JP2012206917A - Binder, power feeding unit of electrostatic chuck using the same and manufacturing method therefor - Google Patents

Binder, power feeding unit of electrostatic chuck using the same and manufacturing method therefor Download PDF

Info

Publication number
JP2012206917A
JP2012206917A JP2011075682A JP2011075682A JP2012206917A JP 2012206917 A JP2012206917 A JP 2012206917A JP 2011075682 A JP2011075682 A JP 2011075682A JP 2011075682 A JP2011075682 A JP 2011075682A JP 2012206917 A JP2012206917 A JP 2012206917A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
hole
binder
bonding
power feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011075682A
Other languages
Japanese (ja)
Other versions
JP5717248B2 (en
Inventor
Yutaka Sato
佐藤  裕
Hiroto Unno
裕人 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2011075682A priority Critical patent/JP5717248B2/en
Publication of JP2012206917A publication Critical patent/JP2012206917A/en
Application granted granted Critical
Publication of JP5717248B2 publication Critical patent/JP5717248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a binder, a power feeding unit of an electrostatic chuck using the binder, and a manufacturing method therefor in which a precise binding layer can be formed without cracking in a binding part of ceramics and a metal when manufacturing a power feeding unit of the electrostatic chuck.SOLUTION: The binder includes tungsten, active silver solder and an organic binder. After removing the organic binder by heating, the binder contains tungsten at 20 to 50 vol.% and the remaining part is comprised of the active silver solder. A hole 4 of a ceramics structure in which a base material 1, an internal electrode 2 and a dielectric 3 are disposed in order is filled with the binder, and a metal electrode 5 is inserted thereinto and bonded by heating, thereby forming a power feeding unit of an electrostatic chuck.

Description

本発明は静電チャック等を製造する際にセラミックスと金属とを接合するために用いる接合剤と、これを用いた静電チャックの給電部及びその製造方法に関するものである。   The present invention relates to a bonding agent used for bonding ceramics and metal when manufacturing an electrostatic chuck or the like, a power feeding unit of an electrostatic chuck using the same, and a manufacturing method thereof.

静電チャックは、ベース材の上に誘電体層を設け、誘電体層に電圧を印加し、誘電体層に載せたウエハ等の被吸着体と誘電体との間に発生する静電吸着力によってウエハを吸着するものである。静電チャック用の材料としては、耐摩耗性の高いセラミックスが多く用いられている。静電チャックは、誘電体とベース材となる絶縁体で構成されるが、誘電体に電圧を印加するためには、誘電体とベース材の中間に内部電極を設け、この内部電極に電圧を印加する必要がある。誘電体とベース材に挟まれた内部電極に電圧を印加するためには、静電チャックの側面で導通を取るのが簡便な方法であるが、誘電体側に生じるリーク電流が大きくなる等の問題がある。この問題を解決するためには、誘電体と反対側のベース材の底面(露出面)から内部電極に至る穴を設け、その穴に金属電極を入れて内部電極と導通が取れるように接合することが必要となる。   An electrostatic chuck has a dielectric layer on a base material, a voltage is applied to the dielectric layer, and an electrostatic chucking force generated between a target object such as a wafer placed on the dielectric layer and the dielectric. To adsorb the wafer. As the material for the electrostatic chuck, ceramics with high wear resistance are often used. An electrostatic chuck is composed of a dielectric and an insulator serving as a base material. To apply a voltage to the dielectric, an internal electrode is provided between the dielectric and the base material, and the voltage is applied to the internal electrode. It is necessary to apply. In order to apply a voltage to the internal electrode sandwiched between the dielectric and the base material, it is a simple method to establish conduction on the side surface of the electrostatic chuck, but there is a problem that the leakage current generated on the dielectric side increases. There is. In order to solve this problem, a hole extending from the bottom surface (exposed surface) of the base material opposite to the dielectric to the internal electrode is provided, and a metal electrode is inserted into the hole so as to be electrically connected to the internal electrode. It will be necessary.

セラミックスと金属とを接合する場合、接合剤として活性銀ロウを用いることによって接合体を得ることができる。しかしながら、活性銀ロウによる接合では、活性銀ロウの融点以上の温度で熱処理し、活性銀ロウを溶融させることが必要であるため、セラミックスと活性銀ロウの熱膨張係数の違いから、接合時に熱応力が発生し亀裂が発生する問題から生じる。特に、上述のようにベース材のセラミックスに設けた穴の中に金属を接合する場合、拘束された構造での接合となるため、穴の角部などに応力が集中しやく、亀裂の発生を抑制することは極めて困難である。   When ceramics and metal are joined, a joined body can be obtained by using active silver solder as a joining agent. However, in joining with active silver solder, it is necessary to heat the active silver solder at a temperature equal to or higher than the melting point of the active silver solder to melt the active silver solder. It arises from the problem of stress and cracking. In particular, as described above, when a metal is joined into a hole provided in the base material ceramics, it becomes a constrained structure, so stress is likely to concentrate on the corners of the hole and cracks may occur. It is extremely difficult to suppress.

