JP2010070815A - Ladle for refining molten steel and method for refining molten steel - Google Patents

Ladle for refining molten steel and method for refining molten steel Download PDF

Info

Publication number
JP2010070815A
JP2010070815A JP2008240235A JP2008240235A JP2010070815A JP 2010070815 A JP2010070815 A JP 2010070815A JP 2008240235 A JP2008240235 A JP 2008240235A JP 2008240235 A JP2008240235 A JP 2008240235A JP 2010070815 A JP2010070815 A JP 2010070815A
Authority
JP
Japan
Prior art keywords
molten steel
ladle
refining
blowing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008240235A
Other languages
Japanese (ja)
Other versions
JP5453751B2 (en
Inventor
Yohei Kaneko
陽平 金子
Kazuhiro Kariya
和広 仮屋
Hiroshi Sekiguchi
浩 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008240235A priority Critical patent/JP5453751B2/en
Publication of JP2010070815A publication Critical patent/JP2010070815A/en
Application granted granted Critical
Publication of JP5453751B2 publication Critical patent/JP5453751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ladle for refining a molten steel, which has a plug for blowing a gas for stirring at the bottom and can markedly enhance a stirring power compared to a conventional ladle, and to provide a method for refining the molten steel by using the ladle for refining the molten steel and strongly stirring the molten steel therein. <P>SOLUTION: The ladle 1 for refining the molten steel has two or more blowing plugs 4 for blowing the gas in the bottom. When an inner diameter of a side wall in the bottom of the ladle is defined as D, at which the blowing plug is installed, a distance between the centers of the adjacent blowing plugs is D/6 to D/4. The method for refining the molten steel includes stirring the molten steel 5 accommodated in the ladle under a stirring condition that the power density &epsi; for stirring the molten steel calculated by the expression of &epsi;=(0.0285&times;Q<SB>Ar</SB>&times;T/W<SB>m</SB>)&times;log[1+(760&times;H)/(148&times;P)] is 1,000 W/ton or more. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、底部に攪拌用ガスの吹込みプラグを有する溶鋼精錬用取鍋及びこの溶鋼精錬用取鍋を使用した溶鋼の精錬方法に関するものである。   TECHNICAL FIELD The present invention relates to a molten steel refining ladle having a stirring gas blowing plug at the bottom, and a molten steel refining method using the molten steel refining ladle.

近年、鉄鋼製品に対する品質要求が以前にも増して厳格化しており、これに対処するべく、溶鋼の脱炭、脱酸、脱硫、介在物除去及び最終成分調整を取鍋内にて行う取鍋精錬が一般的に実施されている。この取鍋精錬を効率的に行うためには取鍋内の溶鋼を攪拌することが重要であり、従って、電磁力の利用、真空槽への吸い上げ、浸漬ランスからのガス吹込みなど、様々な攪拌方法が行われている。そのなかで、取鍋底部に吹込みプラグを配置し、この吹込みプラグから攪拌用ガスを吹込んで攪拌するガス攪拌方法が、効率的であり、また設備的にも容易であることから広く利用されている。   In recent years, quality requirements for steel products have become stricter than ever, and in order to cope with this, a ladle that performs decarburization, deoxidation, desulfurization, inclusion removal and final component adjustment of molten steel in a ladle. Refining is generally carried out. In order to perform this ladle refining efficiently, it is important to stir the molten steel in the ladle. Therefore, there are various methods such as the use of electromagnetic force, suction into a vacuum tank, and gas blowing from the immersion lance. A stirring method is performed. Among them, a gas stirring method in which a blowing plug is placed at the bottom of the ladle and stirring gas is blown from the blowing plug is efficient and easy in terms of equipment. Has been.

この底吹きガス攪拌方法では、一般的に、ポーラス煉瓦からなる吹込みプラグを取鍋底部に設け、この吹込みプラグからArガスや窒素ガスなどの不活性ガスを溶鋼中に吹込んで溶鋼を流動・攪拌している。この場合、最適な攪拌条件とするために、吹込みプラグの設置数を増加してガス流量を増大したり、吹込みプラグの設置位置を特定したりして、攪拌強度や攪拌効率を制御している。   In this bottom blowing gas stirring method, a blowing plug made of porous brick is generally provided at the bottom of the pan, and an inert gas such as Ar gas or nitrogen gas is blown into the molten steel from the blowing plug to flow the molten steel.・ Stirring. In this case, in order to obtain optimum stirring conditions, the number of blowing plugs is increased to increase the gas flow rate, or the position of the blowing plug is specified to control the stirring strength and stirring efficiency. ing.

特に、VOD炉(Vacuum Oxygen Decarburization Furnace)のように、減圧下で酸素ガスを供給して脱炭精錬し、その後、脱炭精錬中に生じた酸化物をAlやFe−Si合金などの還元剤を添加して還元・脱酸を行うプロセスにおいては、脱炭時の脱炭効率や到達炭素濃度、及び、還元後の溶鋼中酸素濃度に及ぼすガス攪拌の影響が大きく、従来から、攪拌用ガスの流量を規定することが試みられている(例えば、特許文献1を参照)。また、複数の吹込みプラグを配置することも試みられている(例えば、特許文献2を参照)。
特開平1−287218号公報 実開昭61−55055号公報
In particular, as in a VOD furnace (Vacuum Oxygen Decarburization Furnace), oxygen gas is supplied under reduced pressure for decarburization and refining, and then oxides generated during decarburization and refining are reduced with reducing agents such as Al and Fe-Si alloys. In the process of reducing and deoxidizing by adding NO, the effect of gas stirring on decarburization efficiency and carbon concentration at the time of decarburization, and oxygen concentration in molten steel after reduction is large. Attempts have been made to regulate the flow rate (see, for example, Patent Document 1). It has also been attempted to arrange a plurality of blowing plugs (see, for example, Patent Document 2).
JP-A-1-287218 Japanese Utility Model Publication No. 61-55055

年々厳しくなる鉄鋼製品への品質要求に伴い、溶鋼の清浄性に対する要求も厳しくなっており、更に、不純物の低減ニーズが高まりつつあることからも、取鍋精錬における溶鋼攪拌技術の改善は、重要な技術開発であることが明らかである。   Improvements in molten steel stirring technology in ladle refining are important due to the increasing demands on the cleanliness of molten steel due to the increasingly demanding quality of steel products that are becoming more and more severe year by year. It is clear that this is a technical development.

