JP2012202962A - In-reactor apparatus shape measuring instrument and in-reactor apparatus shape measurement method - Google Patents
In-reactor apparatus shape measuring instrument and in-reactor apparatus shape measurement method Download PDFInfo
- Publication number
- JP2012202962A JP2012202962A JP2011070759A JP2011070759A JP2012202962A JP 2012202962 A JP2012202962 A JP 2012202962A JP 2011070759 A JP2011070759 A JP 2011070759A JP 2011070759 A JP2011070759 A JP 2011070759A JP 2012202962 A JP2012202962 A JP 2012202962A
- Authority
- JP
- Japan
- Prior art keywords
- images
- surface shape
- measurement
- image
- shape information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
本発明は、原子炉内機器形状計測装置および原子炉内機器形状計測方法に関する。 The present invention relates to an in-reactor equipment shape measuring apparatus and an in-reactor equipment shape measuring method.
原子力発電プラントでは、機器の経年劣化や損傷にともない機器の取替工事や補修工事を実施する場合がある。補修工事を行う場合、補修方法の検討や、補修装置の使用条件設定を行うために、補修前に補修対象となる箇所の表面形状を計測する必要がある。 In a nuclear power plant, equipment replacement or repair work may be carried out as equipment deteriorates over time or is damaged. When performing repair work, it is necessary to measure the surface shape of the part to be repaired before repair in order to examine the repair method and set the use conditions of the repair device.
そこで従来、計測対象の表面に線状の光を投影し、投影箇所をカメラで撮影した画像から三角測量によって計測対象の表面形状を計測する計測方法や、カメラの位置を変えて計測表面を複数回撮影し、撮影した複数の画像から三角測量によって計測対象の表面形状を計測する測定方法、これら計測方法を実施する計測装置が知られている。これらの計測方法は、安定的な計測結果を得るために、複数回計測して平均処理を行う場合がある。 Therefore, in the past, a method of measuring the surface shape of a measurement target by triangulation from an image obtained by projecting linear light onto the surface of the measurement target and photographing the projection location with a camera, or multiple measurement surfaces by changing the position of the camera 2. Description of the Related Art There are known measurement methods that measure a surface shape of a measurement target by triangulation from a plurality of captured images, and measurement devices that perform these measurement methods. In order to obtain a stable measurement result, these measurement methods may measure a plurality of times and perform an averaging process.
先ず、計測対象の表面に線状の光を投影して計測対象の表面形状を計測する計測方法は、1回の撮影(計測)で必要とする測定範囲の全域の表面形状を計測することが難しく、測定範囲の全域に渡って複数回の撮影(計測)を行う必要が有り、各々の撮影を行うために段取り替えを要するなどして測定時間が比較的長時間掛かるという課題がある。 First, a measurement method for measuring the surface shape of a measurement target by projecting linear light onto the surface of the measurement target can measure the surface shape of the entire measurement range required for one imaging (measurement). It is difficult, and it is necessary to perform imaging (measurement) a plurality of times over the entire measurement range, and there is a problem that it takes a relatively long measurement time because it requires a setup change for each imaging.
次いで、複数の画像から計測対象の表面形状を計測する測定方法は、撮影した画像間で計測対象の同一箇所を写した部分を探索する必要があり、例えば照明の具合やノイズの影響によって計測対象の同一箇所を写した部分を正しく探索することが難しく、計測対象の表面形状を誤って計測してしまう可能性がある。 Next, the measurement method for measuring the surface shape of the measurement target from a plurality of images needs to search for a portion where the same part of the measurement target is copied between the captured images. For example, the measurement target is affected by the influence of lighting conditions or noise. It is difficult to correctly search for a portion where the same part is copied, and the surface shape of the measurement target may be erroneously measured.
また、いずれの計測方法においても、安定的な計測結果を得るために、複数回の計測を行う必要をともないさらに長時間の測定時間を要するという課題がある。 Moreover, in any measurement method, in order to obtain a stable measurement result, there is a problem that a longer measurement time is required along with the necessity of performing multiple measurements.
特に、原子炉の機器形状を測定する場合、原子炉が発する放射線によってカメラの撮影する画像にノイズ(ランダムノイズ)が生じたり、機器の表面状況による画像のコントラストが不足したりすることから、撮影した画像間で計測対象の同一箇所を写した部分を探索することがさらに難しい。 In particular, when measuring the equipment shape of a nuclear reactor, the image taken by the camera may be caused by noise (random noise) due to the radiation emitted by the nuclear reactor, or the contrast of the image may be insufficient due to the surface condition of the equipment. It is more difficult to search for a portion where the same part of the measurement object is copied between the images.
そこで、本発明は、段取り替えを要することなく計測対象を撮影可能であり、かつ撮影した画像からより正確な表面形状を計測可能な原子炉内機器形状計測装置および原子炉内機器形状計測方法を提案することを目的とする。 Therefore, the present invention provides an in-reactor equipment shape measuring apparatus and an in-reactor equipment shape measuring method capable of photographing a measurement object without requiring setup change and capable of measuring a more accurate surface shape from the photographed image. The purpose is to propose.
