JP2012204642A - Surface mounted capacitor - Google Patents

Surface mounted capacitor Download PDF

Info

Publication number
JP2012204642A
JP2012204642A JP2011068357A JP2011068357A JP2012204642A JP 2012204642 A JP2012204642 A JP 2012204642A JP 2011068357 A JP2011068357 A JP 2011068357A JP 2011068357 A JP2011068357 A JP 2011068357A JP 2012204642 A JP2012204642 A JP 2012204642A
Authority
JP
Japan
Prior art keywords
metal core
layer
capacitor
anode
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011068357A
Other languages
Japanese (ja)
Inventor
Kazue Shimogawara
一恵 下川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2011068357A priority Critical patent/JP2012204642A/en
Publication of JP2012204642A publication Critical patent/JP2012204642A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high capacity surface mounted capacitor which easily forms a uniform insulation resin layer for electrically insulating an anode part and a cathode part, prevents short circuits, and has a small leakage current in a capacitor element forming the surface mounted capacitor.SOLUTION: A thickness end surface of a cross section in the shorter side direction of a metal core part 14 of an insulation part 13, formed being covered with an insulation resin layer 15 for electrically insulating an anode part 11 and a cathode part 12, forms shapes protruding in the outer peripheral direction of the metal core part 14.

Description

本発明は、プリント配線基板に表面実装する表面実装型コンデンサに関し、特に母材として金属を用いる電解コンデンサ素子で構成された表面実装型コンデンサに関する。   The present invention relates to a surface-mounted capacitor that is surface-mounted on a printed wiring board, and more particularly to a surface-mounted capacitor that includes an electrolytic capacitor element that uses a metal as a base material.

従来、電解コンデンサ素子(以下、「コンデンサ素子」という。)は、タンタル、アルミニウム、または、ニオブ等の弁作用金属を母材として用いている。アルミニウムを用いた場合には金属芯部の一部をエッチングにより拡面化して、電気化学的処理により誘電体層が形成される。   Conventionally, electrolytic capacitor elements (hereinafter referred to as “capacitor elements”) have used a valve metal such as tantalum, aluminum, or niobium as a base material. When aluminum is used, a part of the metal core is enlarged by etching, and a dielectric layer is formed by electrochemical treatment.

従来のコンデンサ素子の長手方向の片端に陽極部を設けた形状の表面実装型コンデンサについて説明する。図3は、従来の表面実装型コンデンサを構成するコンデンサ素子を示す図である。図3(a)は、平面図、図3(b)は、A−A断面図、図3(c)は、B−B断面図である。   A conventional surface mount capacitor having an anode portion at one end in the longitudinal direction of a capacitor element will be described. FIG. 3 is a diagram showing a capacitor element constituting a conventional surface mount type capacitor. 3A is a plan view, FIG. 3B is an AA cross-sectional view, and FIG. 3C is a BB cross-sectional view.

図3の示す、従来の表面実装型コンデンサを構成するコンデンサ素子10は、陽極部11としての金属芯部14と、陰極部12としての金属芯部14の表面を拡面化したエッチング層16の上に酸化被膜である誘電体層(図示せず)と固体電解質である導電性高分子層17とグラファイト層18と銀ペースト層19で構成されている。   The capacitor element 10 constituting the conventional surface mount capacitor shown in FIG. 3 includes a metal core portion 14 as the anode portion 11 and an etching layer 16 in which the surface of the metal core portion 14 as the cathode portion 12 is enlarged. A dielectric layer (not shown) which is an oxide film, a conductive polymer layer 17 which is a solid electrolyte, a graphite layer 18 and a silver paste layer 19 are formed thereon.

陽極部11である金属芯部14と陰極部12の境界には絶縁のために、スクリーン印刷により陽極部11の一部を覆うに絶縁樹脂層15からなる絶縁部13が形成されている。また、エッチング層16の上に形成された誘電体層の表面には、導電性高分子層17を備えている。この導電性高分子層17の表面にグラファイト層18及び銀ペースト層19を順次形成して陰極部12が形成される。このコンデンサ素子10の陽極部11の金属芯部14に陽極リード(図示せず)を、陰極部12の銀ペースト層19に陰極リード(図示せず)を接続後、外装樹脂でモールドすることにより表面実装型コンデンサが作製される。   An insulating part 13 made of an insulating resin layer 15 is formed at the boundary between the metal core part 14 and the cathode part 12, which are the anode part 11, so as to cover a part of the anode part 11 by screen printing. A conductive polymer layer 17 is provided on the surface of the dielectric layer formed on the etching layer 16. A cathode layer 12 is formed by sequentially forming a graphite layer 18 and a silver paste layer 19 on the surface of the conductive polymer layer 17. An anode lead (not shown) is connected to the metal core portion 14 of the anode portion 11 of the capacitor element 10 and a cathode lead (not shown) is connected to the silver paste layer 19 of the cathode portion 12, and then molded with an exterior resin. A surface mount capacitor is produced.