しかしながら、前述した従来の取鍋精錬方法では、取鍋底部に設置する吹込みプラグの制約上から、それほど多くのガス流量が確保できないこと、及び、取鍋底面の物理的制約上から、吹込みプラグの設置場所、個数ともに制限があり、攪拌ガス流量を大幅に増大させることは困難であった。   However, in the conventional ladle refining method described above, due to the restriction of the blowing plug installed at the bottom of the ladle, it is difficult to secure a large gas flow rate, and the blowing due to the physical restrictions on the bottom of the ladle. The place and number of plugs are limited, and it has been difficult to increase the stirring gas flow rate significantly.

また、仮に大流量のガス吹きが可能な吹込みプラグが開発されたとしても、大流量のガス吹きは、吹込まれたガスが溶鋼を離脱する際の溶鋼飛散の増大といった操業上のトラブルを増加させるという不具合を生じ、また、溶鋼上に存在するスラグは高粘性であるため、気泡がスラグから抜け出ずにスラグのフォーミングを発生させ、それに伴う高温物質の精錬設備への飛散による大規模な設備トラブルなどを生じる危険性があった。更に、特許文献2のように、吹込みプラグを取鍋の側壁近傍に配置すると、攪拌効果は促進されるが、取鍋側壁の耐火物の損耗が激しくなるという問題も発生した。   In addition, even if a blow plug that can blow a large flow rate of gas is developed, the large flow rate of gas flow increases operational troubles such as increased splash of molten steel when the blown gas leaves the molten steel. In addition, since the slag present on the molten steel is highly viscous, bubbles do not escape from the slag, causing slag forming, resulting in large-scale equipment due to the scattering of high-temperature materials to the refining equipment There was a risk of trouble. Further, as in Patent Document 2, when the blowing plug is disposed in the vicinity of the side wall of the ladle, the stirring effect is promoted, but there is a problem that the refractory on the side wall of the ladle becomes worn out.

このように、従来の底吹きガス攪拌方法では、現状以上の溶鋼攪拌の改善は困難といわざるを得なかった。   Thus, with the conventional bottom blowing gas stirring method, it has been said that it is difficult to improve the stirring of molten steel beyond the current level.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、底部に攪拌用ガスの吹込みプラグを有する溶鋼精錬用取鍋において、溶鋼を離脱する際のガスによる溶鋼の飛散量を増大させることなく、従来に比較して格段に攪拌強度を高めることのできる溶鋼精錬用取鍋を提供するとともに、この溶鋼精錬用取鍋を使用した、強攪拌下での溶鋼の精錬方法を提供することである。   The present invention has been made in view of the above circumstances, and an object thereof is to disperse molten steel by gas when the molten steel is released in a ladle for molten steel refining having a stirring gas blowing plug at the bottom. In addition to providing a ladle for molten steel refining that can significantly increase the agitation strength compared to conventional methods without increasing the slag, a method for refining molten steel under strong agitation using this ladle for molten steel refining Is to provide.

本発明者らは、上記課題を解決すべく研究・検討を実施した。その結果、吹込みプラグを2つ以上配置し、2つ以上配置した吹込みプラグのそれぞれの相対位置を規定することで、攪拌ガス流量の増加だけでは制御できなかった溶鋼の流動形態を、取鍋耐火物の損傷を抑え且つ溶鋼の飛散といったトラブルを生じることなく、溶鋼の脱炭反応などの精錬に有効な形態に制御できるとの知見を得た。   The present inventors conducted research and studies to solve the above problems. As a result, by arranging two or more blowing plugs and defining the relative position of each of the two or more blowing plugs, the flow form of the molten steel that could not be controlled only by increasing the stirring gas flow rate was taken. We obtained the knowledge that it was possible to control to a form effective for refining such as decarburization reaction of molten steel without suppressing the damage of the pan refractory and causing troubles such as scattering of molten steel.

本発明は、上記知見に基づいてなされたものであり、第1の発明に係る溶鋼精錬用取鍋は、底部にガス吹き用の吹込みプラグを2つ以上有する溶鋼精錬用取鍋であって、前記吹込みプラグの設置される取鍋底部の側壁の内径をDとしたときに、隣接する吹込みプラグの中心間の距離が、D/6以上D/4以下であることを特徴とするものである。   The present invention has been made based on the above knowledge, and a ladle for molten steel refining according to the first invention is a ladle for molten steel refining having two or more blowing plugs for gas blowing at the bottom. The distance between the centers of adjacent blowing plugs is D / 6 or more and D / 4 or less, where D is the inner diameter of the side wall of the bottom of the ladle where the blowing plug is installed. Is.

第2の発明に係る溶鋼精錬用取鍋は、第1の発明において、前記吹込みプラグのうち少なくとも1つは、取鍋底部の側壁からD/6以上離れた位置に設置されていることを特徴とするものである。   In the ladle for molten steel refining according to the second invention, in the first invention, at least one of the blowing plugs is installed at a position separated from the side wall of the ladle bottom by D / 6 or more. It is a feature.

第3の発明に係る溶鋼の精錬方法は、第1または第2の発明に記載の溶鋼精錬用取鍋に収容された溶鋼を、下記の(1)式により算出される溶鋼攪拌動力密度が1000W/トン以上となる攪拌条件下でArガスにより攪拌することを特徴とするものである。   The molten steel refining method according to the third invention is a molten steel agitating power density calculated by the following formula (1) of the molten steel accommodated in the ladle for molten steel refining described in the first or second invention is 1000 W. It is characterized by stirring with Ar gas under stirring conditions of at least / ton.

