in an aqueous solution of a noble metal salt, or an inorganic oxide in which a noble metal is supported on water. After immersing in a slurry in which is dispersed, by drying and firing, a step of forming a catalyst layer containing a noble metal on the surface of the honeycomb structure, the honeycomb structure and a tubular metal substrate, the honeycomb The honeycomb structure has a cylindrical shape that matches the inner surface shape of the metal base material by aligning the stretching direction of the pores of the structure and the length direction of the metal base material, and stacking and pressing in the same direction. A method of manufacturing a catalyst member, which comprises the steps of cutting out the metal substrate and fixing it to the inner surface of the metal substrate.
【請求項11】 特定方向に貫通した多数の細孔を有す
るセラミックス製のハニカム構造体を、貴金属塩を溶解
した水溶液に無機酸化物を分散させたスラリー、または
水に貴金属を担持した無機酸化物を分散させたスラリー
に浸漬した後、乾燥、焼成することにより、前記ハニカ
ム構造体の表面に貴金属を含む触媒層を形成する工程
と、表面に触媒層を形成された前記ハニカム構造体を複
数個、前記細孔の延伸方向を一致させて積層する工程
と、前記積層された複数のハニカム構造体および筒状の
金属基材を、前記ハニカム構造体の細孔の延伸方向と前
記金属基材の長さ方向を一致させて同方向に重ね合わせ
て加圧することにより、前記ハニカム構造体を前記金属
基材の内側面形状に一致した筒状に切り出すとともに、
前記金属基材の内側面に固定する工程を含む触媒部材の
製造方法。
11. A ceramic honeycomb structure having a large number of pores penetrating in a specific direction, a slurry in which an inorganic oxide is dispersed in an aqueous solution of a noble metal salt, or an inorganic oxide in which noble metal is supported on water. After being dipped in a slurry in which is dispersed, drying and firing, a step of forming a catalyst layer containing a noble metal on the surface of the honeycomb structure, and a plurality of the honeycomb structure having a catalyst layer formed on the surface The step of stacking the pores by aligning the stretching directions of the pores, and the plurality of stacked honeycomb structures and a tubular metal substrate, the stretching direction of the pores of the honeycomb structure and the metal substrate By overlapping and pressing in the same direction in the same length direction, while cutting the honeycomb structure into a tubular shape that matches the inner surface shape of the metal substrate,
A method for manufacturing a catalyst member, comprising the step of fixing the inner surface of the metal base material.
【請求項12】 特定方向に貫通した多数の細孔を有す
るセラミックス製のハニカム構造体および筒状の金属基
材を、前記ハニカム構造体の細孔の延伸方向と前記金属
基材の長さ方向を一致させて同方向に重ね合わせて加圧
することにより、前記ハニカム構造体を前記金属基材の
内側面形状に一致した筒状に切り出すとともに、前記金
属基材の内側面に固定して前記金属基材と前記ハニカム
構造体を一体化した担体基材を作製する工程と、前記担
体基材を、貴金属塩を溶解した水溶液に無機酸化物を分
散させたスラリー、または水に貴金属を担持した無機酸
化物を分散させたスラリーに浸漬した後、乾燥、焼成す
ることにより、前記担体基材の表面に貴金属を含む触媒
層を形成する工程を含む触媒部材の製造方法。
12. A ceramic honeycomb structure having a large number of pores penetrating in a specific direction and a tubular metal base are provided in the direction of extension of the pores of the honeycomb structure and the lengthwise direction of the metal base. By overlapping and pressurizing in the same direction, the honeycomb structure is cut out into a tubular shape that matches the shape of the inner surface of the metal base material, and the metal is fixed to the inner surface of the metal base material. A step of producing a carrier base material in which a base material and the honeycomb structure are integrated, and the carrier base material is a slurry in which an inorganic oxide is dispersed in an aqueous solution of a noble metal salt, or an inorganic material carrying a noble metal in water. A method for producing a catalyst member, comprising a step of forming a catalyst layer containing a noble metal on the surface of the carrier substrate by immersing in a slurry in which an oxide is dispersed, followed by drying and firing.
JP8146232A 1996-06-07 1996-06-07 Catalyst and manufacture thereof Pending JPH09327627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8146232A JPH09327627A (en) 1996-06-07 1996-06-07 Catalyst and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8146232A JPH09327627A (en) 1996-06-07 1996-06-07 Catalyst and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09327627A true JPH09327627A (en) 1997-12-22

