JP2012202068A - Column fixing method, column used in the method and hopper for concrete placing used in the method - Google Patents

Column fixing method, column used in the method and hopper for concrete placing used in the method Download PDF

Info

Publication number
JP2012202068A
JP2012202068A JP2011066148A JP2011066148A JP2012202068A JP 2012202068 A JP2012202068 A JP 2012202068A JP 2011066148 A JP2011066148 A JP 2011066148A JP 2011066148 A JP2011066148 A JP 2011066148A JP 2012202068 A JP2012202068 A JP 2012202068A
Authority
JP
Japan
Prior art keywords
column
concrete
fixing
opening
pillar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011066148A
Other languages
Japanese (ja)
Other versions
JP5638435B2 (en
Inventor
Shigeo Kitahara
成郎 北原
Takahito Sakanishi
孝仁 坂西
Sadao Uno
定雄 宇野
Yukio Kakiuchi
幸雄 垣内
Shinichi Azedaka
伸一 畔高
Mamoru Hirabayashi
守 平林
Yoji Kikuchi
洋司 菊地
Tenhiro Takashima
展浩 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Fatec Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Fatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd, Fatec Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2011066148A priority Critical patent/JP5638435B2/en
Publication of JP2012202068A publication Critical patent/JP2012202068A/en
Application granted granted Critical
Publication of JP5638435B2 publication Critical patent/JP5638435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a column fixing method or the like capable of securing a free-standing property of a column and reducing work steps.SOLUTION: The column fixing method of this invention comprises: an excavation part forming step of forming an excavation part 6 by excavating a column fixation object part (debris flow deposition part 5); an installation surface forming step of forming an installation surface 9 by placing concrete 8 having a self leveling property to a bottom surface of the excavation part; a pipe material installing step of installing one end side of a pipe material 10 to the installation surface; a pipe material fixing step of fixing the pipe material 10 to the ground by placing the concrete 12 around the pipe material installed to the installation surface; a column installing step of installing the column by inserting one end side of a column 1 into a pipe of the pipe material through the other end opening of the pipe material 10; and a column fixing step of fixing the column to the pipe by placing concrete 15 inside the pipe of the pipe material.

Description

本発明は、根切り部に支柱を固定する支柱固定方法等に関する。   The present invention relates to a column fixing method and the like for fixing a column to a root cutting part.

従来、根切り部にコンクリートを打設して形成された捨てコンクリート上に支柱を設置する支柱固定方法において、互いに隣接する支柱同士を連結部材で連結することで複数の支柱を捨てコンクリート上に一直線状に立設したり、捨てコンクリート上に設けられたベースメッシュと支柱の下端とを取付金具で連結することによって、支柱を捨てコンクリート上に立設した後に、支柱の周りにコンクリートを打設して支柱を捨てコンクリート上に固定する方法が知られている。   Conventionally, in a column fixing method in which columns are placed on abandoned concrete formed by placing concrete on the root cutting part, a plurality of columns are discarded by connecting the columns adjacent to each other with a connecting member. After placing the column upright on the concrete by connecting the base mesh provided on the discarded concrete and the lower end of the column with a mounting bracket, the concrete is placed around the column. There is a known method of discarding the support and fixing it on the concrete.

特開平11−131498号公報Japanese Patent Laid-Open No. 11-131498

上記従来の支柱固定方法においては、支柱の自立性を確保することが難しいことから、連結部材、ベースメッシュ、取付金具等の自立補助具を用いて支柱を自立させるようにしいている。
しかしながら、従来の支柱固定方法では、自立補助具を用いて支柱の自立を補助するための作業工程が必要となる。
本発明は、支柱の自立性を確保できるようにして、作業工程を削減できるようにした支柱固定方法等を提供する。
In the conventional column fixing method, since it is difficult to secure the column self-supporting property, the column is made to stand by itself using a self-supporting auxiliary tool such as a connecting member, a base mesh, and a mounting bracket.
However, in the conventional support | pillar fixing method, the operation | work process for assisting the independence of a support | pillar using an independent support tool is needed.
The present invention provides a column fixing method and the like that can ensure the independence of the column and reduce the work process.

本発明に係る支柱固定方法は、支柱固定対象部を根切りして根切り部を形成する根切り部形成工程と、根切り部の底面にセルフレベリング性を有したコンクリートを打設して設置面を形成する設置面形成工程と、設置面に管材の一端側を設置する管材設置工程と、設置面に設置された管材の周囲にコンクリートを打設して管材を地盤に固定する管材固定工程と、管材の他端開口を介して管材の管内に支柱の一端側を挿入して支柱を設置する支柱設置工程と、管材の管内にコンクリートを打設して支柱を管に固定する支柱固定工程とを備えたので、設置面に設置される管材の自立性が確保され、さらに、設置面に固定された管材の管内に支柱が挿入されることにより、支柱の自立性が確保されるので、支柱固定作業を早くかつ簡単に行うことができるので、作業コスト及び作業時間を低減できる。
また、本発明に係る支柱固定方法は、支柱固定対象部を根切りして根切り部を形成する根切り部形成工程と、根切り部の底面にセルフレベリング性を有したコンクリートを打設して設置面を形成する設置面形成工程と、各柱体の中心軸が互いに平行に維持されかつ各柱体の一端面が柱体の中心軸と直交する同一平面上に位置されるように複数の柱体が連結されて構成された支柱を用いて当該支柱の各柱体の一端面を設置面に設置する支柱設置工程と、設置面に設置された支柱の各柱体の一端面側の周囲にコンクリートを打設して支柱を地盤に固定する支柱固定工程とを備えたので、支柱の自立性が向上し、支柱固定作業を早くかつ簡単に行うことができるので、作業コスト及び作業時間を低減できる。
さらに、本発明に係る支柱固定方法は、支柱固定対象部を根切りして根切り部を形成する根切り部形成工程と、各柱体の中心軸が互いに平行に維持されかつ各柱体が柱体の中心軸に沿った方向に移動可能なように複数の柱体が連結されて構成された支柱を用いて当該支柱の各柱体の一端面を根切り部の底面に設置する支柱設置工程と、根切り部の底面に設置された支柱の各柱体の一端面側の周囲にコンクリートを打設して支柱を根切り部の底面に固定する支柱固定工程とを備えたので、設置面形成工程を省略できるとともに、支柱の自立性が向上し、支柱固定作業を早くかつ簡単に行うことができるので、作業コスト及び作業時間を低減できる。
支柱固定対象部が人の立ち入れない災害地であり、各工程の作業を遠隔操縦によって操縦される機械を用いて行うので、災害地のような人の立ち入れない場所にも支柱を容易に設置できるようになる。
上述した支柱固定方法に使用する支柱であって、同一方向に延長し、かつ、平面視において三以上の角を持つ角形の頂点位置にそれぞれ配置されて互いに平行な複数の柱体と、複数の柱体がそれぞれ個別に柱体の中心軸に沿った方向に移動可能なように複数の柱体同士を連結する連結部材とを備えたので、支柱の自立性が向上し、作業コスト及び作業時間を低減できる。
上述した支柱固定方法に使用する支柱であって、中央主柱体と、中央主柱体と同一方向に延長し、かつ、平面視において中央主柱体を囲む三以上の角を持つ角形の頂点位置にそれぞれ配置されて互いに平行な複数の副柱体と、複数の副柱体がそれぞれ個別に中央主柱体の中心軸に沿った方向に移動可能なように各副柱体と中央主柱体の周面とをそれぞれ個別に連結する連結部材とを備えたので、支柱の自立性が向上し、作業コスト及び作業時間を低減できる。
上述した支柱固定方法に用いるコンクリート打設用のホッパーであって、コンクリートが収容され底板にコンクリートを放出させるための放出口を有した容器と、容器の内側に配置され放出口の径よりも大径の弁体により形成されて放出口を開閉する開閉弁と、開閉弁と放出口の径よりも小径の連結軸を介して連結され放出口を介して容器の外側に突出した受圧部とを備え、受圧部がコンクリート打設対象面からの力を受けて放出口を開く方向に開閉弁を移動させることで、受圧部と底板の下面とが接触しない状態、及び、開閉弁と底板の内底面とが接触しない状態に維持された場合に、容器内のコンクリートが、開閉弁と底板の内底面との間、連結軸と放出口の孔縁との間、受圧部と底板の下面との間を経由してコンクリート打設対象面に放出されるように構成されたので、放出口を開閉する開閉板を開閉させるための開閉駆動手段を不要とでき、低コストなホッパーを提供できる。
上記開閉弁が、放出口を開閉する開閉蓋と、開閉蓋の開動作の際に開閉蓋に加わる容器内のコンクリートからの力を軽減させる開動作アシスト手段とを備え、開動作アシスト手段は、開閉蓋の周縁より開閉蓋の中心側に向けて容器の底板より離れる方向に延長する傾斜部を備えた立方体により形成されたので、開閉弁による開動作がスムーズとなるホッパーを提供できる。
The strut fixing method according to the present invention includes a root cutting part forming step of rooting a pillar fixing target part to form a root cutting part, and placing concrete having self-leveling on the bottom surface of the root cutting part. An installation surface forming process for forming a surface, a pipe material installation process for installing one end of the pipe material on the installation surface, and a pipe material fixing process for placing the concrete around the pipe material installed on the installation surface and fixing the pipe material to the ground And a column installation step in which one column side of the column is inserted into the tube of the tube through the other end opening of the tube and the column is installed, and a column fixing step in which concrete is placed in the tube of the tube and the column is fixed to the tube. Since the self-supporting property of the pipe material installed on the installation surface is secured, and the support material is inserted into the pipe of the pipe material fixed to the installation surface, so that the self-supporting property of the support material is secured. Prop fixing work can be done quickly and easily Since the kill, it is possible to reduce the work cost and work time.
In addition, the column fixing method according to the present invention includes a root cutting part forming step of rooting a column fixing target part to form a root cutting part, and placing concrete having self-leveling properties on the bottom surface of the root cutting part. The installation surface forming step for forming the installation surface and a plurality of such that the central axis of each column body is maintained parallel to each other and one end surface of each column body is positioned on the same plane orthogonal to the central axis of the column body A column installation step of installing one end surface of each column body of the column on the installation surface using a column configured by connecting the column bodies of the column, and one end surface side of each column body of the column installed on the installation surface Since it is equipped with a strut fixing process in which concrete is placed around and the strut is fixed to the ground, the independence of the strut is improved and the strut fixing work can be performed quickly and easily. Can be reduced.
Furthermore, the column fixing method according to the present invention includes a root cutting portion forming step of rooting a column fixing target portion to form a root cutting portion, the central axes of each column body being maintained parallel to each other, and each column body being A column installation in which one end surface of each column body of the column is installed on the bottom surface of the root cutting portion using a column configured by connecting a plurality of column bodies so as to be movable in the direction along the central axis of the column body It is equipped with a process and a column fixing process in which concrete is placed around one end face side of each column body of the column installed on the bottom of the root cutting part and the column is fixed to the bottom of the root cutting part. The surface forming step can be omitted, the support of the column can be improved, and the column fixing operation can be performed quickly and easily, so that the operation cost and the operation time can be reduced.
Since the part to be fixed is a disaster area where people cannot enter and the work of each process is performed using a machine operated by remote control, it is easy to place the support in places where people do not enter such as disaster areas It can be installed.
Columns used in the column fixing method described above, extending in the same direction, and arranged at the vertex positions of squares having three or more corners in plan view, and a plurality of column bodies parallel to each other, and a plurality of columns Since the column body is provided with a connecting member that connects a plurality of column bodies so that each column body can be moved in a direction along the central axis of the column body, the independence of the columns is improved, and the work cost and work time are improved. Can be reduced.
A column used in the column fixing method described above, and a central main column and a rectangular apex extending in the same direction as the central main column and having three or more corners surrounding the central main column in plan view A plurality of sub-columns arranged in parallel at each position and a plurality of sub-columns and the respective sub-columns and the central main column so that the plurality of sub-columns can be individually moved in the direction along the central axis of the central main column Since the connecting member for individually connecting the peripheral surface of the body is provided, the independence of the support column is improved, and the work cost and the work time can be reduced.
A concrete hopper for use in the above-described support fixing method, which includes a container in which concrete is accommodated and having a discharge port for discharging the concrete to the bottom plate, and a diameter larger than the diameter of the discharge port disposed inside the container. An opening / closing valve that is formed by a valve body having a diameter and that opens and closes the discharge port, and a pressure receiving portion that is connected to the opening / closing valve via a connecting shaft having a diameter smaller than the diameter of the discharge port and protrudes to the outside of the container through the discharge port. The pressure receiving part receives the force from the concrete placement target surface and moves the on-off valve in the direction to open the discharge port, so that the pressure receiving part and the bottom plate are not in contact with each other, and the inside of the on-off valve and the bottom plate When the bottom surface is kept out of contact with the concrete, the concrete in the container is placed between the on-off valve and the bottom surface of the bottom plate, between the connecting shaft and the hole edge of the discharge port, and between the pressure receiving portion and the bottom surface of the bottom plate. To the concrete placement target surface Since configured to be issued, the opening and closing drive means for opening and closing the opening and closing plate for opening and closing the discharge port can be eliminated, can provide an inexpensive hopper.
The opening / closing valve includes an opening / closing lid that opens and closes the discharge port, and an opening operation assisting means that reduces the force from the concrete in the container that is applied to the opening / closing lid when the opening / closing lid is opened. Since it is formed of a cube having an inclined portion extending from the periphery of the opening / closing lid toward the center side of the opening / closing lid in a direction away from the bottom plate of the container, a hopper that can be smoothly opened by the opening / closing valve can be provided.

