JP2012201923A - Aluminum extruded shape and extrusion molding method thereof - Google Patents

Aluminum extruded shape and extrusion molding method thereof Download PDF

Info

Publication number
JP2012201923A
JP2012201923A JP2011067122A JP2011067122A JP2012201923A JP 2012201923 A JP2012201923 A JP 2012201923A JP 2011067122 A JP2011067122 A JP 2011067122A JP 2011067122 A JP2011067122 A JP 2011067122A JP 2012201923 A JP2012201923 A JP 2012201923A
Authority
JP
Japan
Prior art keywords
extrusion
ratio
excess
strength
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011067122A
Other languages
Japanese (ja)
Inventor
Soichiro Suematsu
壮一郎 末松
Takahiro Yamaguchi
貴弘 山口
Hiroyuki Yamazaki
弘之 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Original Assignee
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp filed Critical Lixil Corp
Priority to JP2011067122A priority Critical patent/JP2012201923A/en
Publication of JP2012201923A publication Critical patent/JP2012201923A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an extruded shape which has high strength, high ductility, and extrudability corresponding to JIS 6061-T6 and in which the fiber structure percentage at an extrusion ratio of 40 is 60% or more.SOLUTION: When Mn and/or Zr is added to and contained in an Al-Mg-Si alloy, an excessive Si state where Si is contained more than a balance composition of MgSi including 0.4 to 0.9% Mg and 0.7 to 1.2% Si is brought about and a relation between Mg and Si and a relation between Mn and Zr are regulated, thereby obtaining both good extrusion molding characteristics and high-strength mechanical properties. Further, the excessive Si accelerates the precipitation of a Mn or Zr compound, and at the same time, it precipitates as the element Si, thereby suppressing the transfer of a grain boundary during the extrusion molding, exhibiting the pinning effect of a crystal grain, suppressing the coarsening phenomenon of the crystal grain, and accelerating the formation of a fibrous structure of the crystal grain.

Description

本発明はアルミ押出形材及びその押出成形方法に関する。   The present invention relates to an aluminum extruded shape and an extrusion molding method thereof.

アルミ押出形材を繊維状組織とするために、Al−Mg−Si系合金にMn、Cr、Zrを添加含有したものが知られており、下記特許文献1は、Si:0.6〜1.1質量%、Mg:0.6〜1.1質量%、Cu:0.1〜0.5質量%、Fe:0.1〜0.3質量%、Ti:0.001〜0.20質量%を含み、さらにMn:0.2〜1.0%質量%、Cr:0.1〜0.3質量%、Zr:0.1〜0.3質量%のいずれか1種以上を、Mn+Cr+Zrの合計が0.2〜1.0質量%になるように含み、残部が実質的にAlからなるアルミニウム合金ビレットを用いて、該ビレットを480〜580℃で1〜8時間保持し、100℃/h以上の冷却速度で常温まで冷却した後、430〜540℃に加熱して熱間押出加工を行い、その後200℃/min以上の平均冷却速度で200℃以下まで冷却、または500〜560℃で溶体化処理し、その後さらに160〜220℃で1〜20時間保持することによって、繊維組織比率を70%以上としたアルミ押出形材とするものとしている。   In order to make an aluminum extruded profile into a fibrous structure, an Al-Mg-Si alloy containing Mn, Cr and Zr is known. Patent Document 1 listed below describes Si: 0.6-1 0.1% by mass, Mg: 0.6 to 1.1% by mass, Cu: 0.1 to 0.5% by mass, Fe: 0.1 to 0.3% by mass, Ti: 0.001 to 0.20 Including one mass or more of Mn: 0.2-1.0% by mass, Cr: 0.1-0.3% by mass, Zr: 0.1-0.3% by mass, The billet is held at 480 to 580 ° C. for 1 to 8 hours using an aluminum alloy billet containing Mn + Cr + Zr so that the total of Mn + Cr + Zr is 0.2 to 1.0% by mass, and the balance is substantially Al. After cooling to room temperature at a cooling rate of ℃ / h or more, it is heated to 430 to 540 ℃ to perform hot extrusion, and then Cooling to 200 ° C. or less at an average cooling rate of 00 ° C./min or higher, or solution treatment at 500 to 560 ° C., and then holding at 160 to 220 ° C. for 1 to 20 hours, the fiber structure ratio is 70% or more It is supposed to be an aluminum extruded shape.

特開2003−155535号公報JP 2003-155535 A

この場合、繊維組織比率を70%以上として、強度、伸び、シャルピー衝撃値として良好な結果が示されるが、Al−Mg−Si系合金にMn、Cr、Zrを添加含有すると、押出成形に用いるビレットの変形抵抗が増大し、押出加工性を低下させる上に、プレス焼入れにおいて、焼入れ感受性を鋭くし、十分な冷却速度が得られないケースでは強度不足を引き起こすことになり易いという問題点がある。   In this case, when the fiber structure ratio is 70% or more, good results are shown as strength, elongation, and Charpy impact value. However, when Mn, Cr, Zr is added to the Al—Mg—Si alloy, it is used for extrusion molding. In addition to increasing the deformation resistance of the billet and lowering the extrusion processability, there is a problem that the quenching sensitivity becomes sharp in press quenching, and in the case where a sufficient cooling rate cannot be obtained, the strength tends to be insufficient. .

また、繊維組織比率70%以上を得られるとするも、押出比、即ち、コンテナ断面積と押出形材の断面積の比が示されないところ、押出比が小さいとき、繊維組織比率は比較的大きなものとなし得るが、例えば、押出比が40を超えるように比較的高い加工度のものとする場合に、繊維組織比率は一般に低くなる傾向があるから、押出比40を超えるような高い加工度の場合にも、常に上記70%以上の繊維組織比率を得られるものとすることはできない。   Further, even if a fiber structure ratio of 70% or more can be obtained, the extrusion ratio, that is, the ratio of the cross-sectional area of the container to the cross-sectional area of the extruded shape is not shown. When the extrusion ratio is small, the fiber structure ratio is relatively large. For example, when the extrusion ratio is relatively high such that the extrusion ratio exceeds 40, the fiber structure ratio generally tends to be low. Even in this case, it is not always possible to obtain a fiber structure ratio of 70% or more.

本発明はかかる事情に鑑みてなされたもので、その解決課題とするところは、Al−Mg−Si系合金にMn及び/又はZrを添加含有しながら、押出加工性を損なうことなく、押出比40以上の高加工度の場合にも繊維組織比率を60%以上確保し得るようにして、高強度、高延性、押出加工性を併存具備したアルミ押出形材を提供し、また、その押出成形方法を提供するにある。   The present invention has been made in view of such circumstances, and the problem to be solved is that while adding Mn and / or Zr to an Al-Mg-Si based alloy, the extrusion ratio is not impaired. Provided an aluminum extruded shape having high strength, high ductility, and extrudability by providing a fiber structure ratio of 60% or more even in the case of a high workability of 40 or more, and its extrusion molding Is in providing a way.

上記課題に沿って鋭意研究した結果、Al−Mg−Si系合金にMn及び/又はZrを添加含有するについて、MgSiのバランス組成に対してSiを過剰に含有することによって、良好な押出成形性を確保するとともに、例えばJIS 6061−T6のアルミ押出形材と同等の高強度の機械的特性を得ることができ、更に、過剰Siがホモ処理時において、MgSiを微細分散析出させることにより、それらを析出サイトとするMn系乃至Zr系化合物の析出を促進して結晶粒のピンニング効果(ピン止め効果)を発揮し、結晶粒の粗大化現象を抑制することにより、結晶粒の繊維状組織化を促進し、加えて析出硬化特性を向上させ、例えば、押出比40以上の如くに高加工度の押出形材にあっても、該繊維組織比率を60%以上のものとし得る事実、このとき、それぞれ押出成形の実験データーの解析に基づいて求めた数式の合金組成、即ち、Mg0.4〜0.9%、Si0.7〜1.2%のMgSiのバランス組成以上の過剰Si状態にして、MgとSiの関係を−0.15Mg+0.84≦Si≦−0.5Mg+1.45として、Mg増加による押出成形性と機械的特性を確保し、Mn0.2%以下、Zr0.2%以下にして、MnとZrの関係を、Mn+Zr≦0.2且つ0.67Mn+Zr≧0.039とし、上記過剰Si、Mn及び/又はZrの関係を、過剰Si≧(0.6−1.56Mn+0.22Zr+3.93Mn及び/又はZr)/(9.17Mn+16.1Zr)とすることによって、上記押出成形性及び高強度の機械的特性を維持したまま、押出形材における繊維状組織化を有効且つ確実に達成し得る事実を見出すに至った。 As a result of earnest research along the above-mentioned problems, it was found that when Mn and / or Zr was added to an Al-Mg-Si alloy, Si was excessively contained with respect to the balance composition of Mg 2 Si. While ensuring the formability, it is possible to obtain mechanical properties with high strength equivalent to, for example, JIS 6061-T6 aluminum extrusions. Further, when Si is homo-treated, Mg 2 Si is finely dispersed and precipitated. By promoting the precipitation of Mn-based or Zr-based compounds having these as precipitation sites, the crystal grain pinning effect (pinning effect) is exhibited, and by suppressing the grain coarsening phenomenon, Promotes fibrous organization and improves precipitation hardening characteristics. For example, even in an extruded shape having a high workability such as an extrusion ratio of 40 or more, the fiber structure ratio is 60% or more. The fact that may be a thing, this time, the alloy composition of the formula obtained based on analysis of experimental data of each extrusion, i.e., the Mg0.4~0.9%, Si0.7~1.2% of Mg 2 Si In an excess Si state above the balance composition, the relationship between Mg and Si is set to -0.15Mg + 0.84 ≦ Si ≦ −0.5Mg + 1.45, ensuring extrudability and mechanical properties due to increased Mg, and Mn0.2 % Or less, Zr 0.2% or less, the relationship between Mn and Zr is Mn + Zr ≦ 0.2 and 0.67Mn + Zr ≧ 0.039, and the relationship between the excess Si, Mn and / or Zr is excess Si ≧ ( 0.6-1.56Mn + 0.22Zr + 3.93Mn and / or Zr) / (9.17Mn + 16.1Zr), while maintaining the above extrudability and high strength mechanical properties. And we have found the fact achievable effectively and reliably fibrous organization in Degata material.