上述した構成は、例えば特許文献1に開示されている。特許文献1では、陽極と陰極の境界に形成されたレジスト樹脂の少なくとも一部を絶縁樹脂で覆う構成になっている。これにより、導電性ペーストの所定位置からのはみ出しによる短絡、もしくは、コンデンサ素子の積層体形成時の素子ずれによる短絡を防ぐ効果を有している。   The above-described configuration is disclosed in Patent Document 1, for example. In Patent Document 1, at least a part of the resist resin formed at the boundary between the anode and the cathode is covered with an insulating resin. Thereby, it has the effect of preventing a short circuit due to protrusion of the conductive paste from a predetermined position, or a short circuit due to an element shift at the time of forming a capacitor element laminate.

特開2009−129936号公報JP 2009-129936 A

しかしながら、従来の技術では、表面実装型コンデンサを構成するコンデンサ素子10において、高静電容量の表面実装型コンデンサを得るための手段として、金属芯部の表面を拡面化したエッチング層の上に形成する誘電体層の表面積を大きくするために適する、厚いアルミニウム材の使用が挙げられている。この場合、図3(c)に示すように、金属芯部14に使用するアルミニウム材が厚くなり、コンデンサ素子10の陽極部11と陰極部12の境界部に絶縁樹脂層15を形成する際に、金属芯部14の側面部分(図3(c)の点線で囲んだ部分)に均一に形成することが難しいという課題があった。   However, in the conventional technique, as a means for obtaining a surface mount capacitor having a high capacitance in the capacitor element 10 constituting the surface mount capacitor, the surface of the metal core portion is formed on an etching layer having an enlarged surface. The use of a thick aluminum material suitable for increasing the surface area of the dielectric layer to be formed is mentioned. In this case, as shown in FIG. 3C, the aluminum material used for the metal core portion 14 becomes thick, and when the insulating resin layer 15 is formed at the boundary portion between the anode portion 11 and the cathode portion 12 of the capacitor element 10. There is a problem that it is difficult to form the metal core portion 14 uniformly on the side surface portion (the portion surrounded by the dotted line in FIG. 3C).

コンデンサ素子10の絶縁部13において、陽極部11の側面部分に形成する絶縁樹脂層15の樹脂量が不足し、十分に形成できない場合には、導電性高分子層17や銀ペースト層19を形成する際に陽極部11表面にも形成され、陽極部11と陰極部12間のショートの発生、または漏れ電流が大きくなっていた。また、ショートの発生や漏れ電流の増大を防止するために絶縁樹脂層15の樹脂量を多くして形成した場合、陽極部11と陰極部12を構成部分が狭くなり、有効面積が減少することにより、コンデンサ素子10の容量を低下させるという課題があった。   In the insulating portion 13 of the capacitor element 10, when the resin amount of the insulating resin layer 15 formed on the side surface portion of the anode portion 11 is insufficient and cannot be sufficiently formed, the conductive polymer layer 17 and the silver paste layer 19 are formed. In this case, it is also formed on the surface of the anode part 11, and a short circuit between the anode part 11 and the cathode part 12 or a leakage current is increased. Further, when the insulating resin layer 15 is formed with a large amount of resin in order to prevent occurrence of short circuit and increase of leakage current, the constituent parts of the anode part 11 and the cathode part 12 become narrow and the effective area decreases. Thus, there is a problem of reducing the capacity of the capacitor element 10.

よって、上述したコンデンサ素子10を備えた表面実装型コンデンサにおいても、ショートの発生、漏れ電流が大きいという課題があった。   Therefore, the surface mount capacitor provided with the capacitor element 10 described above also has a problem that a short circuit occurs and a leakage current is large.

また、特許文献1で述べられている従来技術では、工数が増える上に、コンデンサ素子を複数積層する場合に絶縁樹脂の厚み分について、導電性ペーストを用いることにより陰極部を接続する必要があった。   In the prior art described in Patent Document 1, the number of steps is increased, and when a plurality of capacitor elements are stacked, it is necessary to connect the cathode portion by using a conductive paste for the thickness of the insulating resin. It was.