Figure 2010070815
Figure 2010070815

但し、(1)式において、εは溶鋼攪拌動力密度(W/トン)、QArは底吹きArガスの総流量(NL/分)、Tは溶鋼温度(K)、Wmは溶鋼質量(トン)、hは溶鋼深さ(cm)、Pは雰囲気圧力(torr)である。 In Equation (1), ε is the molten steel stirring power density (W / ton), Q Ar is the total flow rate of the bottom-blown Ar gas (NL / min), T is the molten steel temperature (K), and W m is the molten steel mass ( T), h is the depth of the molten steel (cm), and P is the atmospheric pressure (torr).

本発明に係る溶鋼精錬用取鍋によれば、それぞれの吹込みプラグから吹込まれたガス気泡が互いに干渉し合うことで、ガス気泡の浮上に水平方向の流れが加わり、これによって溶鋼表面でのガスの鉛直方向の浮上速度が低下し、その結果、攪拌ガス供給量を増加しても取鍋内溶鋼の盛り上がりが抑制されて、溶鋼を離脱する際のガスによる溶鋼飛散量が減少するので、攪拌用ガスの供給量を増加することができ、溶鋼の強攪拌が可能となり、取鍋精錬での処理時間の短縮、それに伴う溶鋼温度降下量の低減など、工業上有益な効果がもたらされる。   According to the ladle for molten steel refining according to the present invention, the gas bubbles blown from the respective blow plugs interfere with each other, thereby adding a horizontal flow to the rising of the gas bubbles, thereby As a result, the rising speed of the gas in the vertical direction is reduced, and as a result, even if the stirring gas supply amount is increased, the swell of molten steel in the ladle is suppressed, and the amount of molten steel scattered by the gas when leaving the molten steel decreases. The supply amount of the stirring gas can be increased, and strong stirring of the molten steel becomes possible, and industrially beneficial effects such as shortening the processing time in ladle refining and the accompanying decrease in the temperature drop of the molten steel are brought about.

以下、本発明を具体的に説明する。先ず、本発明に至った経緯について説明する。   The present invention will be specifically described below. First, the background to the present invention will be described.

本発明者らは、底部に複数個の攪拌用ガスの吹込みプラグを有する溶鋼精錬用取鍋において、従来に比較して格段に攪拌効率を高めることを目的として水モデル実験を実施した。実験では、吹込みプラグの設置位置を変更するとともに、ガス供給量を変化させた。この水モデル実験から、以下の知見が得られた。   The inventors of the present invention conducted a water model experiment for the purpose of remarkably increasing the stirring efficiency in comparison with the prior art in a ladle for molten steel refining having a plurality of stirring gas blowing plugs at the bottom. In the experiment, the installation position of the blowing plug was changed and the gas supply amount was changed. The following knowledge was obtained from this water model experiment.

溶鋼精錬用取鍋の底部に設置した吹込みプラグから攪拌用ガスを吹込んだ場合、ガスが溶鋼中を浮上し、このガスの浮上に伴って溶鋼が攪拌されるが、ガスが溶鋼の表面から雰囲気中に抜ける際に、溶鋼やスラグの持つ粘性によって取鍋内の湯面或いはスラグが上昇する。このとき、吹込みプラグの設置される取鍋底部の側壁の内径をDとすると、各吹込みプラグ間の距離をD/4よりも大きくして、D/4よりも離れた位置で各々の吹込みプラグからガスを吹込んだ場合、各吹込みプラグからのガス気泡は互いに干渉することなく、吹込みプラグの鉛直方向上方に浮上するため、吹込みプラグからのガスの吹込み流量の増加に伴って溶鋼湯面の盛り上がりは大きくなること、つまり、溶鋼を離脱する際のガスによる溶鋼飛散量がガス供給量に応じて増大することが分かった。   When the stirring gas is blown from the blowing plug installed at the bottom of the ladle for molten steel refining, the gas rises in the molten steel, and the molten steel is agitated as this gas rises. When coming out from the atmosphere into the atmosphere, the hot water surface or slag in the ladle rises due to the viscosity of the molten steel and slag. At this time, if the inner diameter of the side wall of the bottom of the ladle where the blowing plugs are installed is D, the distance between the blowing plugs is made larger than D / 4, and each of them at a position separated from D / 4. When gas is blown from the blow plug, the gas bubbles from the blow plugs rise vertically above the blow plug without interfering with each other, increasing the flow rate of gas blow from the blow plug. It has been found that the rise of the molten steel surface increases with that, that is, the amount of molten steel scattered by the gas when the molten steel is released increases according to the gas supply amount.

一方、各吹込みプラグ間の距離をD/6よりも短い距離で設置した場合、複数の吹込みプラグを配置する効果が減少し、あたかも1つの吹込みプラグからガスが供給されたものに類似したガスの浮上現象が生じるため、取鍋内溶鋼湯面の盛り上がりは、吹込みプラグ数とガス供給量に応じて、D/4を超えて離れた位置に設置した場合に比較して更に大きくなることが分かった。つまり、溶鋼を離脱する際のガスによる溶鋼飛散量が更に増大することが分かった。   On the other hand, when the distance between each blowing plug is set to a distance shorter than D / 6, the effect of arranging a plurality of blowing plugs is reduced, similar to the case where gas is supplied from one blowing plug. As a result, the rise of the molten steel surface in the ladle is larger than when installed at a position more than D / 4, depending on the number of blowing plugs and the gas supply amount. I found out that In other words, it was found that the amount of molten steel scattered by the gas when the molten steel is released further increases.

これに対して、各吹込みプラグ間の距離をD/6以上D/4以下の範囲内とした場合には、それぞれの吹込みプラグから吹込まれたガス気泡が互いに干渉し合い、ガス気泡の浮上に水平方向の流れが加わることにより、溶鋼表面におけるガスの鉛直方向の浮上速度が低下し、取鍋内溶鋼の盛り上がりが抑制されることが分かった。つまり、溶鋼攪拌動力密度を高めるべく攪拌ガスの供給量を増加しても、取鍋内溶鋼の盛り上がりが抑制され、溶鋼を離脱する際のガスによる溶鋼飛散量を従来と比較して大幅に少なくすることが可能であることが分かった。   On the other hand, when the distance between each blowing plug is within the range of D / 6 or more and D / 4 or less, the gas bubbles blown from the respective blowing plugs interfere with each other, and the gas bubbles It was found that the vertical flow of gas on the surface of the molten steel was reduced by the addition of a horizontal flow to the levitation, and the rise of the molten steel in the ladle was suppressed. In other words, even if the amount of stirring gas supplied is increased to increase the molten steel stirring power density, the rise of molten steel in the ladle is suppressed, and the amount of molten steel scattered by the gas when leaving the molten steel is significantly less than in the past. It turns out that it is possible.