セラミックスと金属との接合において、熱膨張差による熱応力を緩和する方法として従来様々な方法が検討されている。   Various methods have been studied in the past as methods for relieving thermal stress due to thermal expansion differences in bonding ceramics and metals.

特許文献1には、モリブデン粉末、タングステン粉末及びセラミックス粉末の中から選ばれた1種又は2種以上の混合物からなる熱膨張低減剤を用いて活性ロウ材の熱膨張を低減する技術が開示されている。   Patent Document 1 discloses a technique for reducing the thermal expansion of an active brazing material using a thermal expansion reducing agent made of one or a mixture of two or more selected from molybdenum powder, tungsten powder and ceramic powder. ing.

特許文献2には、熱応力を軽減するべく、Agが60〜80質量%、Cuが20〜40質量%からなる合金80〜98質量%と、Ti若しくはTiの水素化物1〜10質量%と、比表面積が2000〜10000cm/gのMo又はW粒子1〜10質量%とからなるセラミックス−金属接合用ロウ材が開示されている。 In Patent Document 2, in order to reduce thermal stress, an alloy of 80 to 98% by mass of Ag consisting of 60 to 80% by mass of Ag and 20 to 40% by mass of Cu, and 1 to 10% by mass of hydride of Ti or Ti In addition, a brazing material for ceramic-metal bonding comprising Mo or W particles of 1 to 10% by mass with a specific surface area of 2000 to 10000 cm 2 / g is disclosed.

特許文献3には、ロウ材が工具を破損するという問題点を解消するべく、ダイヤモンド及び/又は立方晶窒化硼素を20容量%以上含有する焼結体部が、接合層を介して工具母材に直接接合されている硬質焼結体切削工具において、前記接合層が、該接合層全体に対して2〜15質量%の、W又はMoの少なくとも一方からなる粒子と、該接合層全体に対して1〜10質量%の、Ti又はZrの少なくとも一方と、Ag又はCuの少なくとも一方からなる残部と、不可避不純物と、からなる硬質焼結体切削工具が開示されている。   In Patent Document 3, in order to solve the problem that the brazing material breaks the tool, a sintered body portion containing 20% by volume or more of diamond and / or cubic boron nitride includes a tool base material via a bonding layer. In the hard sintered body cutting tool that is directly bonded to the bonding layer, the bonding layer is composed of 2 to 15 mass% of particles consisting of at least one of W or Mo with respect to the entire bonding layer, and the entire bonding layer. 1 to 10% by mass of a hard sintered body cutting tool comprising at least one of Ti or Zr, the balance consisting of at least one of Ag or Cu, and inevitable impurities is disclosed.

特許文献4には、MoやW等の高融点金属粉末の影響でロウ材表面に凹凸やボイドが発生しやすく、そのためロウ材表面の凹凸やボイドに大気中の水分が浸入してロウ材に腐食を発生させてしまいやすいという問題点を解消するべく、セラミックスと金属との接合面をTi、Zr、Hfの少なくとも一種を含有するAg−Cu合金からなるロウ材で接合したセラミックス−金属接合構造であって、前記ロウ材は前記接合面の中央領域のみにMo又はWが含有されているセラミックス−金属接合構造が開示されている。   In Patent Document 4, irregularities and voids are likely to be generated on the surface of the brazing material due to the influence of high melting point metal powders such as Mo and W. Therefore, moisture in the atmosphere enters into the irregularities and voids on the surface of the brazing material. In order to solve the problem that corrosion is likely to occur, a ceramic-metal bonded structure in which the bonding surface between the ceramic and the metal is bonded with a brazing material made of an Ag-Cu alloy containing at least one of Ti, Zr, and Hf. The brazing material discloses a ceramic-metal bonding structure in which Mo or W is contained only in the central region of the bonding surface.

特許文献5には、セラミックス部材と金属部材の接合方法であって、凹部と凸部を嵌合する構造での異種接合の場合はコーナー部に残留応力が集中しやすく、クラックが発生するという問題点を解消するべく、凹部を有するセラミックス部材と、前記凹部に嵌合する凸部を有する金属部材と、前記セラミックス部材の凹部底面部と前記金属部材の凸部先端部とを接合し、かつ、前記金属部材の先端部と側面部との間のコーナーを覆う硬ロウ材と粒子状の物質を含み多孔質である第1の接合剤と、前記セラミックス部材の凹部側面部と前記金属部材の凸部側面部とを接合する硬ロウ材を含む第2の接合剤とを有する接合部材が開示されている。   Patent Document 5 discloses a method of joining a ceramic member and a metal member, and in the case of heterogeneous joining with a structure in which a concave portion and a convex portion are fitted, the residual stress tends to concentrate on the corner portion, and a crack is generated. In order to eliminate the point, a ceramic member having a concave portion, a metal member having a convex portion that fits into the concave portion, a concave bottom surface portion of the ceramic member, and a convex tip end portion of the metal member are joined, and A hard soldering material covering a corner between the tip portion and the side surface portion of the metal member, a first bonding agent containing a particulate material and porous; a concave side surface portion of the ceramic member; and a convex portion of the metal member A bonding member having a second bonding agent containing a hard brazing material that bonds the side surface portion is disclosed.