前記の課題を解決するため本発明に係る原子炉内機器形状計測装置は、計測対象を撮影するカメラと、前記計測対象の表面に沿って前記カメラを走査して撮影範囲が部分的に重なり合う複数の画像を撮影可能にする移動装置と、一対の前記画像間の視差から前記計測対象の表面形状を表す複数の測定点を有する仮表面形状情報を前記複数の画像から順次に演算する形状演算装置と、前記仮表面形状情報を複数重ねて前記測定点が密集する評価点を求め、前記評価点の集合を前記計測対象の表面形状を表す表面形状情報とする形状情報作成装置と、を備えることを特徴とする。 In order to solve the above problems, an in-reactor equipment shape measuring apparatus according to the present invention includes a camera that captures an image of a measurement object, and a plurality of image capturing ranges that overlap by scanning the camera along the surface of the measurement object. And a shape calculation device that sequentially calculates temporary surface shape information having a plurality of measurement points representing the surface shape of the measurement object from the parallax between the pair of images, from the plurality of images. And a shape information creation device for obtaining evaluation points where the measurement points are densely stacked by overlapping a plurality of the temporary surface shape information, and using the set of evaluation points as surface shape information representing the surface shape of the measurement target. It is characterized by.
また、本発明に係る原子炉内機器形状計測方法は、計測対象の表面に沿って撮影範囲が部分的に重なり合う複数の画像を撮影し、一対の前記画像間の視差から前記計測対象の表面形状を表す複数の測定点を有する仮表面形状情報を前記複数の画像から順次に演算し、前記仮表面形状情報を複数重ねて前記測定点が密集する評価点を求め、前記評価点の集合を前記計測対象の表面形状を表す表面形状情報とすることを特徴とする。 Further, in the in-reactor device shape measuring method according to the present invention, a plurality of images whose imaging ranges partially overlap along the surface of the measurement target are captured, and the surface shape of the measurement target is calculated from the parallax between the pair of images. The temporary surface shape information having a plurality of measurement points representing is calculated sequentially from the plurality of images, and a plurality of the temporary surface shape information are overlapped to obtain evaluation points where the measurement points are dense, and the set of evaluation points is It is characterized by using surface shape information representing the surface shape of the measurement target.
本発明によれば、段取り替えを要することなく計測対象を撮影可能であり、かつ撮影した画像からより正確な表面形状を計測可能な原子炉内機器形状計測装置および原子炉内機器形状計測方法を提案できる。 According to the present invention, there is provided an in-reactor equipment shape measuring apparatus and an in-reactor equipment shape measuring method capable of photographing a measurement object without requiring setup change and capable of measuring a more accurate surface shape from the photographed image. Can make a suggestion.
本発明に係る原子炉内機器形状計測装置および原子炉内機器形状計測方法の実施形態について図1から図8を参照して説明する。 Embodiments of an in-reactor equipment shape measuring apparatus and an in-reactor equipment shape measuring method according to the present invention will be described with reference to FIGS.
図1は、本発明の実施形態に係る原子炉内機器形状計測装置を示すシステム構成図である。 FIG. 1 is a system configuration diagram showing an in-reactor equipment shape measuring apparatus according to an embodiment of the present invention.
図2は、本発明の実施形態に係る原子炉内機器形状計測装置の撮影範囲の一例を示す図である。 FIG. 2 is a diagram illustrating an example of an imaging range of the in-reactor equipment shape measuring apparatus according to the embodiment of the present invention.
図1および図2に示すように、本実施形態に係る原子炉内機器形状計測装置1は、計測対象MOを撮影するカメラ2と、計測対象MOの表面Sに沿ってカメラ2を走査して撮影範囲が部分的に重なり合う複数の画像p1、p2、p3………を撮影可能にする移動装置3と、一対の画像(例えば画像p1、p2)間の視差から計測対象MOの表面形状を表す複数の測定点を有する仮表面形状情報を複数の画像p1、p2、p3………から順次に演算する形状演算装置5と、仮表面形状情報を複数重ねて測定点が密集する評価点を求め、評価点の集合を計測対象MOの表面形状を表す表面形状情報とする形状情報作成装置6と、を備える。 As shown in FIGS. 1 and 2, the in-reactor equipment shape measuring apparatus 1 according to the present embodiment scans the camera 2 along the surface S of the measurement object MO and the camera 2 that photographs the measurement object MO. The surface shape of the measurement target MO is represented by the moving device 3 that can shoot a plurality of images p1, p2, p3,... With the imaging ranges partially overlapping, and the parallax between a pair of images (for example, images p1, p2). A shape calculation device 5 that sequentially calculates temporary surface shape information having a plurality of measurement points from a plurality of images p1, p2, p3,..., And evaluation points at which the measurement points are concentrated by overlapping a plurality of temporary surface shape information. And a shape information creation device 6 that uses a set of evaluation points as surface shape information representing the surface shape of the measurement object MO.