本発明はかかる知見に基づいてなされたもので、即ち、請求項1に記載の発明を、Al−Mg−Si系合金にMn及び/又はZrを添加含有して高強度、高延性、押出加工性を併存具備した押出形材であって、Mg0.4〜0.9%、Si0.7〜1.2%のMgSiのバランス組成以上の過剰Si状態にして、MgとSiの関係を−0.15Mg+0.84≦Si≦−0.5Mg+1.45とし、Mn0.2%以下、Zr0.2%以下にして、MnとZrの関係を、Mn+Zr≦0.2且つ0.67Mn+Zr≧0.039とし、上記過剰Si、Mn及び/又はZrの関係を、過剰Si≧(0.6−1.56Mn+0.22Zr+3.93Mn及び/又はZr)/(9.17Mn+16.1Zr)とすることによって、押出比40以上、繊維組織比率60%以上、引張強さ265MPa以上、0.2%耐力245MPa以上、伸び8%以上としてなることを特徴とするアルミ押出形材としたものである。 The present invention has been made on the basis of such knowledge. That is, the invention according to claim 1 is obtained by adding Mn and / or Zr to an Al—Mg—Si based alloy to provide high strength, high ductility, and extrusion processing. Extrusion shaped material having both the properties of Mg and Si in an excess Si state more than the balance composition of Mg 2 Si of 0.4 to 0.9% and Si 0.7 to 1.2%, and the relationship between Mg and Si −0.15Mg + 0.84 ≦ Si ≦ −0.5Mg + 1.45, Mn 0.2% or less, Zr0.2% or less, and the relationship between Mn and Zr is Mn + Zr ≦ 0.2 and 0.67Mn + Zr ≧ 0. 039, and the relationship of excess Si, Mn and / or Zr with the excess Si ≧ (0.6−1.56Mn + 0.22Zr + 3.93Mn and / or Zr) / (9.17Mn + 16.1Zr) More than 40 Fibrous tissue ratio of 60% or more, a tensile strength of 265MPa or more, 0.2% proof stress 245MPa or more, is obtained by an aluminum extruded profile which is characterized by comprising as least 8% elongation.

請求項2に記載の発明は、上記に加えて、更に、Cr及びCuを添加し、JIS 6061相当のアルミ押出材とするとともに押出成形後の再結晶防止のためにFeを、鋳造組織を微細化するためにTiをそれぞれ微量含有添加することによって、上記JIS 6061相当のアルミ押出材として上記高強度、高延性、押出加工性を並存具備したものとするように、これを、上記Mn及び/又はZrに加えて、Cr≦0.1%、Cu≦0.25%、Fe0.1〜0.3%、Ti0.003〜0.1%を添加含有してなることを特徴とする請求項1に記載のアルミ押出形材としたものである。   In addition to the above, the invention described in claim 2 further adds Cr and Cu to obtain an aluminum extruded material equivalent to JIS 6061, and to prevent recrystallization after extrusion, and to refine the cast structure. By adding a small amount of Ti in order to achieve the above, the above-mentioned high strength, high ductility, and extrudability are combined as the aluminum extrudate corresponding to JIS 6061. Or, in addition to Zr, Cr ≦ 0.1%, Cu ≦ 0.25%, Fe0.1-0.3%, Ti0.003-0.1% is added and contained. 1. The aluminum extruded profile according to 1.

請求項3に記載の発明は、上記アルミ押出形材を押出成形するについて、上記合金組成を有するビレットの均質化処理を昇温速度100〜300℃/Hr、保持温度510〜590℃、保持時間1〜10Hrとして、該ビレットの偏析を可及的有効に解消して押出成形を行うようにすることによって、押出比を40〜90の高加工度のもとしても、高度な繊維状組織化を確保して、高強度、高延性、押出加工性を併存具備した押出形材を得ることが可能となることから、これを、Al−Mg−Si系合金にMn及び/又はZrを添加含有して高強度、高延性、押出加工性を併存具備した押出形材の成形方法であって、Mg0.4〜0.9%、Si0.7〜1.2%のMgSiのバランス組成以上の過剰Si状態にして、MgとSiの関係を−0.15Mg+0.84≦Si≦−0.5Mg+1.45とし、Mn0.2%以下、Zr0.2%以下にして、MnとZrの関係を、Mn+Zr≦0.2且つ0.67Mn+Zr≧0.039とし、上記過剰Si、Mn及び/又はZrの関係を、過剰Si≧(0.6−1.56Mn+0.22Zr+3.93Mn及び/又はZr)/(9.17Mn+16.1Zr)としたアルミ合金組成のビレットの均質化処理を、昇温速度100〜300℃/Hr、保持温度510〜590℃、保持時間1〜10Hrによって行った後、上記アルミ押出形材を押出比40〜90として押出成形することを特徴とするアルミ押出形材の押出成形方法としたものである。 In the invention according to claim 3, when the aluminum extruded shape is extruded, the homogenization treatment of the billet having the alloy composition is performed at a heating rate of 100 to 300 ° C./Hr, a holding temperature of 510 to 590 ° C., and a holding time. 1 to 10 Hr, by eliminating the segregation of the billet as effectively as possible, and performing extrusion molding, even if the extrusion ratio is 40 to 90, a high degree of fibrous organization is achieved. As a result, it becomes possible to obtain an extruded shape having high strength, high ductility, and extrudability, and this is added to Mn and / or Zr in an Al-Mg-Si alloy. Te high strength, high ductility, a molding method of extrusion processability comorbid comprising the extruded profile, Mg0.4~0.9%, or more balance composition Si0.7~1.2% of Mg 2 Si Relationship between Mg and Si in excess Si state −0.15Mg + 0.84 ≦ Si ≦ −0.5Mg + 1.45, Mn 0.2% or less, Zr0.2% or less, and the relationship between Mn and Zr is Mn + Zr ≦ 0.2 and 0.67Mn + Zr ≧ 0. 039, and the relationship of the excess Si, Mn and / or Zr is an aluminum alloy composition in which excess Si ≧ (0.6−1.56Mn + 0.22Zr + 3.93Mn and / or Zr) / (9.17Mn + 16.1Zr) After the billet homogenization treatment is performed at a heating rate of 100 to 300 ° C./Hr, a holding temperature of 510 to 590 ° C., and a holding time of 1 to 10 Hr, the aluminum extruded profile is extruded at an extrusion ratio of 40 to 90. This is a method for extrusion molding of an aluminum extruded section characterized by the following.

本発明はこれらをそれぞれ発明の要旨として、上記課題解決の手段としたものである。   The present invention uses these as the gist of the invention and is a means for solving the above problems.

本発明は以上のとおりに構成したから、請求項1に記載の発明は、Al−Mg−Si系合金にMn及び/又はZrを添加含有するについて、MgSiのバランス組成に対してSiを過剰に含有することによって、良好な押出成形性を確保するとともに、例えばJIS 6061−T6のアルミ押出形材と同等の高強度の機械的特性を得ることができ、更に、過剰Siがホモ処理時において、MgSiを微細分散析出させることにより、それらを析出サイトとするMn系乃至Zr系化合物の析出を促進して結晶粒のピンニング効果(ピン止め効果)を発揮し、結晶粒の粗大化現象を抑制することにより、結晶粒の繊維状組織化を促進し、加えて析出硬化特性を向上させ、例えば、押出比40以上の如くに高加工度の押出形材にあっても、該繊維組織比率を60%以上のものとし得るようにし、このとき、合金組成を、Mg0.4〜0.9%、Si0.7〜1.2%のMgSiのバランス組成以上の過剰Si状態にして、MgとSiの関係を−0.15Mg+0.84≦Si≦−0.5Mg+1.45として、Mg増加による押出成形性と機械的特性を確保し、Mn0.2%以下、Zr0.2%以下にして、MnとZrの関係を、Mn+Zr≦0.2且つ0.67Mn+Zr≧0.039とし、上記過剰Si、Mn及び/又はZrの関係を、過剰Si≧(0.6−1.56Mn+0.22Zr+3.93Mn及び/又はZr)/(9.17Mn+16.1Zr)とすることによって、上記押出成形性及び高強度の機械的特性を維持したまま、押出形材における繊維状組織化を有効且つ確実に達成し得るようにして、Al−Mg−Si系合金にMn及び/又はZrを添加含有しながら、押出加工性を損なうことなく、押出比40以上の高加工度の場合にも繊維組織比率60%以上を確保して、高強度、高延性、押出加工性を併存具備したアルミ押出形材を提供することができる。 Since the present invention is configured as described above, the invention according to claim 1 is based on the addition of Mn and / or Zr to the Al—Mg—Si alloy, and Si is added to the balance composition of Mg 2 Si. By containing excessively, it is possible to ensure good extrudability and obtain high strength mechanical characteristics equivalent to, for example, JIS 6061-T6 aluminum extruded material. In this case, Mg 2 Si is finely dispersed and precipitated to promote precipitation of Mn-based or Zr-based compounds having these as precipitation sites, thereby exhibiting a pinning effect (pinning effect) of crystal grains, and coarsening of crystal grains By suppressing the phenomenon, the fibrous organization of the crystal grains is promoted, and in addition, the precipitation hardening characteristics are improved. For example, even in an extruded shape having a high workability such as an extrusion ratio of 40 or more, The fibrous tissue ratios as be of a 60%, at this time, the alloy composition, Mg0.4~0.9%, Si0.7~1.2% of Mg 2 Si balanced composition more excess Si state of Then, the relationship between Mg and Si is set to −0.15Mg + 0.84 ≦ Si ≦ −0.5Mg + 1.45 to ensure extrudability and mechanical properties due to increase in Mg, Mn 0.2% or less, Zr 0.2% In the following, the relationship between Mn and Zr is Mn + Zr ≦ 0.2 and 0.67Mn + Zr ≧ 0.039, and the relationship between the excess Si, Mn and / or Zr is excess Si ≧ (0.6−1.56Mn + 0 .22Zr + 3.93Mn and / or Zr) / (9.17Mn + 16.1Zr) allows the fibrous structure in the extruded shape to be maintained while maintaining the above extrudability and high strength mechanical properties. In addition, in order to ensure that the fiber can be achieved, it is possible to add the Mn and / or Zr to the Al—Mg—Si based alloy, while maintaining the extrudability without impairing the extrudability. It is possible to provide an aluminum extruded shape member having a structure ratio of 60% or more and having high strength, high ductility, and extrudability.