しかしながら、特許文献1〜4のように平面での接合を目的とした従来の技術では、静電チャックの給電部を製造すると接合部に亀裂が生じるという問題を解決することはできない。また、特許文献5に開示された技術のように、多孔質なロウ材部を設けることにより熱応力を緩和する方法では、接合部の強度が低下するなどの問題を解決することは困難である。   However, the conventional techniques aiming at joining in a plane as in Patent Documents 1 to 4 cannot solve the problem that a crack occurs in the joint when the power feeding part of the electrostatic chuck is manufactured. In addition, as in the technique disclosed in Patent Document 5, it is difficult to solve a problem such as a decrease in the strength of the joint portion by a method of reducing thermal stress by providing a porous brazing material portion. .

特開平03−080160号公報Japanese Patent Laid-Open No. 03-080160 特開平11−343179号公報Japanese Patent Laid-Open No. 11-343179 特開平11−188510号公報Japanese Patent Laid-Open No. 11-188510 特開平11−335184号公報Japanese Patent Laid-Open No. 11-335184 特開2004−273736号公報JP 2004-273736 A

本発明が解決しようとする課題は、静電チャックの給電部を製造するにあたり、セラミックスと金属との接合部に亀裂を生じない緻密な接合層を形成できる接合剤と、当該接合剤を用いた静電チャックの給電部及びその製造方法を提供することにある。   The problem to be solved by the present invention is to use a bonding agent capable of forming a dense bonding layer that does not cause cracks in a bonding portion between a ceramic and a metal, and the bonding agent in manufacturing a power feeding portion of an electrostatic chuck. An object of the present invention is to provide a power feeding unit for an electrostatic chuck and a manufacturing method thereof.

発明者らは、鋭意研究開発の結果、タングステンと活性銀ロウと有機バインダとから構成される接合剤を使用することに着目し、有機バインダを加熱除去した後のタングステンと活性銀ロウとの配合が、タングステン20〜50体積%で残部が活性銀ロウとなる場合には亀裂が発生せず、かつ緻密な接合部が得られることを発見した。   As a result of earnest research and development, the inventors focused on using a bonding agent composed of tungsten, active silver wax, and an organic binder, and blended tungsten and active silver wax after the organic binder was removed by heating. However, it has been discovered that when 20 to 50% by volume of tungsten and the balance is activated silver brazing, cracks do not occur and a dense joint can be obtained.

本発明の要旨は以下のようになる。
(1)セラミックスと金属とを接合する接合剤であって、タングステンと活性銀ロウと有機バインダとから構成され、かつ、有機バインダを加熱除去した後に、タングステンを20体積%〜50体積%含有し、残部が活性銀ロウからなる接合剤。
(2)ベース材、内部電極、誘電体が順に配置されたセラミックス構造体のベース材の露出面から内部電極に至る穴が形成され、その穴の内部に、(1)に記載の接合剤を介して金属電極が接合されている静電チャックの給電部。
(3)ベース材、内部電極、誘電体が順に配置されたセラミックス構造体のベース材の露出面から内部電極に至る穴が形成され、その穴の内部に金属電極が接合されている静電チャックの給電部の製造方法において、前記穴の内部に、(1)に記載の接合剤を装填し、前記金属電極を挿入して加熱接合する静電チャックの給電部の製造方法。
The gist of the present invention is as follows.
(1) A bonding agent for bonding ceramic and metal, which is composed of tungsten, active silver brazing, and an organic binder, and contains 20% by volume to 50% by volume of tungsten after the organic binder is removed by heating. A bonding agent, the balance of which is made of active silver wax.
(2) A hole extending from the exposed surface of the base material of the ceramic structure in which the base material, the internal electrode, and the dielectric are sequentially arranged to the internal electrode is formed, and the bonding agent according to (1) is provided inside the hole. A power feeding part of the electrostatic chuck to which the metal electrode is joined via.
(3) An electrostatic chuck in which a hole extending from the exposed surface of the base material of the ceramic structure in which the base material, the internal electrode, and the dielectric are sequentially arranged to the internal electrode is formed, and the metal electrode is bonded to the inside of the hole In the method for manufacturing the power feeding unit, the method for manufacturing the power feeding unit of the electrostatic chuck in which the bonding agent according to (1) is loaded in the hole, and the metal electrode is inserted and heat-bonded.

