JP2012201934A - Ladle refining apparatus and ladle refining method using the same - Google Patents

Ladle refining apparatus and ladle refining method using the same Download PDF

Info

Publication number
JP2012201934A
JP2012201934A JP2011068202A JP2011068202A JP2012201934A JP 2012201934 A JP2012201934 A JP 2012201934A JP 2011068202 A JP2011068202 A JP 2011068202A JP 2011068202 A JP2011068202 A JP 2011068202A JP 2012201934 A JP2012201934 A JP 2012201934A
Authority
JP
Japan
Prior art keywords
ladle
ladle refining
side wall
molten steel
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011068202A
Other languages
Japanese (ja)
Inventor
Makoto Ando
誠 安藤
Seiji Nabeshima
誠司 鍋島
Toru Hayashi
透 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011068202A priority Critical patent/JP2012201934A/en
Publication of JP2012201934A publication Critical patent/JP2012201934A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ladle refining apparatus capable of imparting a horizontal swirling component to a flow of molten steel in a ladle without using an elaborated apparatus, and to provide a ladle refining method using the same.SOLUTION: In the ladle refining apparatus 1, a bottom-blowing plug 3 is arranged at a position away from the center O of a ladle bottom surface 1a. On a side wall 1b close to the position of the bottom-blowing plug 3, a rectifying protrusion 5 is formed along a circumference of the side wall 1b.

Description

本発明は、取鍋精錬装置およびこれを用いた取鍋精錬方法に関する。   The present invention relates to a ladle refining apparatus and a ladle refining method using the same.

鋼に対する品質要求が厳格化している昨今では、溶鋼の脱炭、脱酸、脱硫、介在物の除去、および最終成分調整を取鍋において行う取鍋精錬が一般的に実施されている。取鍋精錬では、取鍋内の溶鋼を攪拌する技術が重要である。
その理由は、溶鋼中の数μmの微小な介在物粒子は単独での除去は困難であるが、凝集して巨大化した場合には浮力差を用いて浮上分離させることができるため、攪拌により介在物粒子の凝集を促進させるためである。
In recent years when quality requirements for steel have become stricter, ladle smelting is generally carried out in which a molten steel is decarburized, deoxidized, desulfurized, inclusions removed, and final component adjustment is performed in a ladle. In ladle refining, technology to stir molten steel in the ladle is important.
The reason is that it is difficult to remove the small inclusion particles of several μm in the molten steel alone, but when it is agglomerated and enlarged, it can be floated and separated using a difference in buoyancy. This is to promote the aggregation of inclusion particles.

取鍋精錬における溶鋼の攪拌には、電磁力を使ったり、真空槽による吸い上げによったり、浸漬したランスからのガス吹き込みを行なったりと、種々の方法が試されている。最近では、取鍋に底吹き可能なプラグを設置して、このプラグからガスを吹き込むことによる底吹きガス攪拌が効率的であり、設備的にも安価であることから最も多く利用されている。
一般的に、取鍋底吹きガス攪拌では、耐火物製のポーラスプラグやスリットプラグを取鍋の底部に設置し、アルゴンや窒素等の不活性ガスを溶鋼内に吹き込んで溶鋼を流動させる。
取鍋底吹きガス攪拌では、適正な攪拌条件を作り出すために、特許文献1に示されるようにガス流量を規定することや、特許文献2に示されるように、ガスの初期気泡径を規定することが試みられている。
Various methods have been tried to stir molten steel in ladle refining, such as using electromagnetic force, sucking in a vacuum tank, or blowing gas from an immersed lance. Recently, a bottom-blown gas agitation by installing a plug that can be bottom-blown in a ladle and blowing gas from the plug is efficient, and it is most frequently used because it is inexpensive in terms of equipment.
Generally, in ladle bottom blowing gas stirring, a refractory porous plug or slit plug is installed at the bottom of the ladle, and an inert gas such as argon or nitrogen is blown into the molten steel to cause the molten steel to flow.
In ladle bottom blown gas stirring, in order to create appropriate stirring conditions, the gas flow rate is specified as shown in Patent Document 1, or the initial bubble diameter of gas is specified as shown in Patent Document 2. Has been tried.