支柱固定対象部としての土石流堆積部分に支柱を設置した状態を示す断面図(実施形態1)。Sectional drawing which shows the state which installed the support | pillar in the debris flow accumulation part as a support | pillar fixed object part (Embodiment 1). 支柱固定対象部としての土石流堆積部分に支柱を設置した状態を示す斜視図(実施形態1)。The perspective view which shows the state which installed the support | pillar in the debris flow accumulation part as a support | pillar fixed object part (Embodiment 1). 支柱固定方法の手順を示した説明図(実施形態1)。Explanatory drawing which showed the procedure of the support | pillar fixing method (Embodiment 1). 支柱間に壁板を設置した防護柵を示す斜視図(実施形態2)。The perspective view which shows the protection fence which installed the wall board between support | pillars (Embodiment 2). 支柱間に壁板を設置した防護柵を示す斜視図(実施形態2)。The perspective view which shows the protection fence which installed the wall board between support | pillars (Embodiment 2). 支柱固定方法の手順を示した説明図(実施形態3)。Explanatory drawing which showed the procedure of the support | pillar fixing method (embodiment 3). 管体を示す斜視図(実施形態4)。The perspective view which shows a tubular body (Embodiment 4). (a)は支柱を示す斜視図、(b)は支柱を示す正面図(実施形態5)。(A) is a perspective view which shows a support | pillar, (b) is a front view which shows a support | pillar (Embodiment 5). (a)は支柱を示す斜視図、(b)は支柱を示す正面図(実施形態6)。(A) is a perspective view which shows a support | pillar, (b) is a front view which shows a support | pillar (Embodiment 6). 支柱を設置面に設置した状態を示す斜視図(実施形態6)。The perspective view which shows the state which installed the support | pillar in the installation surface (Embodiment 6). 支柱を示す斜視図(実施形態7)。The perspective view which shows a support | pillar (Embodiment 7). 支柱を示す分解斜視図(実施形態7)。The disassembled perspective view which shows a support | pillar (Embodiment 7). 支柱固定方法の工程を示した説明図(実施形態7)。Explanatory drawing which showed the process of the support | pillar fixing method (Embodiment 7). 支柱を示す斜視図(実施形態8)。The perspective view which shows a support | pillar (Embodiment 8). 支柱を示す分解斜視図(実施形態8)。The disassembled perspective view which shows a support | pillar (Embodiment 8). 支柱固定方法の手順を示した説明図(実施形態8)。Explanatory drawing which showed the procedure of the support | pillar fixing method (Embodiment 8). ホッパーを示す斜視図(実施形態9)。The perspective view which shows a hopper (Embodiment 9). ホッパーの開閉動作を示す破断斜視図(実施形態9)。The fracture | rupture perspective view which shows the opening / closing operation | movement of a hopper (Embodiment 9). ホッパーによるコンクリート打設工程を示した説明図(実施形態9)。Explanatory drawing which showed the concrete placement process by a hopper (Embodiment 9). ホッパーを示す破断斜視図(実施形態10)。A fracture perspective view showing a hopper (Embodiment 10). ホッパーの開閉動作を示す断面図(実施形態10)。Sectional drawing which shows opening / closing operation | movement of a hopper (Embodiment 10).

実施形態1
図1乃至図3を参照し、実施形態1による支柱固定方法について、土石流や集中豪雨等の災害地のような人の立ち入れない場所において災害の拡大を防止するための防護柵20を形成する際の支柱1の固定方法を例にして説明する。
支柱1を設置する支柱固定対象部は、例えば、斜面3の一部が崩壊した山2の斜面3の麓部分4において土石流が堆積した土石流堆積部分5である。
支柱固定方法は、支柱固定対象部としての土石流堆積部分5を根切りして根切り部6を形成する根切り部形成工程と、根切り部6の底面7にセルフレベリング性を有したコンクリート8を打設して水平な設置面9を形成する設置面形成工程と、設置面9に鋼管等の管材10の一端11側を設置する管材設置工程と、設置面9に設置された管材10の周囲にコンクリート12を打設して管材10を地盤に固定する管材固定工程と、管材10の他端開口13を介して管材10の管内にH形鋼等の支柱1の一端14側を挿入して支柱1を設置する支柱設置工程と、支柱1が挿入されて設置された管材10の管内にコンクリート15を打設して支柱1を管材10に固定する支柱固定工程とを備える。
Embodiment 1
With reference to FIG. 1 to FIG. 3, with respect to the support fixing method according to the first embodiment, a protective fence 20 is formed to prevent the spread of a disaster in a place where a person cannot enter such as a disaster area such as a debris flow or a heavy rain. The fixing method of the support column 1 will be described as an example.
The column fixing target portion on which the column 1 is installed is, for example, a debris flow accumulation portion 5 in which a debris flow is accumulated at the ridge portion 4 of the slope 3 of the mountain 2 where a part of the slope 3 is collapsed.
The strut fixing method includes a root cutting portion forming step of rooting the debris flow accumulation portion 5 as a column fixing target portion to form a root cutting portion 6, and a concrete 8 having self-leveling property on the bottom surface 7 of the root cutting portion 6. An installation surface forming step for forming a horizontal installation surface 9 by placing the tube, a pipe material installation step for installing one end 11 side of the tube material 10 such as a steel pipe on the installation surface 9, and a tube material 10 installed on the installation surface 9. A pipe fixing process in which concrete 12 is placed around and the pipe 10 is fixed to the ground, and one end 14 side of the column 1 such as H-shaped steel is inserted into the pipe of the pipe 10 through the other end opening 13 of the pipe 10. A support column installation step of installing the support column 1 and a column fixing step of fixing the support column 1 to the tube material 10 by placing concrete 15 in the pipe of the tube material 10 inserted and installed.

以下、支柱固定方法の具体例を説明する。支柱固定対象部は土石流堆積部分5であって人の立ち入れない場所なので、上述した各工程の作業は、遠隔操縦によって操縦される機械を用いた無人作業で行われる。
機械は、例えば、掘削機械、運搬車、揚重機としての機能を備えたバックホウやキャリアダンプ等の建設機械、及び、コンクリートを収容した状態からコンクリート打設部にコンクリートを放出する機能を備えたホッパー等のコンクリート打設機械であって、図外の遠隔操縦器から無線で送信される指令を受ける無線受信器16及び無線受信器16で受信した指令に基づいて機械の動作を制御する図外の制御部を備えたものを用いる(図3(a);(b)参照)。
Hereinafter, a specific example of the column fixing method will be described. Since the column fixing target part is the debris flow accumulation portion 5 and is a place where people cannot enter, the work of each process described above is performed by unmanned work using a machine operated by remote control.
The machine is, for example, a construction machine such as a backhoe or a carrier dumper having a function as an excavating machine, a transport vehicle, a lifting machine, and a hopper having a function of discharging the concrete from a state in which the concrete is accommodated to a concrete placing part A concrete placement machine such as a wireless receiver 16 that receives a command transmitted by radio from a remote controller (not shown), and controls the operation of the machine based on the command received by the wireless receiver 16 (not shown). A device provided with a control unit is used (see FIGS. 3A and 3B).