本発明の接合剤を用いて製造された静電チャックの給電部には、亀裂が発生しない。また、接続部が緻密であるため、接合強度に優れるとともに信頼性があり、量産可能である。   Cracks do not occur in the power feeding portion of the electrostatic chuck manufactured using the bonding agent of the present invention. In addition, since the connecting portion is dense, it has excellent bonding strength and is reliable and can be mass-produced.

給電部を有する静電チャックの一例を示す。An example of an electrostatic chuck having a power feeding unit is shown. 金属電極接合部に生じた亀裂を示す。The crack which arose in the metal electrode junction part is shown.

(第1の実施形態)
第1の実施形態は、セラミックスと金属とを接合する接合剤であって、タングステンと活性銀ロウと有機バインダとから構成され、かつ、有機バインダを加熱除去した後に、タングステンを20体積%〜50体積%含有し、残部が活性銀ロウからなる接合剤である。
(First embodiment)
The first embodiment is a bonding agent for bonding ceramics and metal, and is composed of tungsten, active silver wax, and an organic binder. After the organic binder is removed by heating, 20 vol% to 50% of tungsten is removed. The bonding agent is contained in volume% and the balance is made of active silver wax.

この本発明による接合剤は、タングステン粉末と活性銀ロウ粉末と有機バインダとを混合することによって得られる。これらを混合してペースト状とすることで流動性の高い接合剤が得られ、静電チャックに設けた穴に金属電極を挿入した際の狭い隙間にも接合剤を密に充填することが可能となる。接合剤にタングステン粉末と活性銀ロウ粉末だけを混合したものを用いた場合、穴と金属電極の狭い隙間に接合剤を密に充填することができないため、緻密な接合部を得ることは困難である。また、穴と金属電極の隙間にタングステン粉末を充填し、その上から活性銀ロウを溶融させる方法では、タングステン粉末の間に活性銀ロウを浸透させることが困難であり、緻密な接合部を得ることができない。   The bonding agent according to the present invention can be obtained by mixing tungsten powder, active silver wax powder, and an organic binder. By mixing these together into a paste, a highly fluid bonding agent can be obtained, and the bonding agent can be tightly filled into a narrow gap when a metal electrode is inserted into a hole provided in an electrostatic chuck. It becomes. When using a mixture of only tungsten powder and active silver brazing powder as the bonding agent, it is difficult to obtain a dense bonding part because the bonding agent cannot be tightly filled in the narrow gap between the hole and the metal electrode. is there. Also, in the method of filling the gap between the hole and the metal electrode with tungsten powder and melting the active silver solder from the top, it is difficult to infiltrate the active silver solder between the tungsten powder, and a dense joint is obtained. I can't.

本発明において有機バインダとしては、セルロース系樹脂等の樹脂成分をエタノール等のアルコール、芳香族炭化水素等の有機溶媒、あるいはテレピン油の油成分と混合したものを用いることが好ましい。これらの有機バインダ成分は、加熱除去した際、炭素等の残留成分が残らず、また、接合のため活性銀ロウが溶融する温度よりも低温で分解、除去され、活性銀ロウが溶融して接合される温度で残留成分が残らないものである。炭素等の残留成分が生成するようなバインダ成分を用いると、残留成分が接合部に欠陥として残ったり、活性銀ロウと残留成分が反応して化合物を接合層内部に形成し、接合部の強度を低下させる原因となる。   In the present invention, as the organic binder, it is preferable to use a resin component such as cellulose resin mixed with an alcohol such as ethanol, an organic solvent such as aromatic hydrocarbon, or an oil component of turpentine oil. When these organic binder components are removed by heating, residual components such as carbon do not remain and are decomposed and removed at a temperature lower than the temperature at which the active silver wax melts for bonding, and the active silver wax is melted and bonded. The residual component does not remain at the temperature to be applied. If a binder component that generates a residual component such as carbon is used, the residual component remains as a defect in the joint, or the active silver wax reacts with the residual component to form a compound in the joint layer, thereby strengthening the joint. It will cause the decrease.

すなわち、接合温度以下で分解し、かつ残留成分のない有機バインダにタングステン粉末と活性銀ロウ粉末を混合したものが本発明の接合剤である。つまり、有機バインダを加熱除去した後の本発明の接合剤は、タングステンと活性銀ロウとからなる。ただし、これは、タングステンと活性銀ロウのほかに、有機バインダの残留成分や不可避的不純物が不純物レベル(3質量%以下)で含有されうることも含む概念である。   That is, the bonding agent of the present invention is a mixture of tungsten powder and active silver wax powder in an organic binder that decomposes below the bonding temperature and has no residual components. That is, the bonding agent of the present invention after the organic binder is removed by heating is composed of tungsten and active silver solder. However, this is a concept that includes, in addition to tungsten and active silver wax, residual components of organic binders and inevitable impurities can be contained at an impurity level (3% by mass or less).