請求項2に記載の発明は、上記に加えて、更に、Cr及びCuを添加し、JIS 6061相当のアルミ押出材とするとともに押出成形後の再結晶防止のためにFeを、鋳塊の結晶粒を微細化するためにTiをそれぞれ微量含有添加することによって、上記JIS 6061相当のアルミ押出材として上記高強度、高延性、押出加工性を並存具備したものとすることができる。   In addition to the above, the invention described in claim 2 further comprises adding Cr and Cu to obtain an aluminum extruded material equivalent to JIS 6061, and for preventing recrystallization after extrusion, using Fe as an ingot crystal. By adding a small amount of Ti in order to refine the grains, the aluminum extrudate corresponding to JIS 6061 can have the above-mentioned high strength, high ductility, and extrudability.

請求項3に記載の発明は、上記アルミ押出形材を押出成形するについて、上記合金組成を有するビレットの均質化処理を昇温速度100〜300℃/Hr、保持温度510〜590℃、保持時間1〜10Hrとして、該ビレットの偏析を可及的有効に解消して押出成形を行うようにすることによって、押出比を40〜90の高加工度のもとしても、高度な繊維状組織化を確保して、高強度、高延性、押出加工性を併存具備した押出形材を得ることが可能なアルミ押出形材の押出成形方法を提供することができる。   In the invention according to claim 3, when the aluminum extruded shape is extruded, the homogenization treatment of the billet having the alloy composition is performed at a heating rate of 100 to 300 ° C./Hr, a holding temperature of 510 to 590 ° C., and a holding time. 1 to 10 Hr, by eliminating the segregation of the billet as effectively as possible, and performing extrusion molding, even if the extrusion ratio is 40 to 90, a high degree of fibrous organization is achieved. It is possible to provide an extrusion method for an aluminum extruded shape which can be ensured to obtain an extruded shape having high strength, high ductility and extrudability.

過剰SiとMn及び/又はZr系化合物の析出形態による繊維状組織化への影響を示すモデル図である。It is a model figure which shows the influence on fibrous organization by the precipitation form of excess Si, Mn, and / or a Zr type compound.

以下本発明を更に具体的に説明すれば、本発明におけるアルミ押出形材は、例えばバンパー補強材、ドアアーム等の自動車用部材、HDD用アーム材等の電子部品、保護柵等の公共構造材に用いるように、JIS 6061−T6相当の高強度、高延性、押出加工性を並存具備したものとしてあり、このとき、該アルミ押出形材は、Al−Mg−Si系合金にMn及び/又はZrを添加含有したものであって、Mg0.4〜0.9%、Si0.7〜1.2%のMgSiのバランス組成以上の過剰Si状態にして、MgとSiの関係を−0.15Mg+0.84≦Si≦−0.5Mg+1.45とし、Mn0.2%以下、Zr0.2%以下にして、MnとZrの関係を、Mn+Zr≦0.2且つ0.67Mn+Zr≧0.039とし、上記過剰Si、Mn及び/又はZrの関係を、過剰Si≧(0.6−1.56Mn+0.22Zr+3.93Mn及び/又はZr)/(9.17Mn+16.1Zr)とすることによって、押出比40以上、繊維組織比率60%以上、引張強さ265MPa以上、0.2%耐力245MPa以上、伸び8%以上としたものとしてあり、本例にあって該アルミ押出材は、上記Mn及び/又はZrに加えて、Cr≦0.1%、Cu≦0.25%、Fe0.1〜0.3%、Ti0.003〜0.1%を添加含有したものとしてある。 In the following, the present invention will be described in more detail. The aluminum extruded profile in the present invention is, for example, a bumper reinforcing material, an automobile member such as a door arm, an electronic component such as an HDD arm material, and a public structural material such as a protective fence. As used, it is assumed that JIS 6061-T6 equivalent high strength, high ductility, and extrudability coexist, and at this time, the aluminum extruded profile is made of Al-Mg-Si based alloy with Mn and / or Zr. be those containing added, Mg0.4~0.9%, in the above balance composition Si0.7~1.2% of Mg 2 Si excess Si state, the relationship between the Mg and Si -0. 15Mg + 0.84 ≦ Si ≦ −0.5Mg + 1.45, Mn 0.2% or less, Zr0.2% or less, and the relationship between Mn and Zr is Mn + Zr ≦ 0.2 and 0.67Mn + Zr ≧ 0.039, Above By setting the relationship of Si, Mn and / or Zr to excess Si ≧ (0.6−1.56Mn + 0.22Zr + 3.93Mn and / or Zr) / (9.17Mn + 16.1Zr), the extrusion ratio is 40 or more, fiber The composition ratio is 60% or more, the tensile strength is 265 MPa or more, the 0.2% proof stress is 245 MPa or more, and the elongation is 8% or more. In this example, the extruded aluminum material is added to the above Mn and / or Zr. Cr ≦ 0.1%, Cu ≦ 0.25%, Fe0.1 to 0.3%, and Ti0.003 to 0.1%.

アルミ押出形材の合金組成において、Mgは、後述のSiとともにMgSiを形成することによって合金強度(押出形材強度)を向上するところ、押出成形の変形抵抗を高くするために可及的に添加を量的に抑制したものとすることが好ましいが、Mgが0.4%を下回ると充分な強度を得られず、0.55%を下回ると強度が低下する傾向を生じ、また、0.9%を上回ると押出成形性を低下し、0.75%を上回ると押出成形性低下の傾向を生じるから、該Mgは、0.4〜0.9%、好ましくは0.55〜0.75とするのがよい。 In the alloy composition of an aluminum extruded profile, Mg improves the alloy strength (extrusion profile strength) by forming Mg 2 Si together with Si, which will be described later, but it is possible to increase the deformation resistance of extrusion molding. However, if Mg is less than 0.4%, sufficient strength cannot be obtained, and if it is less than 0.55%, the strength tends to decrease. If it exceeds 0.9%, the extrudability deteriorates, and if it exceeds 0.75%, a tendency to decrease the extrudability occurs. Therefore, the Mg is 0.4 to 0.9%, preferably 0.55 to 0.55%. It should be 0.75.

Siは、上記MgとともにMgSiを形成して合金強度を向上するところ、該Siの添加含有は、押出成形性を損なうことがなく、MgSiのバランス以上の過剰Siは、Mn及び/又はZrが少量でも上記繊維状組織を形成し易くするが、該Siの添加含有は、0.7%を下回ると繊維状組織の形成効果が低くなり、0.8%を下回るとその傾向を生じ、また、1.2%を上回ると、逆に延性の低下や粒界腐食を招く可能性を生じ、1.0%を上回るとその傾向を生じるから、該Siは、0.7〜1.2%、好ましくは0.8〜1.0%とするのがよい。 Si forms Mg 2 Si together with Mg to improve the alloy strength. The addition of Si does not impair the extrudability, and excess Si exceeding the balance of Mg 2 Si is Mn and / or Or, even if the amount of Zr is small, it is easy to form the fibrous structure. However, if the content of Si is less than 0.7%, the effect of forming the fibrous structure is low, and if it is less than 0.8%, the tendency is reduced. If the content exceeds 1.2%, the ductility may decrease and intergranular corrosion may occur. On the other hand, if the content exceeds 1.0%, the tendency occurs. .2%, preferably 0.8 to 1.0%.