また、原子炉内機器形状計測装置1は、画像p1、p2、p3………のノイズを低減するとともにコントラストを改善する画質改善装置7と、一の画像(例えば画像p1)の視点における視点変換画像を他の画像(例えば画像p2)から生成し、一の画像と視点変換画像との一致箇所について仮表面形状情報の測定点を採用し、その他は破棄する仮表面形状情報評価装置8と、を備える。 Further, the in-reactor equipment shape measuring apparatus 1 includes an image quality improving apparatus 7 that reduces noise and improves contrast in the images p1, p2, p3,..., And viewpoint conversion from the viewpoint of one image (for example, the image p1). A temporary surface shape information evaluation device 8 that generates an image from another image (for example, image p2), adopts the measurement points of the temporary surface shape information for the coincident portion between the one image and the viewpoint conversion image, and discards the others; Is provided.
計測対象MOは、例えば原子炉内機器である。 The measurement target MO is, for example, an in-reactor device.
カメラ2は計測対象MOを撮影可能な撮像素子(図示省略)を備える。カメラ2は撮影する画像p1、p2、p3………をデジタルデータへ変換して画質改善装置7へ出力する。カメラ2は、複数の画像p1、p2、p3………として静止画を連続的に撮影可能な所謂デジタルスチルカメラであっても良いし、複数の画像p1、p2、p3………として動画を撮影可能なデジタルビデオカメラであっても良い。 The camera 2 includes an image sensor (not shown) that can photograph the measurement object MO. The camera 2 converts the captured images p1, p2, p3,... Into digital data and outputs the digital data to the image quality improvement device 7. The camera 2 may be a so-called digital still camera capable of continuously taking still images as a plurality of images p1, p2, p3,..., And a moving image as a plurality of images p1, p2, p3,. A digital video camera capable of photographing may be used.
カメラ2が撮影する複数の画像p1、p2、p3………は、カメラ2が時系列に撮影する計測対象MOの画像であり、撮影範囲が部分的に重なり合う一対の画像(例えば画像p1、p2)を複数有し、計測対象MOの表面Sを三次元計測可能な画像重複部dを有する画像群である。 A plurality of images p1, p2, p3,... Taken by the camera 2 are images of the measurement target MO taken by the camera 2 in time series, and a pair of images (for example, images p1, p2) whose shooting ranges partially overlap. ), And an image group having an image overlap portion d capable of three-dimensionally measuring the surface S of the measurement object MO.
移動装置3は、カメラ2を走査可能であるとともに、エンコーダ(図示省略)などカメラ2の現在位置を検知可能な位置センサ(図示省略)を備える。移動装置3は、カメラ2の現在位置を刻々形状演算装置5へ出力する。移動装置3が出力するカメラ2の位置情報は、それぞれの画像p1、p2、p3………に関連付け、各画像p1、p2、p3………の撮影位置となる。 The moving device 3 includes a position sensor (not shown) that can scan the camera 2 and can detect the current position of the camera 2 such as an encoder (not shown). The moving device 3 outputs the current position of the camera 2 to the shape calculating device 5 every moment. The position information of the camera 2 output from the moving device 3 is associated with each of the images p1, p2, p3,..., And becomes the shooting position of each image p1, p2, p3.
なお、カメラ2は、複数台、例えば2台のカメラからなる所謂ステレオカメラであっても良い。この場合、原子炉内機器形状計測装置1は、撮影範囲が部分的に重なり合う一対の画像を1回の走査、撮影で取得できる。 Note that the camera 2 may be a so-called stereo camera including a plurality of cameras, for example, two cameras. In this case, the in-reactor equipment shape measuring apparatus 1 can acquire a pair of images in which the imaging ranges partially overlap by one scanning and imaging.
図3(a)から(c)は、本発明の実施形態に係る原子炉内機器形状計測装置のカメラが撮影する画像のノイズの一例を示す図である。 FIGS. 3A to 3C are diagrams illustrating an example of noise of an image captured by the camera of the in-reactor equipment shape measuring apparatus according to the embodiment of the present invention.
画質改善装置7は、複数の画像p1、p2、p3………の同一座標(具体的には同一画素)に係る輝度を昇順または降順に整列し、整列順位が略中間の輝度で当該座標の輝度を置換して各画像p1、p2、p3………のノイズを低減する。図3(a)から(c)に示すように、画像p1、p2、p3………に発生するノイズnはランダムな位置(異なる座標、画素)に生じるため、任意の画素に係る輝度の時系列な変化に着目すると、その大半にノイズnがなく、整列順位が略中間の輝度を採用することでノイズnを低減できる。 The image quality improvement apparatus 7 arranges the luminances related to the same coordinates (specifically, the same pixel) of the plurality of images p1, p2, p3,... In ascending or descending order, The luminance is replaced to reduce noise in each image p1, p2, p3,. As shown in FIGS. 3A to 3C, noise n generated in the images p1, p2, p3,... Occurs at random positions (different coordinates, pixels). When attention is paid to the series of changes, the noise n can be reduced by adopting the luminance that has almost no noise n and that is in the middle of the order of alignment.