(成分の数値限定理由)
有機バインダを加熱除去した後にタングステン粉末が20〜50体積%となるようにした理由は、20体積%未満の場合、接合剤の熱膨張率が大きいため、接合剤の活性銀ロウ成分を熱処理により溶融した後の冷却過程で静電チャックの誘電体あるいはベース材との熱膨張差に起因する熱応力が大きくなり、静電チャックにクラックが生じてしまい、50体積%を超える場合、タングステン粉の間を埋める活性銀ロウ成分が少ないため、緻密な接合部を得ることができないためである。
(Reason for limiting numerical values of ingredients)
The reason why the tungsten powder is 20 to 50% by volume after the organic binder is removed by heating is that when the amount is less than 20% by volume, the thermal expansion coefficient of the bonding agent is large. In the cooling process after melting, the thermal stress due to the thermal expansion difference from the dielectric or base material of the electrostatic chuck increases, and the electrostatic chuck cracks. This is because there are few active silver brazing components filling the gap, so that a dense joint cannot be obtained.

タングステン粉末としては、平均粒径が1〜100μmのものを用いることが好ましい。1μm未満の粉末を用いた場合、有機バインダと活性銀ロウ粉、タングステン粉を混合して得られるペースト状の接合剤の粘度が高くなるため、接合剤が静電チャックの穴と金属電極の隙間に密に充填されにくくなり、接合後に欠陥が残りやすくなるためである。また、100μmより大きい粉末を用いた場合、穴と金属電極の隙間に対して粉末が大きすぎるため充填され難くなるためである。また、平均粒径の異なる2種類のタングステン粉末を用いることが好ましい。これは大きい粉末の隙間に小さい粉末が充填されることで、充填率が向上するため、接合剤を密に充填することが可能となり、接合後の接合部も緻密になるためである。   It is preferable to use a tungsten powder having an average particle diameter of 1 to 100 μm. When a powder of less than 1 μm is used, the viscosity of the paste-like bonding agent obtained by mixing an organic binder, active silver brazing powder, and tungsten powder increases, so that the bonding agent is a gap between the electrostatic chuck hole and the metal electrode. This is because it is difficult to densely fill the film and defects are likely to remain after bonding. In addition, when a powder larger than 100 μm is used, the powder is too large with respect to the gap between the hole and the metal electrode, so that it is difficult to fill the powder. Moreover, it is preferable to use two types of tungsten powders having different average particle diameters. This is because the filling rate is improved by filling the gaps between the large powders with a small powder, so that the bonding agent can be densely filled and the bonded portion after bonding becomes dense.

活性銀ロウとしては、銀、銅あるいはチタンを混合した銀合金粉末を用いることができる。接合時の熱応力を低減するためには、接合温度を低くすることが好ましいことから、低融点の合金が得られる組成である、銀60〜80質量%、銅20〜40質量%、チタン1〜10質量%の合金を用いることが好ましい。また、合金の融点が800℃以下となる銀68〜75質量%、銅25〜32質量%、チタン1〜5質量%の合金を用いることにより、850℃以下の低温で接合できるため、更に好ましい。   As the active silver wax, silver alloy powder mixed with silver, copper or titanium can be used. In order to reduce the thermal stress at the time of joining, it is preferable to lower the joining temperature. Therefore, 60-80% by mass of silver, 20-40% by mass of copper, and 1% of titanium, which are compositions with which a low melting point alloy is obtained. It is preferable to use an alloy of 10 to 10% by mass. Moreover, since it can join at a low temperature of 850 degrees C or less by using the alloy of 68-75 mass% of silver from which melting | fusing point of an alloy will be 800 degrees C or less, copper 25-32 mass%, and titanium 1-5 mass%, it is still more preferable. .

(第2の実施形態)
第2の実施形態は、ベース材、内部電極、誘電体が順に配置されたセラミックス構造体のベース材の露出面から内部電極に至る穴が形成され、その穴の内部に、第1の実施形態において説明した接合剤を介して金属電極が接合されている静電チャックの給電部である。
(Second Embodiment)
In the second embodiment, a hole is formed from the exposed surface of the base material of the ceramic structure in which the base material, the internal electrode, and the dielectric are sequentially arranged to the internal electrode, and the first embodiment is formed inside the hole. It is the electric power feeding part of the electrostatic chuck to which the metal electrode is joined via the bonding agent explained in 1.

