JPH04259815A - Measured value processing method - Google Patents

Measured value processing method

Info

Publication number
JPH04259815A
JPH04259815A JP4293491A JP4293491A JPH04259815A JP H04259815 A JPH04259815 A JP H04259815A JP 4293491 A JP4293491 A JP 4293491A JP 4293491 A JP4293491 A JP 4293491A JP H04259815 A JPH04259815 A JP H04259815A
Authority
JP
Japan
Prior art keywords
thickness
time
band
measurements
rank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4293491A
Other languages
Japanese (ja)
Other versions
JP2791447B2 (en
Inventor
Takashi Komatsu
隆 小松
Kiyoshi Takahashi
清 高橋
Takeo Tanaka
田中 猛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUHIN SANGYO ONLINE SENSOR GIJUTSU KENKYU KUMIAI
Original Assignee
SHOKUHIN SANGYO ONLINE SENSOR GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOKUHIN SANGYO ONLINE SENSOR GIJUTSU KENKYU KUMIAI filed Critical SHOKUHIN SANGYO ONLINE SENSOR GIJUTSU KENKYU KUMIAI
Priority to JP3042934A priority Critical patent/JP2791447B2/en
Publication of JPH04259815A publication Critical patent/JPH04259815A/en
Application granted granted Critical
Publication of JP2791447B2 publication Critical patent/JP2791447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To eliminate the influence of disturbance by ranking the maximum width of predicted measurements and using the physical quantity corresponding to the maximum rank frequency of the rank frequencies corresponding to the measurements continuously obtained in a short time as the measurement of the short time. CONSTITUTION:The thickness (d) of a noodle band 1 can be calculated when pulsative rays of light are projected upon the noodle band 1 from optical sensors 4a and 4b provided on both sides of the band 1 at distances x1 and x2 and the distances x1 and x2 are found from the time lags between the emitting time of the rays of light and receiving time of the reflected rays of light from the band 1. However, because of disturbance, namely, the oscillation of the band 1 produced when the band 1 is cut into pieces of a fixed length by means of a cutter 5, the thickness (d) largely fluctuates at points of time t2, t2, and t3 at nearly regular time intervals. Therefore, the maximum width of predicted measurements are classified into an appropriate number of ranks and the physical quantity corresponding to the rank having the maximum frequency is used as the measurement of a short time by counting the frequency of the ranks corresponding to the measurements continuously obtained in the short time. Therefore, the influence of the disturbance to the measurements during the short time can be eliminated by finding the frequency distribution at every rank of a plural pieces of continuously obtained measurements.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は定常状態を乱す程度の外
乱を受ける系から得られる物理量の測定値を処理する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing measured values of physical quantities obtained from a system subjected to disturbances that disturb its steady state.

【0002】0002

【従来技術】運転中のある系の物理量(温度や速度ある
いは厚みなど)を測定し、その測定値を処理して系の運
転状態を制御するような系がいくつか知られている。
BACKGROUND OF THE INVENTION Several systems are known that measure physical quantities (temperature, speed, thickness, etc.) of a system during operation and process the measured values to control the operating state of the system.

【0003】このような系においては、何らかの外から
の影響で予測測定値をはるかに越える測定値を示すこと
がよくある。このような場合操作すべき量を決定するた
めの測定値としてこのとび出した測定値を平均化した測
定値を使うと、制御すべき量が適当でなく正確な制御が
できなくなるおそれがある。このため、このとび出した
測定値の影響を受けないような処理が好ましい。
[0003] Such systems often exhibit measured values that far exceed predicted measured values due to some external influence. In such a case, if a measured value obtained by averaging these protruding measured values is used as a measured value for determining the amount to be manipulated, the amount to be controlled may not be appropriate and accurate control may not be possible. Therefore, it is preferable to perform processing that is not affected by this protruding measurement value.

【0004】図1はこのような系の一例で、うどんやそ
ばのような麺帯の製造に用いられる麺帯の厚さ制御装置
である。
FIG. 1 shows an example of such a system, which is a noodle sheet thickness control device used for manufacturing noodle sheets such as udon and soba noodles.