始めに建設機械としての例えばバックホウ17を支柱固定対象部である土石流堆積部分5の近くまで運び、操縦者がバックホウ17を遠隔操縦することにより、バックホウ17を支柱固定対象部の土石流堆積部分5まで移動させてからバックホウ17に土石流堆積部分5を掘削させて根切り作業を行わせ根切り部6を形成させる(根切り工程(図3(a);(b)参照))。
そして、例えば、遠隔操縦により操作されるコンクリート打設機械としての例えば図外のエアシリンダー等の開閉駆動手段を備えて当該開閉駆動手段を操作することでコンクリート収容部19aの底に設けられた開閉板18が開閉する構成のホッパー19を用い、ホッパー19のコンクリート収容部19a内にセルフレベリング性に優れた流動性の高いコンクリート(生コンクリート)8を収容し、コンクリート収容部19a内にコンクリート8を収容したホッパー19をバックホウ17に取付け、バックホウ17を遠隔操縦して当該ホッパー19を根切り部6の位置まで運搬させる(図3(b)参照)。
そして、遠隔操縦によりホッパー19の開閉駆動手段を駆動してホッパー19の開閉板18を閉状態から開状態に変化させることにより、コンクリート8がホッパー19から根切り部6の底面7に落下して打設され、根切り部6の底面7に打設されたコンクリート8のセルフレベリング性により水平な設置面9が形成される(設置面形成工程(図3(b);(c)参照))。
次に、バックホウ17を遠隔操縦して管材10を設置面9まで運搬させ、管材10の一端11を設置面9に設置させる。この際、複数の管材10を設置面9の延長方向に沿って所定間隔隔てて設置する(管材設置工程(図3(c);(d)、図2参照))。
複数の管材10を設置面9に設置した後、上述と同様にホッパー19を用いて、設置面9に設置された管材10の周りにコンクリート(生コンクリート)12を打設して固めることにより、管材10を地盤に固定する(管材固定工程(図3(d);(e)参照))。
バックホウ17を遠隔操縦して支柱1を管材10の位置まで運搬させ、支柱1の一端14側を管材10の他端開口13を介して管材10の中に挿入して支柱1の一端14を設置面9に接触させることにより、管材10の管内に支柱1を設置する(支柱設置工程(図3(e);(f)参照))。
そして、上述と同様にホッパー19を用いて、管材10の他端開口13を介して管材10内にコンクリート(生コンクリート)15を打設して固めることにより、支柱1を管材10に固定する(支柱固定工程(図3(g);(h)参照))。尚、開口の小さい管材10内や根切り部6内にコンクリートを打設する際には、コンクリート放出口の小さいシュートのようなコンクリート放出ガイド部材を用いればよい。
以上により、複数の支柱1が支柱固定対象部としての土石流堆積部分5に所定間隔を隔てて隣り合うように設置された防護柵20が形成される。
尚、機械として、建設機械の代わりに、ヘリコプターを用いてもよい。
First, for example, the backhoe 17 as a construction machine is transported to the vicinity of the debris flow accumulation portion 5 that is a column fixing target portion, and the operator remotely controls the backhoe 17 so that the backhoe 17 is moved to the debris flow accumulation portion 5 of the column fixing target portion. After the movement, the debris flow accumulation portion 5 is excavated on the backhoe 17 to perform the root cutting operation to form the root cutting portion 6 (the root cutting step (see FIGS. 3A and 3B)).
For example, an opening / closing drive means such as an air cylinder (not shown) as a concrete placement machine operated by remote control is provided, and the opening / closing provided at the bottom of the concrete accommodating portion 19a by operating the opening / closing drive means. A hopper 19 configured to open and close the plate 18 is used, and concrete (raw concrete) 8 having excellent self-leveling property is accommodated in the concrete accommodating portion 19a of the hopper 19, and the concrete 8 is accommodated in the concrete accommodating portion 19a. The accommodated hopper 19 is attached to the backhoe 17, and the backhoe 17 is remotely controlled to transport the hopper 19 to the position of the root cutting portion 6 (see FIG. 3B).
Then, the opening / closing driving means of the hopper 19 is driven by remote control to change the opening / closing plate 18 of the hopper 19 from the closed state to the open state, so that the concrete 8 falls from the hopper 19 to the bottom surface 7 of the root cutting portion 6. The horizontal installation surface 9 is formed by the self-leveling property of the concrete 8 that has been cast and placed on the bottom surface 7 of the root cutting part 6 (see installation surface formation step (see FIGS. 3B and 3C)). .
Next, the backhoe 17 is remotely controlled to transport the tube material 10 to the installation surface 9, and one end 11 of the tube material 10 is installed on the installation surface 9. At this time, the plurality of pipe materials 10 are installed at predetermined intervals along the extending direction of the installation surface 9 (pipe material installation process (see FIGS. 3C and 3D, FIG. 2)).
After installing a plurality of pipes 10 on the installation surface 9, using a hopper 19 in the same manner as described above, by placing and hardening concrete (green concrete) 12 around the pipes 10 installed on the installation surface 9, The pipe material 10 is fixed to the ground (pipe material fixing step (see FIGS. 3D and 3E)).
The backhoe 17 is remotely controlled to transport the support column 1 to the position of the tube material 10, and the one end 14 side of the support column 1 is inserted into the tube material 10 through the other end opening 13 of the tube material 10 to install the one end 14 of the support column 1. By making contact with the surface 9, the support column 1 is installed in the tube of the tube material 10 (see a column installation process (see FIGS. 3E and 3F)).
Then, by using the hopper 19 in the same manner as described above, concrete (green concrete) 15 is placed and hardened in the pipe material 10 through the other end opening 13 of the pipe material 10, thereby fixing the column 1 to the pipe material 10 ( Supporting column fixing step (see FIG. 3 (g); (h)). It should be noted that when placing concrete in the pipe 10 having a small opening or in the root cutting portion 6, a concrete discharge guide member such as a chute having a small concrete discharge port may be used.
As described above, the protective fence 20 is formed in which the plurality of columns 1 are installed so as to be adjacent to the debris flow accumulation portion 5 as the column fixing target part at a predetermined interval.
As a machine, a helicopter may be used instead of a construction machine.

実施形態1による支柱固定方法によれば、根切り部6の底面7にセルフレベリング性を有したコンクリート8を打設して水平な設置面9を形成するので、当該設置面9に設置される管材10の自立性が確保され、さらに、設置面9に固定された管材10の管内に支柱1が挿入されることにより、支柱1の自立性が確保される。
従って、実施形態1によれば、従来のような支柱の自立を補助するための自立補助具を用いた作業工程を削減でき、支柱固定作業を早くかつ簡単に行うことができるので、作業コスト及び作業時間を低減できる。
また、管材10及び支柱1の自立性が確保されるので、機械を遠隔操縦して行う無人化作業が可能となり、災害地のような人の立ち入れない場所に支柱1を設置する場合にも容易に対応できるようになる。
According to the column fixing method according to the first embodiment, since the concrete 8 having self-leveling property is placed on the bottom surface 7 of the root cutting portion 6 to form the horizontal installation surface 9, it is installed on the installation surface 9. The self-supporting property of the column 10 is ensured, and further, the support column 1 is inserted into the tube of the tube material 10 fixed to the installation surface 9, thereby ensuring the self-supporting property of the column 1.
Therefore, according to the first embodiment, it is possible to reduce the work process using the self-supporting assisting tool for assisting the independence of the support column as in the past, and to perform the support fixing operation quickly and easily. Work time can be reduced.
In addition, since the self-supporting property of the pipe 10 and the support column 1 is ensured, it is possible to perform unmanned work by remotely manipulating the machine, and also when the support column 1 is installed in a place where a person cannot enter such as a disaster area. It becomes possible to respond easily.

尚、管材10としては、図1乃至図3に示すように一端11が設置面9に設置された場合に他端(上端)が根切り部6の上端位置よりも高い位置に位置される比較的長さの長い管材10を用いてもよいし、一端11が設置面9に設置された場合に他端が根切り部6の上端位置よりも低い位置に位置される比較的長さの短い管材10を用いてもよい。
上述した長い管材10を用いた場合、管材10に固定される支柱の一端部の長さを長くできるので、支柱の剛性が高くなる。
上述した短い管材10を用いた場合、根切り部6の管材10の周りにコンクリートを打設し続ければ、打設されたコンクリートが設置面9に設置された管材10の上端(他端)位置まで到達した後に管材10の管内に入り込むので、管材10の他端開口13を狙って管材10内にコンクリートを打設する作業を行わなくてもよくなり、管材10の管内にコンクリートを打設する作業を容易に行えるようになる。無人化作業の場合は、管材10の他端開口13を狙って管材10内にコンクリートを打設するような作業は困難性を伴うので、当該作業を省略できることは有意義である。また、設置面9に設置された管材10の他端(上端)が根切り部6の上端位置よりも低い位置に位置されるので、実施形態2で説明するように、互いに隣り合う支柱1;1としてH形鋼を用い、H形鋼の互いに向かい合う各凹部31;31内に壁板30の両側端部32;32を挿入することにより、互いに隣り合う支柱1;1間に壁板30が設置された防護柵21を形成する場合に、壁板30の下端が根切り部6内に入り込み、壁板30の下端と土石流堆積部分5の表面5a(図2参照)との間に隙間が無くなるので、好ましい。
As shown in FIG. 1 to FIG. 3, the pipe 10 has a comparison in which the other end (upper end) is positioned higher than the upper end position of the root cutting portion 6 when the one end 11 is installed on the installation surface 9. A pipe 10 having a long target length may be used, and when one end 11 is installed on the installation surface 9, the other end is positioned at a position lower than the upper end position of the root cutting part 6. The tube material 10 may be used.
When the long pipe material 10 described above is used, the length of one end portion of the column fixed to the tube material 10 can be increased, so that the rigidity of the column is increased.
When the above-described short pipe material 10 is used, if the concrete is continuously placed around the pipe material 10 of the root cutting portion 6, the position of the upper end (the other end) of the pipe material 10 on which the placed concrete is installed on the installation surface 9. Since it enters into the pipe of the pipe material 10 after reaching the position, it is not necessary to perform the operation of placing concrete in the pipe material 10 aiming at the other end opening 13 of the pipe material 10, and the concrete is placed in the pipe of the pipe material 10. Work can be done easily. In the case of an unmanned operation, the operation of placing concrete in the tube material 10 aiming at the other end opening 13 of the tube material 10 is difficult, and therefore it is meaningful that the operation can be omitted. Moreover, since the other end (upper end) of the pipe material 10 installed on the installation surface 9 is located at a position lower than the upper end position of the root cutting part 6, as will be described in the second embodiment, the columns 1 adjacent to each other; By using the H-shaped steel as 1 and inserting the opposite end portions 32; 32 of the wall plate 30 into the concave portions 31; 31 of the H-shaped steel facing each other, the wall plate 30 is placed between the columns 1; 1 adjacent to each other. When forming the installed guard fence 21, the lower end of the wall plate 30 enters the root cutting part 6, and a gap is formed between the lower end of the wall plate 30 and the surface 5a of the debris flow accumulation portion 5 (see FIG. 2). It is preferable because it disappears.

実施形態2
実施形態1により設置された互いに隣り合う支柱1と支柱1との間に図4に示すような壁板30を設けた構成の防護柵21を形成する。
例えば、図4に示すように、互いに隣り合う支柱1;1としてのH形鋼の互いに向かい合う各凹部31;31内に壁板30の両側端部32;32を挿入することにより、互いに隣り合う支柱1;1間に壁板30が着脱可能に設置された防護柵21を形成できる。この場合、壁板30が着脱可能なので、壁板30の設置作業及び撤去作業が容易となる。
また、図5に示すように、支柱本体1aの他端部に壁板30Xを備えた支柱1Xを用いて互いに隣り合う支柱本体1aと支柱本体1aとの間に壁板30Xを設けた構成の防護柵22を形成してもよい。この場合、図5(a)のように、隣り合う壁板30X;30Xの側端部32;32同士が重ならないように構成した防護柵22としてもよいし、図5(b)のように、隣り合う壁板30X;30Xの側端部32;32同士が重なるように構成した防護柵22としてもよい。図5(b)のように構成すれば、防護柵22の剛性を上げることができる。
Embodiment 2
A protective fence 21 having a structure in which a wall plate 30 as shown in FIG. 4 is provided between the columns 1 and 1 that are installed adjacent to each other according to the first embodiment is formed.
For example, as shown in FIG. 4, by inserting the both side end portions 32; 32 of the wall plate 30 into the respective recessed portions 31; 31 of the H-shaped steel as the support columns 1; A guard fence 21 in which a wall plate 30 is detachably installed between the columns 1; 1 can be formed. In this case, since the wall board 30 is detachable, the installation work and removal work of the wall board 30 become easy.
Further, as shown in FIG. 5, the wall plate 30X is provided between the column body 1a and the column body 1a adjacent to each other using the column 1X having the wall plate 30X at the other end of the column body 1a. A protective fence 22 may be formed. In this case, as shown in FIG. 5A, the side wall 32X of the adjacent wall plates 30X; the side end portions 32; 32 of the 30X may be configured as a protective fence 22 that does not overlap each other, or as shown in FIG. Adjacent wall plates 30 </ b>X; 30 </ b> X side end portions 32; If comprised like FIG.5 (b), the rigidity of the guard fence 22 can be raised.

実施形態3
図6(a)乃至(c)に示すように、実施形態1と同様に、根切り部形成工程、設置面形成工程を行う。そして、管材10を設置面9に設置した後(図6(c);(d)参照)、管材10を地盤に固定する前に支柱設置工程(図6(d);(e)参照)を行い、当該支柱設置工程の後に、管材10の周りにコンクリート125を打設する管材固定工程と管材10の管内にコンクリート125を打設する支柱固定工程とを一緒に行うようにしてもよい((図6(e);(f)参照)。
尚、この場合、管材10としては、一端11が設置面9に設置された場合に他端(上端)が根切り部6の上端位置よりも低い位置に位置される長さのものを用いることにより、管材10の周りに打設したコンクリート125が設置面9に設置された管材10の上端位置まで到達した後に管材10の管内に入り込むので、管材固定工程のコンクリート打設作業と支柱固定工程のコンクリート打設作業とを連続して行うことが可能となり、作業を簡単化できる。
当該方法によれば、管材固定工程のコンクリート打設作業と支柱固定工程のコンクリート打設作業とを一緒に行えることから、支柱固定作業をより早くかつより簡単に行うことができるようになる。また、上述したように、互いに隣り合う支柱1;1間に壁板30が設置された防護柵21を形成する場合に、壁板30の下端が根切り部6内に入り込み、壁板30の下端と土石流堆積部分5の表面との間に隙間が無くなるので、好ましい。
Embodiment 3
As shown in FIGS. 6A to 6C, the root cut portion forming step and the installation surface forming step are performed as in the first embodiment. And after installing the pipe material 10 in the installation surface 9 (refer FIG.6 (c); (d)), before fixing the pipe material 10 to the ground, a support | pillar installation process (refer FIG.6 (d); (e)). After the strut installation step, a pipe fixing process for placing concrete 125 around the pipe material 10 and a strut fixing process for placing concrete 125 in the pipe of the pipe material 10 may be performed together (( FIG. 6 (e); see (f)).
In this case, as the pipe material 10, a pipe material having such a length that the other end (upper end) is positioned lower than the upper end position of the root cutting portion 6 when the one end 11 is installed on the installation surface 9 is used. Thus, the concrete 125 placed around the pipe material 10 enters the pipe of the pipe material 10 after reaching the upper end position of the pipe material 10 installed on the installation surface 9, so that the concrete placing operation in the pipe material fixing process and the column fixing process are performed. It is possible to perform the concrete placing work continuously, and the work can be simplified.
According to the method, the concrete placing operation in the pipe material fixing step and the concrete placing operation in the column fixing step can be performed together, so that the column fixing operation can be performed more quickly and easily. Further, as described above, when forming the protective fence 21 in which the wall plate 30 is installed between the columns 1; 1 adjacent to each other, the lower end of the wall plate 30 enters the root cutting portion 6, This is preferable because there is no gap between the lower end and the surface of the debris flow deposition portion 5.

実施形態4
図7に示すように、管材として、上述した管材10と同じ構成である管体10aと管体10aの一端面に取付けられた平板10bとで構成された管材10Aを用いてもよい。
当該管材10Aは、平板10bの平面が管体10aの中心軸と直交する面となるように、平板10bの一方の平面と管体10aの一端11とが溶接やボルトナット等による接続手段によって接続されて構成される。
当該管材10Aを用いて、平板10bの他方の面を設置面9に接触させて管材10Aを設置面9に設置することにより、管材10Aの設置面9に対する設置面積を大きくできることから、設置面9に設置される管材10Aの自立性が向上し、管材10Aの設置作業をより早くかつより簡単に行うことができるようになるので、支柱固定作業をより早くかつより簡単に行うことができるようになる。
また、当該管材10Aを用いれば、設置面9に設置される管材10Aの自立性が向上することから、実施形態3のように、管材固定工程のコンクリート打設作業と支柱固定工程のコンクリート打設作業とを一緒に行う場合に、管材10Aと支柱1とが倒れ難くなり、実施形態3の支柱固定作業を効率的に行えるようになるので、効果的である。
Embodiment 4
As shown in FIG. 7, a tubular material 10 </ b> A composed of a tubular body 10 a having the same configuration as the tubular material 10 described above and a flat plate 10 b attached to one end surface of the tubular body 10 a may be used.
In the pipe material 10A, one plane of the flat plate 10b and one end 11 of the pipe body 10a are connected by a connection means such as welding or a bolt and nut so that the plane of the flat plate 10b becomes a plane orthogonal to the central axis of the pipe body 10a. Configured.
Since the pipe 10A is installed on the installation surface 9 by bringing the other surface of the flat plate 10b into contact with the installation surface 9 using the tube 10A, the installation surface 9 can be increased with respect to the installation surface 9. Since the self-supporting property of the pipe member 10A installed in the pipe is improved and the pipe member 10A can be installed more quickly and easily, the column fixing work can be performed more quickly and easily. Become.
Further, if the pipe material 10A is used, the self-supporting property of the pipe material 10A installed on the installation surface 9 is improved. Therefore, as in the third embodiment, the concrete placing operation in the pipe material fixing step and the concrete placement in the column fixing step are performed. When the work is performed together, the tube material 10A and the support column 1 are unlikely to fall down, and the support fixing operation of the third embodiment can be performed efficiently, which is effective.

実施形態5
図8(a)に示すように、中央主柱体1xと、中央主柱体1xと同一方向に延長し、かつ、平面視において中央主柱体1xを囲む三以上の角を持つ角形の頂点位置にそれぞれ配置されて互いに平行な複数の副柱体1y;1y;1yと、各副柱体1y;1y;1yと中央主柱体1xの周面1fとを連結する連結部材とを備えた構成の支柱1Aを用いてもよい。
より具体的には、支柱1Aは、中央主柱体1xの周りに3本の副柱体1y;1y;1yが平面視で三角形の頂点位置に配置され、図8(a)に示すように、中央主柱体1xの一端面14x及び3本の副柱体1y;1y;1yの各一端面14y;14y;14yが中央主柱体1xの中心軸と直交する同一平面100上に位置するように、中央主柱体1xと3本の副柱体1y;1y;1yとがそれぞれ個別に連結部材34によって連結された構成である。例えば、中央主柱体1xとしては、柱長が副柱体1yの柱長よりも長いものが用いられ、当該中央主柱体1xが本来の支柱の役目を果たすように構成される。
尚、副柱体1yの数は4つ以上でもよい。
Embodiment 5
As shown in FIG. 8 (a), a central main column 1x and a rectangular apex extending in the same direction as the central main column 1x and having three or more corners surrounding the central main column 1x in plan view A plurality of sub-columns 1y; 1y; 1y arranged in parallel to each other, and a connecting member for connecting each sub-column 1y; 1y; 1y and the peripheral surface 1f of the central main column 1x. You may use the support | pillar 1A of a structure.
More specifically, the column 1A has three sub-columns 1y; 1y; 1y arranged at the apex position of a triangle in plan view around the central main column 1x, as shown in FIG. The one end surface 14x of the central main column 1x and the three sub-columns 1y; 1y; 1y each end surface 14y; 14y; 14y are located on the same plane 100 orthogonal to the central axis of the central main column 1x. Thus, the central main column 1x and the three sub-columns 1y; 1y; 1y are individually connected by the connecting member 34. For example, as the central main column 1x, one having a column length longer than that of the sub-column 1y is used, and the central main column 1x is configured to serve as an original column.
Note that the number of sub-columns 1y may be four or more.

実施形態6
図9(a)に示すように、同一方向に延長し、かつ、平面視において三以上の角を持つ角形の頂点位置にそれぞれ配置されて互いに平行な複数の柱体1b;1b;1bと、互いに隣り合う複数の柱体1b;1b;1b同士を連結する連結部材35とを備えた構成の支柱1Bを用いてもよい。
より具体的には、支柱1Bは、3本の柱体1b;1b;1bが平面視で三角形の頂点位置に配置され、図9(b)に示すように、3本の柱体1b;1b;1bの各一端面14b;14b;14bが柱体1bの中心軸と直交する同一平面100上に位置するように、互いに隣り合う柱体1b同士が連結部材35により連結された構成である。
尚、柱体1bの数は4つ以上でもよい。
Embodiment 6
As shown in FIG. 9 (a), a plurality of pillars 1b; 1b; 1b extending in the same direction and arranged in parallel with each other at the vertex positions of a square having three or more corners in plan view, You may use the support | pillar 1B of the structure provided with the connection member 35 which connects several mutually adjacent pillar body 1b; 1b; 1b.
More specifically, the pillar 1B has three pillars 1b; 1b; 1b arranged at the apex position of a triangle in plan view, and as shown in FIG. 9B, the three pillars 1b; 1b Each end surface 14b of 1b; 14b; 14b; 14b is located on the same plane 100 orthogonal to the central axis of the column 1b, and the adjacent column bodies 1b are connected by the connecting member 35.
The number of column bodies 1b may be four or more.

実施形態6の支柱1Bを用いる場合、例えば、図10に示すように、支柱1Bの3本の柱体1b;1b;1bの各一端面14b;14b;14bを水平な設置面9に接触させて支柱1Bを設置面9に設置した後に、設置面9に設置された支柱1Bの周りにコンクリートを打設して固めることにより、支柱1を地盤に固定する。
同様に、実施形態5の支柱1Aを用いる場合、支柱1Aの中央主柱体1xの一端面14x及び3本の副柱体1y;1y;1yの各一端面14y;14y;14yを水平な設置面9に接触させて支柱1Aを設置面9に設置した後に、設置面9に設置された支柱1Aの周りにコンクリートを打設して固めることにより、支柱1Aを地盤に固定する。
When the column 1B of the sixth embodiment is used, for example, as shown in FIG. 10, the three columns 1b; 1b; 1b of the column 1B are brought into contact with the horizontal installation surface 9 at one end surface 14b; 14b; After the support column 1B is installed on the installation surface 9, the support column 1 is fixed to the ground by placing concrete around the support column 1B installed on the installation surface 9 and solidifying it.
Similarly, when the column 1A of the fifth embodiment is used, the one end surface 14x of the central main column 1x of the column 1A and the three sub-columns 1y; 1y; 1y each end surface 14y; 14y; After placing the support 1A on the installation surface 9 in contact with the surface 9, the support 1A is fixed to the ground by placing concrete around the support 1A installed on the installation surface 9 and solidifying it.

実施形態5の支柱1Aを用いれば、3本の副柱体1y;1y;1yの各一端面14y;14y;14yが水平な設置面9の三角形の頂点位置にそれぞれ設置され、かつ、中央主柱体1xの一端面14xが水平な設置面9の三角形の中央位置に設置されるので、支柱1Aの自立安定性が高くなる。
実施形態6の支柱1Bを用いれば、支柱1Bを構成する3本の柱体1b;1b;1bの各一端面14b;14b;14bが水平な設置面9の三角形の頂点位置にそれぞれ設置されるので、3本の柱体1b;1b;1bの自立安定性が高くなり、支柱1Bの自立安定性が高くなる。
よって、支柱1Aや支柱1Bを用いる場合には、上述した管材10や管材10Aを用いずとも、支柱1Aや支柱1Bを設置面9に単に置くだけで、支柱1Aや支柱1Bを簡単に自立させることができ、作業コスト及び作業時間をさらに低減できる。
また、支柱1Aは4本の柱体1x;1y;1y;1yと連結部材34とにより構成され、支柱1Bは3本の柱体1b;1b;1bと連結部材35とにより構成されるので、支柱の剛性も高くなる。
また、支柱1Aや支柱1Bは、自立性が向上するので、機械を遠隔操縦して行う無人化作業が可能となり、災害地のような人の立ち入れない場所に支柱1Aや支柱1Bを設置する場合にも容易に対応できる。
If the column 1A of the fifth embodiment is used, the three sub-column bodies 1y; 1y; 1y end faces 14y; 14y; 14y are respectively installed at the apex positions of the triangles of the horizontal installation surface 9, and Since the one end surface 14x of the column 1x is installed at the center of the triangle of the horizontal installation surface 9, the self-supporting stability of the column 1A is increased.
If the support | pillar 1B of Embodiment 6 is used, the three pillars 1b; 1b; 1b; 1b each end surface 14b; 14b; 14b which comprises the support | pillar 1B will each be installed in the vertex position of the triangle of the horizontal installation surface 9 Therefore, the self-supporting stability of the three pillars 1b; 1b; 1b is high, and the self-supporting stability of the support column 1B is high.
Therefore, when the support column 1A or the support column 1B is used, the support column 1A or the support column 1B can be easily made independent by simply placing the support column 1A or the support column 1B on the installation surface 9 without using the pipe material 10 or the tube material 10A. The work cost and work time can be further reduced.
Moreover, since the support | pillar 1A is comprised by the four pillar 1x; 1y; 1y; 1y and the connection member 34, the support | pillar 1B is comprised by the three pillar 1b; 1b; 1b and the connection member 35, The rigidity of the support is also increased.
Further, since the support 1A and the support 1B are improved in autonomy, it is possible to perform unmanned work by remotely manipulating the machine, and the support 1A and the support 1B are installed in a place where a person cannot enter such as a disaster area. It can be easily handled in some cases.

実施形態7
図11に示すように、同一方向に延長、かつ、平面視において三以上の角を持つ角形の頂点位置にそれぞれ配置されて互いに平行な複数の柱体1cと、複数の柱体1cがそれぞれ個別に柱体1cの中心軸に沿った方向に移動可能なように複数の柱体1c同士を連結する連結部材36と、柱体1cに取付けられた上ストッパ37及び下ストッパ38とを備えた支柱1Cを用いてもよい。
より具体的には、3本の柱体1c;1c;1cが平面視で三角形の頂点位置に配置されて、互いに隣り合う柱体1c;1c;1c同士が連結部材36により保持されて、かつ、柱体1c;1c;1cがそれぞれ個別に柱体1cの中心軸に沿った方向に移動可能となった構成である。即ち、図9に示した実施形態6の支柱1Bの3本の柱体1b;1b;1bが柱体1bの中心軸に沿った方向に移動可能に構成された支柱である。
図12に示すように、柱体1cは、例えば、一端部が円錐面のような錐面状に形成されて一端14tが先鋭に形成された円柱体のような柱体により構成される。
連結部材36は、例えば、柱体1cの柱径よりも大径でかつ柱体1cの柱径と近似した径寸法の内径を有した3つの円筒体のような筒体36a;36a;36aと、3つの筒体36a;36a;36aが平面視で三角形の頂点位置に位置されるように3つの筒体36a;36a;36aを連結する連結体36bとを備えた構成である。
上ストッパ37は、連結部材36の筒体36aに通された柱体1cの周面において、筒体36aの他端面36xと接触可能な位置に設けられる。下ストッパ38は、連結部材36の筒体36aに通された柱体1cの周面において、筒体36aの一端面36yと接触可能な位置に設けられる。
そして、上ストッパ37と下ストッパ38との間の間隔が、筒体36aの一端面36xと他端面36yとの間の長さよりも大きく設定されたことにより、柱体1cは、筒体36aの中心軸に沿った方向に移動可能に構成される。
尚、上ストッパ37と下ストッパ38との間の間隔によって、根切り部6の底面7に接触する各柱体1c;1c;1cの一端14t;14t;14tが接触する底面7の対応可能な不陸差が決まる。従って、根切り部6の底面7の不陸差の大小に応じて上ストッパ37と下ストッパ38との間の間隔を決めればよい。
上ストッパ37は、例えば、図11;12に示すように、3つのストッパ体37a;37a;37aが柱体1cの周面において柱体1cの中心軸周りに120度隔てた位置に分散配置されて構成される。下ストッパ38も上ストッパ37と同じように、3つのストッパ体38a;38a;38aが柱体1cの周面において柱体1cの中心軸周りに120度隔てた位置に分散配置されて構成される(例えば、図11;12参照)。ストッパ体37a;38aは、例えば、溶接やボルトナット等による接続手段によって柱体1cの周面に接続される。また、上ストッパ37、下ストッパ38は、柱体1cに嵌合されて柱体1cの周面に接続される管体等の環状部材により構成してもよい。
尚、柱体1cの数は4つ以上でもよい。
Embodiment 7
As shown in FIG. 11, a plurality of pillars 1c that extend in the same direction and are arranged at the vertexes of a square having three or more corners in plan view and parallel to each other, and a plurality of pillars 1c are individually provided. A column provided with a connecting member 36 for connecting a plurality of column bodies 1c so as to be movable in a direction along the central axis of the column body 1c, and an upper stopper 37 and a lower stopper 38 attached to the column body 1c. 1C may be used.
More specifically, the three pillars 1c; 1c; 1c are arranged at the apex positions of the triangles in plan view, the pillars 1c; 1c; 1c adjacent to each other are held by the connecting member 36, and The column bodies 1c; 1c; 1c are individually movable in the direction along the central axis of the column body 1c. That is, the three columns 1b; 1b; 1b of the column 1B of the sixth embodiment shown in FIG. 9 are columns configured to be movable in the direction along the central axis of the column 1b.
As shown in FIG. 12, the column body 1 c is configured by a column body such as a columnar body in which one end portion is formed in a conical surface shape such as a conical surface and one end 14 t is sharply formed.
The connecting member 36 is, for example, a cylindrical body 36a; 36a; 36a, such as three cylindrical bodies having a diameter larger than the column diameter of the column 1c and having a diameter that is similar to the column diameter of the column 1c. The three cylinders 36a; 36a; 36a are provided with a connecting body 36b for connecting the three cylinders 36a; 36a; 36a so that the three cylinders 36a; 36a;
The upper stopper 37 is provided on the peripheral surface of the column 1c passed through the cylinder 36a of the connecting member 36 at a position where it can contact the other end surface 36x of the cylinder 36a. The lower stopper 38 is provided on the circumferential surface of the column 1c passed through the cylinder 36a of the connecting member 36 at a position where it can contact the one end surface 36y of the cylinder 36a.
Then, the interval between the upper stopper 37 and the lower stopper 38 is set to be larger than the length between the one end surface 36x and the other end surface 36y of the cylindrical body 36a, so that the column body 1c has the cylindrical body 36a. It is configured to be movable in a direction along the central axis.
It should be noted that, depending on the distance between the upper stopper 37 and the lower stopper 38, each columnar body 1c; 1c; 1c; one end 14t; 14t; 14t; Uneven difference is decided. Accordingly, the distance between the upper stopper 37 and the lower stopper 38 may be determined according to the magnitude of the unevenness of the bottom surface 7 of the root cutting portion 6.
For example, as shown in FIGS. 11 and 12, the upper stopper 37 is dispersedly arranged at positions where three stopper bodies 37a; 37a; 37a are separated by 120 degrees around the central axis of the column 1c on the peripheral surface of the column 1c. Configured. Similarly to the upper stopper 37, the lower stopper 38 includes three stopper bodies 38a; 38a; 38a that are distributed and arranged at positions spaced 120 degrees around the central axis of the column 1c on the peripheral surface of the column 1c. (For example, see FIG. 11; 12). The stopper bodies 37a; 38a are connected to the peripheral surface of the column body 1c by connection means such as welding or bolts and nuts. Moreover, you may comprise the upper stopper 37 and the lower stopper 38 by cyclic | annular members, such as a tubular body, which are fitted to the column 1c and connected to the peripheral surface of the column 1c.
The number of column bodies 1c may be four or more.

当該支柱1Cを用いれば、根切り部6の不陸のある底面7にセルフレベリング性を有したコンクリート8を打設して水平な設置面9を形成せずとも、根切り部6の不陸のある底面7に直接に支柱1Cを自立させて設置できるようになる。
即ち、クレーン等の揚重機を用いて連結部材36をロープ等の吊具で吊ると連結部材36が3つの柱体1c;1c;1cの各上ストッパ37に引っ掛かった状態となり、この状態で支柱1Cを根切り部6に移動する(図13(a)参照)。連結部材36を下降させると、支柱1Cの3つの柱体1c;1c;1cが垂直方向に延長する垂直姿勢状態を維持しながら根切り部6の底面7に近付くように移動される。そして、ひとつの柱体1cの一端14tが根切り部6の底面7と接触した後、当該最初に一端14tが底面7と接触した柱体1cの下ストッパ38で止まるまで連結部材36を下降させながら、その他の柱体1cの一端14tと底面7とを接触させる(図13(b);(c)参照)ことにより、柱体1Cの3つの柱体1c;1c;1cが根切り部6の不陸のある底面7に自立して設置されることになる。そして、吊具を連結部材36から外し(図13(d)参照)、根切り部6の不陸のある底面7に設置された柱体1Cの周りにコンクリート126を打設して支柱1Cを地盤に固定する((図13(e)参照)。
よって、実施形態7の支柱1Cを用いれば、根切り部6の不陸のある底面7に支柱1Cを自立させて設置できるようになるので、実施形態1で説明した設置面形成工程を省略でき、作業コスト及び作業時間を低減できる。また、支柱1Cが、3本の柱体と連結部材36とを備えたので、支柱1Cの剛性も高くなる。
By using the support column 1C, even if the concrete 8 having self-leveling property is not placed on the bottom surface 7 where the root cutting portion 6 is uneven and the horizontal installation surface 9 is not formed, the unevenness of the root cutting portion 6 is formed. It becomes possible to install the column 1 </ b> C directly on the bottom surface 7 with a self-standing.
That is, when the connecting member 36 is hung with a hoist such as a rope using a crane or other lifting machine, the connecting member 36 is caught by the upper stoppers 37 of the three pillars 1c; 1c; 1c. 1C is moved to the root cutting part 6 (see FIG. 13A). When the connecting member 36 is lowered, the three pillars 1c; 1c; 1c of the column 1C are moved so as to approach the bottom surface 7 of the root cutting portion 6 while maintaining a vertical posture state in which the column members 1c; Then, after one end 14t of one column 1c comes into contact with the bottom surface 7 of the root cutting portion 6, the connecting member 36 is lowered until the first end 14t stops at the lower stopper 38 of the column 1c that first contacts the bottom 7. However, by bringing the one end 14t of the other column 1c and the bottom surface 7 into contact with each other (see FIGS. 13B and 13C), the three columns 1c; 1c; It will be installed independently on the bottom 7 with the uneven surface. Then, the hanger is removed from the connecting member 36 (see FIG. 13 (d)), and concrete 126 is placed around the pillar 1C installed on the bottom surface 7 of the root cutting portion 6 that is not flat. It fixes to the ground (refer FIG.13 (e)).
Therefore, if the support column 1C according to the seventh embodiment is used, the support column 1C can be installed independently on the bottom surface 7 where the root cutting part 6 is uneven, so that the installation surface forming step described in the first embodiment can be omitted. , Work cost and work time can be reduced. Further, since the column 1C includes the three columns and the connecting member 36, the column 1C has high rigidity.