ところで、原子炉内機器である計測対象MOの表面Sはクラッドの付着によって照明の反射率が悪く、カメラ2で撮影する画像p1、p2、p3………の明るさが暗く、またコントラストが弱くなることがある。そこで、画質改善装置7は、複数の画像p1、p2、p3………を加算して得る座標(具体的には画素)毎の輝度の合計値でそれぞれの座標の輝度を正規化しコントラストを改善する。例えば、画像p1、p2、p3………が8bit画像の場合、画像p1、p2、p3………の輝度は0から255の値で表されるところ、画像p1、p2、p3………を例えば10枚加算すると、各座標における輝度の合計値は0から2550の範囲の値となる。画質改善装置7は、ある座標における輝度の合計値(一例として1275)が255になるよう各画像p1、p2、p3………の輝度を正規化して画像p1、p2、p3………のコントラストを改善する。 By the way, the surface S of the measurement target MO, which is an in-reactor device, has poor illumination reflectance due to adhesion of the clad, and the images p1, p2, p3,. May be. Therefore, the image quality improvement device 7 normalizes the luminance of each coordinate by the total luminance value for each coordinate (specifically, pixel) obtained by adding a plurality of images p1, p2, p3,. To do. For example, when the images p1, p2, p3,... Are 8-bit images, the brightness of the images p1, p2, p3,... Is represented by a value from 0 to 255, and the images p1, p2, p3,. For example, when 10 sheets are added, the total value of the luminance at each coordinate becomes a value in the range of 0 to 2550. The image quality improving device 7 normalizes the luminance of each image p1, p2, p3,... So that the total luminance value (1275 as an example) at a certain coordinate is 255, and contrasts of the images p1, p2, p3,. To improve.
画質改善装置7は、ノイズの低減およびコントラストの改善を図った後、画像p1、p2、p3………を形状演算装置5へ出力する。 The image quality improvement device 7 outputs the images p1, p2, p3,... To the shape calculation device 5 after reducing noise and improving the contrast.
形状演算装置5は、画質改善装置7から画像p1、p2、p3………を受け取り、時系列に並ぶ一対の画像(例えば画像p1、p2)間の視差から計測対象MOの表面形状を表す複数の測定点を有する仮表面形状情報を複数の画像p1、p2、p3………から順次に演算する。形状演算装置5は、仮表面形状情報の演算に先立ち、先ず時系列に並ぶ一対の画像(画像p1、p2)間で計測対象MOの同一箇所が写る部分、すなわち対応点を探索する。形状演算装置5は、例えば画像p1上で注目する画素が中央に位置するよう局所ブロックを定義し、画像p1の局所ブロックと画像p2とのブロックマッチングを行って対応点を探索する。形状演算装置5は、このブロックマッチングを画像p1上の各画素に対応して実施する。なお、放射線の影響などによってラインダムなノイズが残留する画像に本処理を適用すると、一対の画像(画像p1、p2)間で比較可能な画素数を減じることになり、画像間の対応付けを誤る可能性が高くなる。そこで、形状演算装置5は、画質改善装置7によってノイズを低減した画像を用いることで画像間の対応付けの信頼性を高める。 The shape calculation device 5 receives the images p1, p2, p3,... From the image quality improvement device 7, and represents a plurality of surface shapes of the measurement target MO from the parallax between a pair of images arranged in time series (for example, the images p1, p2). The temporary surface shape information having the measurement points is sequentially calculated from a plurality of images p1, p2, p3. Prior to the calculation of the temporary surface shape information, the shape calculation device 5 first searches for a portion where the same portion of the measurement object MO appears between a pair of images (images p1 and p2) arranged in time series, that is, corresponding points. For example, the shape calculation device 5 defines a local block so that the pixel of interest on the image p1 is located in the center, and performs block matching between the local block of the image p1 and the image p2 to search for corresponding points. The shape calculation device 5 performs this block matching corresponding to each pixel on the image p1. Note that when this processing is applied to an image in which line-damped noise remains due to the influence of radiation or the like, the number of pixels that can be compared between a pair of images (images p1 and p2) is reduced, and association between the images is performed. There is a high possibility of mistakes. Therefore, the shape calculation device 5 uses the image whose noise has been reduced by the image quality improvement device 7 to increase the reliability of association between images.
なお、仮表面形状情報は画像対(例えば、画像p1、p2の対、画像p2、p3の対、画像p3、p4の対………)毎に演算される。 The provisional surface shape information is calculated for each image pair (for example, a pair of images p1 and p2, a pair of images p2 and p3, a pair of images p3 and p4,...).
次に、形状演算装置5は、画像p1、p2の撮影位置に基づき、三角測量によって一対の画像(画像p1、p2)間の対応点の相対的な位置座標(例えば、画像p1の撮影位置に対する相対的な位置座標)を演算し、計測対象MOの表面形状を表す測定点を得る。形状演算装置5は、同様の演算を一対の画像(例えば画像p1、p2)間で重なり合う撮影範囲の座標毎に行い、さらに時系列に並ぶ複数の画像p1、p2、p3………について順次に行い、演算して得る測定点を画像対(例えば画像p1、p2)毎に仮表面形状情報として整理、調整する。 Next, the shape calculation device 5 performs the relative position coordinates of the corresponding points between the pair of images (images p1 and p2) by triangulation based on the shooting positions of the images p1 and p2 (for example, with respect to the shooting position of the image p1). Relative position coordinates) are calculated to obtain measurement points representing the surface shape of the measurement object MO. The shape calculation device 5 performs the same calculation for each coordinate of the shooting range that overlaps between a pair of images (for example, images p1, p2), and sequentially for a plurality of images p1, p2, p3,. The measurement points obtained by calculation are arranged and adjusted as temporary surface shape information for each image pair (for example, images p1 and p2).