このとき、上記MgとSiは、その合金組成を、−0.15Mg+0.84≦Si≦−0.5Mg+1.45の範囲のものとすることによって、良好な押出成形性を確保しながら、上記JIS 6061−T6相当の機械的強度を確保することが可能となる。左辺、即ち、−0.15Mg+0.84≦Siは、押出成形時の面圧のデータから、割れ、むしれが無く且つ面圧が30以下になるMg及びSi濃度の境界を示すところ、これを満足することによって、アルミ押出形材の合金強度を確保することができ、左辺にあって、Mgが量的に少ないとき、例えば、Mgを下限の0.4%とするとき、Siは、これを、0.78%とすることによって機械的強度、即ち、合金強度を確保することができる。また、右辺、即ち、Si≦−0.5Mg+1.45は、押出形材の引張試験により得られた耐力のデータから、これが245MPa以上となるMg及びSi濃度の境界を示し、押出成形の熱間割れやむしれ等の押出成形不良を回避する範囲を示すところ、Siが0.7〜1.2%以下の範囲で比較的多い場合には、アルミ押出形材の強度及び変形抵抗には問題を生じないが、Al‐Si‐MgSiの三元共晶融解が起き易くなり、また、同時にMgも上限側であると、変形抵抗が上がることで加工熱の発生が大きくなって、上記共晶融解を契機とする延性や靱性が低下し、アルミ押出形材に割れを発生し易くなる。そのため、Mgが0.6%を超える場合は、Siを1.2%未満に規制することが必要となる。 At this time, the Mg and Si have an alloy composition in the range of −0.15Mg + 0.84 ≦ Si ≦ −0.5Mg + 1.45, while ensuring good extrudability and the above JIS. It is possible to ensure mechanical strength equivalent to 6061-T6. The left side, that is, −0.15Mg + 0.84 ≦ Si, shows the boundary between Mg and Si concentration at which the surface pressure is 30 or less from the data of the surface pressure at the time of extrusion molding without cracking or peeling. By satisfying, the alloy strength of the aluminum extruded profile can be ensured, and when it is on the left side and Mg is small in quantity, for example, when Mg is 0.4% of the lower limit, Si is Is 0.78%, the mechanical strength, that is, the alloy strength can be secured. Also, the right side, that is, Si ≦ −0.5Mg + 1.45, shows the boundary between Mg and Si concentrations at which this is 245 MPa or more from the yield strength data obtained by the tensile test of the extruded profile, The range for avoiding extrusion molding defects such as cracking and peeling is shown. When Si is relatively large in the range of 0.7 to 1.2%, there is a problem with the strength and deformation resistance of the aluminum extruded shape. Although it does not occur, Al—Si—Mg 2 Si ternary eutectic melting is likely to occur, and at the same time, if Mg is also at the upper limit side, deformation resistance increases, so that the generation of processing heat increases, and the above-mentioned eutectic melting occurs. Ductility and toughness due to crystal melting are reduced, and cracks are easily generated in the extruded aluminum shape. Therefore, when Mg exceeds 0.6%, it is necessary to regulate Si to less than 1.2%.

Mn及び/又はZrは、アルミ押出形材を成形するビレットの均質化処理時にMn系及び/又はZr系の化合物として析出して、上記ピンニング効果によって成形時の再結晶を抑制するところ、0.20%を上回ると、押出成形性や焼入れ性を低下させる可能性があり、0.15%を上回ると、その傾向を生じるから、該Mn及び/又はZrは、0.20%、好ましくは0.15%以下とするのがよい。   Mn and / or Zr precipitates as a Mn-based and / or Zr-based compound during the homogenization treatment of the billet forming the aluminum extruded profile, and suppresses recrystallization during molding by the pinning effect. If it exceeds 20%, the extrudability and hardenability may be reduced, and if it exceeds 0.15%, this tendency occurs. Therefore, the Mn and / or Zr is 0.20%, preferably 0. .15% or less is recommended.

Mn、Zrはその一方を用い、また、その双方を用いるところ、これらMn及び/又はZrの関係は、Mn(%)+Zr(%)≦0.2とすること、0.67Mn(%)+Zr(%)≧0.039とすること、そして、上記過剰Siとの関係を、過剰Si≧(0.6−1.56Mn+0.22Zr+3.93Mn及び/又はZr)/(9.17Mn+16.1Zr)とするものとしてある。   When one of Mn and Zr is used or both of them are used, the relationship between Mn and / or Zr is Mn (%) + Zr (%) ≦ 0.2, 0.67 Mn (%) + Zr (%) ≧ 0.039, and the relationship with excess Si is as follows: excess Si ≧ (0.6−1.56Mn + 0.22Zr + 3.93Mn and / or Zr) / (9.17Mn + 16.1Zr) There is something to do.

MnとZrについて、上記のMn(%)+Zr(%)≦0.2の範囲は、押出成形性及び高強度の機械的性質を確保するように、面圧30以下であり耐力が245MPaを満足するMn及び/又はZr濃度の境界を示し、上記0.67Mn(%)+Zr(%)≧0.039は、押出形材の繊維組織比率、即ち、繊維組織の面積/押出形材の断面積の比率のデータから繊維組織比率が60%以上とするに必要なMn及び/又はZr濃度の境界を示し、また、上記過剰Si≧(0.6−1.56Mn+0.22Zr+3.93Mn及び/又はZr)/(9.17Mn+16.1Zr)は、繊維組織比率に対するMn及び/又はZrと過剰Siの交互作用について、繊維組織比率が60%以上とするに必要なMn及び/又はZrと過剰Si濃度の境界を示す。   Regarding Mn and Zr, the above range of Mn (%) + Zr (%) ≦ 0.2 satisfies a surface pressure of 30 or less and a proof stress of 245 MPa so as to ensure extrudability and high strength mechanical properties. The above-mentioned 0.67 Mn (%) + Zr (%) ≧ 0.039 is the ratio of the fiber structure of the extruded shape, that is, the area of the fiber structure / the cross-sectional area of the extruded shape From the ratio data, the boundary of Mn and / or Zr concentration necessary for the fiber structure ratio to be 60% or more is shown, and the excess Si ≧ (0.6−1.56Mn + 0.22Zr + 3.93Mn and / or Zr ) / (9.17Mn + 16.1Zr) is the Mn and / or Zr and excess Si concentration required for the fiber structure ratio to be 60% or more for the interaction of Mn and / or Zr and excess Si with respect to the fiber structure ratio. boundary Show.

従って、Mn及び/又はZrは、これらを満足するように、その濃度を可及的に抑制することによって、押出成形性を損なうことなく、また、上記変形抵抗をアップするMgを増加することなく、上記過剰Siを有効に活用して、該過剰Siによる再結晶の抑制とこれによるアルミ押出形材の繊維状組織化を図ることができる。なお、繊維組織比率から導いた上記0.67Mn(%)+Zr(%)≧0.039Mnにおいて、含有量に1未満の係数を付したのは、Mnは、Zrに比べてその再結晶抑制効果が低いので、Zrとの相対量を一致するためである。   Therefore, Mn and / or Zr can satisfy the above conditions by suppressing the concentration thereof as much as possible without impairing the extrusion moldability and without increasing the Mg that increases the deformation resistance. The excess Si can be effectively utilized to suppress recrystallization due to the excess Si and to form a fibrous structure of the aluminum extruded shape. In addition, in the above 0.67 Mn (%) + Zr (%) ≧ 0.039 Mn derived from the fiber structure ratio, the content was given a coefficient of less than 1 because the recrystallization suppressing effect of Mn compared to Zr. This is because the relative amount with Zr matches.

一方、Crは、Mn及び/又はZrに比べ、焼入れ性と押出成形性を低下させることから、その添加含有はこれを避けるのが好ましいところ、JIS 6061相当のアルミ押出形材とするときには、該Crが必須の成分とされ、また、該Crは単独での再結晶抑制効果を有することから、これを添加含有することがあるが、この場合でも、焼入れ性と押出成形性の確保の立場から、添加含有量を最大でも0.1%以下とすることが必要である。   On the other hand, Cr lowers the hardenability and extrudability compared to Mn and / or Zr. Therefore, it is preferable to avoid the addition of this, but when making an aluminum extruded shape corresponding to JIS 6061, Cr is an essential component, and since this Cr has an effect of suppressing recrystallization by itself, it may be added and contained, but even in this case, from the standpoint of ensuring hardenability and extrudability. In addition, it is necessary that the added content be 0.1% or less at the maximum.

Feは、再結晶抑制効果があり、また地金純度を不必要に上げてしまうため、これを0.1%以上添加含有するが、0.3%を上回るとアルミ押出形材の強度低下や、押出成形時のピックアップ等外観不良の要因となるから、該Feは0.1%〜0.3%とするのがよい。   Fe has an effect of suppressing recrystallization and unnecessarily raises the purity of the base metal, so 0.1% or more of this is added and contained. The Fe content is preferably 0.1% to 0.3% because it causes a poor appearance such as a pickup during extrusion molding.

Cuは、JIS 6061合金の成分として、アルミ押出形材の強度を向上する一方で、繊維状組織化に対して影響を与えることは少ないので、JIS 6061相当の合金のものとする上で、添加含有することを妨げないが、0.25%を上回ると、押出成形性を低下し、また、粒界腐食性を悪化させるため、該Cuは、これを0.25%以下とするものとしてある。   Cu, as a component of JIS 6061 alloy, improves the strength of the extruded aluminum material, but has little effect on the fibrous organization. Therefore, Cu is added to an alloy equivalent to JIS 6061. Although it does not prevent inclusion, if it exceeds 0.25%, the extrudability deteriorates and the intergranular corrosion property is deteriorated. Therefore, the Cu is supposed to be 0.25% or less. .

Tiは、アルミ押出材のビレット鋳造時に鋳塊の結晶粒を微細化することによって、鋳造割れを防止し且つ押出成形時の再結晶抑制とこれによる繊維状組織化に有効であるから、これを添加含有することが好ましいが、0.003%を下回ると微細化の効果が得にくくなる一方、0.1%を上回ると、粗大な金属間化合物を生成して、押出成形性を低下させることから、該Tiは、これを0.003%〜0.1%とするものとしてある。   Ti is effective in preventing cast cracking by suppressing the crystal grains of the ingot at the time of billet casting of the aluminum extruded material and suppressing recrystallization during extrusion molding and thereby forming a fibrous structure. It is preferable to contain it, but if it is less than 0.003%, it is difficult to obtain the effect of miniaturization. On the other hand, if it exceeds 0.1%, a coarse intermetallic compound is produced and the extrusion moldability is lowered. Therefore, the Ti content is 0.003% to 0.1%.

このように、上記Al−Mg−Si系合金にMn及び/又はZrを添加含有して高強度、高延性、押出加工性を併存具備したアルミ押出形材は、その押出成形方法を、該押出形材における上記組成、即ち、Mg0.4〜0.9%、Si0.7〜1.2%のMgSiのバランス組成以上の過剰Si状態にして、MgとSiの関係を−0.15Mg+0.84≦Si≦−0.5Mg+1.45とし、Mn0.2%以下、Zr0.2%以下にして、MnとZrの関係を、Mn+Zr≦0.2且つ0.67Mn+Zr≧0.039とし、上記過剰Si、Mn及び/又はZrの関係を、過剰Si≧(0.6−1.56Mn+0.22Zr+3.93Mn・Zr)/(9.17Mn+16.1Zr)としたアルミ合金組成のビレットを用いて、その均質化処理を、昇温速度100〜300℃/Hr、保持温度510〜590℃、保持時間1〜10Hrによって行った後、上記アルミ押出形材を押出比40〜90として押出成形するものとしてある。 As described above, an aluminum extruded shape having Mn and / or Zr added to the Al-Mg-Si alloy and having high strength, high ductility, and extrudability is used for the extrusion method. the composition in profile, i.e., Mg0.4~0.9%, and the excess Si at or above balance composition Si0.7~1.2% of Mg 2 Si, -0.15Mg + 0 the relationship of Mg and Si .84 ≦ Si ≦ −0.5Mg + 1.45, Mn 0.2% or less, Zr 0.2% or less, and the relationship between Mn and Zr is Mn + Zr ≦ 0.2 and 0.67Mn + Zr ≧ 0.039, Using a billet of an aluminum alloy composition in which the relationship of excess Si, Mn and / or Zr is excess Si ≧ (0.6−1.56Mn + 0.22Zr + 3.93Mn · Zr) / (9.17Mn + 16.1Zr) Average The process, heating rate 100 to 300 ° C. / Hr, holding temperature 510-590 ° C., after the holding time 1~10Hr, there as extruding the shaped aluminum extrusion as extrusion ratio from 40 to 90.

ビレットの鋳造は、上記合金組成のアルミを常法によって溶解して、半連続鋳造によって行うものとしてあり、その均質化処理は、鋳造したビレットを、均熱炉に入れて常法による熱処理を施すことによって行うものとしてある。このとき該均質化処理は、その昇温速度をやや遅め乍ら、生産性を低下させないように、100〜300℃/Hrとして、Mn及び/又はZr系化合物を微細析出させるべく、その不均一核生成サイトとなるMgSiを微細析出するようにしてある。即ち、昇温速度が100℃/Hrを下回ると、生産性の観点で好ましくなく、また、300℃/Hrを上回ると、MgSiが減少するため、それらを析出サイトとするMn及び/又はZr系化合物が粗大析出し、再結晶抑制効果が低下し、また250℃/Hrを上回るとその傾向を生じるから、該昇温速度は、上記100〜300℃/Hr、好ましくは100〜250℃/Hrとするのがよい。 Billet casting is carried out by melting aluminum of the above alloy composition by a conventional method and performing semi-continuous casting. The homogenization treatment is performed by placing the cast billet into a soaking furnace and subjecting it to a heat treatment by a conventional method. Is to do by. At this time, the homogenization treatment is performed in order to finely precipitate Mn and / or Zr-based compounds at 100 to 300 ° C./Hr so as not to lower the productivity while slightly slowing the temperature rising rate. Mg 2 Si which becomes a uniform nucleation site is finely precipitated. That is, when the rate of temperature rise is less than 100 ° C./Hr, it is not preferable from the viewpoint of productivity, and when it exceeds 300 ° C./Hr, Mg 2 Si decreases, so that Mn and / or the precipitation sites thereof. The Zr-based compound is coarsely precipitated, the recrystallization inhibiting effect is reduced, and when the temperature exceeds 250 ° C./Hr, the tendency is generated. Therefore, the rate of temperature rise is 100 to 300 ° C./Hr, preferably 100 to 250 ° C. / Hr is preferable.

均質化処理の保持温度及び保持時間は、これを、やや高めの510〜590℃で、1〜10時間行うようにして、Mn及び/又はZr系化合物を析出を進行させつつ、押出成形時にピックアップ不良の原因となるAlFeSi系化合物のβ→αへの変態を充分に起こさせるように行うものとしてある。このとき、保持温度が510℃を下回ると、Mn及び/又はZr系化合物を析出の進行が不十分となり、540℃を下回るとその傾向を招き、590℃を上回ると、ビレット内部の局部融解が発生し、押出成形材にフクレ不良などを起こす原因となり、570℃を上回ると、Mn及び/又はZr系化合物が粗大化する傾向を招き、長時間の保持を避ける必要が生じるから、該保持温度は510〜590℃、好ましくは540〜570℃とし、保持時間は1〜10時間、好ましくは3〜5Hrとするのがよい。   The holding temperature and holding time of the homogenization treatment are set at 510 to 590 ° C., which is slightly higher, for 1 to 10 hours, and the precipitation of Mn and / or Zr-based compounds is carried out during the extrusion molding. The transformation is performed so that the transformation of β → α of the AlFeSi-based compound causing the defect is sufficiently caused. At this time, if the holding temperature is lower than 510 ° C., the precipitation of Mn and / or Zr-based compounds is insufficient, and if it is lower than 540 ° C., the tendency is caused. When the temperature exceeds 570 ° C., Mn and / or Zr-based compounds tend to be coarsened, and it is necessary to avoid long-time holding. Is from 510 to 590 ° C, preferably from 540 to 570 ° C, and the holding time is from 1 to 10 hours, preferably from 3 to 5 hours.

なお、ビレットの冷却速度は、組織への影響は小さいが、押出形材の強度低下に繋がるケースがあるため、100℃/Hr以上とするのが好ましく、このとき、上限は冷却設備の能力とビレットの径の関係から定めるようにすればよい。   It should be noted that the billet cooling rate has a small influence on the structure, but may lead to a decrease in the strength of the extruded profile, and is preferably 100 ° C./Hr or higher. In this case, the upper limit is the capacity of the cooling facility. It may be determined from the relationship of the diameter of the billet.

一方、押出形材の押出成形は、常法に従って直接押出法によるものとすればよいが、押出形材の組織と高強度の機械的特性は、押出成形条件による影響を受けるところ、押出形材の加工度は、これを定める複合因子のうち、特に、押出比が大きいほど押出成形時の再結晶が生じ易くなり、例えば、JIS 6061アルミ合金の場合、押出比20以下では比較的容易に繊維状組織とすることができるが、押出比が40を上回ると再結晶を起こす傾向を招き易くなり、従って該JIS 6061アルミ合金の場合、押出比40以上として押出形材を繊維状組織とすることは極めて困難であるところ、上記に記載の合金組成としたとき、該押出比は、これを40〜90としても、その再結晶による繊維状組織化を行って、該繊維組織比率を60%以上とすることができる。   On the other hand, the extrusion molding of the extruded shape may be performed by the direct extrusion method according to a conventional method. However, the structure of the extruded shape and the high-strength mechanical properties are affected by the extrusion molding conditions. Among the complex factors that determine this, the greater the extrusion ratio, the easier the recrystallization during extrusion molding. For example, in the case of JIS 6061 aluminum alloy, the fiber is relatively easy at an extrusion ratio of 20 or less. However, when the extrusion ratio exceeds 40, it tends to cause recrystallization. Therefore, in the case of the JIS 6061 aluminum alloy, the extrusion shape should be a fibrous structure with an extrusion ratio of 40 or more. However, when the alloy composition described above is used, the extrusion ratio is 40 to 90. Even if the extrusion ratio is 40 to 90, the fibrous structure is formed by recrystallization. It can be above.

押出成形の形材温度、即ち、溶体化温度は、これが、高い程押出成形時に再結晶を生じ易くなり、一般に580℃を上回ると、再結晶を生じる傾向を招くため、該形材温度は580℃以下とするのがよいが、加工度が大きい押出形材にあっては、例えば560℃を上回ると再結晶を生じる傾向を招くから、このとき該温度は、これを、560℃以下とするのが好ましい。   The higher the molding temperature of the extrusion molding, that is, the solution temperature, the more easily recrystallization occurs during extrusion molding. Generally, when the temperature exceeds 580 ° C., recrystallization tends to occur. However, in the case of an extruded shape having a high degree of processing, for example, if it exceeds 560 ° C., it tends to cause recrystallization. At this time, the temperature is set to 560 ° C. or less. Is preferred.

押出成形に際して冷却速度、即ち、焼入れ速度は、これが遅いほど、再結晶を生じる傾向が高まるが、後述の機械的特性を確保する上で、該冷却温度は、これを5℃/秒以上の急冷とするのが好ましく、該5℃/秒以上の急冷を施すことによって、組織への影響を回避することができる。但し、急冷に至る冷却遅れ時間が長いと再結晶を生じる可能性が高まることから、押出形材がダイス出口を出てから10秒以内に急冷するようにすることが好ましい。   In the extrusion molding, the cooling rate, that is, the quenching rate, increases the tendency to cause recrystallization. However, in order to secure the mechanical properties described later, the cooling temperature is a rapid cooling of 5 ° C./second or more. It is preferable to apply the rapid cooling at 5 ° C./second or more, and the influence on the tissue can be avoided. However, if the cooling delay time leading to rapid cooling is increased, the possibility of recrystallization increases. Therefore, it is preferable that the extruded profile be rapidly cooled within 10 seconds after exiting the die outlet.

上記加工度、特に押出比、形材温度、及び冷却速度乃至冷却遅れは、上記合金組成による場合、押出比40〜90、形材温度530〜580℃、冷却遅れ3〜10秒、冷却速度20〜50℃/秒とすることによって、繊維組織比率60%を容易に達成することが可能となる。   In the case of the above alloy composition, the degree of processing, particularly the extrusion ratio, the shape temperature, and the cooling rate or the cooling delay are the extrusion ratio 40 to 90, the shape temperature 530 to 580 ° C., the cooling delay 3 to 10 seconds, and the cooling rate 20 By setting it to -50 ° C./second, it becomes possible to easily achieve a fiber structure ratio of 60%.

押出形材の機械的特性は、上記形材温度と冷却速度に依存するところ、形材温度は、析出硬化に寄与するMgとSiを充分に固溶させるために、490℃以上にすることが望ましい。但し、前述の通り高すぎると再結晶を起こして、伸びが急激に悪化して、熱間割れやむしれ等の外観不良を招く傾向を生じるから、形材温度の上限は、これを上記580℃とすることが好ましい。   The mechanical properties of the extruded shape depend on the shape temperature and the cooling rate. The shape temperature should be 490 ° C. or higher in order to sufficiently dissolve Mg and Si that contribute to precipitation hardening. desirable. However, as described above, if it is too high, recrystallization occurs, the elongation deteriorates rapidly, and there is a tendency to cause appearance defects such as hot cracking and peeling. Therefore, the upper limit of the shape temperature is 580 ° C. It is preferable that

冷却速度は、速いほど、固溶したMg及び/又はSiを過飽和に強制固溶させ、押出形材の強度を向上するため、5℃/秒以上の急冷を施すことが望ましい。また、一般に強度と延性は負の相関を示すが、冷却速度を15℃/秒以上とすれば、伸びも上昇傾向を示すのでさらに望ましい。該冷却速度の上限は、冷却設備の能力と形材単重及び表面積に基づいて定めればよいが、冷却遅れ時間が機械的特性に影響を与えるため、10秒以内に急冷させることが望ましい。   As the cooling rate increases, it is desirable to perform rapid cooling of 5 ° C./second or more in order to force the solid solution Mg and / or Si to be supersaturated and improve the strength of the extruded profile. In general, the strength and ductility are negatively correlated, but if the cooling rate is 15 ° C./second or more, the elongation tends to increase, which is more desirable. The upper limit of the cooling rate may be determined based on the capacity of the cooling facility, the shape unit weight, and the surface area. However, since the cooling delay time affects the mechanical characteristics, it is desirable to rapidly cool within 10 seconds.

形材組織、即ち、繊維状組織化と強度の機械的特性の両面から見た好ましい押出条件は、押出比を40〜90の押出形材とするとき、形材温度を490〜580℃、冷却遅れ10秒以内、冷却速度15℃/秒以上とするのがよい。なお、冷却遅れの下限、冷却速度の上限は、材料特性上から決まる数値ではないので、これらについては常法に従うようにすればよい。   The preferable extrusion conditions from the viewpoint of both the shape structure, that is, the fibrous structure and the mechanical properties of the strength are: when the extrusion ratio is 40 to 90, the shape temperature is 490 to 580 ° C., and the cooling is performed. It is preferable that the delay is within 10 seconds and the cooling rate is 15 ° C./second or more. Note that the lower limit of the cooling delay and the upper limit of the cooling rate are not values determined from the material characteristics, and therefore, these may be followed in accordance with ordinary methods.

時効処理は、押出形材にJIS 6061−T6相当の機械的特性を付与するように、常法に従った人工時効を実施すればよく、該時効処理は高温にして短時間の、例えば190〜205℃、60〜200分とし、また、低温にして長時間の、例えば170〜185℃、200〜400分とするが、生産性を考慮すると上記高温にして短時間とすることが好ましい。   The aging treatment may be performed by artificial aging according to a conventional method so as to impart mechanical properties equivalent to JIS 6061-T6 to the extruded shape. The temperature is set to 205 ° C. for 60 to 200 minutes, and the temperature is set to a low temperature for a long time, for example, 170 to 185 ° C. for 200 to 400 minutes.

表1に示す成分組成のAl−Mg−Si系アルミニウム合金ビレットをホットトップ鋳造によって鋳造し、表2に示す条件で均質化処理を行った。その後、表2に示す形材温度、押出比(形材形状は丸パイプ)でそれぞれ押出成形加工を行って、押出成形直後にオンラインで水冷によるプレス焼入れを行い、上記丸パイプの各中空の押出形材を得た。これらの押出形材に対して表2記載の均質化処理(時効処理)を施して、表1に示すとおり試料1〜試料8(試料2については7体)の合計14の供試体を作成した。   An Al—Mg—Si-based aluminum alloy billet having a component composition shown in Table 1 was cast by hot top casting, and homogenized under the conditions shown in Table 2. Thereafter, extrusion processing is performed at the profile temperature and extrusion ratio shown in Table 2 (the profile shape is a round pipe), and immediately after extrusion molding, press quenching is performed online by water cooling, and each of the hollow pipes of the round pipe is extruded. A profile was obtained. A homogenization treatment (aging treatment) described in Table 2 was performed on these extruded shapes, and as shown in Table 1, a total of 14 specimens of Sample 1 to Sample 8 (7 samples for Sample 2) were prepared. .

なお、未達式の(1)は上記「−0.15Mg+0.84≦Si≦−0.5Mg+1.45」を、(2)は上記「Mn+Zr≦0.2」、(3)は上記「0.67Mn+Zr≧0.039」を、(4)は上記「過剰Si≧(0.6−1.56Mn+0.22Zr+3.93Mn及び/又はZr)/(9.17Mn+16.1Zr)」をそれぞれ示し、これらを充足しない合金組成であることを示す。   The unreachable formula (1) is the above-mentioned “−0.15Mg + 0.84 ≦ Si ≦ −0.5Mg + 1.45”, (2) is the above “Mn + Zr ≦ 0.2”, and (3) is the above “0”. .67Mn + Zr ≧ 0.039 ”, (4) shows the above“ excess Si ≧ (0.6−1.56Mn + 0.22Zr + 3.93Mn and / or Zr) / (9.17Mn + 16.1Zr) ”, respectively. It shows that the alloy composition is not satisfactory.

各試料1乃至8(試料2は7体)についてそれぞれ機械的特性、繊維組織比率、押出成形性を測定した。機械的性質は各試料よりJIS 13B号試験片を採取して引張試験を行い、繊維組織比率は、押出方向に対して垂直な断面のマクロ組織観察を行い、画像解析ソフトを用いてその面積率を測定し、押出成形性は押出成形時にプレス機付属の圧力計表示の面圧によってそれぞれ評価した。結果を表2に示す。   Mechanical properties, fiber structure ratios, and extrusion moldability were measured for each of Samples 1 to 8 (7 samples 2). For mechanical properties, JIS 13B specimens were collected from each sample and subjected to a tensile test. The fiber structure ratio was measured by observing the macro structure of the cross section perpendicular to the extrusion direction, and the area ratio was measured using image analysis software. The extrudability was evaluated by the surface pressure indicated on the pressure gauge attached to the press during extrusion molding. The results are shown in Table 2.

表2によると、試料1(Mg0.55%、Si1.00%、Fe0.18%、Ti0.01%、Zr0.10%)、試料2(Mg0.55%、Si1.00%、Fe0.18%、Ti0.01%、Mn0.05%、Zr0.05%)、試料3(Mg0.55%、Si1.00%、Fe0.18%、Ti0.01%、Mn0.04%、Cr0.04%、Zr0.04%)の合金組成の押出形材は、押出比を45として、昇温速度200℃/Hr、保持温度550℃、保持時間4Hrの均質化処理を施し、押出形材温度540℃にて押出加工を行うことによって、試料1は、引張強度312MPa、耐力290MPa、伸び12%、繊維組織比率77%、面圧25kgf/mm、試料2は、引張強度295MPa、耐力275MPa、伸び13%、繊維組織比率80%、面圧22kgf/mm、試料3は、引張強度286MPa、耐力265MPa、伸び12%、繊維組織比率85%、面圧27kgf/mmにして、いずれも熱間割れのないものであった。また、試料2−1について、押出比を45として、昇温速度100℃/Hr、保持温度550℃、保持時間4Hr、押出形材温度510℃の均質化処理を施すことによって、引張強度284MPa、耐力260MPa、伸び14%、繊維組織比率98%、面圧25kgf/mm、熱間割れのないものであり、更に、試料2−2について、押出比を80として、昇温速度300℃/Hr、保持温度580℃、保持時間10Hr、押出形材温度570℃の均質化処理を施すことによって、引張強度320MPa、耐力296MPa、伸び12%、繊維組織比率65%、面圧23kgf/mm、熱間割れのないものであった。 According to Table 2, Sample 1 (Mg 0.55%, Si 1.00%, Fe 0.18%, Ti 0.01%, Zr 0.10%), Sample 2 (Mg 0.55%, Si 1.00%, Fe 0.18) %, Ti 0.01%, Mn 0.05%, Zr 0.05%), Sample 3 (Mg 0.55%, Si 1.00%, Fe 0.18%, Ti 0.01%, Mn 0.04%, Cr 0.04%) , Zr0.04%) The extruded shape of the alloy composition was subjected to a homogenization treatment with an extrusion ratio of 45, a heating rate of 200 ° C./Hr, a holding temperature of 550 ° C., and a holding time of 4 Hr. extrusion by performing, sample 1 at a tensile strength 312MPa, yield strength 290 MPa, elongation 12%, fibrous tissue ratio 77%, the surface pressure 25 kgf / mm 2, sample 2, tensile strength 295MPa, yield strength 275 MPa, elongation 1 %, Fibrous tissue ratios of 80%, a surface pressure 22 kgf / mm 2, Sample 3, tensile strength was 286 MPa, yield strength 265 MPa, elongation 12%, fibrous tissue ratios of 85%, and the surface pressure 27 kgf / mm 2, both hot cracking There was nothing. Sample 2-1 was subjected to a homogenization treatment with an extrusion ratio of 45, a temperature increase rate of 100 ° C./Hr, a holding temperature of 550 ° C., a holding time of 4 Hr, and an extrusion profile temperature of 510 ° C., whereby a tensile strength of 284 MPa, The yield strength is 260 MPa, the elongation is 14%, the fiber structure ratio is 98%, the surface pressure is 25 kgf / mm 2 , and there is no hot cracking. Further, with respect to Sample 2-2, the extrusion ratio is 80 and the heating rate is 300 ° C./Hr. By applying a homogenization treatment at a holding temperature of 580 ° C., a holding time of 10 hours, and an extrusion profile temperature of 570 ° C., a tensile strength of 320 MPa, a yield strength of 296 MPa, an elongation of 12%, a fiber structure ratio of 65%, a surface pressure of 23 kgf / mm 2 There were no cracks.