実施形態8
図14;15に示すように、中央主柱体1dと、中央主柱体1dと同一方向に延長し、かつ、平面視において中央主柱体1dを囲む三以上の角を持つ角形の頂点位置にそれぞれ配置されて互いに平行な複数の副柱体1eと、複数の副柱体1eがそれぞれ個別に中央主柱体1dの中心軸に沿った方向に移動可能なように複数の副柱体1eと中央主柱体1dの周面とを連結する連結部材39とを備えた構成の支柱1Dを用いてもよい。
より具体的には、中央主柱体1dの周りに3本の副柱体1e;1e;1eが平面視で三角形の頂点位置に配置され、3本の副柱体1e;1e;1eがそれぞれ中央主柱体1dの中心軸に沿った方向に移動可能なように、中央主柱体1dに連結された構成である。即ち、図8に示した実施形態5の支柱1Aの3本の副柱体1y;1y;1yが中央主柱体1xの中心軸に沿った方向に移動可能となった構成である。
中央主柱体1dは、例えば、円柱体のような柱体により構成される。
副柱体1eは、中空柱体40と、蓋体41とを備える。中空柱体40は、一端開口他端閉塞で、かつ、周面には、一端開口43から他端に向けて延長する細長孔42を備える。この細長孔42は、中空柱体40の中心軸に沿って延長する。蓋体41は、中空柱体40の一端開口43を塞ぐ蓋である。
3つの連結部材39;39;39は、例えば、中央主柱体1dの周面において柱体1cの中心軸周りに120度隔てた位置よりそれぞれ中心軸と直交する方向に突出するように設けられる。連結部材39は、例えば、突出端部が、副柱体1eの中空柱体40の細長孔42に挿入されて細長孔42の延長方向に移動可能な平板部44と、副柱体1eの中空柱体40の中空部に挿入されて中空柱体40の一端開口43側と他端側との間を移動可能なガイド柱体45とを備える。
副柱体1eは、一端面51が、中央主柱体1dの一端面50よりも下方または上方に移動可能なように構成される。
支柱1Dは、連結部材39の突出端部のガイド柱体45を、副柱体1eの中空柱体40の一端開口43側から中空柱体40の中空部に挿入すると同時に、連結部材39の突出端部の平板部44を、副柱体1eの中空柱体40の一端開口43側から細長孔42に挿入した後に、中空柱体40の一端開口43を蓋体41で塞ぐことにより形成される。
尚、副柱体1eの数は4つ以上でもよい。また、副柱体1eは、下端が尖った形状に形成されたものを用いてもよい。
Embodiment 8
As shown in FIGS. 14 and 15, the central main column 1d and the apex position of a square extending in the same direction as the central main column 1d and having three or more corners surrounding the central main column 1d in plan view A plurality of sub-columns 1e arranged in parallel to each other and a plurality of sub-columns 1e are individually movable in a direction along the central axis of the central main column 1d. A support column 1D having a connection member 39 that connects the peripheral surface of the central main column 1d may be used.
More specifically, three sub-columns 1e; 1e; 1e are arranged around the central main column 1d at the apex position of the triangle in plan view, and the three sub-columns 1e; 1e; It is the structure connected with the central main pillar 1d so that it can move to the direction along the central axis of the central main pillar 1d. That is, the three sub-columns 1y; 1y; 1y of the column 1A of Embodiment 5 shown in FIG. 8 are configured to be movable in the direction along the central axis of the central main column 1x.
The central main column 1d is constituted by a column such as a cylinder, for example.
The sub-column body 1 e includes a hollow column body 40 and a lid body 41. The hollow column body 40 is closed at one end and closed at the other end, and has an elongated hole 42 extending from the one end opening 43 toward the other end on the peripheral surface. The elongated hole 42 extends along the central axis of the hollow column 40. The lid body 41 is a lid that closes the one end opening 43 of the hollow column body 40.
The three connecting members 39; 39; 39 are provided, for example, so as to protrude in a direction perpendicular to the central axis from positions spaced 120 degrees around the central axis of the column 1c on the peripheral surface of the central main column 1d. . The connecting member 39 includes, for example, a flat plate portion 44 whose protruding end portion is inserted into the elongated hole 42 of the hollow column body 40 of the sub-column body 1e and is movable in the extending direction of the elongated hole 42, and the hollow portion of the sub-column body 1e. A guide column body 45 that is inserted into the hollow portion of the column body 40 and is movable between the one end opening 43 side and the other end side of the hollow column body 40 is provided.
The sub-column 1e is configured such that one end surface 51 is movable below or above the one end surface 50 of the central main column 1d.
The support column 1D inserts the guide column body 45 at the protruding end portion of the connecting member 39 into the hollow portion of the hollow column body 40 from the one end opening 43 side of the hollow column body 40 of the sub-column body 1e. The flat plate portion 44 at the end is inserted into the elongated hole 42 from the one end opening 43 side of the hollow column body 40 of the sub-column 1e, and then the one end opening 43 of the hollow column body 40 is closed by the lid body 41. .
Note that the number of sub-columns 1e may be four or more. Moreover, you may use the sub-column 1e formed in the shape where the lower end was sharp.

当該支柱1Dを用いれば、根切り部6の不陸のある底面7にセルフレベリング性を有したコンクリート8を打設して水平な設置面9を形成せずとも、根切り部6の不陸のある底面7に直接に支柱1Dを自立させて設置できるようになる。
即ち、図16(a)に示すように、支柱1Dが根切り部6の底面7に近付くように移動され、中央主柱体1dの一端面50が底面7に接触して自立しようとする場合に、底面7において中央主柱体1dの一端面50が接触する部分よりも副柱体1eの一端面51が接触する部分の位置のレベルが高い場合には副柱体1eが上方に移動し、底面7において中央主柱体1dの一端面50が接触する部分よりも副柱体1eの一端面51が接触する部分の位置のレベルが低い場合には副柱体1eが下方に移動するので、中央主柱体1dが傾きにくくなり、中央主柱体1dが自立しやすくなる。
中央主柱体1dが底面7に接触して中央主柱体1dが自立することにより支柱1Dが底面7に設置された後に、支柱1Dの周りにコンクリート127を打設して支柱1Dを地盤に固定する。
よって、実施形態8の支柱1Dを用いれば、根切り部6の不陸のある底面7に支柱1Dを自立させて設置できるようになるので、実施形態1で説明した設置面形成工程を省略でき、作業コスト及び作業時間を低減できる。また、支柱1Dが4本の柱体と連結部材39とを備えたので、支柱1Dの剛性も高くなる。
If the strut 1D is used, even if the concrete 8 having the self-leveling property is not placed on the bottom surface 7 where the root cutting portion 6 is uneven and the horizontal installation surface 9 is not formed, the unevenness of the root cutting portion 6 is formed. It becomes possible to install the column 1 </ b> D directly on the bottom surface 7 having a self-supporting position.
That is, as shown in FIG. 16A, when the support column 1D is moved so as to approach the bottom surface 7 of the root cutting portion 6, the one end surface 50 of the central main pillar 1d is in contact with the bottom surface 7 and tries to stand on its own. Furthermore, when the level of the position of the portion where the one end surface 51 of the sub-column body 1e contacts is higher than the portion of the bottom surface 7 where the one end surface 50 of the central main column body 1d contacts, the sub-column body 1e moves upward. When the level of the position of the portion where the one end surface 51 of the sub-column 1e is in contact with the bottom 7 is lower than the portion where the one end surface 50 of the central main column 1d is in contact, the sub-column 1e moves downward. The central main column 1d is less likely to tilt, and the central main column 1d is more likely to stand on its own.
After the central main column 1d is in contact with the bottom surface 7 and the central main column 1d is self-supporting and the column 1D is installed on the bottom 7, the concrete 127 is placed around the column 1D to place the column 1D on the ground. Fix it.
Therefore, if the support column 1D of the eighth embodiment is used, the support column 1D can be installed independently on the bottom surface 7 of the root cutting portion 6 with no unevenness, so that the installation surface forming step described in the first embodiment can be omitted. , Work cost and work time can be reduced. Moreover, since the support | pillar 1D was provided with the four column bodies and the connection member 39, the rigidity of the support | pillar 1D also becomes high.

実施形態9
実施形態1では、エアシリンダー等の開閉駆動手段によって開閉板18の開閉を制御する構成のホッパー19を用いてコンクリート打設作業を行う例を説明したが、この場合、建設機械を操作することによるホッパー19の昇降作業とホッパー19の開閉駆動手段を制御するための操作の両方の遠隔操作を行わなければならず、作業の困難性が高くなる。
そこで、図17に示すように、エアシリンダー等の開閉駆動手段を用いない構成のホッパー60を用いるようにすれば、開閉駆動手段の遠隔操作作業を行わなくて済むので作業が容易となる。
図17乃至図19に示すように、実施形態9によるホッパー60は、コンクリート70を収容するための容器61と、開閉弁62と、受圧板63と、開閉弁62と受圧板63とを連結する連結体としての連結軸64とを備える。
容器61は、容器61の底板65に、コンクリート70を容器61外に放出するための開口である放出口66を有した上部開口の容器であり、容器61内に収容されたコンクリート70を放出口66を介して放出可能に収容するコンクリート収容容器である。
開閉弁62は、容器61の内側に配置されて放出口66を開閉する弁であり、放出口66を塞ぐことが可能なように、放出口66の径よりも大径の弁体により形成される。
受圧部としての受圧板63は、放出口66を貫通するように設けられる連結軸64を介して開閉弁62と連結されて容器61の外側に突出するように設けられる。
連結軸64の軸径寸法は放出口66の口径寸法よりも小さく形成される。連結軸64の軸径寸法と放出口66の口径寸法との差を大きくすれば、コンクリート70が放出口66を介して放出される際の開口を大きくできる。
そして、受圧板63は、コンクリート打設対象部と接触した場合に当該接触面からの力を受けて放出口66を開く方向に開閉弁62を移動させるものである。
Embodiment 9
In the first embodiment, an example in which concrete placing work is performed using a hopper 19 configured to control opening and closing of the opening and closing plate 18 by opening and closing drive means such as an air cylinder has been described. In this case, by operating a construction machine Both the lifting operation of the hopper 19 and the operation for controlling the opening / closing drive means of the hopper 19 must be performed remotely, increasing the difficulty of the operation.
Therefore, as shown in FIG. 17, if a hopper 60 having a configuration that does not use an opening / closing drive means such as an air cylinder is used, it is not necessary to perform a remote operation of the opening / closing drive means, thereby facilitating the operation.
As shown in FIGS. 17 to 19, the hopper 60 according to the ninth embodiment connects a container 61 for housing concrete 70, an on-off valve 62, a pressure receiving plate 63, an on-off valve 62 and a pressure receiving plate 63. And a connecting shaft 64 as a connecting body.
The container 61 is a top-opening container having a discharge port 66 that is an opening for discharging the concrete 70 to the outside of the container 61 in the bottom plate 65 of the container 61, and the concrete 70 accommodated in the container 61 is discharged to the discharge port. 66 is a concrete storage container that is removably stored through 66.
The on-off valve 62 is a valve disposed inside the container 61 to open and close the discharge port 66, and is formed by a valve body having a diameter larger than the diameter of the discharge port 66 so that the discharge port 66 can be closed. The
A pressure receiving plate 63 as a pressure receiving portion is provided so as to project to the outside of the container 61 by being connected to the on-off valve 62 via a connecting shaft 64 provided so as to penetrate the discharge port 66.
The diameter of the connecting shaft 64 is smaller than the diameter of the discharge port 66. If the difference between the shaft diameter of the connecting shaft 64 and the diameter of the discharge port 66 is increased, the opening when the concrete 70 is discharged through the discharge port 66 can be increased.
The pressure receiving plate 63 moves the opening / closing valve 62 in a direction to open the discharge port 66 by receiving a force from the contact surface when contacting the concrete placing target portion.