そこで本発明は、コンデンサ素子の陽極部と陰極部を絶縁するために、容易に均一な絶縁樹脂層を形成し、ショートの発生がなく、漏れ電流が小さく、かつ高容量の表面実装型コンデンサを提供することを目的とする。   In view of this, the present invention provides a surface-mounted capacitor that easily forms a uniform insulating resin layer in order to insulate the anode portion and the cathode portion of the capacitor element, has no short circuit, has a small leakage current, and has a high capacity. The purpose is to provide.

上記の課題を解決するために、本発明は、陽極部と陰極部を絶縁するために絶縁樹脂層で覆い形成された絶縁部の金属芯部の短手方向断面の厚み端面が、金属芯部の外周方向に凸形状であるようにしたものである。   In order to solve the above-described problems, the present invention provides a metal core portion having a thickness end face in a short-side cross section of a metal core portion of an insulating portion formed by covering with an insulating resin layer to insulate an anode portion and a cathode portion. It is made to have a convex shape in the outer peripheral direction.

すなわち、本発明によれば、矩形形状を有する金属芯部の長手方向の両端部の少なくとも一方に形成された陽極部と、前記金属芯部の表面を拡面化したエッチング層の上に酸化被膜である誘電体層、固体電解質である導電性高分子層、グラファイト層、銀ペースト層が順次覆うように形成された陰極部からなるコンデンサ素子を備える表面実装型コンデンサであって、前記金属芯部と前記陰極部の境界に前記陽極部の一部を絶縁樹脂層で覆う絶縁部が形成され、前記絶縁部を形成する前記金属芯部の短手方向断面の厚み端面が、前記金属芯部の外周方向に凸形状であることを特徴とする表面実装型コンデンサが得られる。   That is, according to the present invention, the oxide film is formed on the anode part formed on at least one of both ends in the longitudinal direction of the metal core part having a rectangular shape, and on the etching layer in which the surface of the metal core part is enlarged. A surface mount capacitor comprising a capacitor element comprising a cathode portion formed so as to cover a dielectric layer, a solid electrolyte, a conductive polymer layer, a graphite layer, and a silver paste layer in order, the metal core portion An insulating part that covers a part of the anode part with an insulating resin layer is formed at the boundary between the metal part and the cathode part, and the thickness end surface of the metal core part forming the insulating part has a thickness end surface of the metal core part. A surface-mounted capacitor having a convex shape in the outer peripheral direction can be obtained.

また、本発明によれば前記凸形状が、階段状または弓形状であることを特徴とする上記の表面実装型コンデンサが得られる。   Further, according to the present invention, there is obtained the above surface mount capacitor, wherein the convex shape is a stepped shape or a bow shape.

また、本発明によれば、前記絶縁樹脂層が、エポキシ樹脂、ポリウレタン樹脂、ポリイミド樹脂、フェノール樹脂、ポリエステル樹脂、ポリアクリル樹脂、シリコーン系樹脂の中から選択される少なくとも1種であることを特徴とする上記の表面実装型コンデンサが得られる。   According to the invention, the insulating resin layer is at least one selected from an epoxy resin, a polyurethane resin, a polyimide resin, a phenol resin, a polyester resin, a polyacrylic resin, and a silicone resin. The above surface mount type capacitor is obtained.

また、本発明によれば、前記絶縁樹脂層は、スクリーン印刷またはパット印刷により形成されたことを特徴とする上記の表面実装型コンデンサが得られる。   In addition, according to the present invention, there can be obtained the above surface mount type capacitor, wherein the insulating resin layer is formed by screen printing or pad printing.

また、本発明によれば、前記コンデンサ素子の長手方向の片端に陽極部を設けたことを特徴とする上記の表面実装型コンデンサが得られる。   In addition, according to the present invention, there can be obtained the above surface mount type capacitor characterized in that an anode portion is provided at one end in the longitudinal direction of the capacitor element.

また、本発明によれば、前記コンデンサ素子を複数積層して構成されたことを特徴とする上記の表面実装型コンデンサが得られる。   In addition, according to the present invention, there can be obtained the above surface mount type capacitor characterized in that a plurality of the capacitor elements are laminated.

本発明によれば、絶縁樹脂層を少ない工程で、精度良く、均一な層として形成することが出来るので、工数及びコストを下げ、容易に製造することが出来る。   According to the present invention, since the insulating resin layer can be formed as a uniform layer with few steps with high accuracy, man-hours and costs can be reduced, and the insulating resin layer can be easily manufactured.