引張強度265MPa以上、耐力245MPa以上、伸び8%以上、繊維組織比率60%以上、面圧30kgf/mm以下にして熱間割れのないものを基準とすると、以上の結果は、機械的強度、繊維組織比率及び押出成形性においてそれぞれ満足し得るものであった。 When the tensile strength is 265 MPa or more, the proof stress is 245 MPa or more, the elongation is 8% or more, the fiber structure ratio is 60% or more, the surface pressure is 30 kgf / mm 2 or less, and there is no hot cracking, the above results indicate that the mechanical strength, The fiber structure ratio and the extrusion moldability were satisfactory.

一方、上記試料1乃至3と合金組成を変化した試料4(Mg0.55%、Si0.70%、Fe0.18%、Ti0.01%、Mn0.05%、Zr0.05%)、試料5(Mg0.55%、Si1.00%、Fe0.18%、Ti0.01%、Mn0.03%、Zr0.01%)、試料6(Mg0.80%、Si1.20%、Fe0.18%、Ti0.01%、Mn0.05%、Zr0.05%)、試料7(Mg0.55%、Si1.00%、Fe0.18%、Ti0.01%、Mn0.15%、Zr0.15%)、試料8(Mg0.55%、Si1.00%、Fe0.18%、Ti0.01%、Cr0.13%)の押出形材は、押出比を45として、昇温速度200℃/Hr、保持温度550℃、保持時間4Hrの均質化処理を施し、押出形材温度540℃にて押出加工を行うと、試料4において、伸び10%、面圧25kgf/mmであり、熱間割れはないが、引張強度245MPa、耐力220MPa、繊維組織比率40%であり、試料5は、引張強度304MPa、耐力288MPa、面圧21kgf/mmであり、熱間割れはないが、伸び7%、繊維組織比率25%であり、試料6は、引張強度334MPa、耐力303MPa、伸び8%、繊維組織比率62%であるも、面圧36kgf/mmにして熱間割れが発生したものであり、試料7は、伸び13%、繊維組織比率91%、熱間割れはないが、引張強度252MPa、耐力230MPa、面圧32kgf/mmであり、試料8は、引張強度277MPa、耐力252MPa、伸び11%、繊維組織比率84%、熱間割れはないが、面圧32kgf/mmであった。また、表2に試料2−3乃至2−6として示すように、上記試料2を、更に、押出比を120として、昇温速度200℃/Hr、保持温度550℃、保持時間4Hrの均質化処理を施し、押出形材温度540℃で押出加工を行うと、引張強度305MPa、耐力282MPa、伸び12%、面圧29kgf/mm、熱間割れはないが、繊維組織比率10%であり、押出比を45として、昇温速度200℃/Hr、保持温度550℃、保持時間4Hrの均質化処理を施し、押出形材温度590℃にて押出加工を行うと、引張強度345MPa、耐力318MPa、面圧20kgf/mm、熱間割れはないが、伸び7%、繊維組織比率7%であり、押出比を45として、昇温速度400℃/Hr、保持温度550℃、保持時間4Hrの均質化処理を施し、押出形材温度540℃にて押出加工を行うと、引張強度299MPa、耐力276MPa、伸び13%、面圧22kgf/mm、熱間割れはないが、繊維組織比率45%であり、また、押出比を45として、昇温速度200℃/Hr、保持温度590℃、保持時間12Hrの均質化処理を施し、押出形材温度540℃にて押出加工を行うと、引張強度290MPa、耐力270MPa、伸び9%、面圧21kgf/mm、熱間割れはないが、繊維組織比率39%であった。 On the other hand, Sample 4 (Mg 0.55%, Si 0.70%, Fe 0.18%, Ti 0.01%, Mn 0.05%, Zr 0.05%), Sample 5 (alloy composition changed from Samples 1 to 3 above) Mg 0.55%, Si 1.00%, Fe 0.18%, Ti 0.01%, Mn 0.03%, Zr 0.01%), Sample 6 (Mg 0.80%, Si 1.20%, Fe 0.18%, Ti0 0.01%, Mn 0.05%, Zr 0.05%), sample 7 (Mg 0.55%, Si 1.00%, Fe 0.18%, Ti 0.01%, Mn 0.15%, Zr 0.15%), sample 8 (Mg 0.55%, Si 1.00%, Fe 0.18%, Ti 0.01%, Cr 0.13%) has an extrusion ratio of 45, a heating rate of 200 ° C./Hr, and a holding temperature of 550. ℃ 、 Holding time 4Hr homogenization treatment, press Doing extruded at profile temperatures 540 ° C., in Sample 4, 10% elongation, a surface pressure 25 kgf / mm 2, hot cracking is not, but the tensile strength 245 MPa, yield strength 220 MPa, in fibrous tissue ratio 40% Yes, sample 5 has a tensile strength of 304 MPa, a proof stress of 288 MPa, a surface pressure of 21 kgf / mm 2 , and no hot cracking, but has an elongation of 7% and a fiber structure ratio of 25%. Sample 6 has a tensile strength of 334 MPa and a proof stress Although it is 303 MPa, elongation is 8%, and fiber structure ratio is 62%, the surface pressure is 36 kgf / mm 2 and hot cracking occurs. Sample 7 has an elongation of 13%, fiber structure ratio of 91%, hot cracking without tensile strength 252MPa, yield strength 230 MPa, a surface pressure 32 kgf / mm 2, sample 8, tensile strength 277MPa, yield strength 252MPa, elongation 11%, fibrous tissue ratio 84%, hot cracking is not, but a surface pressure 32 kgf / mm 2. Further, as shown in Table 2 as Samples 2-3 to 2-6, Sample 2 was further homogenized with an extrusion ratio of 120, a heating rate of 200 ° C./Hr, a holding temperature of 550 ° C., and a holding time of 4 Hr. When processed and extruded at an extrusion profile temperature of 540 ° C., the tensile strength is 305 MPa, the yield strength is 282 MPa, the elongation is 12%, the surface pressure is 29 kgf / mm 2 , and there is no hot cracking, but the fiber structure ratio is 10%. When the extrusion ratio is 45, a homogenization treatment is performed at a heating rate of 200 ° C./Hr, a holding temperature of 550 ° C., a holding time of 4 Hr, and extrusion is performed at an extrusion profile temperature of 590 ° C. Homogeneity of surface pressure 20kgf / mm 2 , no hot cracking, elongation 7%, fiber structure ratio 7%, extrusion ratio 45, heating rate 400 ° C / Hr, holding temperature 550 ° C, holding time 4Hr When the extrusion processing is performed at an extrusion profile temperature of 540 ° C., the tensile strength is 299 MPa, the yield strength is 276 MPa, the elongation is 13%, the surface pressure is 22 kgf / mm 2 , and there is no hot cracking, but the fiber structure ratio is 45%. Yes, when the extrusion ratio is 45, a homogenization treatment is performed at a heating rate of 200 ° C./Hr, a holding temperature of 590 ° C. and a holding time of 12 hours, and extrusion is performed at an extrusion profile temperature of 540 ° C., a tensile strength of 290 MPa The yield strength was 270 MPa, the elongation was 9%, the surface pressure was 21 kgf / mm 2 , and there was no hot cracking, but the fiber structure ratio was 39%.

即ち、試料1乃至3においては、Si1.0%とすることによって、過剰Siが高強度の機械的特性とそのピンニング効果による高い繊維組織比率を確保するに至る一方、試料4乃至8は、表1注記の式を充足しないことによって、機械的特性、繊維組織比率、押出成形性のいずれかを充足し得ないものとなるに至っており、また、試料2の合金組成でも、均質化処理の条件によっては、伸び、繊維組織比率を充足し得ない結果となり、試料2−3は、押出比が120と高く、試料2−4では押出時の形材温度が590℃と高いために、再結晶が進行して繊維組織比率が低くなるに至り、試料2−5では、均質化処理における昇温速度が400℃/Hrと早いため、Mn及び/又はZr系化合物が微細分散されず、十分なピンニング効果が得られず、繊維組織比率が低くなるに至り、試料2−6では、均質化処理の温度が高く、時間が長いことにより、Mn及び/又はZr系化合物が粗大析出して、同様に十分なピンニング効果が得られず、繊維組織比率が低くなるに至ったものと認められる。   That is, in Samples 1 to 3, by setting Si to 1.0%, excess Si secures a high strength mechanical property and a high fiber structure ratio due to its pinning effect, while Samples 4 to 8 show By not satisfying the formula of 1 Note, it has become impossible to satisfy any of the mechanical properties, the fiber structure ratio, and the extrudability, and even with the alloy composition of Sample 2, the conditions for the homogenization treatment Depending on the case, the elongation and the fiber structure ratio could not be satisfied, and the sample 2-3 had a high extrusion ratio of 120. In the sample 2-4, the shape material temperature at the time of extrusion was as high as 590 ° C. In the sample 2-5, the rate of temperature increase in the homogenization treatment is as fast as 400 ° C./Hr, so that Mn and / or Zr-based compounds are not finely dispersed and are sufficient. Pinning effect is obtained In the sample 2-6, the temperature of the homogenization treatment is high and the time is long, so that the Mn and / or Zr-based compound is coarsely precipitated, and the pinning effect is also sufficient. Is not obtained, and it is recognized that the fiber structure ratio has been lowered.