また、吹込みプラグを取鍋底部の側壁からD/6未満の位置に設置した場合には、取鍋側壁と吹込みプラグとの間隔が短く、取鍋側壁の近傍をガスが浮上することから、取鍋側壁近傍の溶鋼流速が速くなり、取鍋耐火物の損傷が激しくなることも確認できた。つまり、取鍋側壁からD/6以上離れた位置に設置することが好ましいことも分かった。   Moreover, when a blowing plug is installed in the position below D / 6 from the side wall of the ladle bottom part, since the space | interval of a ladle side wall and a blowing plug is short, gas floats in the vicinity of a ladle side wall. It was also confirmed that the molten steel flow velocity in the vicinity of the ladle side wall increased, and the ladle refractory was severely damaged. That is, it was also found that it is preferable to install at a position away from the ladle side wall by D / 6 or more.

本発明は上記実験結果に基づくものであり、本発明に係る溶鋼精錬用取鍋は、底部にガス吹き用の吹込みプラグを2つ以上有する溶鋼精錬用取鍋であって、前記吹込みプラグの設置される取鍋底部の側壁の内径をDとしたときに、吹込みプラグの中心間の距離が、D/6以上D/4以下であることを特徴とする。この場合に、吹込みプラグのうち少なくとも1つは取鍋底部の側壁からD/6以上離れた位置に設置することが好ましい。   The present invention is based on the above experimental results, and the ladle for molten steel refining according to the present invention is a ladle for molten steel refining having two or more blowing plugs for gas blowing at the bottom, wherein the blowing plug When the inner diameter of the side wall of the bottom of the ladle is set to D, the distance between the centers of the blowing plugs is D / 6 or more and D / 4 or less. In this case, it is preferable that at least one of the blowing plugs is installed at a position away from the side wall of the bottom of the ladle by D / 6 or more.

次いで、本発明に係る溶鋼精錬用取鍋の例、並びに、それを使用した溶鋼の精錬方法を説明する。   Next, an example of a ladle for molten steel refining according to the present invention and a method for refining molten steel using the ladle will be described.

図1は、本発明に係る溶鋼精錬用取鍋の例を示す側断面概略図、図2は、図1に示す溶鋼精錬用取鍋の概略平面図であり、溶鋼精錬用取鍋1は、外殻を形成する鉄皮2と、この鉄皮2の内側に施工された耐火物3とで構成されており、溶鋼精錬用取鍋1の底部(「敷」ともいう)の耐火物3に嵌合してポーラス煉瓦からなる複数個の吹込みプラグ4が設置されている。ここでは、プラグ4が3個設置された例を示している。尚、図2では、溶鋼精錬用取鍋1の側壁を省略している。また、図1中の符号5は溶鋼、6はスラグである。   FIG. 1 is a schematic side sectional view showing an example of a ladle for molten steel refining according to the present invention, FIG. 2 is a schematic plan view of the ladle for molten steel refining shown in FIG. It consists of an iron shell 2 that forms an outer shell and a refractory 3 that is constructed inside the iron shell 2, and is attached to the refractory 3 at the bottom of the ladle 1 for molten steel refining (also called “laying”). A plurality of blowing plugs 4 that are fitted and made of porous bricks are installed. Here, an example in which three plugs 4 are installed is shown. In FIG. 2, the side wall of the ladle 1 for molten steel refining is omitted. Moreover, the code | symbol 5 in FIG. 1 is molten steel, and 6 is slag.

各吹込みプラグ4はガス導入管(図示せず)と連結されていて、ArガスやHeガスなどの希ガス或いは窒素ガスなどの非酸化性ガスが攪拌用ガスとして、各吹込みプラグ4から溶鋼精錬用取鍋1の内面側に吹込まれるようになっている。この場合に、溶鋼精錬用取鍋1の底部の側壁の内径をDとしたときに、各吹込みプラグ4の中心間の距離dがD/6以上D/4以下となるように、各吹込みプラグ4が設置されている。   Each blowing plug 4 is connected to a gas introduction pipe (not shown), and a rare gas such as Ar gas or He gas or a non-oxidizing gas such as nitrogen gas is used as a stirring gas from each blowing plug 4. It is blown into the inner surface side of the ladle 1 for molten steel refining. In this case, when the inner diameter of the side wall at the bottom of the ladle 1 for molten steel refining is D, each blowing plug 4 is set so that the distance d between the centers of the blowing plugs 4 is D / 6 or more and D / 4 or less. Plug 4 is installed.

吹込みプラグ4の具体的な設置方法を、図3及び図4を参照して説明する。図3は、吹込みプラグ4を2つ設置し且つ1つ目の吹込みプラグ4aを溶鋼精錬用取鍋1の中心位置に設置した例である。この場合、2つ目の吹込みプラグ4bは、1つ目の吹込みプラグ4aを中心とする半径D/6の円弧と、半径D/4の円弧と、で囲まれる領域Aに設置する必要があり、領域Aの任意の位置に設置すればよい。この場合には、1つ目の吹込みプラグ4aが溶鋼精錬用取鍋1の中心位置に設置されているので、2つ目の吹込みプラグ4bは、自ずと取鍋側壁からD/6以上離れた位置に設置されることになる。   A specific installation method of the blowing plug 4 will be described with reference to FIGS. 3 and 4. FIG. 3 shows an example in which two blowing plugs 4 are installed and the first blowing plug 4a is installed at the center position of the ladle 1 for molten steel refining. In this case, the second blowing plug 4b needs to be installed in a region A surrounded by an arc having a radius D / 6 centered on the first blowing plug 4a and an arc having a radius D / 4. And may be installed at an arbitrary position in the area A. In this case, since the first blowing plug 4a is installed at the center position of the ladle 1 for molten steel refining, the second blowing plug 4b is naturally separated from the ladle side wall by D / 6 or more. It will be installed in a different position.