よって、絶縁樹脂層により陽極部と陰極部を確実に絶縁できるため、ショートの発生と漏れ電流が小さく、高容量の表面実装型コンデンサを提供することができる。   Therefore, since the anode portion and the cathode portion can be reliably insulated by the insulating resin layer, it is possible to provide a high-capacity surface-mount capacitor with less occurrence of short circuit and leakage current.

本発明の絶縁部における金属芯部を階段状にした表面実装型コンデンサを構成するコンデンサ素子を示す図である。図1(a)は、平面図、図1(b)は、A−A断面図、図1(c)は、B−B断面図である。It is a figure which shows the capacitor | condenser element which comprises the surface mount type capacitor which made the metal core part in the insulating part of this invention stepped. 1A is a plan view, FIG. 1B is an AA cross-sectional view, and FIG. 1C is a BB cross-sectional view. 本発明の絶縁部における金属芯部を弓形状にした表面実装型コンデンサを構成するコンデンサ素子を示す図である。図2(a)は、平面図、図2(b)は、A−A断面図、図2(c)は、B−B断面図である。It is a figure which shows the capacitor | condenser element which comprises the surface mount type capacitor which made the metal core part in the insulation part of this invention the bow shape. 2A is a plan view, FIG. 2B is an AA cross-sectional view, and FIG. 2C is a BB cross-sectional view. 従来の表面実装型コンデンサを構成するコンデンサ素子を示す図である。図3(a)は、平面図、図3(b)は、A−A断面図、図3(c)は、B−B断面図である。It is a figure which shows the capacitor | condenser element which comprises the conventional surface mount type capacitor. 3A is a plan view, FIG. 3B is an AA cross-sectional view, and FIG. 3C is a BB cross-sectional view.

以下、発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the invention will be described in detail with reference to the drawings.

図1は、本発明の絶縁部における金属芯部を階段状にした表面実装型コンデンサを構成するコンデンサ素子を示す図である。図1(a)は、平面図、図1(b)は、A−A断面図、図1(c)は、B−B断面図である。   FIG. 1 is a diagram showing a capacitor element that constitutes a surface-mounted capacitor in which a metal core portion in an insulating portion according to the present invention is stepped. 1A is a plan view, FIG. 1B is an AA cross-sectional view, and FIG. 1C is a BB cross-sectional view.

図1に示すように、表面実装型コンデンサを構成するコンデンサ素子10の陽極部11と陰極部12を絶縁すべく絶縁部13を、絶縁樹脂層15により形成する。金属芯部14の母材としては、アルミニウム、チタン、タンタル、ニオブ等の弁作用金属が用いられる。絶縁部13の形成前に、絶縁樹脂層15が形成される金属芯部14の短手方向断面の厚み端面を、金属芯部の外周方向に階段状または弓形状等の外周方向に凸形状である。この加工は、均一な絶縁樹脂層を形成しやすいように金属芯部14の短手方向断面の厚み端面が、金属芯部の外周方向に凸形状であれば良い。この形成には、レーザによる形成方法が最も適してはいるが、他の方法により成し遂げられるものであれば、特に手段を限定しない。   As shown in FIG. 1, an insulating portion 13 is formed of an insulating resin layer 15 so as to insulate the anode portion 11 and the cathode portion 12 of the capacitor element 10 constituting the surface mount capacitor. A valve metal such as aluminum, titanium, tantalum, or niobium is used as the base material of the metal core portion 14. Before forming the insulating portion 13, the thickness end surface of the cross section in the short direction of the metal core portion 14 on which the insulating resin layer 15 is formed has a convex shape in the outer peripheral direction such as a step shape or an arc shape in the outer peripheral direction of the metal core portion. is there. In this processing, the thickness end surface of the cross section in the short direction of the metal core portion 14 may be convex in the outer peripheral direction of the metal core portion so that a uniform insulating resin layer can be easily formed. For this formation, a laser forming method is most suitable, but the means is not particularly limited as long as it can be achieved by other methods.