【0005】図において、1は麺帯、2は麺帯1の厚さ
を調節するための一対の圧延ローラ、3は厚さが調節さ
れた麺帯1を案内するガイドローラ、4a,4bは麺帯
1の各側近傍に配置された厚さ測定用の光学センサ、5
は麺帯1を一定長さごとに切断するカッター、6は切断
された麺帯から麺線1′を作るための切刃ロールである
In the figure, 1 is a noodle strip, 2 is a pair of rolling rollers for adjusting the thickness of the noodle strip 1, 3 is a guide roller that guides the noodle strip 1 whose thickness has been adjusted, and 4a and 4b are guide rollers. Optical sensors for thickness measurement arranged near each side of the noodle strip 1, 5
6 is a cutter for cutting the noodle strips 1 into predetermined lengths, and 6 is a cutting blade roll for making noodle strings 1' from the cut noodle strips.

【0006】7は光学センサ4aおよび4bの出力から
麺帯1の厚さ値を算出し、厚さ設定値との差分を出力す
るコントローラ、8はコントローラ7から出力される厚
さ調整信号に応じて回転するモータ、9はモータ8によ
り回転されるスクリューであり、厚さ調節ローラ2はこ
のスクリュー9の回転量に応じた距離だけ接近または離
間して麺帯の厚さを調節するようになっている。
7 is a controller that calculates the thickness value of the noodle strip 1 from the outputs of the optical sensors 4a and 4b and outputs the difference from the thickness setting value; 8 is a controller that responds to the thickness adjustment signal output from the controller 7; 9 is a screw rotated by the motor 8, and the thickness adjusting roller 2 approaches or separates by a distance corresponding to the amount of rotation of the screw 9 to adjust the thickness of the noodle strip. ing.

【0007】次に図2を参照して麺帯の厚さ測定の原理
を説明する。
Next, the principle of measuring the thickness of a noodle strip will be explained with reference to FIG.

【0008】図示したように、麺帯1(厚さd)の両側
でそれぞれ距離x1 ,x2 だけ離れた位置に光学セ
ンサ4a,4bを配置し、各光学センサ4a,4bから
麺帯1に向けてパルス光を発光し、その反射光を受光す
ると、発光と受光の時間のずれから距離x1 とx2 
を求めることができる。そこで両光学センサ4aと4b
の間の距離をyとすると、麺帯の厚さdは次の式から算
出できる。
As shown in the figure, optical sensors 4a and 4b are arranged at distances x1 and x2 on both sides of the noodle strip 1 (thickness d), and the optical sensors 4a and 4b are directed toward the noodle strip 1. When the pulsed light is emitted and the reflected light is received, the distances x1 and x2 are
can be found. Therefore, both optical sensors 4a and 4b
When the distance between the noodle strips is y, the thickness d of the noodle strip can be calculated from the following formula.

【0009】d=y−(x1 +x2 )[0009]d=y-(x1+x2)

【0010】0010

【発明が解決しようとする課題】図1の厚さ制御装置に
おいては、このような方法で検出した麺帯の厚さdを利
用して厚さ調節ローラ2の間隙を調節することにより麺
帯の厚さを制御しているが、麺帯1はカッター5により
一定の長さで切断されるため、その切断時の麺帯の揺れ
が外乱となって光学センサ4a,4bの出力から算出し
た厚さdはほぼ一定のタイミングで外乱の影響を受けて
第3図に示すようにその時点t1 ,t2 ,t3 で
大きく変動する。そのために、コントローラ7では外乱
を受けたときの厚さの測定値はローラ2による厚さ制御
には用いないように信号処理する必要があるが、そのた
めの処理回路が必要になるし、外乱を受けるタイミング
が不規則になると信号処理が厄介になる。
Problem to be Solved by the Invention In the thickness control device shown in FIG. However, since the noodle strip 1 is cut at a constant length by the cutter 5, the shaking of the noodle strip during cutting causes a disturbance, which is calculated from the outputs of the optical sensors 4a and 4b. The thickness d is influenced by disturbances at almost constant timing and varies greatly at time points t1, t2, and t3, as shown in FIG. For this reason, the controller 7 needs to perform signal processing so that the measured value of the thickness when subjected to the disturbance is not used for thickness control by the roller 2, but a processing circuit for this is required, and the If the timing of reception becomes irregular, signal processing becomes difficult.