特開平1−287218号公報JP-A-1-287218 特公昭56−49969号公報Japanese Examined Patent Publication No. 56-49969 特開平6−235018号公報JP-A-6-235018

ところで、上述のように、取鍋底吹きガス攪拌は、アルゴンや窒素等の不活性ガスの浮力を利用した攪拌手段である。よって、ガスの浮上によって生成される溶鋼の流れは、プラグから真上に向かう上昇流となる。この上昇流は、やがて浴面に達すると水平方向に向きを変え、取鍋側壁にぶつかる地点で下降流となる。このように、取鍋内部の溶鋼の流れは、基本的に上昇と下降とを繰り返す流れとなり、取鍋内部をかき回すような水平方向の旋回成分は含まれていない。   By the way, as mentioned above, the ladle bottom blowing gas stirring is a stirring means using the buoyancy of an inert gas such as argon or nitrogen. Therefore, the flow of the molten steel generated by the rising of the gas becomes an upward flow that goes directly from the plug. This upward flow eventually turns to the horizontal direction when it reaches the bath surface and becomes a downward flow at the point where it hits the ladle side wall. In this way, the flow of molten steel inside the ladle is basically a flow that repeats ascent and descent, and does not include a horizontal swirl component that stirs inside the ladle.

そのため、取鍋底吹きガス攪拌をより効果的に実施するには、溶鋼の流れに水平方向の旋回成分を付与できればよい。例えば、特許文献3記載の技術では、複数個のプラグからのガス流量を時系列に変化させることで溶鋼の流れに水平方向の旋回成分を与えることが試みられている。しかし、ガス流量に変化を与えるためには、機械式の可動部を有する複雑な装置を必要とするという問題がある。
そこで、本発明は、このような問題点に着目してなされたものであって、複雑な装置を用いずに取鍋内部の溶鋼の流れに水平方向の旋回成分を付与し得る取鍋精錬装置およびこれを用いた取鍋精錬方法を提供することを目的としている。
Therefore, in order to more effectively implement the ladle bottom blowing gas stirring, it is only necessary to impart a horizontal swirl component to the molten steel flow. For example, in the technique described in Patent Document 3, it is attempted to give a swirl component in the horizontal direction to the flow of molten steel by changing the gas flow rate from a plurality of plugs in time series. However, in order to change the gas flow rate, there is a problem that a complicated device having a mechanical movable part is required.
Therefore, the present invention has been made paying attention to such problems, and a ladle refining device capable of imparting a horizontal swirl component to the flow of molten steel inside the ladle without using a complicated device And it aims at providing the ladle refining method using this.

上記課題を解決するために、本発明のうち第一の発明は、取鍋精錬を行なうために円形の底面に一個の底吹きプラグを設置した取鍋精錬装置であって、前記底吹きプラグを前記底面の中心から離れた位置に設置するとともに、該底吹きプラグの位置に近い側の側壁面に、該側壁面の周方向に沿って凸条に形成された整流部を設けたことを特徴とする。
また、本発明のうち第二の発明は、取鍋精錬を行なうために円形の底面に複数個の底吹きプラグを設置した取鍋精錬装置であって、前記底吹きプラグの少なくとも一個を前記底面の中心から離れた位置に設置するとともに、該底吹きプラグの位置に近い側の側壁面に、該側壁面の周方向に沿って凸条に形成された整流部を設けたことを特徴とする。
また、本発明のうち第三の発明は、取鍋精錬方法であって、本発明のうち第一の発明または第二の発明に係る取鍋精錬装置を用いて精錬を行なうことを特徴とする。
In order to solve the above problems, a first invention of the present invention is a ladle refining device in which one bottom blowing plug is installed on a circular bottom surface for ladle refining, wherein the bottom blowing plug is In addition to being installed at a position away from the center of the bottom surface, a rectifying portion formed in a convex shape along the circumferential direction of the side wall surface is provided on the side wall surface near the position of the bottom blowing plug. And
The second invention of the present invention is a ladle refining apparatus in which a plurality of bottom blowing plugs are installed on a circular bottom surface for performing ladle refining, wherein at least one of the bottom blowing plugs is disposed on the bottom surface. And a rectifying portion formed in a convex shape along the circumferential direction of the side wall surface is provided on the side wall surface near the position of the bottom blowing plug. .
The third invention of the present invention is a ladle refining method, wherein refining is performed using the ladle refining apparatus according to the first invention or the second invention of the present invention. .