金属芯部14の短手方向断面の厚み端面が、金属芯部の外周方向に凸形状である部分を覆う様に、スクリーン印刷またはパット印刷により、陽極部11及び陰極部12の境界に陽極部11の一部がエポキシ樹脂で絶縁樹脂層15を形成する。それにより、図1(c)に示すように側面部が十分に絶縁樹脂層15に覆われて、陰極部12が陽極部11に接触することを防ぐことができる。絶縁樹脂層15の樹脂としては、エポキシ樹脂、ポリウレタン樹脂、ポリイミド樹脂、フェノール樹脂、ポリエステル樹脂、ポリアクリル樹脂、シリコーン系樹脂の中から選択して用いられている。   An anode part is formed at the boundary between the anode part 11 and the cathode part 12 by screen printing or pad printing so that the thickness end face of the cross section in the short direction of the metal core part 14 covers the convex part in the outer peripheral direction of the metal core part. Part of 11 is an epoxy resin to form the insulating resin layer 15. Thereby, as shown in FIG. 1C, the side surface portion is sufficiently covered with the insulating resin layer 15, and the cathode portion 12 can be prevented from coming into contact with the anode portion 11. As the resin of the insulating resin layer 15, an epoxy resin, a polyurethane resin, a polyimide resin, a phenol resin, a polyester resin, a polyacrylic resin, or a silicone resin is selected and used.

次に本発明の表面実装型コンデンサの製造方法について説明する。金属芯部14をエッチング等により拡面化し、電気化学的方法により電圧を印加して化成処理してエッチング層16の上に酸化被膜である誘電体層を形成する。誘電体層を形成後、金属芯部14の陽極部11が形成される部分の誘電体層をレーザにより除去する。次に、陰極部12のエッチング層16の上に形成された誘電体層上に3,4ジオキシチオフェンを化学重合により固体電解質である導電性高分子層17を形成する。   Next, a method for manufacturing the surface mount capacitor of the present invention will be described. The surface of the metal core portion 14 is enlarged by etching or the like, and a voltage is applied by an electrochemical method to form a dielectric layer that is an oxide film on the etching layer 16. After forming the dielectric layer, the portion of the metal core portion 14 where the anode portion 11 is formed is removed by a laser. Next, a conductive polymer layer 17 that is a solid electrolyte is formed on the dielectric layer formed on the etching layer 16 of the cathode portion 12 by chemical polymerization of 3,4 dioxythiophene.

導電性高分子層17を形成後、導電性高分子層17上にグラファイト層18、銀ペースト層19を順次形成してコンデンサ素子10を得る。このコンデンサ素子10の陽極部11に陽極リード(図示せず)を、陰極部12の銀ペースト層19に陰極リード(図示せず)を接続後、外装樹脂でモールドすることにより表面実装型コンデンサを作製する。   After forming the conductive polymer layer 17, the graphite layer 18 and the silver paste layer 19 are sequentially formed on the conductive polymer layer 17 to obtain the capacitor element 10. After connecting an anode lead (not shown) to the anode part 11 of this capacitor element 10 and a cathode lead (not shown) to the silver paste layer 19 of the cathode part 12, a surface mount type capacitor is obtained by molding with an exterior resin. Make it.

本実施の形態では、コンデンサ素子の長手方向の片端に陽極部を設けた形状の表面実装型コンデンサを構成するコンデンサ素子の例を用いて説明したが、両端に陽極部を設けた形状の表面実装型コンデンサにも適用することができる。また、前記のコンデンサ素子を複数積層した表面実装型コンデンサにも適用することができるのは、明らかである。   In the present embodiment, the description has been given using the example of the capacitor element constituting the surface mount type capacitor having the shape in which the anode part is provided at one end in the longitudinal direction of the capacitor element. It can also be applied to type capacitors. It is obvious that the present invention can also be applied to a surface mount capacitor in which a plurality of the capacitor elements are stacked.

(実施例1)
図1に示す、コンデンサ素子の長手方向の片端に陽極部を設けた形状で陽極部の金属芯部の絶縁樹脂層が形成される、金属芯部の短手方向断面の厚み端面が、金属芯部の外周方向に階段状である表面実装型コンデンサを構成するコンデンサ素子を作製した。コンデンサ素子10の製品寸法は、6.5mm(長辺)×3.5mm(短辺)×0.35mm(厚さ)である。金属芯部14には0.4mmのアルミニウム材を用い、図1(c)に示すように、レーザにより金属芯部14の絶縁樹脂層15が形成される断面の厚み端面が、金属芯部の外周方向に階段状に形成して金属芯部14の絶縁樹脂層15が、金属芯部の外周方向に凸形状に形成した。スクリーン印刷手法により凸形状部分を含め陽極部と陰極部の境界部にエポキシ樹脂による絶縁樹脂層15を形成し絶縁部13とした。
Example 1
The insulating resin layer of the metal core part of the anode part is formed in a shape in which the anode part is provided at one end in the longitudinal direction of the capacitor element shown in FIG. A capacitor element constituting a surface-mounted capacitor having a stepped shape in the outer peripheral direction of the part was produced. The product dimensions of the capacitor element 10 are 6.5 mm (long side) × 3.5 mm (short side) × 0.35 mm (thickness). An aluminum material of 0.4 mm is used for the metal core portion 14, and as shown in FIG. 1C, the thickness end face of the cross section where the insulating resin layer 15 of the metal core portion 14 is formed by the laser is the metal core portion 14. The insulating resin layer 15 of the metal core portion 14 formed in a stepped shape in the outer peripheral direction was formed in a convex shape in the outer peripheral direction of the metal core portion. An insulating resin layer 15 made of an epoxy resin was formed at the boundary between the anode part and the cathode part including the convex part by screen printing to form an insulating part 13.