【0011】本発明は上記の点にかんがみてなされたも
ので、定常状態を乱す程度の外乱が不規則に与えられる
系から得られる測定値から外乱による影響を排除するこ
とを目的とする。
The present invention has been made in view of the above-mentioned points, and it is an object of the present invention to eliminate the influence of disturbances from measured values obtained from a system in which disturbances that disturb the steady state are irregularly applied.

【0012】0012

【課題を解決するための手段】本発明において、上記目
的を達成するために、時間的に変化する物理量を測定す
る際に、予想される測定値の最大幅を適宜数にランク分
けし、短時間に連続して得られた測定値に対応するラン
クの頻度を数え、最大頻度を有するランクに相当する物
理量をこの時間の測定値と定めるようにした。
[Means for Solving the Problems] In order to achieve the above object, in the present invention, when measuring a physical quantity that changes over time, the maximum width of expected measured values is ranked appropriately and shortened. The frequency of the rank corresponding to the measured values obtained continuously over time was counted, and the physical quantity corresponding to the rank having the maximum frequency was determined as the measured value for this time.

【0013】[0013]

【作用】連続して得られる複数個の測定値についてラン
クごとの頻度分布を求めることにより、短時間の外乱に
よる測定値への影響を結果として排除することができる
[Operation] By determining the frequency distribution for each rank of a plurality of continuously obtained measured values, it is possible to eliminate the influence of short-term disturbances on the measured values.

【0014】[0014]

【実施例】以下に本発明による測定値処理について第4
図を参照して説明する。
[Example] Below is a fourth explanation of the measured value processing according to the present invention.
This will be explained with reference to the figures.

【0015】実施例として麺帯の厚さを測定して得られ
る測定値の処理について説明するが、本発明は他の同種
の外乱を含む測定値の処理にも適用できることは言うま
でもない。
As an example, processing of measured values obtained by measuring the thickness of noodle strips will be described, but it goes without saying that the present invention can also be applied to processing of measured values that include other disturbances of the same type.

【0016】麺帯の厚さデータは、図1に示した系にお
いて、光学センサ4aおよび4bの出力を一定ごとに処
理することにより得られる。
The thickness data of the noodle strip is obtained by processing the outputs of the optical sensors 4a and 4b at regular intervals in the system shown in FIG.

【0017】処理に当って、まず縦がM、横がNの配列
D(N,M)を用意し(F−1)、配列の変数をX,Y
とする(ただし0<X≦N、0<Y≦M)。ここでMは
測定値と予想されるばらつきとを考えて適当な数に分割
する。このMは測定精度に関係する数である。Nは総測
定回数を分割した数でデータの変動の周期を考慮してき
める。区間測定回数Nに対してその区間の順序数j(1
≦j≦N)はそれまでの総測定回数AよりA=N・k+
j(ただしkは繰り返し周期の回数で0を含む整数) として求められる。次に厚さデータを初期化するために
配列の各マス目M×N個を0とする(F−2)。
For processing, first prepare an array D (N, M) with M length and N width (F-1), and set variables of the array to X, Y
(However, 0<X≦N, 0<Y≦M). Here, M is divided into an appropriate number considering the measured value and expected variations. This M is a number related to measurement accuracy. N is a number obtained by dividing the total number of measurements, and is determined by taking into account the period of data fluctuation. The ordinal number j(1
≦j≦N) is A=N・k+ from the total number of measurements A
j (where k is the number of repetition periods and is an integer including 0). Next, to initialize the thickness data, each M×N grid in the array is set to 0 (F-2).

【0018】さて、測定開始後一定時間ごとに得られる
厚さデータN個を順次コントローラ7内のレジスタに記
憶する(F−3)。いまj番目の厚さデータをSk(j
)とし、このSk(j)に対する変数X,Yのうち変数
Yの値を次のようにして求める(F−4)。外乱による
最大予測厚さデータをSk(MAX)とすると、Y値は
次の式で求めることができる。 なお、INT[B]は値Bの整数部分を求める演算であ
る。こうして求めたY値と測定順序を表わすXとで配列
D(j,Yj )上の位置が求まる。たとえば1番目の
厚さデータSk(1)を用いて上式から求めた値をY1
 とすると、配列上の位置(1,Y1 )が定まる(F
−5)。そしてこの位置に1を入れる。この演算をN番
目の厚さデータまで繰り返し行なう(F−6)。
Now, N pieces of thickness data obtained at regular intervals after the start of measurement are sequentially stored in a register in the controller 7 (F-3). Now, the j-th thickness data is expressed as Sk(j
), and among the variables X and Y for this Sk(j), the value of variable Y is determined as follows (F-4). If the maximum predicted thickness data due to disturbance is Sk(MAX), the Y value can be determined by the following formula. Note that INT[B] is an operation to obtain the integer part of the value B. The position on the array D(j, Yj) is determined from the Y value thus determined and the X representing the measurement order. For example, the value obtained from the above formula using the first thickness data Sk(1) is Y1
Then, the position (1, Y1) on the array is determined (F
-5). And put 1 in this position. This calculation is repeated until the Nth thickness data (F-6).

【0019】いまN=10、M=8とすると、配列D(
10,8)は第5図に示すようなマス目となり、ステッ
プ(F−4)から(F−6)で求めたY値に相当するマ
ス目に“1”を埋めていく。
Now, if N=10 and M=8, then the array D(
10, 8) becomes a square as shown in FIG. 5, and "1" is filled in the square corresponding to the Y value obtained in steps (F-4) to (F-6).

【0020】次にこうしてj=1〜NについてN個の厚
みデータのYj 値が求まり、第5図に示したD配列表
のマス目が埋まったところで、今度はD配列のマス目の
各横欄(k=1〜M)についてj=1〜Nまでを合計し
、得られた値を第5図に示すような別に用意したD′配
列に格納する(F−7)。すなわち k=1〜8についてD′( k)を求めると、上のD配
列の右側に並べたようになる。このD′配列は頻度分布
を表わす。
Next, when the Yj values of N pieces of thickness data for j=1 to N are found and the squares in the D array table shown in FIG. 5 are filled, it is time to For the columns (k=1 to M), values for j=1 to N are totaled, and the obtained values are stored in a separately prepared D' array as shown in FIG. 5 (F-7). That is, if D'(k) is found for k=1 to 8, it will be arranged on the right side of the D array above. This D' array represents a frequency distribution.

【0021】こうして作成されたD′配列の中から最大
頻度を与えるkを求める(F−9)。上の例では、D′
配列の最大頻度「4」を与えるkの値は「4」である。 そこでYMAX =4とし(F−9)、厚さデータSk
を次の式から求める(F−10)。
From the D' array thus created, k that gives the maximum frequency is determined (F-9). In the above example, D′
The value of k that gives the maximum frequency of the array "4" is "4". Therefore, YMAX = 4 (F-9) and thickness data Sk
is obtained from the following formula (F-10).

【0022】Sk=(YMAX /M)×予想最大値こ
の厚さデータSkをプロットする(F−11)。
Sk=(YMAX/M)×expected maximum value This thickness data Sk is plotted (F-11).

【0023】その後はjを1だけ増して(F−12)j
=2〜11までの厚さデータについて同様にD′配列を
求め、最大頻度を与えるkの値を求め、厚さデータSk
を算出し、プロットする。なお、D′配列としては、上
述したj=2〜11までの厚さデータと、a=3〜12
までの厚さデータとをj=1〜10までの厚さデータの
D′配列に並べて示した。こうしてプロットの連続で麺
帯の厚さが得られる。測定値の精度は測定間隔を増やす
だけでなく、ばらつき幅を分割するMの値を大きくする
ことにより上げることができる。
[0023] After that, increase j by 1 (F-12) j
Similarly, the D' array is found for the thickness data from =2 to 11, the value of k that gives the maximum frequency is found, and the thickness data Sk
Calculate and plot. In addition, the D' array includes the thickness data of j=2 to 11 mentioned above and the thickness data of a=3 to 12.
The thickness data up to j=1 to 10 are arranged in a D' arrangement. In this way, the thickness of the noodle strip can be obtained from a series of plots. The accuracy of the measured values can be increased not only by increasing the measurement interval but also by increasing the value of M that divides the variation width.

【0024】図6(a)は本発明により処理して得られ
た麺帯の厚さを、処理しない従来の場合(b)と比較し
て示しており、本発明による処理を行なった場合は外乱
の影響をほとんど受けないのに対して、処理を行なわな
い場合は外乱の影響を受けることがよくわかる。
FIG. 6(a) shows the thickness of the noodle strip obtained by the treatment according to the present invention in comparison with that in the conventional case without treatment (b). It can be clearly seen that it is almost unaffected by disturbances, whereas it is affected by disturbances when no processing is performed.

【0025】上記実施例は、麺帯の厚さ制御に関するも
のであるが、これは一例であって、本発明は不規則な外
乱により測定値が影響を受ける系であれば、いかなる系
にも適用することができる。
[0025] The above embodiment relates to the thickness control of the noodle strip, but this is just an example, and the present invention can be applied to any system in which measured values are affected by irregular disturbances. Can be applied.

【0026】[0026]

【発明の効果】以上説明したように、本発明においては
、時間的に変化する物理量を測定し、該物理量の変化の
予想最大値に対する各測定値の割合を求め、前記予想最
大値に対応させて予めランク分けした所定数のランクの
うち前記割合に該当するランクの頻度を各測定値ごとに
単位量だけ高め、連続して得られる複数個の測定値につ
いてランクごとの頻度分布を求め、最大頻度を有するラ
ンクに相当する物理量を測定値と定めるようにしたので
、測定値が不規則な外乱により受ける影響を信号処理だ
けで簡単に排除することができる。
As explained above, in the present invention, a physical quantity that changes over time is measured, the ratio of each measured value to the expected maximum value of change in the physical quantity is determined, and the ratio is determined to correspond to the expected maximum value. Among the predetermined number of ranks ranked in advance, the frequency of the ranks corresponding to the above ratio is increased by a unit amount for each measured value, and the frequency distribution for each rank is calculated for multiple consecutively obtained measured values, and the maximum Since the physical quantity corresponding to the rank having the frequency is determined as the measured value, the influence of irregular disturbances on the measured value can be easily eliminated only by signal processing.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による測定値処理方法を適用する系の一
例としての麺帯の厚さ制御装置の要部を示す線図である
FIG. 1 is a diagram showing the main parts of a noodle strip thickness control device as an example of a system to which a measured value processing method according to the present invention is applied.

【図2】麺帯の厚さ測定の原理を説明する図である。FIG. 2 is a diagram illustrating the principle of measuring the thickness of a noodle strip.

【図3】麺帯の厚さ測定値を表わす図である。FIG. 3 is a diagram showing the measured thickness of a noodle strip.

【図4】本発明による測定値処理方法のフローチャート
である。
FIG. 4 is a flowchart of a measurement value processing method according to the invention.

【図5】本発明で用いられるデータの配列を示す配列表
である。
FIG. 5 is an arrangement table showing the arrangement of data used in the present invention.

【図6】(a)は本発明方法により処理された麺帯の厚
さ、(b)は従来の麺帯の厚さを示す。
FIG. 6(a) shows the thickness of a noodle strip treated by the method of the present invention, and FIG. 6(b) shows the thickness of a conventional noodle strip.