本発明に係る取鍋精錬装置およびこれを用いた取鍋精錬方法によれば、底吹きプラグを底面の中心部から離れた位置に設置し、該底吹きプラグの位置に近い側の側壁面に、該側壁面の周方向に沿って凸条に形成された整流部を設けたので、この凸条をなす整流部によって、取鍋内部の溶鋼の流れに水平方向の旋回成分を付与することができる。そして、この整流部は、単純な凸条としているため、複雑な装置を用いずに取鍋内部の溶鋼の流れに水平方向の旋回成分を付与することができる。   According to the ladle refining apparatus and ladle refining method using the same according to the present invention, the bottom blowing plug is installed at a position away from the center of the bottom surface, and on the side wall surface near the position of the bottom blowing plug. Since the straightening portion formed in the ridge along the circumferential direction of the side wall surface is provided, the straightening component in the horizontal direction can be imparted to the flow of the molten steel inside the ladle by the straightening portion that forms the ridge. it can. And since this rectification | straightening part is made into the simple protruding item | line, it can give the turning component of a horizontal direction to the flow of the molten steel inside a ladle, without using a complicated apparatus.

本発明に係る取鍋精錬装置の一実施形態の説明図であり、同図(a)は正面図、(b)は平面図である。It is explanatory drawing of one Embodiment of the ladle refining apparatus which concerns on this invention, The figure (a) is a front view, (b) is a top view. 本発明に係る取鍋精錬装置およびこれを用いた取鍋精錬方法の効果を説明するグラフである。It is a graph explaining the effect of the ladle refining apparatus which concerns on this invention, and the ladle refining method using the same.

以下、本発明の一実施形態について、図面を適宜参照しつつ説明する。
図1(a)および(b)に、本発明に係る取鍋精錬装置の一実施形態を示す。なお、同図の例は、取鍋精錬装置(以下、「取鍋」ともいう)1に150トンの溶鋼2が保持された状態で、底吹きプラグ3からArガス4を1000L/min吹き込んでいる取鍋精錬の操業の様子を示している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings as appropriate.
1 (a) and 1 (b) show an embodiment of a ladle refining apparatus according to the present invention. In the example shown in the figure, Ar gas 4 is blown into the ladle refining device 1 (hereinafter also referred to as “ladle”) 1 with 1000 L / min of Ar gas 4 from the bottom blowing plug 3 in a state where 150 tons of molten steel 2 is held. It shows the state of the ladle refining operation.

取鍋1は、円形の底面1aと、この底面1aの周囲を囲繞する側壁面1bとを有する容器であり、底面1aには、一個の底吹きプラグ3が設置されている。この底吹きプラグ3は、底面1aの中心Oから離れた位置(距離Rを有している)に設置されている。さらに、この取鍋1は、底吹きプラグ3の位置に近い側の側壁面1bに、この側壁面1bの周方向に沿って凸条に形成された整流部5を設けている。ここで、整流部5の凸条の高さはh、長さはW、底面1aに近い側の端部の距離dである。なお、凸条の厚みは、溶鋼2の流れに対して整流部5を固定できる厚みであればよく、実質的な寸法の規定はない。しかし、この整流部5を耐火レンガで構成するとした場合、例えば「130mm」程度の厚みとすることが考えられるが、これに限定されるものではない。   The ladle 1 is a container having a circular bottom surface 1a and a side wall surface 1b surrounding the bottom surface 1a. A single bottom blowing plug 3 is installed on the bottom surface 1a. The bottom blowing plug 3 is installed at a position (having a distance R) away from the center O of the bottom surface 1a. Further, the ladle 1 is provided with a rectifying portion 5 formed in a convex shape along the circumferential direction of the side wall surface 1b on the side wall surface 1b on the side close to the position of the bottom blow plug 3. Here, the height of the ridges of the rectifying unit 5 is h, the length is W, and the distance d of the end portion on the side close to the bottom surface 1a. In addition, the thickness of a protruding item | line should just be the thickness which can fix the rectification | straightening part 5 with respect to the flow of the molten steel 2, and there is no prescription | regulation of a substantial dimension. However, when this rectification | straightening part 5 is comprised with a refractory brick, although it can be considered to set it as thickness of about "130 mm", for example, it is not limited to this.