次に、金属芯部14のアルミニウム材をエッチング等により拡面化し、電気化学的方法により電圧6Vを印加して化成処理してエッチング層16の上に誘電体層を形成した。誘電体層を形成後、陽極部11の金属芯部14の部分をレーザにより陽極部11を除き、金属芯部14の両面に形成された誘電体層を除去した。その後、エッチング層16の上に形成された誘電体層上に3,4ジオキシチオフェンを化学重合により形成した導電性高分子層17を形成した。   Next, the surface of the aluminum material of the metal core portion 14 was expanded by etching or the like, and a chemical treatment was performed by applying a voltage of 6 V by an electrochemical method to form a dielectric layer on the etching layer 16. After forming the dielectric layer, the anode core 11 was removed from the portion of the metal core portion 14 of the anode portion 11 by laser, and the dielectric layer formed on both surfaces of the metal core portion 14 was removed. Thereafter, a conductive polymer layer 17 formed by chemical polymerization of 3,4 dioxythiophene was formed on the dielectric layer formed on the etching layer 16.

さらに、導電性高分子層17上にグラファイト層18、銀ペースト層19を順次形成して陰極部12を形成しコンデンサ素子10を得た。このコンデンサ素子10の陽極体に陽極リードを、銀ペースト層19に陰極リードを接続後、外装樹脂でモールドすることにより表面実装型コンデンサを得た。   Further, a graphite layer 18 and a silver paste layer 19 were sequentially formed on the conductive polymer layer 17 to form the cathode portion 12 to obtain the capacitor element 10. After connecting an anode lead to the anode body of this capacitor element 10 and a cathode lead to the silver paste layer 19, a surface mount type capacitor was obtained by molding with an exterior resin.

(実施例2)
図2に示す、コンデンサ素子の長手方向の片端に陽極部を設けた形状で陽極部の金属芯部の絶縁樹脂層が形成される、金属芯部の短手方向断面の厚み端面が、金属芯部の外周方向に弓形状である表面実装型コンデンサを構成するコンデンサ素子を作製した。図2は、本発明の絶縁部における金属芯部を弓形状にした表面実装型コンデンサを構成するコンデンサ素子を示す図である。図2(a)は、平面図、図2(b)は、A−A断面図、図2(c)は、B−B断面図である。コンデンサ素子10の製品寸法は、6.5mm(長辺)×3.5mm(短辺)×0.35mm(厚さ)である。
(Example 2)
The insulating resin layer of the metal core part of the anode part is formed in a shape in which the anode part is provided at one end in the longitudinal direction of the capacitor element shown in FIG. A capacitor element constituting a surface-mounted capacitor having a bow shape in the outer peripheral direction of the part was produced. FIG. 2 is a diagram showing a capacitor element constituting a surface mount type capacitor in which the metal core portion in the insulating portion of the present invention has a bow shape. 2A is a plan view, FIG. 2B is an AA cross-sectional view, and FIG. 2C is a BB cross-sectional view. The product dimensions of the capacitor element 10 are 6.5 mm (long side) × 3.5 mm (short side) × 0.35 mm (thickness).

実施例2は、実施例1記載の陽極部11の金属芯部14の絶縁樹脂層15が形成される金属芯部の短手方向断面の厚み端面が、金属芯部の外周方向に弓形状に加工した以外は同様として表面実装型コンデンサを得た。   In Example 2, the thickness end surface of the cross section in the short direction of the metal core part on which the insulating resin layer 15 of the metal core part 14 of the anode part 11 described in Example 1 is formed has a bow shape in the outer peripheral direction of the metal core part. A surface mount capacitor was obtained in the same manner except that it was processed.