静電チャックは、図1に示すようにベース材1、内部電極2、誘電体3が順に配置された構造を有する。この静電チャックに給電部を形成するにあたり、ベース材1に底面(露出面)から内部電極2に至る穴4を形成する。この際、穴4は内部電極2が穴の端面もしくは側面に露出するように形成する。穴4の形状は、穴4の内部に挿入する金属電極5の形状に合わせ、例えば円筒状の金属電極を使用する場合は円筒状の穴を形成する。この際、金属電極5と穴4の内壁の隙間にペースト状の接合剤が容易に充填されるように、隙間が100μm以上となるように穴4を形成することが好ましい。また、接合剤の厚みが厚くなると発生する熱応力も大きくなるため、隙間が500μm以下になるように穴4を形成することが好ましい。   As shown in FIG. 1, the electrostatic chuck has a structure in which a base material 1, an internal electrode 2, and a dielectric 3 are arranged in this order. In forming the power feeding portion in the electrostatic chuck, a hole 4 extending from the bottom surface (exposed surface) to the internal electrode 2 is formed in the base material 1. At this time, the hole 4 is formed so that the internal electrode 2 is exposed on the end face or side face of the hole. The shape of the hole 4 is matched with the shape of the metal electrode 5 inserted into the hole 4. For example, when a cylindrical metal electrode is used, a cylindrical hole is formed. At this time, it is preferable to form the hole 4 so that the gap becomes 100 μm or more so that the gap between the metal electrode 5 and the inner wall of the hole 4 is easily filled with the paste-like bonding agent. Moreover, since the thermal stress which generate | occur | produces will become large when the thickness of a bonding agent becomes thick, it is preferable to form the hole 4 so that a clearance gap may be 500 micrometers or less.

次に、金属電極5により構成される給電部と誘電体3とを穴4を通じて接合する。接合の方法としては、穴4にペースト状の接合剤を装填する。接合剤の量は、金属電極5を挿入した際、穴4と金属電極5及び誘電体3との隙間を埋めるのに十分な量とする。接合剤を穴4に装填した後、金属電極5を穴4に挿入し、金属電極5を誘電体3側に向け押し込んで設置する。これにより、接合剤を穴4と金属電極5及び誘電体3との間隙に隙間なく充填することが可能となる。   Next, the power feeding portion constituted by the metal electrode 5 and the dielectric 3 are joined through the hole 4. As a bonding method, a paste-like bonding agent is loaded into the holes 4. The amount of the bonding agent is sufficient to fill the gap between the hole 4 and the metal electrode 5 and the dielectric 3 when the metal electrode 5 is inserted. After the bonding agent is loaded into the hole 4, the metal electrode 5 is inserted into the hole 4, and the metal electrode 5 is pushed toward the dielectric 3 and installed. As a result, the bonding agent can be filled in the gap between the hole 4 and the metal electrode 5 and the dielectric 3 without any gap.

次に、接合剤中の有機バインダを除去するために、熱処理を施す。熱処理は、有機バインダ成分が完全に分解し、除去される温度で行う。また、熱処理は、大気中、Arなどの不活性ガス雰囲気中、あるいは真空中で行う。金属電極の酸化を防ぐためには、不活性ガス雰囲気中あるいは真空中で行うことが好ましい。   Next, heat treatment is performed to remove the organic binder in the bonding agent. The heat treatment is performed at a temperature at which the organic binder component is completely decomposed and removed. The heat treatment is performed in the air, in an inert gas atmosphere such as Ar, or in a vacuum. In order to prevent oxidation of the metal electrode, it is preferably performed in an inert gas atmosphere or in a vacuum.

有機バインダを除去した後、接合剤による接合を実現するために熱処理を施す。この接合のための熱処理は、接合剤中の活性銀ロウの融点以上で実施するが、活性銀ロウが溶融して接合するのに適した粘度となる融点より50〜100℃高い温度で実施することが好ましい。接合のための熱処理は、不活性ガス雰囲気中あるいは真空中で行うが、接合後の接合部分の空隙を減らすためには真空中で行うことが好ましい。また、上述した有機バインダを分解、除去するための熱処理と接合のための熱処理は同一工程の熱処理で行うこともできる。   After removing the organic binder, heat treatment is performed to realize bonding with the bonding agent. The heat treatment for bonding is performed at a temperature equal to or higher than the melting point of the active silver wax in the bonding agent, but is performed at a temperature 50 to 100 ° C. higher than the melting point at which the active silver wax becomes a viscosity suitable for melting and bonding. It is preferable. The heat treatment for bonding is performed in an inert gas atmosphere or in vacuum, but is preferably performed in vacuum in order to reduce voids in the bonded portion after bonding. Moreover, the heat treatment for decomposing and removing the organic binder and the heat treatment for bonding can be performed in the same step.