吹込みプラグ4は取鍋側壁からD/6以上離れた位置に設置することが好ましく、吹込みプラグ4aを溶鋼精錬用取鍋1の中心位置からずらした位置に設置する場合には、吹込みプラグ4bが取鍋側壁からD/6以上離れた位置に設置されるように、吹込みプラグ4aの設置位置を考慮することが好ましい。この場合に、当然ながら吹込みプラグ4aも取鍋側壁からD/6以上離れた位置に設置することが好ましい。   It is preferable to install the blowing plug 4 at a position away from the ladle side wall by D / 6 or more. When the blowing plug 4a is installed at a position shifted from the center position of the ladle 1 for molten steel refining, It is preferable to consider the installation position of the blowing plug 4a so that the plug 4b is installed at a position away from the ladle side wall by D / 6 or more. In this case, as a matter of course, the blowing plug 4a is also preferably installed at a position separated from the ladle side wall by D / 6 or more.

図4は、吹込みプラグ4を3つ設置し且つ1つ目の吹込みプラグ4aを溶鋼精錬用取鍋1の中心位置に設置した例である。2つ目の吹込みプラグ4bは、1つ目の吹込みプラグ4aを中心とする半径D/6の円弧と、半径D/4の円弧と、で囲まれる領域Aに設置する必要があり、領域Aの任意の位置に設置すればよい。3つ目の吹込みプラグ4cは、2つ目の吹込みプラグ4bを中心とする半径D/6の円弧と、半径D/4の円弧と、で囲まれる領域Bが、前記領域Aと重なり合う位置に設置する必要があり、この重なり合う位置の任意の位置に設置すればよい。図4は、各吹込みプラグ4の中心位置が正三角形を形成するように配置した例である。   FIG. 4 shows an example in which three blowing plugs 4 are installed and the first blowing plug 4a is installed at the center position of the ladle 1 for molten steel refining. The second blowing plug 4b needs to be installed in a region A surrounded by an arc having a radius D / 6 centered on the first blowing plug 4a and an arc having a radius D / 4. What is necessary is just to install in the arbitrary positions of the area | region A. In the third blowing plug 4c, a region B surrounded by an arc having a radius D / 6 centered on the second blowing plug 4b and an arc having a radius D / 4 overlaps the region A. It is necessary to install in the position, and it should just install in arbitrary positions of this overlapping position. FIG. 4 shows an example in which the center positions of the blow plugs 4 are arranged to form a regular triangle.

この場合も、1つ目の吹込みプラグ4aを溶鋼精錬用取鍋1の中心位置に設置していることから、吹込みプラグ4b及び吹込みプラグ4cは自ずと取鍋側壁からD/6以上離れた位置に設置されることになるが、1つ目の吹込みプラグ4aを溶鋼精錬用取鍋1の中心位置からずらした位置に設置する場合には、吹込みプラグ4b及び吹込みプラグ4cが取鍋側壁からD/6以上離れた位置に設置されるように、吹込みプラグ4aの設置位置を考慮することが好ましい。この場合に、当然ながら吹込みプラグ4aも取鍋側壁からD/6以上離れた位置に設置することが好ましい。   Also in this case, since the first blowing plug 4a is installed at the center position of the ladle 1 for molten steel refining, the blowing plug 4b and the blowing plug 4c are naturally separated from the ladle side wall by D / 6 or more. In the case where the first blowing plug 4a is installed at a position shifted from the center position of the ladle 1 for molten steel refining, the blowing plug 4b and the blowing plug 4c are provided. It is preferable to consider the installation position of the blowing plug 4a so that it is installed at a position away from the ladle side wall by D / 6 or more. In this case, as a matter of course, the blowing plug 4a is also preferably installed at a position separated from the ladle side wall by D / 6 or more.

図示はしないが、吹込みプラグ4を4つ設置する場合も、それぞれの吹込みプラグ間の距離dがD/6以上D/4以下となるように、各吹込みプラグ4を配置すればよい。   Although not shown, even when four blowing plugs 4 are installed, each blowing plug 4 may be arranged so that the distance d between each blowing plug is D / 6 or more and D / 4 or less. .

このようにして構成される本発明に係る溶鋼精錬用取鍋1を使用して溶鋼5を精錬するにあたり、攪拌ガスによる溶鋼飛散量を抑制できることからガス攪拌強度を従来に比較して高くすることが可能であるので、溶鋼攪拌動力密度が1000W/トン以上となる攪拌条件下で攪拌することが好ましい。溶鋼攪拌動力密度の上限は特に規定する必要はないが、溶鋼攪拌動力密度が或る程度以上に高くなると、精錬の反応律速が溶鋼の攪拌、つまり溶鋼側の物質移動律速から別の要因(例えば化学反応律速)になり、攪拌強度をそれ以上に上げる意味がなくなることから、5000W/トン程度の溶鋼攪拌動力密度を上限とすればよい。   In refining the molten steel 5 using the ladle 1 for molten steel refining according to the present invention configured as described above, the amount of molten steel scattered by the agitating gas can be suppressed, so that the gas agitation strength is increased compared to the conventional case. Therefore, it is preferable to stir under stirring conditions in which the molten steel stirring power density is 1000 W / ton or more. The upper limit of the molten steel stirring power density need not be specified, but when the molten steel stirring power density becomes higher than a certain level, the refining reaction rate control is different from the stirring of the molten steel, that is, the mass transfer rate control on the molten steel side (for example, (Chemical reaction rate limiting), and the meaning of raising the stirring strength beyond that is lost. Therefore, the upper limit of the molten steel stirring power density of about 5000 W / ton may be set.