図4(a)は、本発明の実施形態に係る原子炉内機器形状計測装置のカメラが撮影する画像の一例を示す図である。 Fig.4 (a) is a figure which shows an example of the image which the camera of the in-reactor apparatus shape measuring device which concerns on embodiment of this invention image | photographs.
図4(b)は、本発明の実施形態に係る原子炉内機器形状計測装置の視点変換画像の一例を示す図である。 FIG.4 (b) is a figure which shows an example of the viewpoint conversion image of the in-reactor apparatus shape measuring device which concerns on embodiment of this invention.
仮表面形状情報評価装置8は、形状演算装置5から仮表面形状情報を受け取り、一の画像(例えば画像p1)を撮影した際のカメラ2の位置情報および他の画像(例えば画像p2)を撮影した際のカメラ2の位置情報と、形状演算装置5で得る仮表面形状情報(すなわち、測定点の位置座標)とを用いて、他の画像(例えば画像p2)から視点変換画像ptを生成する。この場合、視点変換画像ptは、他の画像(例えば画像p2)の視点を一の画像(例えば画像p1)の視点へ変換した画像となる。図4(a)、(b)に示すように、カメラ2で実際に撮影した画像p1(図4(a))と視点変換画像pt(図4(b))とは、差異eを有する場合がある。仮表面形状情報評価装置8は、この画像p1と視点変換画像ptとを比較して差異eを抽出し、差異eに対応する計測点の情報を仮表面形状情報から破棄する。画像p1と視点変換画像ptとの差異eは形状演算装置5の演算の誤りに起因するため、仮表面形状情報評価装置8は差異eに対応する計測点の情報を仮表面形状情報から破棄して演算の信頼性を向上する。 The temporary surface shape information evaluation device 8 receives the temporary surface shape information from the shape calculation device 5, and takes the position information of the camera 2 and another image (for example, image p2) when one image (for example, image p1) is captured. The viewpoint conversion image pt is generated from another image (for example, the image p2) using the position information of the camera 2 at the time and the temporary surface shape information (that is, the position coordinates of the measurement point) obtained by the shape calculation device 5. . In this case, the viewpoint conversion image pt is an image obtained by converting the viewpoint of another image (for example, image p2) to the viewpoint of one image (for example, image p1). As shown in FIGS. 4A and 4B, when the image p1 actually captured by the camera 2 (FIG. 4A) and the viewpoint conversion image pt (FIG. 4B) have a difference e. There is. The temporary surface shape information evaluation device 8 compares the image p1 with the viewpoint conversion image pt, extracts the difference e, and discards the information on the measurement point corresponding to the difference e from the temporary surface shape information. Since the difference e between the image p1 and the viewpoint conversion image pt is caused by a calculation error of the shape calculation device 5, the temporary surface shape information evaluation device 8 discards the information of the measurement point corresponding to the difference e from the temporary surface shape information. To improve operational reliability.
図5は、本発明の実施形態に係る原子炉内機器形状計測装置の評価メッシュを示す概念図である。 FIG. 5 is a conceptual diagram showing an evaluation mesh of the in-reactor equipment shape measuring apparatus according to the embodiment of the present invention.
図6は、本発明の実施形態に係る原子炉内機器形状計測装置の評価メッシュにおける任意のx−z面を示す概念図である。 FIG. 6 is a conceptual diagram showing an arbitrary xz plane in the evaluation mesh of the in-reactor equipment shape measuring apparatus according to the embodiment of the present invention.
図7は、本発明の実施形態に係る原子炉内機器形状計測装置の任意のx−z面における測定点の存否を示す概念図である。 FIG. 7 is a conceptual diagram showing the presence / absence of measurement points on an arbitrary xz plane of the in-reactor equipment shape measuring apparatus according to the embodiment of the present invention.
図8は、本発明の実施形態に係る原子炉内機器形状計測装置の任意のx−z面における評価点を示す概念図である。 FIG. 8 is a conceptual diagram showing evaluation points on an arbitrary xz plane of the in-reactor equipment shape measuring apparatus according to the embodiment of the present invention.
図5に示すように、形状情報作成装置6は、仮想的な三次元空間状の評価メッシュEMを表すメモリ空間を有する。図6に示すように、形状情報作成装置6は、仮表面形状情報評価装置8から仮表面形状情報を順次に受け取り、測定点m毎に三次元空間上の位置座標を取得し、測定点m毎に最も近接する評価メッシュEMに1票ずつ投じる(図6中、破線範囲)。 As illustrated in FIG. 5, the shape information creation device 6 has a memory space that represents an evaluation mesh EM in a virtual three-dimensional space. As shown in FIG. 6, the shape information creation device 6 sequentially receives temporary surface shape information from the temporary surface shape information evaluation device 8, acquires position coordinates in a three-dimensional space for each measurement point m, and measures the measurement point m. Each time, one vote is cast on the closest evaluation mesh EM (the broken line range in FIG. 6).