この整流部5は、側壁面1bの周方向に沿って凸条をなす形状であれば種々の形状を採用可能であるが、本実施形態の整流部5としては、正面視が矩形板状の整流板を耐火煉瓦によって側壁面1bの周方向に沿って立設して凸条としている。また、正面視(同図(a))において、底面1aに対する整流部5がなす角度θについても、種々の角度を設定可能であるが、溶鋼2の流れに十分な旋回流を与えつつ、流れの速度を低下させないことが条件となるため、角度θは15度〜60度程度が好ましい値である。本実施形態では、側壁面1bに設置された整流部5は、底面1aに対する角度θとして、45度の角度が付けられている。   The rectifying unit 5 can adopt various shapes as long as the shape forms a ridge along the circumferential direction of the side wall surface 1b. However, as the rectifying unit 5 of the present embodiment, the front view is a rectangular plate shape. The rectifying plate is erected along the circumferential direction of the side wall surface 1b by a refractory brick to form a ridge. Further, in the front view ((a) in the same figure), various angles can be set for the angle θ formed by the rectifying unit 5 with respect to the bottom surface 1a, but the flow while giving a sufficient swirling flow to the flow of the molten steel 2 Therefore, the angle θ is preferably about 15 to 60 degrees. In the present embodiment, the rectifying unit 5 installed on the side wall surface 1b has an angle of 45 degrees as the angle θ with respect to the bottom surface 1a.

次に、この取鍋1およびこれを用いた取鍋精錬方法の作用・効果について説明する。
従来の取鍋では、底吹きプラグを起点として上昇する溶鋼の流れは、浴面に達すると水平方向に向きを変え、取鍋側壁にぶつかる地点で下降流となる。そのため、溶鋼の流れは、おおまかには底吹きプラグの位置と取鍋底面の中心を通る平面に平行な向きに流れることになる。
Next, the operation and effect of the ladle 1 and the ladle refining method using the ladle will be described.
In the conventional ladle, the flow of the molten steel rising from the bottom blowing plug changes its direction in the horizontal direction when it reaches the bath surface and becomes a downward flow at the point where it hits the ladle side wall. Therefore, the molten steel flows roughly in a direction parallel to a plane passing through the position of the bottom blowing plug and the center of the bottom of the ladle.

これに対し、この取鍋精錬装置1によれば、上述したように、底吹きプラグ3を底面1aの中心Oから離れた位置に設置し、この底吹きプラグ3の位置に近い側の側壁面1bに、この側壁面1bの周方向に沿って凸条に形成された整流部5を設けたので、この整流部5によって、取鍋1内部の溶鋼2の流れに水平方向の旋回成分を付与することができる。そして、この凸条をなす整流部5は、上述したような単純な形状とすることができるため、複雑な装置を用いずに取鍋1内部の溶鋼2の流れに水平方向の旋回成分を付与することができる。   On the other hand, according to the ladle refining device 1, as described above, the bottom blowing plug 3 is installed at a position away from the center O of the bottom surface 1a, and the side wall surface near the position of the bottom blowing plug 3 is installed. Since the rectification part 5 formed in the ridge along the circumferential direction of this side wall surface 1b was provided in 1b, this horizontal rectification part 5 gives the horizontal swirl component to the flow of the molten steel 2 inside the ladle 1 can do. And since the rectification | straightening part 5 which makes this protruding item | line can be made into the simple shape as mentioned above, a horizontal swirling component is provided to the flow of the molten steel 2 inside the ladle 1 without using a complicated apparatus. can do.