尚、攪拌用ガスとしてArガスを使用したときの溶鋼攪拌動力密度は、下記の(1)式で与えられる。但し、(1)式において、εは溶鋼攪拌動力密度(W/トン)、QArは底吹きArガスの総流量(NL/分)、Tは溶鋼温度(K)、Wmは溶鋼質量(トン)、hは溶鋼深さ(cm)、Pは雰囲気圧力(torr)である。 The molten steel stirring power density when Ar gas is used as the stirring gas is given by the following equation (1). In Equation (1), ε is the molten steel stirring power density (W / ton), Q Ar is the total flow rate of the bottom-blown Ar gas (NL / min), T is the molten steel temperature (K), and W m is the molten steel mass ( T), h is the depth of the molten steel (cm), and P is the atmospheric pressure (torr).

Figure 2010070815
Figure 2010070815

従って、溶鋼精錬用取鍋1に収容された溶鋼5の質量(Wm)、溶鋼5の深さ(h)、雰囲気の圧力(P)、溶鋼温度(T)に基づき、(1)式を用いて溶鋼攪拌動力密度(ε)が1000W/トン以上となる底吹きArガスの総流量(QAr)を求め、求めたArガスの総流量(QAr)以上のArガス流量を各吹込みプラグ4に分配し、各吹込みプラグ4から溶鋼5にArガスを吹込めばよい。各吹込みプラグ4からの吹込み流量は均等とする必要はなく、各吹込みプラグ4からの吹込み流量の総流量が求めたArガスの総流量(QAr)以上となるようにすればよい。 Therefore, based on the mass (W m ) of the molten steel 5 contained in the ladle 1 for molten steel refining, the depth (h) of the molten steel 5, the pressure (P) of the atmosphere, and the molten steel temperature (T), The total flow rate (Q Ar ) of the bottom blown Ar gas at which the molten steel stirring power density (ε) is 1000 W / ton or more is obtained, and each Ar gas flow rate that is equal to or higher than the obtained total flow rate (Q Ar ) of Ar gas is injected. What is necessary is just to blow Ar gas into the molten steel 5 from each blowing plug 4 by distributing to the plug 4. The blowing flow rate from each blowing plug 4 does not need to be equal, and if the total blowing flow rate from each blowing plug 4 is equal to or greater than the total Ar gas flow rate (Q Ar ) obtained. Good.

このように本発明に係る溶鋼精錬用取鍋1によれば、それぞれの吹込みプラグ4から吹込まれたガス気泡が互いに干渉し合うことで、ガス気泡の浮上に水平方向の流れが加わり、これによって溶鋼表面におけるガスの鉛直方向の浮上速度が低下し、その結果、ガス供給量を増加しても取鍋内溶鋼5の盛り上がりが抑制されて、溶鋼5を離脱する際のガスによる溶鋼飛散量が減少するので、攪拌用のガス供給量を従来に比較して増加することができ、溶鋼5の強攪拌が可能となり、取鍋精錬を効率的に実施することが達成される。   Thus, according to the ladle 1 for molten steel refining according to the present invention, the gas bubbles blown from the respective blow plugs 4 interfere with each other, thereby adding a horizontal flow to the rising of the gas bubbles. As a result, the vertical ascent rate of gas on the surface of the molten steel decreases, and as a result, even if the gas supply amount is increased, the rise of the molten steel 5 in the ladle is suppressed, and the amount of molten steel scattered by the gas when the molten steel 5 is released Therefore, the amount of gas supply for stirring can be increased as compared with the conventional case, and the molten steel 5 can be strongly stirred, and the ladle refining can be efficiently performed.

容量が190トン規模の溶鋼精錬用取鍋の底部に3つの吹込みプラグを、前述した図4に示す配置(d=D/5)で設置し、この溶鋼精錬用取鍋に185トンのステンレス溶鋼(Cr含有量:18質量%)を収容して、吹込みプラグからArガスを吹込みながらVOD炉にて脱炭精錬を実施した(本発明例)。このときの溶鋼温度(T)は1650℃(=1923K)、VOD炉内の雰囲気圧力(P)は3.8torr、溶鋼高さ(h)は210cmであり、溶鋼攪拌動力密度(ε)が1000W/トン以上となるように(1)式により底吹きArガスの総流量(QAr)を求め、各吹込みプラグからのArガス吹込み流量を各々750NL/分とした。このときの溶鋼攪拌動力密度(ε)は1636W/トンとなる。また、脱炭用の上吹き酸素ガスは、精錬の初期は25Nm3/分で供給し、溶鋼中の炭素濃度が0.06質量%に達した以降は18Nm3/分で供給した。 Three blowing plugs are installed at the bottom of a ladle for molten steel refining with a capacity of 190 tons in the arrangement shown in FIG. 4 (d = D / 5), and 185 ton stainless steel is placed in the ladle for molten steel refining. Molten steel (Cr content: 18% by mass) was accommodated, and decarburization refining was performed in a VOD furnace while Ar gas was being blown from a blow plug (example of the present invention). The molten steel temperature (T) at this time is 1650 ° C. (= 1923 K), the atmospheric pressure (P) in the VOD furnace is 3.8 torr, the molten steel height (h) is 210 cm, and the molten steel stirring power density (ε) is 1000 W. The total flow rate (Q Ar ) of the bottom blowing Ar gas was determined by the equation (1) so as to be equal to or higher than / ton, and the Ar gas blowing flow rate from each blowing plug was 750 NL / min. The molten steel stirring power density (ε) at this time is 1636 W / ton. Further, the top blown oxygen gas for decarburization was supplied at 25 Nm 3 / min at the initial stage of refining, and was supplied at 18 Nm 3 / min after the carbon concentration in the molten steel reached 0.06% by mass.

また、比較のために、2つの吹込みプラグが取鍋側壁からD/6以内であり、且つ3つの吹込みプラグの中心間の距離が全てD/6未満の配置で3つの吹込みプラグを配置した溶鋼精錬用取鍋を用い、上記と同一の条件で、酸素ガスを上吹きするとともに攪拌用Arガスを吹込んで、VOD炉にてステンレス溶鋼(Cr含有量:18質量%)の脱炭精錬を実施した(比較例)。   In addition, for comparison, the three blowing plugs are disposed within D / 6 from the ladle side wall and the distance between the centers of the three blowing plugs is less than D / 6. Deposition of stainless steel (Cr content: 18% by mass) in a VOD furnace by using a ladle for molten steel refining and blowing oxygen gas and stirring Ar gas under the same conditions as above. Refining was carried out (comparative example).