なお、説明を簡単にするため、形状情報作成装置6における評価点の導出過程の説明は、三次元空間のY=0の平面(すなわち、x−z平面)上で行い、他を省略する。 In order to simplify the description, the description of the evaluation point derivation process in the shape information creating apparatus 6 is performed on the Y = 0 plane (that is, the xz plane) of the three-dimensional space, and the others are omitted.
仮表面形状情報評価装置8から仮表面形状情報を順次に受け取る度、形状情報作成装置6が仮表面形状情報毎、測定点m毎に評価メッシュEMに1票ずつ投じると、図7に示すように評価メッシュEM毎の得票数(図7中、評価メッシュEMに隣接して表記する数値)は差を生じる。そこで、形状情報作成装置6は、得票数が所定の得票閾値以上(例えば2票以上)の評価メッシュEMを仮採用(図7中、「●」で示す評価メッシュEM)し、他の評価メッシュEMを破棄(図7中、「○」で示す評価メッシュEM)する。 When the temporary surface shape information is sequentially received from the temporary surface shape information evaluation device 8, the shape information creation device 6 casts one vote on the evaluation mesh EM for each temporary surface shape information and for each measurement point m, as shown in FIG. Further, there is a difference in the number of votes obtained for each evaluation mesh EM (numerical value shown adjacent to the evaluation mesh EM in FIG. 7). Therefore, the shape information creation device 6 temporarily adopts an evaluation mesh EM whose number of votes is equal to or greater than a predetermined vote threshold (for example, 2 or more) (an evaluation mesh EM indicated by “●” in FIG. 7), and other evaluation meshes. The EM is discarded (evaluation mesh EM indicated by “◯” in FIG. 7).
さらに、図7および図8に示すように、形状情報作成装置6は、三次元空間内の任意の方向を向く相互に平行な線分毎に評価メッシュEM間の得票数の高低を評価して複数の仮表面形状情報を合成し、計測対象MOの表面形状を表す表面形状情報を作成する。具体的には、形状情報作成装置6は、x−z平面に沿い相互に平行な線分、例えばZ軸に平行な線分を評価線面ELとし、評価線EL毎に得票数が最も多い評価メッシュEMを採用して評価点Eとし、計測対象MOの表面形状を表す表面形状情報を作成する。 Further, as shown in FIG. 7 and FIG. 8, the shape information creation device 6 evaluates the level of the number of votes between the evaluation meshes EM for each of the mutually parallel line segments facing an arbitrary direction in the three-dimensional space. A plurality of temporary surface shape information is synthesized to create surface shape information representing the surface shape of the measurement object MO. Specifically, the shape information creation device 6 sets the line segments parallel to each other along the xz plane, for example, the line segment parallel to the Z axis, as the evaluation line plane EL, and has the largest number of votes for each evaluation line EL. The evaluation mesh EM is adopted as the evaluation point E, and surface shape information representing the surface shape of the measurement target MO is created.
すなわち、原子炉内機器形状計測装置1は、計測対象MOの表面Sに沿って撮影範囲が部分的に重なり合う複数の画像p1、p2、p3………を撮影し、一対の画像(例えば、p1、p2)間の視差から計測対象MOの表面形状を表す複数の測定点mを有する仮表面形状情報を複数の画像p1、p2、p3………から順次に演算し、仮表面形状情報を複数重ねて測定点mが密集する評価点Eを求め、評価点Eの集合を計測対象MOの表面形状Sを表す表面形状情報とする原子炉内機器形状計測方法を採用する。 That is, the in-reactor equipment shape measurement apparatus 1 captures a plurality of images p1, p2, p3,... That overlap the imaging ranges along the surface S of the measurement object MO, and a pair of images (for example, p1) , P2), temporary surface shape information having a plurality of measurement points m representing the surface shape of the measurement object MO is sequentially calculated from a plurality of images p1, p2, p3,. An in-reactor equipment shape measurement method is adopted in which evaluation points E where measurement points m are densely stacked are obtained, and a set of evaluation points E is used as surface shape information representing the surface shape S of the measurement object MO.
本実施形態に係る原子炉内機器形状計測装置1および原子炉内機器形状計測方法は、コントラストが弱かったり、ランダムなノイズが生じたりする画像p1、p2、p3………から信頼性の計測点mのみを採用して評価点Eを得て、ロバストな表面形状計測を行うことが可能になる。 The in-reactor equipment shape measuring apparatus 1 and the in-reactor equipment shape measuring method according to the present embodiment are reliable measurement points from images p1, p2, p3,... With low contrast or random noise. It is possible to perform robust surface shape measurement by using only m to obtain the evaluation point E.
また、本実施形態に係る原子炉内機器形状計測装置1および原子炉内機器形状計測方法は、計測対象MOの表面Sに沿って走査するカメラ2で連続的に撮影する時系列な画像p1、p2、p3………から計測対象MOの表面形状を表す表面形状情報を合成可能であり、段取り替えを要することなく計測対象MOの表面形状計測を行うことが可能になる。 In addition, the in-reactor equipment shape measuring apparatus 1 and the in-reactor equipment shape measuring method according to the present embodiment are time-series images p1, which are continuously captured by the camera 2 that scans along the surface S of the measurement target MO. Surface shape information representing the surface shape of the measurement target MO can be synthesized from p2, p3,..., and it becomes possible to measure the surface shape of the measurement target MO without requiring setup change.