即ち、当該ホッパーは、受圧板63が設置面等と接触して開閉弁62が放出口66を開いた状態となった場合に、容器61内のコンクリート70が放出口66を介して容器61の外側に放出されるように構成されたものである。
即ち、図19(a)に示すように、容器61内にコンクリート70を収容させる場合には、容器61の底板65の下面65aを地面67等に接触させ、かつ、受圧板63が地面67等に形成された穴68内で空中に浮いた状態とすることにより、開閉弁62が放出口66を塞いだ状態となっているときに、容器61内にコンクリート70を投入する。
そして、開閉弁62が放出口66を塞いだ状態を維持したままホッパー60を建設機械で吊り上げてホッパー60をコンクリート打設対象部としての例えば根切り部6の底面7に移動する(図19(b);(c)参照)。
そして、図19(c)に示すように、ホッパー60を下降させて、受圧板63の下面63aと底面7とを接触させて開閉弁62を上方に移動させ、かつ、受圧板63の上面63bと底板65の下面65aとが接触しない状態、及び、開閉弁62の下面62aと底板65の内底面65bとが接触しない状態に維持する。これにより、容器61内のコンクリート70が放出口66を介して底面7上に放出される。即ち、容器61内のコンクリート70が、開閉弁62の下面62aと底板65の内底面65bとの間、連結軸64と放出口66の孔縁66aとの間、受圧板63の上面63bと底板65の下面65aとの間を経由して底面7上に放出される。
コンクリート70の放出動作を停止させる場合には、ホッパー60を上昇させることにより、開閉弁62が自重で下降するので、開閉弁62の下面62aと底板65における放出口66の周囲の内底面65bとが接近して、開閉弁62が放出口66を塞ぐ状態となる。
That is, in the hopper, when the pressure receiving plate 63 comes into contact with the installation surface or the like and the on-off valve 62 opens the discharge port 66, the concrete 70 in the container 61 passes through the discharge port 66. It is configured to be released to the outside.
That is, as shown in FIG. 19A, when the concrete 70 is accommodated in the container 61, the lower surface 65a of the bottom plate 65 of the container 61 is brought into contact with the ground 67 and the pressure receiving plate 63 is ground 67 or the like. The concrete 70 is poured into the container 61 when the on-off valve 62 is in a state of closing the discharge port 66 by floating in the air in the hole 68 formed in the container.
Then, the hopper 60 is lifted by a construction machine while maintaining the state where the opening / closing valve 62 blocks the discharge port 66, and the hopper 60 is moved to, for example, the bottom surface 7 of the root cutting portion 6 as a concrete placement target portion (FIG. 19 ( b); see (c)).
Then, as shown in FIG. 19C, the hopper 60 is lowered to bring the lower surface 63a of the pressure receiving plate 63 into contact with the bottom surface 7 to move the on-off valve 62 upward, and the upper surface 63b of the pressure receiving plate 63 And the lower surface 65a of the bottom plate 65 are not in contact with each other, and the lower surface 62a of the on-off valve 62 and the inner bottom surface 65b of the bottom plate 65 are not in contact with each other. As a result, the concrete 70 in the container 61 is discharged onto the bottom surface 7 through the discharge port 66. That is, the concrete 70 in the container 61 is between the lower surface 62a of the on-off valve 62 and the inner bottom surface 65b of the bottom plate 65, between the connecting shaft 64 and the hole edge 66a of the discharge port 66, and between the upper surface 63b and the bottom plate of the pressure receiving plate 63. It is discharged onto the bottom surface 7 via the space between the lower surface 65a of 65.
When stopping the discharging operation of the concrete 70, the open / close valve 62 is lowered by its own weight by raising the hopper 60, so that the lower surface 62 a of the open / close valve 62 and the inner bottom surface 65 b around the discharge port 66 in the bottom plate 65 Approaches, and the on-off valve 62 closes the discharge port 66.

当該ホッパー60によれば、ホッパー60を昇降動作させるだけで、放出口66の開閉動作が行われるので、放出口を開閉する開閉板を開閉させるためのエアシリンダー等の開閉駆動手段を不要とでき、低コストなホッパーを提供できる。
また、連結軸64の長さが根切り部6の深さよりも長ければ、根切り部6内に根切り部6の上縁部分までコンクリート70を充填することが可能となるので好ましい。
According to the hopper 60, since the opening and closing operation of the discharge port 66 is performed only by moving the hopper 60 up and down, an opening and closing drive means such as an air cylinder for opening and closing the opening and closing plate for opening and closing the discharge port can be eliminated. A low-cost hopper can be provided.
Further, it is preferable that the length of the connecting shaft 64 is longer than the depth of the root cutting portion 6 because the concrete 70 can be filled into the root cutting portion 6 up to the upper edge portion of the root cutting portion 6.

実施形態10
図20;21に示すような開閉弁71を備えたホッパー60Aを用いれば、コンクリート70の放出動作をスムーズにできる。尚、開閉弁以外の構成は、上述したホッパー60と同じ構成なので、説明を省略する。
開閉弁71は、開閉蓋72と、開閉蓋72の開動作の際に開閉蓋72に加わる容器61内のコンクリート70からの力を軽減させて開動作の動作信頼性を向上させるための開動作アシスト手段とを備える。
開動作アシスト手段は、例えば、開閉蓋72の周縁より開閉蓋72の中心側に向けて容器61の底板65より離れる方向、即ち、上方に延長する傾斜部73aを備えた立方体73により形成される。立方体73としては、開閉蓋72が円形平板の場合は傾斜部73aを形成する円錐面を備えた円錐体、開閉蓋72が角形平板の場合は傾斜部を形成する角錐面を備えた角錐体とすればよい。また、開閉蓋72が四角形平板の場合は三角柱を横倒しにして角錐面を三角柱の少なくとも1つの側面を傾斜部として利用した立方体を用いてもよい。
尚、開閉蓋72の中心を通る中心線と傾斜部73aの上端とが一致していなくてもよいし、傾斜部73aの上端73tが面に形成されていてもよいが、立方体がコンクリート70中を上方に移動する際の抵抗をより小さくするためには、開閉蓋72の中心を通る中心線と傾斜部73aの上端73tとが一致していることが好ましく、また、傾斜部73aの上端73tが点又は線による先鋭形状に形成されていることが好ましい。
尚、開閉弁71は、開閉蓋72と開動作アシスト手段とが一体に形成されたものでもよいし、それぞれ別体に形成された開閉蓋72と開動作アシスト手段とを接合して形成されたものでもよい。
Embodiment 10
If the hopper 60A provided with the on-off valve 71 as shown in FIGS. 20 and 21 is used, the concrete 70 can be discharged smoothly. Since the configuration other than the on-off valve is the same as that of the hopper 60 described above, the description thereof is omitted.
The opening / closing valve 71 is an opening operation for improving the operation reliability of the opening operation by reducing the force from the opening / closing lid 72 and the concrete 70 in the container 61 applied to the opening / closing lid 72 when the opening / closing lid 72 is opened. Assisting means.
The opening operation assisting means is formed by a cube 73 having an inclined portion 73a extending in the direction away from the bottom plate 65 of the container 61 from the periphery of the opening / closing lid 72 toward the center of the opening / closing lid 72, that is, upward. . The cube 73 includes a cone having a conical surface forming an inclined portion 73a when the open / close lid 72 is a circular flat plate, and a pyramid having a pyramid surface forming an inclined portion when the open / close lid 72 is a square flat plate. do it. When the opening / closing lid 72 is a rectangular flat plate, a cube may be used in which the triangular prism is laid down and the pyramid surface is used as an inclined portion with at least one side surface of the triangular prism.
It should be noted that the center line passing through the center of the opening / closing lid 72 and the upper end of the inclined portion 73a may not coincide with each other, and the upper end 73t of the inclined portion 73a may be formed on the surface. In order to further reduce the resistance when moving upward, it is preferable that the center line passing through the center of the opening / closing lid 72 and the upper end 73t of the inclined portion 73a coincide with each other, and the upper end 73t of the inclined portion 73a. Is preferably formed in a sharp shape by dots or lines.
The on-off valve 71 may be formed integrally with the opening / closing lid 72 and the opening operation assisting unit, or formed by joining the opening / closing lid 72 and the opening operation assisting unit formed separately. It may be a thing.

実施形態10のホッパー60Aを用いれば、図21(a)に示すように放出口66が開閉弁71の開閉蓋72で塞がれた閉状態から図21(b)に示すように開閉弁71が放出口66を開こうとする方向、即ち、上方に移動する際に、開動作アシスト手段の傾斜部73a及び先鋭な上端73tにより開閉弁71がコンクリート70中を上方に移動する際の抵抗が小さくなり、開閉弁71の開動作がスムーズになる。
即ち、開閉弁による開動作がスムーズとなるホッパー60Aを提供できる。
When the hopper 60A of the tenth embodiment is used, the opening / closing valve 71 is closed as shown in FIG. 21B from the closed state in which the discharge port 66 is closed by the opening / closing lid 72 of the opening / closing valve 71 as shown in FIG. When opening the discharge port 66, that is, when moving upward, the resistance when the on-off valve 71 moves upward in the concrete 70 due to the inclined portion 73a and the sharp upper end 73t of the opening operation assisting means. As a result, the opening / closing valve 71 opens smoothly.
That is, it is possible to provide a hopper 60A that can be smoothly opened by the on-off valve.

本発明の支柱固定方法は、人の立ち入れない災害地に遠隔操縦による無人化作業で支柱を固定する場合に限られず、一般的な地盤に形成した根切り部に有人化作業で支柱を固定する場合にも適用可能である。
支柱1C;1Dは、人の立ち入れない災害地に設置固定される支柱として使用されるだけではなく、不陸のある面に設置固定する場合に好適な支柱として利用可能である。
ホッパー60;60Aは、人の立ち入れない災害地にコンクリートを打設する際に使用されるだけではなく、コンクリート打設用のホッパー、あるいは、コンクリート打設以外の用途に使用するホッパーとして利用可能である。
The column fixing method of the present invention is not limited to the case where the column is fixed by unmanned work by remote control in a disaster area where people cannot enter, but the column is fixed to the root cutting part formed on the general ground by manned operation. It is also applicable to
The struts 1C; 1D are not only used as struts that are installed and fixed in disaster areas where people cannot enter, but can also be used as struts that are suitable for installation and fixing on uneven surfaces.
The hopper 60; 60A is not only used when placing concrete in disaster areas where people cannot enter, but can also be used as a hopper for placing concrete or as a hopper used for purposes other than placing concrete. It is.

1;1A;1B;1C;1D;1X 支柱、1b;1c 柱体、
1d;1x 中央主柱体、1e;1y 副柱体、
5 土石流堆積部分(支柱固定対象部)、6 根切り部、7 根切り部の底面、
8 セルフレベリング性を有したコンクリート、9 設置面、10;10A 管材、
36;39 連結部材、60;60A ホッパー、61 容器、
62;71 開閉弁、63 受圧板(受圧部)、65 容器の底板、66 放出口、
72 開閉蓋、73 立方体、73a 傾斜部。
1; 1A; 1B; 1C; 1D; 1X strut, 1b; 1c pillar,
1d; 1x central main column, 1e; 1y sub-column,
5 Debris flow accumulation part (supporting part for pillar support), 6 root cutting part, 7 bottom face of root cutting part,
8 Concrete with self-leveling, 9 Installation surface, 10; 10A pipe,
36; 39 connecting member, 60; 60A hopper, 61 container,
62; 71 On-off valve, 63 pressure receiving plate (pressure receiving portion), 65 bottom plate of the container, 66 discharge port,
72 Opening and closing lid, 73 cube, 73a inclined part.

Claims (8)