精錬中の取鍋内溶鋼の盛り上がり高さをレーザー光距離計により測定した結果を図5に示す。図5では、比較例での盛り上がり高さを基準とする指数で表示しており、攪拌用ガス流量を同一とした場合、本発明例では比較例に比べて盛り上がり高さが40%程度低くなることが確認できた。   FIG. 5 shows the results of measuring the rising height of the molten steel in the ladle during refining using a laser optical distance meter. In FIG. 5, the swell height in the comparative example is displayed as an index, and when the stirring gas flow rate is the same, the swell height is about 40% lower in the present invention example than in the comparative example. I was able to confirm.

図6は、脱炭精錬中の溶鋼中炭素濃度の推移を本発明例と比較例とで対比して示す図であり、本発明例では攪拌が効率的になることから、溶鋼中炭素濃度は迅速に低下し、脱炭精錬時間をおよそ5分短縮できることが分かった。   FIG. 6 is a diagram showing the transition of the carbon concentration in the molten steel during decarburization refining in comparison with the present invention example and the comparative example. In the present invention example, since stirring is efficient, the carbon concentration in the molten steel is It has been found that the decarburization refining time can be shortened by about 5 minutes.

また、図7は、VOD炉にて上記の条件のステンレス鋼の脱炭精錬を連続して10チャージ実施した後の溶鋼精錬用取鍋のスラグライン部(スラグと接触する部位)の損耗状況を調査した結果を示す図であり、図7では、比較例における耐火物溶損量を基準とする指数で表示している。図7に示すように、本発明例では耐火物の溶損が抑制されることが確認できた。   Moreover, FIG. 7 shows the wear situation of the slag line part (part contacting the slag) of the ladle for molten steel refining after 10 times of continuous decarburization refining of stainless steel in the VOD furnace. It is a figure which shows the investigated result, and in FIG. 7, it displays with the index | index based on the refractory material loss amount in a comparative example. As shown in FIG. 7, it was confirmed that the refractory was prevented from being melted in the example of the present invention.

本発明に係る溶鋼精錬用取鍋の例を示す側断面概略図である。It is a side section schematic diagram showing an example of a ladle for molten steel refining concerning the present invention. 図1に示す溶鋼精錬用取鍋の概略平面図である。It is a schematic plan view of the ladle for molten steel refining shown in FIG. 本発明における吹込みプラグの具体的な設置位置の例を示す図である。It is a figure which shows the example of the specific installation position of the blowing plug in this invention. 本発明における吹込みプラグの具体的な設置位置の他の例を示す図である。It is a figure which shows the other example of the specific installation position of the blowing plug in this invention. 精錬中の取鍋内溶鋼の盛り上がり高さを本発明例と比較例とで対比して示す図である。It is a figure which shows the rising height of the molten steel in a ladle under refining in contrast with the example of this invention, and a comparative example. 脱炭精錬中の溶鋼中炭素濃度の推移を本発明例と比較例とで対比して示す図である。It is a figure which shows transition of the carbon concentration in molten steel during decarburization refining in contrast with the example of the present invention and the comparative example. 溶鋼精錬用取鍋のスラグライン部の損耗状況を本発明例と比較例とで対比して示す図である。It is a figure which shows the wear condition of the slag line part of the ladle for molten steel refining in contrast with the example of this invention, and a comparative example.

符号の説明Explanation of symbols

1 溶鋼精錬用取鍋
2 鉄皮
3 耐火物
4 吹込みプラグ
5 溶鋼
6 スラグ
1 Ladle for steel refining 2 Iron skin 3 Refractory 4 Blow plug 5 Molten steel 6 Slag

Claims (3)

底部にガス吹き用の吹込みプラグを2つ以上有する溶鋼精錬用取鍋であって、前記吹込みプラグの設置される取鍋底部の側壁の内径をDとしたときに、隣接する吹込みプラグの中心間の距離が、D/6以上D/4以下であることを特徴とする溶鋼精錬用取鍋。   A ladle for molten steel refining having two or more blowing plugs for gas blowing at the bottom, and the adjacent blowing plug when the inner diameter of the side wall of the ladle bottom where the blowing plug is installed is D A ladle for molten steel refining, wherein the distance between the centers of the steel is D / 6 or more and D / 4 or less. 前記吹込みプラグのうち少なくとも1つは、取鍋底部の側壁からD/6以上離れた位置に設置されていることを特徴とする、請求項1に記載の溶鋼精錬用取鍋。   The ladle for molten steel refining according to claim 1, wherein at least one of the blow plugs is installed at a position separated from the side wall of the ladle bottom by D / 6 or more. 請求項1または請求項2に記載の溶鋼精錬用取鍋に収容された溶鋼を、下記の(1)式により算出される溶鋼攪拌動力密度が1000W/トン以上となる攪拌条件下でArガスにより攪拌することを特徴とする、溶鋼の精錬方法。
Figure 2010070815
但し、(1)式において、εは溶鋼攪拌動力密度(W/トン)、QArは底吹きArガスの総流量(NL/分)、Tは溶鋼温度(K)、Wmは溶鋼質量(トン)、hは溶鋼深さ(cm)、Pは雰囲気圧力(torr)である。
The molten steel accommodated in the ladle for molten steel refining according to claim 1 or 2 is subjected to Ar gas under stirring conditions where the molten steel stirring power density calculated by the following equation (1) is 1000 W / ton or more. A method for refining molten steel, comprising stirring.
Figure 2010070815
In Equation (1), ε is the molten steel stirring power density (W / ton), Q Ar is the total flow rate of the bottom-blown Ar gas (NL / min), T is the molten steel temperature (K), and W m is the molten steel mass ( T), h is the depth of the molten steel (cm), and P is the atmospheric pressure (torr).
JP2008240235A 2008-09-19 2008-09-19 Ladle for refining molten steel and method for refining molten steel Active JP5453751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240235A JP5453751B2 (en) 2008-09-19 2008-09-19 Ladle for refining molten steel and method for refining molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240235A JP5453751B2 (en) 2008-09-19 2008-09-19 Ladle for refining molten steel and method for refining molten steel