本発明の効果を確認するために、数値熱流体解析(シミュレーション)により溶鋼の均一混合時間を調べた。150トンの溶鋼2のうち、底面1aの中心O付近に存在する0.45%の溶鋼2に、他の溶鋼と区別するためのマーキングを行ない、マーキングされた溶鋼2がどのように広がっていくかを調べた。なお、本シミュレーションの条件は、湯面高さを約2000mmとし、この湯面高さでの取鍋1の内径を約3800mm、底面1aでの取鍋1の内径を3400mm、整流部5の凸条の高さhを150mm、凸条の長さWを2800mm、底面1aに近い側の端部の距離dを300mmとした。シミュレーションは、まず、150トンの溶鋼2を20万個のコントロールボリュームに分割し、それぞれのコントロールボリュームにおいて、マーキングされた溶鋼2の濃度を調べた。このうち、マーキングされた溶鋼2の濃度の最小値と最大値を求め、最小値を最大値で割ったものを混合率とした。   In order to confirm the effect of the present invention, the uniform mixing time of molten steel was examined by numerical thermal fluid analysis (simulation). Of the 150 tons of molten steel 2, 0.45% molten steel 2 present near the center O of the bottom surface 1a is marked to distinguish it from other molten steels, and how the marked molten steel 2 spreads. I investigated. The condition of this simulation is that the hot water surface height is about 2000 mm, the inner diameter of the ladle 1 at this hot water surface height is about 3800 mm, the inner diameter of the ladle 1 at the bottom surface 1 a is 3400 mm, and the convexity of the rectifying unit 5 is The height h of the ridge was 150 mm, the length W of the ridge was 2800 mm, and the distance d between the ends close to the bottom surface 1a was 300 mm. In the simulation, first, 150 tons of molten steel 2 was divided into 200,000 control volumes, and the concentration of the marked molten steel 2 was examined in each control volume. Among these, the minimum value and the maximum value of the concentration of the marked molten steel 2 were determined, and the mixing ratio was obtained by dividing the minimum value by the maximum value.

図2は、上述のようにマーキングされた溶鋼2の混合率の時間推移を示したものである。横軸は攪拌開始からの時間、縦軸は混合率を示している。なお、同図においては、底面1aに対する整流部5がなす角度θについて、θを15度、45度、および60度に設定した3通りの試験の例をあわせて示している。同図に示すように、整流部5を設置した場合には、設置しない場合に比べて、より短時間に取鍋1内部の溶鋼を均一に攪拌することができることがわかる。
なお、本発明に係る取鍋精錬装置およびこれを用いた取鍋精錬方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能なことは勿論である。
FIG. 2 shows the time transition of the mixing ratio of the molten steel 2 marked as described above. The horizontal axis represents the time from the start of stirring, and the vertical axis represents the mixing ratio. In the same figure, examples of three kinds of tests in which θ is set to 15 degrees, 45 degrees, and 60 degrees are shown together with respect to the angle θ formed by the rectifying unit 5 with respect to the bottom surface 1a. As shown in the figure, it can be seen that when the rectifying unit 5 is installed, the molten steel inside the ladle 1 can be uniformly stirred in a shorter time than when the rectifying unit 5 is not installed.
The ladle refining apparatus and the ladle refining method using the ladle refining apparatus according to the present invention are not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. It is.

例えば、上記実施形態では、一個の底吹きプラグ3を底面1aに設置した例で説明したが、これに限らず、例えば、底面1aに複数個の底吹きプラグ3を設置した取鍋1に対しても本発明を採用可能である。この場合には、複数個の底吹きプラグ3のうち、少なくとも一個を底面1aの中心Oから離れた位置に設置するとともに、この底吹きプラグ3のの位置に近い側の側壁面1bに、この側壁面1bの周方向に沿って凸条に形成された整流部5を設ければよい。   For example, in the said embodiment, although the example which installed the single bottom blowing plug 3 in the bottom face 1a demonstrated, it is not restricted to this, For example, with respect to the ladle 1 which installed the several bottom blowing plug 3 in the bottom face 1a However, the present invention can be adopted. In this case, at least one of the plurality of bottom blowing plugs 3 is installed at a position away from the center O of the bottom surface 1a, and the side wall surface 1b near the position of the bottom blowing plug 3 What is necessary is just to provide the rectification | straightening part 5 formed in the protruding item | line along the circumferential direction of the side wall surface 1b.