支柱固定対象部を根切りして根切り部を形成する根切り部形成工程と、根切り部の底面にセルフレベリング性を有したコンクリートを打設して設置面を形成する設置面形成工程と、設置面に管材の一端側を設置する管材設置工程と、設置面に設置された管材の周囲にコンクリートを打設して管材を地盤に固定する管材固定工程と、管材の他端開口を介して管材の管内に支柱の一端側を挿入して支柱を設置する支柱設置工程と、管材の管内にコンクリートを打設して支柱を管に固定する支柱固定工程とを備えたことを特徴とする支柱固定方法。   A root cutting part forming step for rooting the pillar fixing target part to form a root cutting part; and an installation surface forming process for forming an installation surface by placing concrete having self-leveling on the bottom surface of the root cutting part; A pipe installation process for installing one end side of the pipe material on the installation surface, a pipe material fixing process for placing concrete around the pipe material installed on the installation surface and fixing the pipe material to the ground, and the other end opening of the pipe material A support column installation step in which one end side of the support column is inserted into the pipe of the tube material and a column is installed; and a column fixing step in which concrete is placed in the tube of the tube material and the column is fixed to the tube. Prop fixing method. 支柱固定対象部を根切りして根切り部を形成する根切り部形成工程と、根切り部の底面にセルフレベリング性を有したコンクリートを打設して設置面を形成する設置面形成工程と、各柱体の中心軸が互いに平行に維持されかつ各柱体の一端面が柱体の中心軸と直交する同一平面上に位置されるように複数の柱体が連結されて構成された支柱を用いて当該支柱の各柱体の一端面を設置面に設置する支柱設置工程と、設置面に設置された支柱の各柱体の一端面側の周囲にコンクリートを打設して支柱を地盤に固定する支柱固定工程とを備えたことを特徴とする支柱固定方法。   A root cutting part forming step for rooting the pillar fixing target part to form a root cutting part; and an installation surface forming process for forming an installation surface by placing concrete having self-leveling on the bottom surface of the root cutting part; A column formed by connecting a plurality of columns so that the central axes of the columns are maintained parallel to each other and one end surface of each column is positioned on the same plane perpendicular to the central axis of the columns The pillar installation process that installs one end surface of each column body of the column on the installation surface using the concrete, and concrete is placed around the one end surface side of each column body of the column installed on the installation surface to ground the column A column fixing method comprising: a column fixing step for fixing to a column. 支柱固定対象部を根切りして根切り部を形成する根切り部形成工程と、各柱体の中心軸が互いに平行に維持されかつ各柱体が柱体の中心軸に沿った方向に移動可能なように複数の柱体が連結されて構成された支柱を用いて当該支柱の各柱体の一端面を根切り部の底面に設置する支柱設置工程と、根切り部の底面に設置された支柱の各柱体の一端面側の周囲にコンクリートを打設して支柱を根切り部の底面に固定する支柱固定工程とを備えたことを特徴とする支柱固定方法。   The root cutting part forming step for rooting the column fixing target part to form the root cutting part, and the central axes of the pillars are maintained parallel to each other, and the pillars are moved in the direction along the central axis of the pillars. A pillar installation process in which one end surface of each pillar body of the pillar is installed on the bottom surface of the root cutting part using a pillar configured by connecting a plurality of pillars as possible, and installed on the bottom surface of the root cutting part. A strut fixing method comprising: placing concrete around one end surface side of each pillar body of the strut and fixing the strut to the bottom surface of the root cutting portion. 支柱固定対象部が人の立ち入れない災害地であり、各工程の作業を遠隔操縦によって操縦される機械を用いて行うことを特徴とする請求項1乃至請求項3のいずれか一項に記載の支柱固定方法。   4. The column fixing target part is a disaster area where a person cannot enter, and the work of each process is performed using a machine operated by remote control. How to fix the column. 請求項3に記載の支柱固定方法に使用する支柱であって、同一方向に延長し、かつ、平面視において三以上の角を持つ角形の頂点位置にそれぞれ配置されて互いに平行な複数の柱体と、複数の柱体がそれぞれ個別に柱体の中心軸に沿った方向に移動可能なように複数の柱体同士を連結する連結部材とを備えたことを特徴とする支柱。   4. A column used in the column fixing method according to claim 3, wherein the column extends in the same direction and is arranged at the apex positions of squares having three or more corners in plan view and parallel to each other. And a connecting member that connects the plurality of column bodies so that each of the plurality of column bodies can individually move in a direction along the central axis of the column body. 請求項3に記載の支柱固定方法に使用する支柱であって、中央主柱体と、中央主柱体と同一方向に延長し、かつ、平面視において中央主柱体を囲む三以上の角を持つ角形の頂点位置にそれぞれ配置されて互いに平行な複数の副柱体と、複数の副柱体がそれぞれ個別に中央主柱体の中心軸に沿った方向に移動可能なように各副柱体と中央主柱体の周面とをそれぞれ個別に連結する連結部材とを備えたことを特徴とする支柱。   It is a support | pillar used for the support | pillar fixing method of Claim 3, Comprising: Three or more corners which extend in the same direction as a center main pillar body and a center main pillar body, and surround a center main pillar body in planar view. A plurality of sub-columns arranged parallel to each other at the vertex positions of the squares that each have, and each sub-column body so that each of the sub-columns can individually move in a direction along the central axis of the central main column And a connecting member for individually connecting the peripheral surface of the central main column body. 請求項1乃至請求項4のいずれか一項に記載の支柱固定方法に用いるコンクリート打設用のホッパーであって、コンクリートが収容され底板にコンクリートを放出させるための放出口を有した容器と、容器の内側に配置され放出口の径よりも大径の弁体により形成されて放出口を開閉する開閉弁と、開閉弁と放出口の径よりも小径の連結軸を介して連結され放出口を介して容器の外側に突出した受圧部とを備え、受圧部がコンクリート打設対象面からの力を受けて放出口を開く方向に開閉弁を移動させることで、受圧部と底板の下面とが接触しない状態、及び、開閉弁と底板の内底面とが接触しない状態に維持された場合に、容器内のコンクリートが、開閉弁と底板の内底面との間、連結軸と放出口の孔縁との間、受圧部と底板の下面との間を経由してコンクリート打設対象面に放出されるように構成されたことを特徴とするコンクリート打設用のホッパー。   A concrete hopper for use in the support fixing method according to any one of claims 1 to 4, wherein the concrete is stored and a container having a discharge port for discharging the concrete to the bottom plate; An opening / closing valve disposed inside the container and formed by a valve body having a diameter larger than the diameter of the discharge port, and connected via a connection shaft having a diameter smaller than the diameter of the opening / closing valve and the discharge port. A pressure receiving portion projecting to the outside of the container, and the pressure receiving portion receives the force from the concrete placing target surface and moves the on-off valve in a direction to open the discharge port, thereby allowing the pressure receiving portion and the lower surface of the bottom plate to Is not in contact with each other, and when the on-off valve and the inner bottom surface of the bottom plate are not in contact with each other, the concrete in the container is placed between the on-off valve and the inner bottom surface of the bottom plate between the connecting shaft and the outlet hole. Between the edge and between the pressure receiving part and the bottom surface of the bottom plate Hopper of concrete 設用, characterized in that it is configured to be released into the concreting target surface via. 開閉弁が、放出口を開閉する開閉蓋と、開閉蓋の開動作の際に開閉蓋に加わる容器内のコンクリートからの力を軽減させる開動作アシスト手段とを備え、開動作アシスト手段は、開閉蓋の周縁より開閉蓋の中心側に向けて容器の底板より離れる方向に延長する傾斜部を備えた立方体により形成されたことを特徴とする請求項7に記載のコンクリート打設用のホッパー。   The opening / closing valve includes an opening / closing lid for opening / closing the discharge port, and an opening operation assisting means for reducing the force from the concrete in the container applied to the opening / closing lid when the opening / closing lid is opened. 8. The concrete placing hopper according to claim 7, wherein the concrete placing hopper is formed of a cube having an inclined portion extending from a peripheral edge of the lid toward a center side of the open / close lid in a direction away from the bottom plate of the container.
JP2011066148A 2011-03-24 2011-03-24 Column fixing method, column used in the method, concrete hopper used in the method Active JP5638435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011066148A JP5638435B2 (en) 2011-03-24 2011-03-24 Column fixing method, column used in the method, concrete hopper used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011066148A JP5638435B2 (en) 2011-03-24 2011-03-24 Column fixing method, column used in the method, concrete hopper used in the method

Publications (2)

Publication Number Publication Date
JP2012202068A true JP2012202068A (en) 2012-10-22
JP5638435B2 JP5638435B2 (en) 2014-12-10

Family

ID=47183357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011066148A Active JP5638435B2 (en) 2011-03-24 2011-03-24 Column fixing method, column used in the method, concrete hopper used in the method

Country Status (1)

Country Link
JP (1) JP5638435B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104912036A (en) * 2015-06-29 2015-09-16 中国科学院水利部成都山地灾害与环境研究所 A flow-disturbing and energy-dissipating full-lining debris flow drainage groove, and a construction method and application of the same
JP6324604B1 (en) * 2017-11-14 2018-05-16 株式会社トラバース Installation method of prop
JP6324603B1 (en) * 2017-11-14 2018-05-16 株式会社トラバース Installation method of prop

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938089Y1 (en) * 1970-03-31 1974-10-18
JPS5115526A (en) * 1974-07-29 1976-02-07 Seiji Shigeoka Kisokono kochikuhoho
JPS54163922A (en) * 1978-06-16 1979-12-27 Kajima Corp Constant concrete quantity feeder
JPS612549U (en) * 1984-06-08 1986-01-09 株式会社 豊進製作所 Support foundation for columnar structures
JPS61235307A (en) * 1985-04-09 1986-10-20 Gou Tekkosho:Kk Installation method for mount frame in transportation plant
JPH045331A (en) * 1990-04-19 1992-01-09 Tokuyama Soda Co Ltd Method for constructing foundation
JP2001131944A (en) * 1999-11-08 2001-05-15 Hokuriku Regional Constr Bureau Ministry Of Constr Constructing method of concrete structure and form block used for this method
JP2003049439A (en) * 2001-08-03 2003-02-21 Mitsubishi Heavy Ind Ltd Jacket structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938089Y1 (en) * 1970-03-31 1974-10-18
JPS5115526A (en) * 1974-07-29 1976-02-07 Seiji Shigeoka Kisokono kochikuhoho
JPS54163922A (en) * 1978-06-16 1979-12-27 Kajima Corp Constant concrete quantity feeder
JPS612549U (en) * 1984-06-08 1986-01-09 株式会社 豊進製作所 Support foundation for columnar structures
JPS61235307A (en) * 1985-04-09 1986-10-20 Gou Tekkosho:Kk Installation method for mount frame in transportation plant
JPH045331A (en) * 1990-04-19 1992-01-09 Tokuyama Soda Co Ltd Method for constructing foundation
JP2001131944A (en) * 1999-11-08 2001-05-15 Hokuriku Regional Constr Bureau Ministry Of Constr Constructing method of concrete structure and form block used for this method
JP2003049439A (en) * 2001-08-03 2003-02-21 Mitsubishi Heavy Ind Ltd Jacket structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104912036A (en) * 2015-06-29 2015-09-16 中国科学院水利部成都山地灾害与环境研究所 A flow-disturbing and energy-dissipating full-lining debris flow drainage groove, and a construction method and application of the same
JP6324604B1 (en) * 2017-11-14 2018-05-16 株式会社トラバース Installation method of prop
JP6324603B1 (en) * 2017-11-14 2018-05-16 株式会社トラバース Installation method of prop
JP2019090209A (en) * 2017-11-14 2019-06-13 株式会社トラバース Installing method of support post
JP2019090208A (en) * 2017-11-14 2019-06-13 株式会社トラバース Method of installing support pillar

Also Published As

Publication number Publication date
JP5638435B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5638435B2 (en) Column fixing method, column used in the method, concrete hopper used in the method
JP2007320741A (en) Hanging unit for lifting
JP6661157B1 (en) Upward scattering prevention curing system and upward scattering prevention curing method when dismantling a multi-story building
JP2013155544A (en) Structure demolition unit and demolition method of structure
JP2015036493A (en) Method for constructing underground storage tank
EP2660183B1 (en) Autonomous cargo leveler for cranes activated by radiocontrol
CN204942764U (en) Pipeline buttress
JP5793016B2 (en) Concrete placement method
JP5223701B2 (en) Construction method of side wall of underground tank structure
JP2015101821A (en) Concrete placing method
JP7370213B2 (en) Concrete pouring hopper
CN207032043U (en) Box beam door opening support stamping die sandbox
EP0246046B1 (en) Support for building structures
JP2022128939A (en) Floor slab installation method
KR102613486B1 (en) System Support For Building Construction
JP6614530B2 (en) Demolition method for multi-story buildings
JP2003027481A (en) Tremie pipe, coupling construction thereof, and attaching and detaching method therefor
JP4420514B2 (en) Basement diving method
JPH1072809A (en) Pedestal for unlevel ground
JPH04222772A (en) Placing device of steel pipe concrete column and placing method thereof
JP2662119B2 (en) Installation method of underground tank storage device
KR101658826B1 (en) Method and structure to build underground structures using the border structure
JP6826956B2 (en) Dismantling method
KR102661589B1 (en) Vertical pipe fixing bracket for installing safety handrail of reinforcement block
JPH09111848A (en) Underground retarding structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141022

R150 Certificate of patent or registration of utility model

Ref document number: 5638435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350