Claims (3)

Al−Mg−Si系合金にMn及び/又はZrを添加含有して高強度、高延性、押出加工性を併存具備した押出形材であって、Mg0.4〜0.9%、Si0.7〜1.2%のMgSiのバランス組成以上の過剰Si状態にして、MgとSiの関係を−0.15Mg+0.84≦Si≦−0.5Mg+1.45とし、Mn0.2%以下、Zr0.2%以下にして、MnとZrの関係を、Mn+Zr≦0.2且つ0.67Mn+Zr≧0.039とし、上記過剰Si、Mn及び/又はZrの関係を、過剰Si≧(0.6−1.56Mn+0.22Zr+3.93Mn及び/又はZr)/(9.17Mn+16.1Zr)とすることによって、繊維組織比率60%以上、引張強さ265MPa以上、0.2%耐力245MPa以上、伸び8%以上としてなることを特徴とするアルミ押出形材。 An extruded profile that contains Mn and / or Zr added to an Al-Mg-Si alloy and has high strength, high ductility, and extrudability. Mg 0.4 to 0.9%, Si 0.7 -1.2% Mg 2 Si in an excess Si state more than the balance composition, and the relationship between Mg and Si is -0.15Mg + 0.84 ≦ Si ≦ −0.5Mg + 1.45, Mn is 0.2% or less, Zr0 .2% or less, the relationship between Mn and Zr is Mn + Zr ≦ 0.2 and 0.67Mn + Zr ≧ 0.039, and the relationship between the excess Si, Mn and / or Zr is excess Si ≧ (0.6− By making 1.56Mn + 0.22Zr + 3.93Mn and / or Zr) / (9.17Mn + 16.1Zr), the fiber structure ratio is 60% or more, the tensile strength is 265 MPa or more, the 0.2% proof stress is 245 MPa or more, and the elongation is 8%. Aluminum extrusion profiles, characterized by comprising as an upper. 上記Mn及び/又はZrに加えて、Cr≦0.1%、Cu≦0.25%、Fe0.1〜0.3%、Ti0.003〜0.1%を添加含有してなることを特徴とする請求項1に記載のアルミ押出形材。   In addition to Mn and / or Zr, Cr ≦ 0.1%, Cu ≦ 0.25%, Fe0.1-0.3%, Ti0.003-0.1% are added and contained The aluminum extruded profile according to claim 1. Al−Mg−Si系合金にMn及び/又はZrを添加含有して高強度、高延性、押出加工性を併存具備した押出形材の成形方法であって、Mg0.4〜0.9%、Si0.7〜1.2%のMgSiのバランス組成以上の過剰Si状態にして、MgとSiの関係を−0.15Mg+0.84≦Si≦−0.5Mg+1.45とし、Mn0.2%以下、Zr0.2%以下にして、MnとZrの関係を、Mn+Zr≦0.2且つ0.67Mn+Zr≧0.039とし、上記過剰Si、Mn及び/又はZrの関係を、過剰Si≧(0.6−1.56Mn+0.22Zr+3.93Mn及び/又はZr)/(9.17Mn+16.1Zr)としたアルミ合金組成のビレットの均質化処理を、昇温速度100〜300℃/Hr、保持温度510〜590℃、保持時間1〜10Hrによって行った後、上記アルミ押出形材を押出比40〜110として押出成形することを特徴とするアルミ押出形材の押出成形方法。 An Al-Mg-Si-based alloy containing Mn and / or Zr, and having a high strength, high ductility, and extrudability, is a method for forming an extruded profile, Mg 0.4-0.9%, An excess Si state equal to or higher than the balance composition of Mg 2 Si with 0.7 to 1.2% Si is set, and the relationship between Mg and Si is set to −0.15Mg + 0.84 ≦ Si ≦ −0.5Mg + 1.45, Mn 0.2% Hereinafter, Zr is 0.2% or less, the relationship between Mn and Zr is Mn + Zr ≦ 0.2 and 0.67Mn + Zr ≧ 0.039, and the relationship between the excess Si, Mn and / or Zr is excess Si ≧ (0 .6-1.56Mn + 0.22Zr + 3.93Mn and / or Zr) / (9.17Mn + 16.1Zr), the homogenization treatment of the billet of the aluminum alloy composition was performed at a heating rate of 100 to 300 ° C./Hr, a holding temperature of 510 to 59 ° C., after the holding time 1~10Hr, extrusion molding method of an aluminum extruded profile, which comprises extruding the shaped aluminum extrusion as extrusion ratio 40 to 110.
JP2011067122A 2011-03-25 2011-03-25 Aluminum extruded shape and extrusion molding method thereof Pending JP2012201923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011067122A JP2012201923A (en) 2011-03-25 2011-03-25 Aluminum extruded shape and extrusion molding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011067122A JP2012201923A (en) 2011-03-25 2011-03-25 Aluminum extruded shape and extrusion molding method thereof

Publications (1)

Publication Number Publication Date
JP2012201923A true JP2012201923A (en) 2012-10-22

Family

ID=47183237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011067122A Pending JP2012201923A (en) 2011-03-25 2011-03-25 Aluminum extruded shape and extrusion molding method thereof

Country Status (1)

Country Link
JP (1) JP2012201923A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119355A1 (en) * 2013-01-29 2014-08-07 古河電気工業株式会社 Electrolytic copper foil and process for producing same
CN106239038A (en) * 2016-07-29 2016-12-21 余姚市婉珍五金厂 A kind of Tapered Cup liquid extrusion molding technique
CN115698355A (en) * 2020-06-10 2023-02-03 爱励轧制产品德国有限责任公司 Method for manufacturing aluminum alloy sheet for vacuum chamber member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108172A (en) * 1996-06-17 1998-01-13 Nippon Light Metal Co Ltd Production of high strength aluminum-magnesium-silicon base alloy for structural material excellent in extrudability and extruded material
JP2003221636A (en) * 2002-01-29 2003-08-08 Aisin Keikinzoku Co Ltd Al-Mg-Si ALUMINUM ALLOY EXTRUSION MOLDED MATERIAL SHOWING EXCELLENT RESISTANCE TO IMPACT FRACTURE
JP2006097104A (en) * 2004-09-30 2006-04-13 Toyota Motor Corp 6,000-series aluminum extruded material superior in paint-baking hardenability, and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108172A (en) * 1996-06-17 1998-01-13 Nippon Light Metal Co Ltd Production of high strength aluminum-magnesium-silicon base alloy for structural material excellent in extrudability and extruded material
JP2003221636A (en) * 2002-01-29 2003-08-08 Aisin Keikinzoku Co Ltd Al-Mg-Si ALUMINUM ALLOY EXTRUSION MOLDED MATERIAL SHOWING EXCELLENT RESISTANCE TO IMPACT FRACTURE
JP2006097104A (en) * 2004-09-30 2006-04-13 Toyota Motor Corp 6,000-series aluminum extruded material superior in paint-baking hardenability, and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119355A1 (en) * 2013-01-29 2014-08-07 古河電気工業株式会社 Electrolytic copper foil and process for producing same
CN106239038A (en) * 2016-07-29 2016-12-21 余姚市婉珍五金厂 A kind of Tapered Cup liquid extrusion molding technique
CN115698355A (en) * 2020-06-10 2023-02-03 爱励轧制产品德国有限责任公司 Method for manufacturing aluminum alloy sheet for vacuum chamber member

Similar Documents

Publication Publication Date Title
JP5203772B2 (en) Aluminum alloy sheet excellent in paint bake hardenability and suppressing room temperature aging and method for producing the same
JP5343333B2 (en) Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking
JP5834077B2 (en) Aluminum alloy and method for producing extruded profile using the same
JP5918158B2 (en) Aluminum alloy sheet with excellent properties after aging at room temperature
JP6193808B2 (en) Aluminum alloy extruded material and method for producing the same
JP7044863B2 (en) Al-Mg-Si based aluminum alloy material
US20210010121A1 (en) High-Strength Aluminum Alloy Extruded Material That Exhibits Excellent Formability And Method For Producing The Same
JP2012097321A (en) High-strength aluminum alloy forged product excellent in stress corrosion cracking resistance and forging method for the same
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
CA2950075C (en) Method for manufacturing aluminum alloy member and aluminum alloy member manufactured by the same
JP2015175045A (en) Aluminum alloy sheet for constructional material
JP2011122180A (en) Extruded material of heat-resistant aluminum alloy superior in high-temperature strength and high-temperature fatigue characteristic
JP4775935B2 (en) Aluminum alloy extruded material with excellent impact fracture resistance
JP2007070686A (en) Highly workable magnesium alloy, and method for producing the same
JP6223670B2 (en) Aluminum alloy sheet for automobile parts
JP6612029B2 (en) High strength aluminum alloy extruded material with excellent impact resistance and method for producing the same
JP2012201923A (en) Aluminum extruded shape and extrusion molding method thereof
JP4111651B2 (en) Al-Mg-Si aluminum alloy extruded material for door beam and door beam
JP2001011559A (en) High strength aluminum alloy extruded material excellent in corrosion resistance and its production
KR101499096B1 (en) Aluminum alloy and manufacturing method thereof
JP2012077320A (en) Magnesium alloy sheet material for bending and method for producing the same, and magnesium alloy pipe and method for producing the same
JP3853021B2 (en) Method for producing Al-Cu-Mg-Si alloy hollow extruded material excellent in strength and corrosion resistance
JP4286431B2 (en) Manufacturing method of aluminum alloy piping material
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance
JP2001262265A (en) Hot rolling stock of high formability aluminum alloy sheet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131011

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141224