(比較例)
本発明の実施例1、2との比較例として、陽極部の金属芯部の絶縁樹脂層が形成される金属芯部の短手方向断面の一対の端面を直線とし、加工処理していない図3に示す従来の表面実装型コンデンサを作製した。その他製造方法は、金属芯部の短手方向断面の厚み端面を直線に加工した以外は、実施例1と同様として表面実装型コンデンサを得た。
(Comparative example)
As a comparative example with Examples 1 and 2 of the present invention, a pair of end surfaces of the cross section in the short direction of the metal core part on which the insulating resin layer of the metal core part of the anode part is formed are straight and not processed A conventional surface mount capacitor shown in FIG. Other manufacturing methods were the same as in Example 1 except that the thickness end face of the cross section in the short direction of the metal core was processed into a straight line to obtain a surface mount capacitor.

本発明の実施例1、2のコンデンサ素子を用いた表面実装型コンデンサと従来技術である比較例のコンデンサ素子を用いた表面実装型コンデンサを各100個ずつ製作してショート不良の比較を行った。各表面実装型コンデンサの陽極リードと陰極リード間に60秒2.0Vの電圧を印加した後、エレクトロメータ R8240(アドバンテスト製)にて、電流値を読み取り、1mA以上の電流が流れている場合をショート不良と判定した。その結果を表1に示す。   100 surface mount capacitors using the capacitor elements of Examples 1 and 2 of the present invention and 100 surface mount capacitors using the capacitor element of the comparative example, which is a prior art, were manufactured and compared for short-circuit defects. . After applying a voltage of 2.0 V for 60 seconds between the anode lead and cathode lead of each surface mount capacitor, read the current value with an electrometer R8240 (manufactured by Advantest), and a current of 1 mA or more flows. Judged as short-circuited. The results are shown in Table 1.

Figure 2012204642
Figure 2012204642

表1により、本発明の実施例が比較例に対してショート不良が低減していることが明らかになり、本発明のショートの発生と漏れ電流が小さく高容量の表面実装型コンデンサの効果を、確認することが出来た。   From Table 1, it is clear that the short-circuit defect is reduced in the embodiment of the present invention compared to the comparative example, and the effect of the occurrence of the short-circuit and the surface-mounted capacitor with a small leakage current and a high capacity is obtained. I was able to confirm.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

本発明に係る表面実装型コンデンサは、電子部品や電気機器のプリント配線基板等に表面実装されるタイプの固体電解コンデンサに適用することができる。   The surface-mount type capacitor according to the present invention can be applied to a solid electrolytic capacitor of a type that is surface-mounted on a printed wiring board of an electronic component or an electric device.

10 コンデンサ素子
11 陽極部
12 陰極部
13 絶縁部
14 金属芯部
15 絶縁樹脂層
16 エッチング層
17 導電性高分子層
18 グラファイト層
19 銀ペースト層
DESCRIPTION OF SYMBOLS 10 Capacitor element 11 Anode part 12 Cathode part 13 Insulating part 14 Metal core part 15 Insulating resin layer 16 Etching layer 17 Conductive polymer layer 18 Graphite layer 19 Silver paste layer

Claims (6)

矩形形状を有する金属芯部の長手方向の両端部の少なくとも一方に形成された陽極部と、前記金属芯部の表面を拡面化したエッチング層の上に酸化被膜である誘電体層、固体電解質である導電性高分子層、グラファイト層、銀ペースト層が順次覆うように形成された陰極部からなるコンデンサ素子を備える表面実装型コンデンサであって、前記金属芯部と前記陰極部の境界に前記陽極部の一部を絶縁樹脂層で覆う絶縁部が形成され、前記絶縁部を形成する前記金属芯部の短手方向断面の厚み端面が、前記金属芯部の外周方向に凸形状であることを特徴とする表面実装型コンデンサ。   An anode formed on at least one of both ends in the longitudinal direction of the metal core having a rectangular shape, a dielectric layer that is an oxide film on the etching layer having the surface of the metal core expanded, and a solid electrolyte A surface-mounted capacitor comprising a capacitor element comprising a cathode portion formed so as to sequentially cover a conductive polymer layer, a graphite layer, and a silver paste layer, wherein the boundary is between the metal core portion and the cathode portion. An insulating part that covers a part of the anode part with an insulating resin layer is formed, and a thickness end surface of a cross section in the short direction of the metal core part forming the insulating part is convex in an outer peripheral direction of the metal core part A surface mount capacitor. 前記凸形状が、階段状または弓形状であることを特徴とする請求項1に記載の表面実装型コンデンサ。   The surface-mount capacitor according to claim 1, wherein the convex shape is a stepped shape or a bow shape. 前記絶縁樹脂層が、エポキシ樹脂、ポリウレタン樹脂、ポリイミド樹脂、フェノール樹脂、ポリエステル樹脂、ポリアクリル樹脂、シリコーン系樹脂の中から選択される少なくとも1種であることを特徴とする請求項1または請求項2に記載の表面実装型コンデンサ。   The insulating resin layer is at least one selected from an epoxy resin, a polyurethane resin, a polyimide resin, a phenol resin, a polyester resin, a polyacryl resin, and a silicone resin. 2. A surface mount capacitor according to 2. 前記絶縁樹脂層は、スクリーン印刷またはパット印刷により形成されたことを特徴とする請求項1から請求項3のいずれかに記載の表面実装型コンデンサ。   The surface mount capacitor according to any one of claims 1 to 3, wherein the insulating resin layer is formed by screen printing or pad printing. 前記金属芯部の長手方向の片端に陽極部を設けたことを特徴とする請求項1から請求項4のいずれかに記載の表面実装型コンデンサ。   5. The surface mount capacitor according to claim 1, wherein an anode portion is provided at one end in a longitudinal direction of the metal core portion. 前記コンデンサ素子を複数積層して構成されたことを特徴とする請求項1から請求項5のいずれかに記載の表面実装型コンデンサ。   6. The surface mount capacitor according to claim 1, wherein a plurality of the capacitor elements are stacked.
JP2011068357A 2011-03-25 2011-03-25 Surface mounted capacitor Pending JP2012204642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011068357A JP2012204642A (en) 2011-03-25 2011-03-25 Surface mounted capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011068357A JP2012204642A (en) 2011-03-25 2011-03-25 Surface mounted capacitor

Publications (1)

Publication Number Publication Date
JP2012204642A true JP2012204642A (en) 2012-10-22

Family

ID=47185276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011068357A Pending JP2012204642A (en) 2011-03-25 2011-03-25 Surface mounted capacitor

Country Status (1)

Country Link
JP (1) JP2012204642A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010200A1 (en) * 2015-07-10 2017-01-19 株式会社村田製作所 Capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332631A (en) * 2005-04-27 2006-12-07 Showa Denko Kk Solid-state electrolytic capacitor and manufacturing method thereof
JP2009194061A (en) * 2008-02-13 2009-08-27 Nec Tokin Corp Solid electrolytic capacitor
JP2009238934A (en) * 2008-03-26 2009-10-15 Tdk Corp Electronic component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332631A (en) * 2005-04-27 2006-12-07 Showa Denko Kk Solid-state electrolytic capacitor and manufacturing method thereof
JP2009194061A (en) * 2008-02-13 2009-08-27 Nec Tokin Corp Solid electrolytic capacitor
JP2009238934A (en) * 2008-03-26 2009-10-15 Tdk Corp Electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010200A1 (en) * 2015-07-10 2017-01-19 株式会社村田製作所 Capacitor

Similar Documents

Publication Publication Date Title
US7460359B2 (en) Thin multi-terminal capacitor and method of manufacturing the same
EP3226270B1 (en) Solid electrolytic capacitor
JP2007042932A (en) Solid-state electrolytic capacitor and distributed constant noise filter
WO2018066254A1 (en) Solid electrolytic capacitor
TWI391968B (en) Manufacturing method of electrolytic condenser
US8014127B2 (en) Solid electrolytic capacitor
WO2018066253A1 (en) Solid electrolytic capacitor
JP2007180327A (en) Stacked solid electrolytic capacitor
JP2010225921A (en) Solid electrolytic capacitor
US20120281338A1 (en) Aluminum electrolytic capacitor and method of manfacturing the same
US7957120B2 (en) Capacitor chip and method for manufacturing same
JP2009129936A (en) Surface mounting thin-type capacitor and method of manufacturing the same
JP2002237431A (en) Solid-state electrolytic capacitor and method of manufacturing the same
JP4671339B2 (en) Multilayer solid electrolytic capacitor
JP2012204642A (en) Surface mounted capacitor
JP5892803B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4879845B2 (en) Surface mount capacitor and method of manufacturing the same
JP2007317784A (en) Solid electrolytic capacitor
JP2002343686A (en) Solid electrolytic capacitor and the manufacturing method thereof
JP2004281716A (en) Chip-like solid electrolytic capacitor
JP2010239091A (en) Solid electrolytic capacitor
JP2008117901A (en) Surface-mounting thin capacitor
JP2008300738A (en) Multilayer solid electrolytic capacitor
JP5371865B2 (en) 3-terminal capacitor
JP2010040960A (en) Solid-state electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141022