Family

ID=15403103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8146232A Pending JPH09327627A (en) 1996-06-07 1996-06-07 Catalyst and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09327627A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067156A1 (en) * 2010-11-18 2012-05-24 日本碍子株式会社 Heat conduction member
US20120247732A1 (en) * 2009-12-11 2012-10-04 Ngk Insulators, Ltd. Heat exchanger
JP2012201582A (en) * 2011-03-28 2012-10-22 Ngk Insulators Ltd Heat conduction member
JP2012200840A (en) * 2011-03-28 2012-10-22 Ngk Insulators Ltd Heat conducting member
JP2012202657A (en) * 2011-03-28 2012-10-22 Ngk Insulators Ltd Heat conducting member
JP2012207845A (en) * 2011-03-29 2012-10-25 Ngk Insulators Ltd Heat-conducting material
EP2693153A1 (en) * 2011-03-29 2014-02-05 NGK Insulators, Ltd. Heat exchange member and heat exchanger
CN103591790A (en) * 2013-11-16 2014-02-19 成都东方凯特瑞环保催化剂有限责任公司 Catalyst drying seat cushion
US20140090821A1 (en) * 2011-06-10 2014-04-03 Ngk Insulators, Ltd. Heat exchanger element, manufacturing method therefor, and heat exchanger
JP2015148437A (en) * 2015-04-27 2015-08-20 日本碍子株式会社 heat conduction member
JP2015165181A (en) * 2015-04-27 2015-09-17 日本碍子株式会社 heat conduction member

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511644A4 (en) * 2009-12-11 2015-02-25 Ngk Insulators Ltd Heat exchanger
US20120247732A1 (en) * 2009-12-11 2012-10-04 Ngk Insulators, Ltd. Heat exchanger
US9534856B2 (en) * 2009-12-11 2017-01-03 Ngk Insulators, Ltd. Heat exchanger
JP5758811B2 (en) * 2009-12-11 2015-08-05 日本碍子株式会社 Heat exchanger
US9739540B2 (en) 2010-11-18 2017-08-22 Ngk Insulators, Ltd. Heat conduction member
CN103221772A (en) * 2010-11-18 2013-07-24 日本碍子株式会社 Heat conduction member
JP5955775B2 (en) * 2010-11-18 2016-07-20 日本碍子株式会社 Thermal conduction member
WO2012067156A1 (en) * 2010-11-18 2012-05-24 日本碍子株式会社 Heat conduction member
JP2012201582A (en) * 2011-03-28 2012-10-22 Ngk Insulators Ltd Heat conduction member
JP2012200840A (en) * 2011-03-28 2012-10-22 Ngk Insulators Ltd Heat conducting member
JP2012202657A (en) * 2011-03-28 2012-10-22 Ngk Insulators Ltd Heat conducting member
EP2693153A4 (en) * 2011-03-29 2014-10-22 Ngk Insulators Ltd Heat exchange member and heat exchanger
EP2693153A1 (en) * 2011-03-29 2014-02-05 NGK Insulators, Ltd. Heat exchange member and heat exchanger
JP2012207845A (en) * 2011-03-29 2012-10-25 Ngk Insulators Ltd Heat-conducting material
JPWO2012169622A1 (en) * 2011-06-10 2015-02-23 日本碍子株式会社 HEAT EXCHANGE MEMBER, ITS MANUFACTURING METHOD, AND HEAT EXCHANGER
US20140090821A1 (en) * 2011-06-10 2014-04-03 Ngk Insulators, Ltd. Heat exchanger element, manufacturing method therefor, and heat exchanger
US10527369B2 (en) * 2011-06-10 2020-01-07 Ngk Insulators, Ltd. Heat exchanger element, manufacturing method therefor, and heat exchanger
CN103591790A (en) * 2013-11-16 2014-02-19 成都东方凯特瑞环保催化剂有限责任公司 Catalyst drying seat cushion
JP2015148437A (en) * 2015-04-27 2015-08-20 日本碍子株式会社 heat conduction member
JP2015165181A (en) * 2015-04-27 2015-09-17 日本碍子株式会社 heat conduction member

Similar Documents

Publication Publication Date Title
JP3001281B2 (en) Honeycomb monolith heater
JP3040510B2 (en) Honeycomb heater
USRE35134E (en) Resistance adjusting type heater and catalytic converter
US5514347A (en) Honeycomb structure and a method of making same
US5288975A (en) Resistance adjusting type heater
US6421915B1 (en) Hexagonal-cell honeycomb structure and method for fixation thereof
US5174968A (en) Structure for electrically heatable catalytic core
JP2818473B2 (en) Catalytic converter for automotive exhaust gas purification and automotive exhaust gas purification method
EP0452125B1 (en) Heater and catalytic converter
JPH06285337A (en) Honeycomb heater
JP4503304B2 (en) Exhaust gas purification catalyst
JPH09327627A (en) Catalyst and manufacture thereof
JP2915586B2 (en) Resistance adjustment type heater
JPH09192453A (en) Catalytic convertor
JP3058995B2 (en) Honeycomb heater
US5861611A (en) Electrically heatable honeycomb body and honeycomb unit comprising said honeycomb body
JP2843426B2 (en) How to operate the catalytic converter
JPH0466714A (en) Resistance regulation type heater and catalyst converter and operation method of catalyst converter
EP0465183B1 (en) Catalytic converter with resistance heater
JP3252983B2 (en) Tandem-type metal supported catalyst
JP2818477B2 (en) Catalytic converter for automotive exhaust gas purification
JP3091201B2 (en) Catalytic converter for automotive exhaust gas purification
JP2863330B2 (en) Resistance adjustment type heater
JPH05222921A (en) Resistance regulating type heater
JPH05138042A (en) Metal carrier catalyst for purifying exhaust gas