1 取鍋精錬装置
2 溶鋼
3 底吹きプラグ
4 Arガス
5 整流部
1 Ladle Refining Equipment 2 Molten Steel 3 Bottom Blow Plug 4 Ar Gas 5 Rectifier

Claims (3)

取鍋精錬を行なうために円形の底面に一個の底吹きプラグを設置した取鍋精錬装置であって、
前記底吹きプラグを前記底面の中心から離れた位置に設置するとともに、該底吹きプラグの位置に近い側の側壁面に、該側壁面の周方向に沿って凸条に形成された整流部を設けたことを特徴とする取鍋精錬装置。
A ladle refining device in which a single bottom-blown plug is installed on the circular bottom surface for ladle refining,
The bottom blowing plug is installed at a position away from the center of the bottom surface, and a rectifying part formed on the side wall surface near the position of the bottom blowing plug is formed as a ridge along the circumferential direction of the side wall surface. A ladle refining device characterized by being provided.
取鍋精錬を行なうために円形の底面に複数個の底吹きプラグを設置した取鍋精錬装置であって、
前記底吹きプラグの少なくとも一個を前記底面の中心から離れた位置に設置するとともに、該底吹きプラグの位置に近い側の側壁面に、該側壁面の周方向に沿って凸条に形成された整流部を設けたことを特徴とする取鍋精錬装置。
A ladle refining device in which a plurality of bottom blowing plugs are installed on a circular bottom surface for ladle refining,
At least one of the bottom blowing plugs is installed at a position away from the center of the bottom surface, and is formed on the side wall surface near the position of the bottom blowing plug in a protruding line along the circumferential direction of the side wall surface. A ladle refining device characterized by providing a rectifying unit.
請求項1または2に記載の取鍋精錬装置を用いて精錬を行なうことを特徴とする取鍋精錬方法。   The ladle refining method characterized by performing refining using the ladle refining apparatus of Claim 1 or 2.
JP2011068202A 2011-03-25 2011-03-25 Ladle refining apparatus and ladle refining method using the same Withdrawn JP2012201934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011068202A JP2012201934A (en) 2011-03-25 2011-03-25 Ladle refining apparatus and ladle refining method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011068202A JP2012201934A (en) 2011-03-25 2011-03-25 Ladle refining apparatus and ladle refining method using the same

Publications (1)

Publication Number Publication Date
JP2012201934A true JP2012201934A (en) 2012-10-22

Family

ID=47183245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011068202A Withdrawn JP2012201934A (en) 2011-03-25 2011-03-25 Ladle refining apparatus and ladle refining method using the same

Country Status (1)

Country Link
JP (1) JP2012201934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063802A (en) * 2020-06-05 2020-12-11 北京科技大学 Method for efficiently removing impurities by side-blowing argon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063802A (en) * 2020-06-05 2020-12-11 北京科技大学 Method for efficiently removing impurities by side-blowing argon

Similar Documents

Publication Publication Date Title
CN109652615A (en) A method of improving RH refining process molten steel circular flow
Odenthal et al. Advantageous numerical simulation of the converter blowing process
JP2008264859A (en) T-type tundish
JP2007069222A (en) Method for continuously casting steel
JP2012201934A (en) Ladle refining apparatus and ladle refining method using the same
CN204034635U (en) A kind of Gas Stirring blender
JP2012201935A (en) Ladle refining apparatus and ladle refining method using the same
JP2010070815A (en) Ladle for refining molten steel and method for refining molten steel
CN103796774A (en) Double entry channel ladle bottom
JP5855477B2 (en) Hot metal refining method
DE602005015575D1 (en) FINE OF MELT LIQUID METAL
JP2015137369A (en) Bottom blowing agitation method for steel making arc furnace and arc furnace for steel making by bottom blowing agitation
JP5282396B2 (en) Top-bottom blowing converter
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
RU2468092C2 (en) Supply sleeve for degassing reservoir for metallurgical melts operating using rh method
JP5535156B2 (en) How to remove slag from ladle
CN202380012U (en) Swing type molten iron predesulfuration lance
WO2023185874A1 (en) Method and apparatus for reducing fine inclusions in molten steel
JP3124416B2 (en) Vacuum refining method of molten steel by gas injection
Barron et al. Bubbling to jetting transition during argon injection in molten steel
JP2010269327A (en) Tundish for continuous casting and method for continuous casting
JP2915631B2 (en) Vacuum refining of molten steel in ladle
US6461404B1 (en) Ladle for enhanced steel vacuum decarburization
JPH0797610A (en) Top and bottom combined blowing converter having two series of furnace bottom tuyeres
JP2008115432A (en) Continuous refining method for blast furnace runner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603