以上の方法により、亀裂が発生せず接合部が緻密な給電部を形成することが可能である。そして、この給電部を介して誘電体3に電圧を印加することで、誘電体3に載せたSiウエハ8等の被吸着体と誘電体3との間に発生する静電吸着力によってSiウエハ8を吸着することが可能となる。   By the above method, it is possible to form a power feeding portion in which a crack is not generated and the joint portion is dense. Then, by applying a voltage to the dielectric 3 through the power supply unit, the Si wafer is generated by the electrostatic attraction force generated between the dielectric 3 and an object to be adsorbed such as the Si wafer 8 placed on the dielectric 3. 8 can be adsorbed.

ベース材にアルミナ、誘電体に酸化チタンを添加したアルミナを用いて作製した静電チャックに、ベース材側から内部電極に達する径8.5mm、深さ5mmの穴を形成した。この穴に、銀70.1質量%、銅27.9質量%、チタン2.0質量%の合金粉からなる活性銀ロウ粉末と、タングステン粉と、テレピン油、石油ナフサ及びセルロース樹脂からなる有機バインダとを混合したものを装填し、径8mm、高さ4.5mmのチタン製電極を穴に挿入して給電部を形成した。これを真空中600℃で熱処理した後、真空中850℃で30分熱処理して接合を行った。   A hole having a diameter of 8.5 mm and a depth of 5 mm reaching the internal electrode from the base material side was formed in an electrostatic chuck manufactured using alumina as a base material and alumina added with titanium oxide as a dielectric. In this hole, an active silver wax powder made of an alloy powder of 70.1% by weight of silver, 27.9% by weight of copper, and 2.0% by weight of titanium, an organic powder made of tungsten powder, turpentine oil, petroleum naphtha and cellulose resin. A mixture with a binder was loaded, and a titanium electrode having a diameter of 8 mm and a height of 4.5 mm was inserted into the hole to form a power feeding portion. This was heat treated in vacuum at 600 ° C., and then heat treated at 850 ° C. in vacuum for 30 minutes for bonding.

得られた給電部の部分を切断し、断面を鏡面研磨した後、走査型電子顕微鏡により観察してクラックの有無を確認するとともに、接合部の空隙の断面積を測定することにより空隙率を測定した。   After cutting the part of the obtained power feeding part and mirror polishing the cross section, the presence of cracks was confirmed by observation with a scanning electron microscope, and the porosity was measured by measuring the cross-sectional area of the gap in the joint did.

有機バインダを加熱除去した後のタングステンと活性銀ロウの配合を変えた場合の、各給電部の接合部分の亀裂の有無及び接合部の空隙率を表1に示す。   Table 1 shows the presence / absence of cracks in the joint portion of each power feeding portion and the porosity of the joint portion when the composition of tungsten and active silver wax after the organic binder is removed by heating is changed.

有機バインダを加熱除去した後のタングステンの体積%が20、30、35、40、50の実施例1〜5では、給電部の接合部分には亀裂は生じなかった。   In Examples 1 to 5 in which the volume percent of tungsten after the organic binder was removed by heating was 20, 30, 35, 40, and 50, no crack occurred in the joint portion of the power feeding portion.

しかし、有機バインダを加熱除去した後のタングステンの体積%が15の比較例1では、給電部の接合部分には亀裂が生じた(図2の符号8が亀裂)。また、有機バインダを加熱除去した後のタングステンの体積%が55の比較例2では、給電部の接合部分に36%の空隙が生じた。   However, in Comparative Example 1 in which the volume percentage of tungsten after removing the organic binder by heating was 15, a crack occurred in the joint portion of the power feeding portion (reference numeral 8 in FIG. 2 is a crack). Further, in Comparative Example 2 in which the volume percentage of tungsten after the organic binder was removed by heating was 55, a void of 36% was generated at the joint portion of the power feeding portion.

1 ベース材
2 内部電極
3 誘電体
4 穴
5 金属電極
6 接合剤
7 亀裂
8 Siウエハ(被吸着体)
DESCRIPTION OF SYMBOLS 1 Base material 2 Internal electrode 3 Dielectric body 4 Hole 5 Metal electrode 6 Binder 7 Crack 8 Si wafer (adsorbed body)

Claims (3)