【符号の説明】[Explanation of symbols]

1  麺帯 2  厚さ調節ローラ 3  ガイドローラ 4a,4b  光学センサ 5  カッター 6  切刃ローラ 7  コントローラ 8  モータ 1 Noodle belt 2 Thickness adjustment roller 3 Guide roller 4a, 4b Optical sensor 5 Cutter 6 Cutting blade roller 7 Controller 8 Motor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  時間的に変化する物理量を測定する際
に、予想される測定値の最大幅を適宜数にランク分けし
、短時間に連続して得られた測定値に対応するランクの
頻度を数え、最大頻度を有するランクに相当する物理量
をこの時間の測定値と定めることを特徴とする測定値処
理方法。
Claim 1: When measuring a physical quantity that changes over time, the maximum range of expected measured values is ranked into an appropriate number, and the frequency of ranks corresponding to measured values obtained continuously in a short period of time. 1. A measured value processing method characterized by counting the number of times and determining the physical quantity corresponding to the rank having the maximum frequency as the measured value for this time.
JP3042934A 1991-02-15 1991-02-15 Measured value processing method Expired - Lifetime JP2791447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3042934A JP2791447B2 (en) 1991-02-15 1991-02-15 Measured value processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3042934A JP2791447B2 (en) 1991-02-15 1991-02-15 Measured value processing method

Publications (2)

Publication Number Publication Date
JPH04259815A true JPH04259815A (en) 1992-09-16
JP2791447B2 JP2791447B2 (en) 1998-08-27

Family

ID=12649845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3042934A Expired - Lifetime JP2791447B2 (en) 1991-02-15 1991-02-15 Measured value processing method

Country Status (1)

Country Link
JP (1) JP2791447B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186060A (en) * 1992-12-18 1994-07-08 Hitachi Ltd Method and device for displaying data
JP2012202962A (en) * 2011-03-28 2012-10-22 Toshiba Corp In-reactor apparatus shape measuring instrument and in-reactor apparatus shape measurement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135321A (en) * 1983-01-21 1984-08-03 Nippon Denso Co Ltd Liquid level meter for moving object
JPH01259209A (en) * 1988-04-08 1989-10-16 Hitachi Ltd Length measuring method for measurement object part with width

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135321A (en) * 1983-01-21 1984-08-03 Nippon Denso Co Ltd Liquid level meter for moving object
JPH01259209A (en) * 1988-04-08 1989-10-16 Hitachi Ltd Length measuring method for measurement object part with width

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186060A (en) * 1992-12-18 1994-07-08 Hitachi Ltd Method and device for displaying data
JP2012202962A (en) * 2011-03-28 2012-10-22 Toshiba Corp In-reactor apparatus shape measuring instrument and in-reactor apparatus shape measurement method

Also Published As

Publication number Publication date
JP2791447B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
EP0647017B1 (en) Synchronization circuit using a high speed digital slip counter
JPH04277801A (en) Process controlling method and process controller, and method for controlling size in mask region
US4388708A (en) Method and apparatus for determining physical quantities
US3557351A (en) Property measurement signal filtering method and apparatus for eliminating predetermined components
JPH04259815A (en) Measured value processing method
US3355973A (en) Automatic size pre-set and automatic length adjustment system for cut-off machines and the like
US4029250A (en) Photographic strip transport interval control
JPH0525607B2 (en)
JP2002243415A (en) Film thickness measuring method and sheet manufacturing method
US3431760A (en) Analog measuring apparatus
SU1434247A1 (en) Device for measuring and checking sizes of parts
US3158863A (en) Hyperbolic radio navigation system
SU588623A1 (en) Wide-band pulse frequency multiplier
SU849002A2 (en) Device for hairline certification
US1936683A (en) Frequency measurement
SU851117A1 (en) Device for measuring temperature
SU951229A1 (en) Time interval meter
JPH0737910B2 (en) Wavemeter
SU1525436A1 (en) Method and apparatus for measuring area of opaque plane figures
SU771463A1 (en) Device for certification of stroke measures
SU1204953A1 (en) Belt-conveyer weigher
SU656990A1 (en) Device for cutting continuously moving glass sheet
SU819585A1 (en) Thickness gauge of interference type
SU660194A2 (en) Broad-band pulse frequency multiplier
SU935808A1 (en) Device for automatic measuring of amplifier frequency characteristic and tone adjustment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980421