したがって、本実施形態に係る原子炉内機器形状計測装置1および原子炉内機器形状計測方法によれば、段取り替えを要することなく計測対象MOを撮影可能であり、かつ撮影した画像p1、p2、p3………からより正確な表面形状を計測することができる。 Therefore, according to the in-reactor equipment shape measuring apparatus 1 and the in-reactor equipment shape measuring method according to the present embodiment, the measurement object MO can be photographed without requiring setup change, and the photographed images p1, p2, A more accurate surface shape can be measured from p3.
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
1 原子炉内機器形状計測装置
2 カメラ
3 移動装置
5 形状演算装置
6 形状情報作成装置
7 画質改善装置
8 仮表面形状情報評価装置
DESCRIPTION OF SYMBOLS 1 In-reactor equipment shape measuring device 2 Camera 3 Moving device 5 Shape calculating device 6 Shape information creation device 7 Image quality improvement device 8 Temporary surface shape information evaluation device
Claims (8)
前記計測対象の表面に沿って前記カメラを走査して撮影範囲が部分的に重なり合う複数の画像を撮影可能にする移動装置と、
一対の前記画像間の視差から前記計測対象の表面形状を表す複数の測定点を有する仮表面形状情報を前記複数の画像から順次に演算する形状演算装置と、
前記仮表面形状情報を複数重ねて前記測定点が密集する評価点を求め、前記評価点の集合を前記計測対象の表面形状を表す表面形状情報とする形状情報作成装置と、を備えることを特徴とする原子炉内機器形状計測装置。 A camera that captures the measurement object;
A moving device that scans the camera along the surface of the measurement target and that can capture a plurality of images in which imaging ranges partially overlap;
A shape calculation device that sequentially calculates temporary surface shape information having a plurality of measurement points representing the surface shape of the measurement target from the parallax between the pair of images, from the plurality of images;
A shape information creating device that obtains evaluation points at which the measurement points are densely overlapped by superimposing a plurality of the temporary surface shape information, and sets the set of evaluation points as surface shape information representing the surface shape of the measurement target. In-reactor equipment shape measuring device.
一対の前記画像間の視差から前記計測対象の表面形状を表す複数の測定点を有する仮表面形状情報を前記複数の画像から順次に演算し、
前記仮表面形状情報を複数重ねて前記測定点が密集する評価点を求め、
前記評価点の集合を前記計測対象の表面形状を表す表面形状情報とすることを特徴とする原子炉内機器形状計測方法。 Take multiple images with overlapping shooting ranges along the surface of the measurement object,
Temporary surface shape information having a plurality of measurement points representing the surface shape of the measurement target from the parallax between the pair of images is sequentially calculated from the plurality of images,
Obtaining an evaluation point where the measurement points are densely stacked by overlapping the temporary surface shape information,
An in-reactor equipment shape measuring method, wherein the set of evaluation points is used as surface shape information representing a surface shape of the measurement target.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011070759A JP5613603B2 (en) | 2011-03-28 | 2011-03-28 | In-reactor equipment shape measuring apparatus and in-reactor equipment shape measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011070759A JP5613603B2 (en) | 2011-03-28 | 2011-03-28 | In-reactor equipment shape measuring apparatus and in-reactor equipment shape measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012202962A true JP2012202962A (en) | 2012-10-22 |
JP5613603B2 JP5613603B2 (en) | 2014-10-29 |
Family
ID=47184108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011070759A Active JP5613603B2 (en) | 2011-03-28 | 2011-03-28 | In-reactor equipment shape measuring apparatus and in-reactor equipment shape measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5613603B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014225102A (en) * | 2013-05-15 | 2014-12-04 | 日本放送協会 | Image processing apparatus and program |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04259815A (en) * | 1991-02-15 | 1992-09-16 | Shokuhin Sangyo Online Sensor Gijutsu Kenkyu Kumiai | Measured value processing method |
JPH08146185A (en) * | 1994-11-24 | 1996-06-07 | Nuclear Fuel Ind Ltd | Appearance inspecting device for fuel assembly |
JPH09251093A (en) * | 1996-03-14 | 1997-09-22 | Toshiba Corp | In-pile surface inspection device |
JPH1114343A (en) * | 1997-06-24 | 1999-01-22 | Ishikawajima Harima Heavy Ind Co Ltd | Groove part testing device |
JPH11326580A (en) * | 1998-05-15 | 1999-11-26 | Toshiba Corp | Automatic shroud inspection device |
JP2000101926A (en) * | 1998-09-25 | 2000-04-07 | Olympus Optical Co Ltd | Image pickup device |
JP2001349943A (en) * | 2000-06-06 | 2001-12-21 | Hitachi Ltd | Laser range finder, laser range finding method, and measuring device |
JP2002039962A (en) * | 2000-07-27 | 2002-02-06 | Matsushita Electric Ind Co Ltd | Method for inspecting electronic substrate and apparatus using the same |
JP2002107204A (en) * | 2000-09-29 | 2002-04-10 | Sony Corp | Water level measuring device |
JP2003202214A (en) * | 2002-01-04 | 2003-07-18 | Mitsubishi Electric Corp | Shape measuring device and shape measuring method |