Publications (2)

Publication Number Publication Date
JP2010070815A true JP2010070815A (en) 2010-04-02
JP5453751B2 JP5453751B2 (en) 2014-03-26

Family

ID=42202875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240235A Active JP5453751B2 (en) 2008-09-19 2008-09-19 Ladle for refining molten steel and method for refining molten steel

Country Status (1)

Country Link
JP (1) JP5453751B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101190392B1 (en) 2010-12-02 2012-10-11 주식회사 포스코 Operating Method for Bottom Bubbling Molten Steel
CN110523966A (en) * 2019-09-25 2019-12-03 张家港广大特材股份有限公司 A kind of double porous cores of ladle
CN110982990A (en) * 2019-12-17 2020-04-10 广德因达电炉成套设备有限公司 Molten metal heating stirring and argon blowing treatment device
JP2021085075A (en) * 2019-11-28 2021-06-03 日本製鉄株式会社 Molten steel ladle refining method
CN116694869A (en) * 2023-07-05 2023-09-05 河北太行钢铁集团有限公司 Ladle argon blowing device and method for argon blowing refining of molten steel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285315A (en) * 1988-06-17 1990-03-26 Vallourec Ind Treatment of molten steel by gas jet from ladle bottom
JPH05247516A (en) * 1992-03-03 1993-09-24 Kawasaki Steel Corp Method for decarburize-refining high chromium steel
JPH09241720A (en) * 1996-03-11 1997-09-16 Nippon Yakin Kogyo Co Ltd Ladle refining apparatus
JPH108126A (en) * 1996-06-17 1998-01-13 Kawasaki Steel Corp Vessel for ladle refining
JPH10195521A (en) * 1997-01-09 1998-07-28 Kawasaki Steel Corp Thorough cleaning method of al-containing stainless steel
JPH11279630A (en) * 1998-03-26 1999-10-12 Kawasaki Steel Corp Method for smelting highly cleaned steel
JP2001040411A (en) * 1999-07-30 2001-02-13 Kawasaki Steel Corp Ladle for refining molten steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285315A (en) * 1988-06-17 1990-03-26 Vallourec Ind Treatment of molten steel by gas jet from ladle bottom
JPH05247516A (en) * 1992-03-03 1993-09-24 Kawasaki Steel Corp Method for decarburize-refining high chromium steel
JPH09241720A (en) * 1996-03-11 1997-09-16 Nippon Yakin Kogyo Co Ltd Ladle refining apparatus
JPH108126A (en) * 1996-06-17 1998-01-13 Kawasaki Steel Corp Vessel for ladle refining
JPH10195521A (en) * 1997-01-09 1998-07-28 Kawasaki Steel Corp Thorough cleaning method of al-containing stainless steel
JPH11279630A (en) * 1998-03-26 1999-10-12 Kawasaki Steel Corp Method for smelting highly cleaned steel
JP2001040411A (en) * 1999-07-30 2001-02-13 Kawasaki Steel Corp Ladle for refining molten steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101190392B1 (en) 2010-12-02 2012-10-11 주식회사 포스코 Operating Method for Bottom Bubbling Molten Steel
CN110523966A (en) * 2019-09-25 2019-12-03 张家港广大特材股份有限公司 A kind of double porous cores of ladle
JP2021085075A (en) * 2019-11-28 2021-06-03 日本製鉄株式会社 Molten steel ladle refining method
JP7323802B2 (en) 2019-11-28 2023-08-09 日本製鉄株式会社 Ladle refining method for molten steel
CN110982990A (en) * 2019-12-17 2020-04-10 广德因达电炉成套设备有限公司 Molten metal heating stirring and argon blowing treatment device
CN116694869A (en) * 2023-07-05 2023-09-05 河北太行钢铁集团有限公司 Ladle argon blowing device and method for argon blowing refining of molten steel
CN116694869B (en) * 2023-07-05 2024-05-07 河北太行钢铁集团有限公司 Ladle argon blowing device and method for argon blowing refining of molten steel

Also Published As

Publication number Publication date
JP5453751B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
CN111575446B (en) RH vacuum furnace calcium treatment process method
JP5453751B2 (en) Ladle for refining molten steel and method for refining molten steel
JP6458531B2 (en) Stirring method in arc type bottom blowing electric furnace
JP5904237B2 (en) Melting method of high nitrogen steel
JP2020002425A (en) Vacuum degassing apparatus and method for refining molten steel
CN113512618A (en) Refining duplex method for effectively controlling inclusions
JP4207820B2 (en) How to use vacuum degassing equipment
JP2009191289A (en) Method and apparatus for desulfurizing molten steel
JP2011153328A (en) Method for smelting low-carbon high-manganese steel
JP4923623B2 (en) Smelting lance equipment and method for desiliconization of hot metal
CN106191381A (en) A kind of method of FeO in RH station fast eliminating slag
JPH11315315A (en) Metallurgical reaction apparatus for treating molten metal under reduced pressure
JP5552838B2 (en) Manufacturing method of high clean steel
JP5292853B2 (en) Vacuum degassing apparatus for molten steel and vacuum degassing refining method
JP5131827B2 (en) Method for heating molten steel and method for producing rolled steel
JP4042672B2 (en) Manufacturing method of high clean steel
JP4816138B2 (en) Ladle refining method and ladle refining furnace
JP5085096B2 (en) Continuous refining method of blast furnace cast floor and blast furnace cast floor equipment
JP4333343B2 (en) Hot metal desiliconization sludge casting method and hot metal desiliconization method using the same
KR20180040587A (en) Channel type induction furnace
JP2009127078A (en) High-purity bearing steel and method of smelting the same
JP2008115432A (en) Continuous refining method for blast furnace runner
JP2005264264A (en) Method and apparatus for vacuum-refining molten steel
JP6331851B2 (en) Heating method of molten steel in ladle
JP3282530B2 (en) Method for producing high cleanliness low Si steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Ref document number: 5453751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250