セラミックスと金属とを接合する接合剤であって、
タングステンと活性銀ロウと有機バインダとから構成され、かつ、有機バインダを加熱除去した後に、タングステンを20体積%〜50体積%含有し、残部が活性銀ロウからなる接合剤。
A bonding agent for bonding ceramic and metal,
A bonding agent comprising tungsten, active silver wax, and an organic binder, and containing 20% by volume to 50% by volume of tungsten after the organic binder is removed by heating, with the balance being made of active silver wax.
ベース材、内部電極、誘電体が順に配置されたセラミックス構造体のベース材の露出面から内部電極に至る穴が形成され、その穴の内部に、請求項1に記載の接合剤を介して金属電極が接合されている静電チャックの給電部。   A hole extending from the exposed surface of the base material of the ceramic structure in which the base material, the internal electrode, and the dielectric are sequentially arranged to the internal electrode is formed, and a metal is formed in the hole via the bonding agent according to claim 1. Electrostatic chuck power supply unit to which electrodes are joined. ベース材、内部電極、誘電体が順に配置されたセラミックス構造体のベース材の露出面から内部電極に至る穴が形成され、その穴の内部に金属電極が接合されている静電チャックの給電部の製造方法において、
前記穴の内部に、請求項1に記載の接合剤を装填し、前記金属電極を挿入して加熱接合する静電チャックの給電部の製造方法。
Electrostatic chuck power supply unit in which a hole extending from the exposed surface of the base material of the ceramic structure in which the base material, the internal electrode, and the dielectric are sequentially arranged to the internal electrode is formed, and the metal electrode is bonded to the inside of the hole In the manufacturing method of
The manufacturing method of the electric power feeding part of the electrostatic chuck which fills the inside of the said hole with the bonding | jointing agent of Claim 1, and inserts the said metal electrode and heat-joins.
JP2011075682A 2011-03-30 2011-03-30 Electrostatic chuck power supply unit and manufacturing method thereof Active JP5717248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011075682A JP5717248B2 (en) 2011-03-30 2011-03-30 Electrostatic chuck power supply unit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011075682A JP5717248B2 (en) 2011-03-30 2011-03-30 Electrostatic chuck power supply unit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012206917A true JP2012206917A (en) 2012-10-25
JP5717248B2 JP5717248B2 (en) 2015-05-13

Family

ID=47187000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011075682A Active JP5717248B2 (en) 2011-03-30 2011-03-30 Electrostatic chuck power supply unit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5717248B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026096A (en) * 1988-03-04 1990-01-10 Toshiba Corp Metal-ceramic brazing material paste and electronic part
JPH06329481A (en) * 1993-05-20 1994-11-29 Noritake Co Ltd Ceramics-metal composite and its production
JPH1112053A (en) * 1997-06-20 1999-01-19 Ngk Insulators Ltd Bonded structure of ceramic and its production
JPH11350060A (en) * 1998-06-10 1999-12-21 Toshiba Corp High specific gravity metallic material and golf club using this metal and pendulum type pedometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026096A (en) * 1988-03-04 1990-01-10 Toshiba Corp Metal-ceramic brazing material paste and electronic part
JPH06329481A (en) * 1993-05-20 1994-11-29 Noritake Co Ltd Ceramics-metal composite and its production
JPH1112053A (en) * 1997-06-20 1999-01-19 Ngk Insulators Ltd Bonded structure of ceramic and its production
JPH11350060A (en) * 1998-06-10 1999-12-21 Toshiba Corp High specific gravity metallic material and golf club using this metal and pendulum type pedometer

Also Published As

Publication number Publication date
JP5717248B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP3967278B2 (en) Joining member and electrostatic chuck
JP5645307B2 (en) Brazing material for air bonding, bonded body, and current collecting material
JP5623783B2 (en) Brazing material for air bonding, bonded body, and current collecting material
KR101867625B1 (en) Member for semiconductor manufacturing device
KR101432320B1 (en) Bonded structure and method of producing the same
JP5591627B2 (en) Ceramic member and manufacturing method thereof
JP2004303818A (en) Heat spreader module and method for manufacturing the same
JP2006327888A (en) Brazed structure of ceramic and metal
JP2010111523A (en) Ceramic member having conductor built-in, and method for manufacturing the same
JP2007136503A (en) Clad solder for joining
WO2018180306A1 (en) Molded body for joining and method for manufacturing same
JP5717248B2 (en) Electrostatic chuck power supply unit and manufacturing method thereof
JP5828391B2 (en) Joining jig and joining jig unit using the same
JP2021058900A (en) Joint structure
JP4953873B2 (en) Composite bonding material and bonded body
KR102148297B1 (en) Method for hybrid transient liquid phase sintering bonding for dissimilar material bonding
JP6323128B2 (en) Circuit board manufacturing method
JP2006120973A (en) Circuit board and manufacturing method thereof
JP4583053B2 (en) Bonded body, wafer holding member using the same, and manufacturing method thereof
CN106312369A (en) Solder for connecting ceramics with kovar alloys
JP2003288867A (en) Ceramic terminal
JP2006005262A (en) Hermetic seal cover and its manufacturing method
JP2001220256A (en) Metal-ceramic bonded material and method for producing the same
JP4428890B2 (en) Ceramic member, joined body, and container for vacuum switch
JP2014187252A (en) Joining material, joining structure and process of manufacturing the same, and semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150313

R150 Certificate of patent or registration of utility model

Ref document number: 5717248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250