JP2007110445A (en) * | 2005-10-13 | 2007-04-26 | Matsushita Electric Ind Co Ltd | Image processor and method |
JP2007333639A (en) * | 2006-06-16 | 2007-12-27 | Toshiba Corp | Inspection system |
JP2010166349A (en) * | 2009-01-16 | 2010-07-29 | Nippon Hoso Kyokai <Nhk> | Noise reduction apparatus and program therefor |
-
2011
- 2011-03-28 JP JP2011070759A patent/JP5613603B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04259815A (en) * | 1991-02-15 | 1992-09-16 | Shokuhin Sangyo Online Sensor Gijutsu Kenkyu Kumiai | Measured value processing method |
JPH08146185A (en) * | 1994-11-24 | 1996-06-07 | Nuclear Fuel Ind Ltd | Appearance inspecting device for fuel assembly |
JPH09251093A (en) * | 1996-03-14 | 1997-09-22 | Toshiba Corp | In-pile surface inspection device |
JPH1114343A (en) * | 1997-06-24 | 1999-01-22 | Ishikawajima Harima Heavy Ind Co Ltd | Groove part testing device |
JPH11326580A (en) * | 1998-05-15 | 1999-11-26 | Toshiba Corp | Automatic shroud inspection device |
JP2000101926A (en) * | 1998-09-25 | 2000-04-07 | Olympus Optical Co Ltd | Image pickup device |
JP2001349943A (en) * | 2000-06-06 | 2001-12-21 | Hitachi Ltd | Laser range finder, laser range finding method, and measuring device |
JP2002039962A (en) * | 2000-07-27 | 2002-02-06 | Matsushita Electric Ind Co Ltd | Method for inspecting electronic substrate and apparatus using the same |
JP2002107204A (en) * | 2000-09-29 | 2002-04-10 | Sony Corp | Water level measuring device |
JP2003202214A (en) * | 2002-01-04 | 2003-07-18 | Mitsubishi Electric Corp | Shape measuring device and shape measuring method |
JP2007110445A (en) * | 2005-10-13 | 2007-04-26 | Matsushita Electric Ind Co Ltd | Image processor and method |
JP2007333639A (en) * | 2006-06-16 | 2007-12-27 | Toshiba Corp | Inspection system |
JP2010166349A (en) * | 2009-01-16 | 2010-07-29 | Nippon Hoso Kyokai <Nhk> | Noise reduction apparatus and program therefor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014225102A (en) * | 2013-05-15 | 2014-12-04 | 日本放送協会 | Image processing apparatus and program |
Also Published As
Publication number | Publication date |
---|---|
JP5613603B2 (en) | 2014-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102096806B1 (en) | 3D sensor system and 3D data acquisition method | |
KR101733228B1 (en) | Apparatus for three dimensional scanning with structured light | |
JP5576726B2 (en) | Three-dimensional measuring apparatus, three-dimensional measuring method, and program | |
JP6296477B2 (en) | Method and apparatus for determining the three-dimensional coordinates of an object | |
US8810801B2 (en) | Three-dimensional measurement apparatus, method for controlling a three-dimensional measurement apparatus, and storage medium | |
CN110268221B (en) | Cord measuring device and cord measuring method | |
JP2012008026A (en) | Trolley wire position measuring device | |
WO2011118476A1 (en) | Three dimensional distance measuring device and method | |
JP2015049765A (en) | Method of correcting distortion of tunnel lining surface image | |
JP2020126590A (en) | Information processing apparatus, information processing method, and program | |
JP5611022B2 (en) | Three-dimensional measuring apparatus and three-dimensional measuring method | |
JP2014035261A (en) | Information processing method, information processor, program, imaging apparatus, inspection method, inspection device, and method of manufacturing substrate | |
TW200817651A (en) | Distance measurement system and method | |
CN108062790B (en) | Three-dimensional coordinate system establishing method applied to object three-dimensional reconstruction | |
JP5336325B2 (en) | Image processing method | |
JP5613603B2 (en) | In-reactor equipment shape measuring apparatus and in-reactor equipment shape measuring method | |
KR101694890B1 (en) | Image processing system and method using 2D images from multiple points | |
JP5925109B2 (en) | Image processing apparatus, control method thereof, and control program | |
CN103888674A (en) | Image acquisition device and method | |
JP5968370B2 (en) | Three-dimensional measuring apparatus, three-dimensional measuring method, and program | |
KR101142279B1 (en) | An apparatus for aligning images in stereo vision system and the method thereof | |
JP2011075311A (en) | Image processing method | |
JP2014235063A (en) | Information processing apparatus and information processing method | |
JP6091092B2 (en) | Image processing apparatus and image processing method | |
JP2008112259A (en) | Image verification method and image verification program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130718 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140701 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140723 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140812 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140908 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5613603 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |