JP2012201859A - Coating composition and coating method - Google Patents

Coating composition and coating method Download PDF

Info

Publication number
JP2012201859A
JP2012201859A JP2011069975A JP2011069975A JP2012201859A JP 2012201859 A JP2012201859 A JP 2012201859A JP 2011069975 A JP2011069975 A JP 2011069975A JP 2011069975 A JP2011069975 A JP 2011069975A JP 2012201859 A JP2012201859 A JP 2012201859A
Authority
JP
Japan
Prior art keywords
powder coating
less
coating
powder
coating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011069975A
Other languages
Japanese (ja)
Inventor
Hidetada Shinko
秀忠 心光
Kuniyuki Fukuda
訓之 福田
Tetsuo Kodama
哲郎 児玉
Susumu Nakai
進 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP2011069975A priority Critical patent/JP2012201859A/en
Publication of JP2012201859A publication Critical patent/JP2012201859A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder coating composition allowing for obtaining a uniform coating film with a high deposition efficiency and an excellent appearance even with a high-speed coating, as well as a powder coating method and a coated article using the same.SOLUTION: In the powder coating composition used with a flat conveying device with a conveyance speed being at least 15 m/min, a volume average particle size is 20-40 μm, a proportion of particles with 11 μm or less size is less than 12%, a true specific gravity is 1.3-2.0, and the maximum particle size is 180 μm or less. The powder coating method and the coated article using the same are also provided.

Description

本発明は、高速塗装が可能な粉体塗料組成物、粉体塗装方法及び塗装物に関する。   The present invention relates to a powder coating composition capable of high-speed coating, a powder coating method, and a coated product.

粉体塗料は従来の溶剤型塗料とは異なり、有機溶剤を使用しないことから環境に優しいと言われており、工業的に広く使用されている。粉体塗料を使用しているユーザー塗装ラインにおいては被塗物をコンベアーに吊り下げ、自動ガンやハンドガンあるいは粉体流動層に浸漬といった形で塗装されるのが一般的である。また、被塗物が平板のみに限られるといったような特殊なユーザーにおいては、被塗物をベルトコンベアーのような平置き搬送装置に載せ置き、塗装されているところもある。   Unlike conventional solvent-based paints, powder paints are said to be environmentally friendly because they do not use organic solvents, and are widely used industrially. In a user painting line using powder paint, it is common to hang an object to be coated on a conveyor and apply it in the form of an automatic gun, a hand gun or a powder fluidized bed. In addition, in a special user in which the object to be coated is limited to only a flat plate, the object to be coated is placed on a flat conveying device such as a belt conveyor and painted.

しかしながら、被塗物をコンベアーに吊るして塗装する方法では、搬送スピードが速過ぎると被塗物が左右に振れてしまうため均一に塗装することができず被塗物の箇所によって膜厚にムラが出ることや、塗料の塗着効率が落ち、廃塗料や回収塗料が増えるといった弊害があることから、塗装ラインでの搬送スピードには制限があった。   However, in the method of coating the object to be hung on the conveyor, if the conveying speed is too fast, the object to be swayed from side to side will not be able to be applied uniformly and the film thickness will vary depending on the position of the object to be coated. Since there is a harmful effect such that it comes out, the coating efficiency of the paint decreases, and the amount of waste paint and recovered paint increases, there is a limit to the conveying speed in the painting line.

また、特許文献1で開示されているような平置き搬送装置を用いた塗装方法においても、高速で塗装を行うと、通常塗装ガンから吹き出された塗料が空間中に広がる範囲(塗料雲)が高速で通過する被塗物にあおられ、高塗着効率かつ均一で高外観な塗膜を得ることができなかった。   Further, even in a coating method using a flat conveying device as disclosed in Patent Document 1, when coating is performed at a high speed, there is a range (paint cloud) in which the paint blown from the normal coating gun spreads in the space. A coating film having high coating efficiency, uniform and high appearance could not be obtained because it was covered with an object to be passed at high speed.

特開平6−343904号公報JP-A-6-343904

本発明の目的は、高速塗装においても、塗着効率が高く、均一で外観が良好な塗膜を得られる粉体塗料組成物、その粉体塗装方法及び塗装物を提供することである。   An object of the present invention is to provide a powder coating composition, a powder coating method, and a coated product, which can obtain a coating film having high coating efficiency, uniform and good appearance even in high-speed coating.

本発明に従って、搬送スピードが15m/分以上の平置き搬送装置に用いられる粉体塗料組成物であって、体積平均粒子径が20〜40μm、粒子径が11μm以下の割合が12%未満、真比重が1.3〜2.0、かつ最大粒子径が180μm以下であることを特徴とする粉体塗料組成物が提供される。   According to the present invention, there is provided a powder coating composition for use in a flat transport device having a transport speed of 15 m / min or more, wherein the volume average particle diameter is 20 to 40 μm, and the ratio of the particle diameter is 11 μm or less is less than 12%. A powder coating composition having a specific gravity of 1.3 to 2.0 and a maximum particle size of 180 μm or less is provided.

また、本発明に従って、体積平均粒子径が20〜40μm、粒子径が11μm以下の割合が12%未満、真比重が1.3〜2.0、かつ最大粒子径が180μm以下である粉体塗料組成物を搬送スピードが15m/分以上の平置き搬送装置による塗装工程を有することを特徴とする粉体塗装方法が提供される。   Further, according to the present invention, a powder coating material having a volume average particle diameter of 20 to 40 μm, a ratio of the particle diameter of 11 μm or less is less than 12%, a true specific gravity of 1.3 to 2.0, and a maximum particle diameter of 180 μm or less. There is provided a powder coating method characterized by having a coating process by a flat transport apparatus having a transport speed of 15 m / min or more for the composition.

更に、本発明に従って、上記粉体塗装方法を用いて得られたことを特徴とする塗装物が提供される。   Furthermore, according to the present invention, there is provided a coated product obtained by using the above powder coating method.

本発明によると、搬送スピードが15m/分以上の高速塗装においても、90%以上の高塗着効率で均一かつ高外観な塗膜を得られる粉体塗料組成物、その粉体塗装方法及び塗装物を提供することが可能となった。   According to the present invention, a powder coating composition capable of obtaining a uniform and high-appearance coating film with a high coating efficiency of 90% or more even in high-speed coating with a conveying speed of 15 m / min or more, its powder coating method and coating It became possible to provide things.

以下、本発明について、具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明者らは、粉体塗料の体積平均粒径、微粉領域の割合、粗粒子の割合、比重及び溶融粘度を制御することによって、平置き搬送高速塗装において高塗着効率かつ均一で高外観な塗膜を得ることができることを見出した。   By controlling the volume average particle diameter, the ratio of fine powder region, the ratio of coarse particles, the specific gravity and the melt viscosity of the powder coating, the present inventors have high coating efficiency and uniform and high appearance in flat transportation high speed coating. It was found that an excellent coating film can be obtained.

本発明で使用される粉体塗料組成物としては、通常、熱硬化型粉体塗料に使用される組成物、例えば樹脂、硬化剤、顔料、添加剤等を特に制限することなく使用することが出来る。   As the powder coating composition used in the present invention, a composition usually used for a thermosetting powder coating, for example, a resin, a curing agent, a pigment, an additive and the like can be used without any particular limitation. I can do it.

粉体塗料に使用される樹脂として、従来から粉体塗料の製造に用いられている各種の樹脂を使用することができる。このような樹脂としては、例えば、エポキシ系樹脂や、エポキシ−ポリエステル硬化系樹脂、ポリエステル−ウレタン硬化系樹脂、ポリエステル−プリミド硬化系樹脂、アクリル系樹脂、アクリル−ポリエステル系樹脂、フッ素系樹脂、アクリル−ウレタン硬化系樹脂、アクリル−メラミン硬化系樹脂、ポリエステル−メラミン硬化系樹脂、アルキド樹脂、フッ素樹脂、シリコーン樹脂、アミド樹脂、ABS樹脂、ノボラック樹脂や、フェノキシ樹脂、ケトン樹脂、ポリエステル樹脂、ロジン等の改質樹脂等が挙げられ、これら樹脂を単独又は2種以上組み合わせで使用することができる。   As the resin used for the powder coating material, various resins conventionally used in the production of powder coating materials can be used. Examples of such resins include epoxy resins, epoxy-polyester curable resins, polyester-urethane curable resins, polyester-primid curable resins, acrylic resins, acrylic-polyester resins, fluororesins, and acrylic resins. -Urethane curing resin, acrylic-melamine curing resin, polyester-melamine curing resin, alkyd resin, fluorine resin, silicone resin, amide resin, ABS resin, novolac resin, phenoxy resin, ketone resin, polyester resin, rosin, etc. These resins can be used, and these resins can be used alone or in combination of two or more.

硬化剤としては、例えば、熱硬化性樹脂に通常使用される硬化剤を特に制限無く各種使用することができる。このような硬化剤としては、例えば、アミド化合物や、酸無水物、二塩基酸、グリシジル化合物、アミノプラスト樹脂、ブロックイソシアネート、ウレトジオンイソシアネート、及びヒドロキシアルキルアミド等を挙げることができる。代表的な硬化剤としては、ジシアンジアミド、酸ヒドラジド、トリグリシジルイソシアヌレート、及びイソホロンジイソシアネートブロック体等が挙げられる。例えば、二塩基酸としては、アジピン酸や、ピメリン酸、スベリン酸、セバシン酸、1,10−デカンジカルボン酸、1,12−ドデカンジカルボン酸、1,20−エイコサンジカルボン酸、ヘキサヒドロフタル酸、マレイン酸、フタル酸、及びシクロヘキセン1,2−ジカルボン酸等が挙げられる。   As the curing agent, for example, various curing agents usually used for thermosetting resins can be used without particular limitation. Examples of such curing agents include amide compounds, acid anhydrides, dibasic acids, glycidyl compounds, aminoplast resins, blocked isocyanates, uretdione isocyanates, and hydroxyalkylamides. Typical curing agents include dicyandiamide, acid hydrazide, triglycidyl isocyanurate, and isophorone diisocyanate block. For example, as dibasic acid, adipic acid, pimelic acid, suberic acid, sebacic acid, 1,10-decanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, 1,20-eicosanedicarboxylic acid, hexahydrophthalic acid , Maleic acid, phthalic acid, and cyclohexene 1,2-dicarboxylic acid.

顔料としては、例えば、二酸化チタン、ベンガラ、酸化鉄、亜鉛末粉、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン、キナクリドン系顔料、アゾ系顔料、イソインドリノン系顔料、各種焼成顔料等の着色顔料、シリカ、タルク、硫酸バリウム、炭酸カルシウム、ガラスフレーク等の体質顔料、アルミニウム顔料、アルミニウムペースト等のアルミニウム粉、白色〜銀色に濁った色を示すホワイトマイカ又はシルバーマイカと称される光輝顔料等がある。   Examples of the pigment include titanium dioxide, bengara, iron oxide, zinc powder, carbon black, phthalocyanine blue, phthalocyanine green, quinacridone pigment, azo pigment, isoindolinone pigment, various calcined pigments, silica And extender pigments such as talc, barium sulfate, calcium carbonate, and glass flakes, aluminum powders, aluminum powders such as aluminum paste, and bright pigments called white mica or silver mica showing white to silver turbid colors.

その他の添加剤としては、例えば、タレ防止剤、表面調整剤、紫外線吸収剤、光安定剤、及び抗酸化剤等が挙げられ、任意に必要に応じて配合することができる。   Examples of other additives include a sagging inhibitor, a surface conditioner, an ultraviolet absorber, a light stabilizer, and an antioxidant, and can be arbitrarily blended as necessary.

本発明の熱硬化型の粉体塗料組成物は、体積平均粒子径が20〜40μm、粒子径が11μm以下の割合が12%未満、真比重が1.3〜2.0、かつ最大粒子径が180μm以下であることが適当である。体積平均粒子径が20μmより細かかったり、真比重が1.3より小さいと塗装ガンからの吐出エアに粉体吐量粒子が吹き飛ばされる割合が多くなり塗着効率が低下する。また、真比重が2.0より大きいと、被塗物の搬送スピードが15m/分以上の時、塗装ガンより吐出された塗料が高速で通過する被塗物にあおられ塗着効率が低下する。体積平均粒子径が40μmより大きかったり、最大粒子径が180μmより大きいと、前記被塗物のあおりによる塗着効率の低下に加え塗膜外観が低下する。また、粒子径が11μm以下の割合が12%以上になると塗装ガン先に塗料が溜まり易くなり、スピットが発生し易くなる。なお、上記の粒度測定は、乾式粒度分布測定機で通常の粉体塗料を測定する条件で体積平均粒子径を測定した数値である。   The thermosetting powder coating composition of the present invention has a volume average particle diameter of 20 to 40 μm, a ratio of the particle diameter of 11 μm or less is less than 12%, a true specific gravity of 1.3 to 2.0, and a maximum particle diameter. Is suitably 180 μm or less. When the volume average particle diameter is smaller than 20 μm or the true specific gravity is smaller than 1.3, the ratio of the powder discharge amount particles being blown off to the discharge air from the coating gun is increased and the coating efficiency is lowered. On the other hand, if the true specific gravity is larger than 2.0, when the conveying speed of the object to be coated is 15 m / min or more, the paint discharged from the coating gun is covered with the object to be passed at a high speed and the coating efficiency is lowered. . When the volume average particle diameter is larger than 40 μm or the maximum particle diameter is larger than 180 μm, the coating film appearance is deteriorated in addition to the decrease in the coating efficiency due to the tilt of the object to be coated. Further, when the ratio of the particle size of 11 μm or less is 12% or more, the paint tends to accumulate at the tip of the coating gun, and spits are likely to occur. In addition, said particle size measurement is the numerical value which measured the volume average particle diameter on the conditions which measure a normal powder coating material with a dry-type particle size distribution analyzer.

また、本発明における粉体塗料組成物は、温度を100℃から10℃/分昇温したときの最低溶融粘度が、400Pa・S以下であることが好ましい。400Pa・Sを超えると、焼付溶融時に十分なメルト力が得られず粉体塗膜外観の低下を与えるため、好ましくない。なお、本発明における溶融粘度は、温度プログラム調節計を装着したコーンプレート式粘度測定装置(例えばシマデン社の温度プログラム調節計のFP21を装着したMettler−Toledo社(現Waters Technologies Corporation/TA Instruments社)のコーンプレート式粘度測定装置のレオメータRM260(数値計算ソフトウエアSWR−37))により測定した数値である。   The powder coating composition in the present invention preferably has a minimum melt viscosity of 400 Pa · S or less when the temperature is raised from 100 ° C. to 10 ° C./min. If it exceeds 400 Pa · S, a sufficient melt force cannot be obtained during baking and melting, and the appearance of the powder coating film is deteriorated. The melt viscosity in the present invention is a cone plate type viscosity measuring apparatus equipped with a temperature program controller (for example, Mettler-Toledo Co. (currently Waters Technologies Corporation / TA Instruments Co., Ltd.) equipped with Shimaden's temperature program controller FP21). It is a numerical value measured with a rheometer RM260 (numerical calculation software SWR-37) of a cone plate type viscosity measuring apparatus.

上記粉体塗料組成物は、静電塗装又は予熱塗装によって被塗物に塗装され120〜250℃の物温度になるように加熱し硬化させることによって塗膜を形成することが出来るが、遠赤外線、近赤外線又は誘導加熱を備えた短時間で焼付け硬化可能な焼付硬化装置を使用する焼付工程を有することが望ましい。これら短時間での焼付硬化装置を使用しないと、本発明における15m/分以上の高速搬送装置上では加熱炉が非常に大規模になり経済的ではない。あるいはバッチ方式を用いることができるが、生産効率が低下するという欠点があり、これも経済的ではない。なお、搬送スピードの上限としては、上述したように搬送スピードが非常に高速になると通過する被塗物にあおられ粉体塗料の塗着効率が低下するおそれがあることや加熱炉が非常に大規模になり経済的ではなくなることから、実用上80m/分程度が上限スピードである。   The above-mentioned powder coating composition can form a coating film by being applied to an object by electrostatic coating or preheating coating and heated and cured so as to have an object temperature of 120 to 250 ° C. It is desirable to have a baking process using a baking hardening apparatus capable of baking and hardening in a short time with near infrared or induction heating. Unless these baking and curing devices are used in a short time, the heating furnace becomes very large on the high-speed conveying device of 15 m / min or more in the present invention, which is not economical. Alternatively, a batch method can be used, but there is a disadvantage that the production efficiency is lowered, which is also not economical. As described above, the upper limit of the conveying speed is that, as described above, if the conveying speed becomes very high, the coating efficiency of the powder coating material may be lowered due to the passing workpiece, and the heating furnace is very large. The upper limit speed is practically about 80 m / min because the scale becomes less economical.

また前記塗装方法において、塗装後、焼付け硬化までの間に、被塗装物を100℃〜130℃で60秒以内で予備加熱保持する工程を有するとより高外観な塗膜を得ることができる。加熱保持温度が100℃より低いと粉体塗料を溶融フローさせるのに十分でなく、逆に130℃より温度が高かったり、60秒を超えて加熱保持すると一部硬化反応が進んでしまい良好な外観が得ることが困難である。   Moreover, in the said coating method, a coating film with a higher external appearance can be obtained if it has a process of preheating and holding the object to be coated at 100 ° C. to 130 ° C. within 60 seconds after coating and before baking and curing. If the heating and holding temperature is lower than 100 ° C, it is not sufficient to melt-flow the powder coating material. Conversely, if the temperature is higher than 130 ° C or if heated and held for more than 60 seconds, the curing reaction proceeds partially, which is good. Appearance is difficult to obtain.

以下、実施例により、本発明について更に詳細に説明する。なお原則として、「部」は質量部を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. In principle, “parts” means parts by mass.

<実施例1>
水酸基価50mgKOH/gの熱硬化性ポリエステル樹脂「ユピカコートGV560:日本ユピカ製」40部に、硬化剤としてIPDI(イソホロンジイソシアネート)1,2,4−トリアゾールブロックのポリイソシアネート樹脂「アルキュア4470:イーストマンケミカル社製」7部、添加剤としてシリカ吸着アクリル酸オリゴマー「ポリフロ−PW−95:共栄社製」1部、脱泡剤としてベンゾインを0.3部、顔料としてカーボンブラック1部、沈降性硫酸バリウム30部、酸化チタン20部をヘンシェルミキサーで攪拌後、エクストルーダーで混練、粉砕し180メッシュで分級を行い体積平均粒子径30μmの粉体塗料を作製した。粉体塗料の塗装は平置き搬送装置を用い搬送スピード15m/分で行った。
<Example 1>
40 parts of a thermosetting polyester resin having a hydroxyl value of 50 mgKOH / g “Iupica Coat GV560: manufactured by Nippon Iupika” and a polyisocyanate resin “Alcure 4470: Eastman Chemical: IPDI (isophorone diisocyanate) 1,2,4-triazole block as a curing agent 7 parts, silica adsorbed acrylic acid oligomer "Polyflo-PW-95: manufactured by Kyoeisha" 1 part, benzoin 0.3 parts as defoaming agent, carbon black 1 part as pigment, precipitated barium sulfate 30 Parts and 20 parts of titanium oxide were stirred with a Henschel mixer, kneaded with an extruder, pulverized, and classified with 180 mesh to prepare a powder coating material having a volume average particle size of 30 μm. The powder coating was applied at a conveying speed of 15 m / min using a flat conveying device.

<実施例2>
実施例1と同様に配合した材料をヘンシェルミキサーで攪拌後、エクストルーダーで混練、粉砕し200メッシュで分級を行い体積平均粒子径27μmの粉体塗料を作製した。粉体塗料の塗装は平置き搬送装置を用い搬送スピード15m/分で行った。
<Example 2>
The materials blended in the same manner as in Example 1 were stirred with a Henschel mixer, kneaded with an extruder, pulverized, and classified with 200 mesh to prepare a powder coating material having a volume average particle size of 27 μm. The powder coating was applied at a conveying speed of 15 m / min using a flat conveying device.

<実施例3>
水酸基価34mgKOH/gの熱硬化性ポリエステル樹脂「ユピカコートGV150:日本ユピカ製」50部に、硬化剤としてIPDI(イソホロンジイソシアネート)ε−カプロラクタムブロックのポリイソシアネート樹脂「ベスタゴンB−1530:EVONIKデグサ社製」9部、添加剤としてシリカ吸着アクリル酸オリゴマー「ポリフロ−PW−95:共栄社製」1部、脱泡剤としてベンゾインを0.3部、顔料としてカーボンブラック1部、酸化チタン5部、炭酸カルシウム30部をヘンシェルミキサーで攪拌後、エクストルーダーで混練、粉砕し180メッシュで分級を行い体積平均粒子径30μmの粉体塗料を作製した。粉体塗料の塗装は平置き搬送装置を用い搬送スピード15m/分で行った。
<Example 3>
Thermosetting polyester resin having a hydroxyl value of 34 mgKOH / g “Iupika Coat GV150: manufactured by Nippon Yupica” in 50 parts, polyisocyanate resin “Vestagon B-1530: manufactured by EVONIK Degussa” of IPDI (isophorone diisocyanate) ε-caprolactam block as a curing agent 9 parts, silica adsorbed acrylic acid oligomer "Polyflo-PW-95: manufactured by Kyoeisha" as an additive, 1 part, benzoin as a defoaming agent, 0.3 part, carbon black as a part, titanium oxide 5 parts, calcium carbonate 30 The parts were stirred with a Henschel mixer, kneaded with an extruder, pulverized, and classified with 180 mesh to prepare a powder coating material having a volume average particle size of 30 μm. The powder coating was applied at a conveying speed of 15 m / min using a flat conveying device.

<実施例4>
実施例3と同様に配合した材料をヘンシェルミキサーで攪拌後、エクストルーダーで混練、粉砕し150メッシュで分級を行い体積平均粒子径36μmの粉体塗料を作製した。粉体塗料の塗装は平置き搬送装置を用い搬送スピード15m/分で行った。
<Example 4>
The materials blended in the same manner as in Example 3 were stirred with a Henschel mixer, kneaded with an extruder, pulverized, and classified with 150 mesh to prepare a powder coating material having a volume average particle size of 36 μm. The powder coating was applied at a conveying speed of 15 m / min using a flat conveying device.

<比較例1>
実施例3と同様に配合した材料をヘンシェルミキサーで攪拌後、エクストルーダーで混練、粉砕し300メッシュで分級を行い体積平均粒子径19μmの粉体塗料を作製した。粉体塗料の塗装は平置き搬送装置を用い搬送スピード15m/分で行った。
<Comparative Example 1>
The material blended in the same manner as in Example 3 was stirred with a Henschel mixer, kneaded with an extruder, pulverized, and classified with 300 mesh to prepare a powder coating material having a volume average particle diameter of 19 μm. The powder coating was applied at a conveying speed of 15 m / min using a flat conveying device.

<比較例2>
実施例3と同様に配合した材料をヘンシェルミキサーで攪拌後、エクストルーダーで混練、粉砕し120メッシュで分級を行い体積平均粒子径45μmの粉体塗料を作製した。粉体塗料の塗装は平置き搬送装置を用い搬送スピード15m/分で行った。
<Comparative example 2>
The materials blended in the same manner as in Example 3 were stirred with a Henschel mixer, kneaded with an extruder, pulverized, and classified with 120 mesh to prepare a powder coating material having a volume average particle size of 45 μm. The powder coating was applied at a conveying speed of 15 m / min using a flat conveying device.

<比較例3>
実施例3と同様に配合した材料をヘンシェルミキサーで攪拌後、エクストルーダーで混練、粉砕し270メッシュで分級を行い体積平均粒子径21μmの粉体塗料を作製した。粉体塗料の塗装は平置き搬送装置を用い搬送スピード15m/分で行った。
<Comparative Example 3>
The materials blended in the same manner as in Example 3 were stirred with a Henschel mixer, kneaded with an extruder, pulverized, and classified with 270 mesh to prepare a powder coating material having a volume average particle diameter of 21 μm. The powder coating was applied at a conveying speed of 15 m / min using a flat conveying device.

<比較例4>
水酸基価34mgKOH/gの熱硬化性ポリエステル樹脂「ユピカコートGV150:日本ユピカ製」80部に硬化剤としてIPDI(イソホロンジイソシアネート)1,2,4−トリアゾールブロックのポリイソシアネート樹脂「アルキュア4470:イーストマンケミカル社製」14部、添加剤としてシリカ吸着アクリル酸オリゴマー「ポリフロ−PW−95:共栄社製」1部、脱泡剤としてベンゾインを0.3部、顔料としてカーボンブラック1部、酸化チタン3部をヘンシェルミキサーで攪拌後、エクストルーダーで混練、粉砕し180メッシュで分級を行い体積平均粒子径30μmの粉体塗料を作製した。塗料の塗装は平置き搬送装置を用い搬送スピード15m/分で行った。
<Comparative example 4>
Thermosetting polyester resin having a hydroxyl value of 34 mg KOH / g “Iupica Coat GV150: manufactured by Iupika Nippon, Japan” 80 parts IPDI (isophorone diisocyanate) 1,2,4-triazole block polyisocyanate resin “Alcure 4470: Eastman Chemical Co., Ltd. 14 parts, 1 part silica adsorbed acrylic acid oligomer “Polyflo-PW-95: manufactured by Kyoeisha” as additive, 0.3 part benzoin as defoaming agent, 1 part carbon black as pigment, 3 parts titanium oxide in Henschel After stirring with a mixer, the mixture was kneaded and pulverized with an extruder and classified with 180 mesh to prepare a powder coating material having a volume average particle size of 30 μm. The paint was applied at a transfer speed of 15 m / min using a flat transfer apparatus.

<比較例5>
水酸基価50mgKOH/gの熱硬化性ポリエステル樹脂「ユピカコートGV560:日本ユピカ製」35部に硬化剤としてIPDI(イソホロンジイソシアネート)ε−カプロラクタムブロックのポリイソシアネート樹脂「ベスタゴンB−1530:EVONIKデグサ社製」9部、添加剤としてシリカ吸着アクリル酸オリゴマー「ポリフロ−PW−95:共栄社製」1部、脱泡剤としてベンゾインを0.3部、顔料としてカーボンブラック1部、沈降性硫酸バリウム30部、酸化チタン20部をヘンシェルミキサーで攪拌後、エクストルーダーで混練、粉砕し180メッシュで分級を行い体積平均粒子径30μmの粉体塗料を作製した。粉体塗料の塗装は平置き搬送装置を用い搬送スピード15m/分で行った。
<Comparative Example 5>
Thermosetting polyester resin having a hydroxyl value of 50 mgKOH / g “Iupika Coat GV560: manufactured by Iupika Nippon” 35 parts as a curing agent IPDI (isophorone diisocyanate) ε-caprolactam block polyisocyanate resin “Vestagon B-1530: manufactured by EVONIK Degussa” 9 1 part of silica adsorbed acrylic acid oligomer “Polyflo-PW-95: manufactured by Kyoeisha” as additive, 0.3 part of benzoin as defoaming agent, 1 part of carbon black as pigment, 30 parts of precipitated barium sulfate, titanium oxide 20 parts were stirred with a Henschel mixer, kneaded with an extruder, pulverized, and classified with 180 mesh to prepare a powder coating material having a volume average particle size of 30 μm. The powder coating was applied at a conveying speed of 15 m / min using a flat conveying device.

<比較例6>
炭酸カルシウムの代わりに、沈降性硫酸バリウムを使用した点を除いては、実施例3と同様にして配合した材料をヘンシェルミキサーで攪拌後、エクストルーダーで混練、粉砕し120メッシュで分級を行い体積平均粒子径40μmの粉体塗料を作製した。粉体塗料の塗装は平置き搬送装置を用い搬送スピード15m/分で行った。
<Comparative Example 6>
Except for the point that precipitated barium sulfate was used instead of calcium carbonate, the material blended in the same manner as in Example 3 was stirred with a Henschel mixer, kneaded with an extruder, pulverized, and classified with a 120 mesh. A powder coating material having an average particle diameter of 40 μm was prepared. The powder coating was applied at a conveying speed of 15 m / min using a flat conveying device.

得られた成形体について塗膜外観、塗着効率を評価した結果を表1に示す。なお塗膜の外観、塗着効率は下記の評価方法に従って評価した。   Table 1 shows the results of evaluating the appearance and coating efficiency of the obtained molded product. The appearance and coating efficiency of the coating film were evaluated according to the following evaluation methods.

<塗膜外観>
塗膜の凹凸等を目視にて下記基準にて評価した。
◎…塗膜に凹凸がなく、滑らかであるもの。
○…わずかに塗膜に凹凸があるもの。
△…塗膜に凹凸があるもの。
×…塗膜の凹凸が著しく、ゆず肌であるもの。
<Appearance of coating film>
The unevenness of the coating film was visually evaluated according to the following criteria.
A: The coating film is smooth and smooth.
○: Slightly uneven coating.
Δ: The coating film has irregularities.
X: The unevenness of the coating film is remarkable, and the skin is distorted.

<塗着性>
塗着効率は以下の計算方法によって算出した。
塗着効率(%)=(塗装後の被塗物重量−塗装前の被塗物重量)/(吐出量×塗装時間)×100
<Coating property>
The coating efficiency was calculated by the following calculation method.
Coating efficiency (%) = (weight of object after painting−weight of object before painting) / (discharge amount × painting time) × 100

Figure 2012201859
Figure 2012201859

<実施例5>
実施例1で作製した粉体塗料を用いることとし、粉体塗料の塗装は平置き搬送装置を用い搬送スピード15m/分で行い、焼付硬化は近赤外線発生装置と熱風循環式加熱炉を組み合わせて行った。
<Example 5>
The powder coating prepared in Example 1 is used, and the powder coating is applied at a transfer speed of 15 m / min using a flat transfer apparatus, and the bake hardening is performed by combining a near-infrared generator and a hot-air circulating heating furnace. went.

<実施例6>
実施例3で作製した粉体塗料を用いることとし、粉体塗料の塗装は平置き搬送装置を用い搬送スピード15m/分で行い、焼付硬化は近赤外線発生装置と熱風循環式加熱炉を組み合わせて行った。
<Example 6>
The powder paint produced in Example 3 is used, and the powder paint is applied at a transport speed of 15 m / min using a flat transport device, and the bake hardening is performed by combining a near-infrared generator and a hot air circulation heating furnace. went.

<実施例7>
実施例1で作製した粉体塗料を用いることとし、粉体塗料の塗装は平置き搬送装置を用い搬送スピード15m/分で行い、焼付硬化は100℃×30秒の予備加熱保持を行った後、近赤外線発生装置と熱風循環式加熱炉を組み合わせて行った。
<Example 7>
The powder paint produced in Example 1 was used, and the powder paint was applied at a transport speed of 15 m / min using a flat transport device, and the bake curing was performed after preheating and holding at 100 ° C. for 30 seconds. This was performed by combining a near-infrared generator and a hot-air circulating heating furnace.

<実施例8>
実施例3で作製した粉体塗料を用いることとし、粉体塗料の塗装は平置き搬送装置を用い搬送スピード15m/分で行い、焼付硬化は100℃×30秒の予備加熱保持を行った後、近赤外線発生装置と熱風循環式加熱炉を組み合わせて行った。
<Example 8>
The powder coating material produced in Example 3 was used, and the coating of the powder coating material was performed at a transport speed of 15 m / min using a flat transport device, and the bake hardening was performed after preheating and holding at 100 ° C. for 30 seconds. This was performed by combining a near-infrared generator and a hot-air circulating heating furnace.

<実施例9>
実施例3で作製した粉体塗料を用いることとし、粉体塗料の塗装は平置き搬送装置を用い搬送スピード60m/分で行い、焼付硬化は100℃×30秒の予備加熱保持を行った後、近赤外線発生装置と熱風循環式加熱炉を組み合わせて行った。
<実施例10>
実施例3で作製した粉体塗料を用いることとし、粉体塗料の塗装は平置き搬送装置を用い搬送スピード15m/分で行い、焼付硬化は110℃×60秒の予備加熱保持を行った後、近赤外線発生装置と熱風循環式加熱炉を組み合わせて行った。
<Example 9>
The powder paint produced in Example 3 was used, and the powder paint was applied at a transport speed of 60 m / min using a flat transport device, and the bake hardening was performed after preheating and holding at 100 ° C. for 30 seconds. This was performed by combining a near-infrared generator and a hot-air circulating heating furnace.
<Example 10>
The powder coating material produced in Example 3 was used, and the coating of the powder coating material was performed at a transport speed of 15 m / min using a flat transport device, and the bake curing was performed after preheating and holding at 110 ° C. for 60 seconds. This was performed by combining a near-infrared generator and a hot-air circulating heating furnace.

得られた成形体について塗膜外観、塗着効率を上記と同様に評価した結果を表2に示す。   Table 2 shows the results of evaluating the appearance and coating efficiency of the obtained molded body in the same manner as described above.

Figure 2012201859
Figure 2012201859

Claims (6)

搬送スピードが15m/分以上の平置き搬送装置に用いられる粉体塗料組成物であって、
体積平均粒子径が20〜40μm、粒子径が11μm以下の割合が12%未満、真比重が1.3〜2.0、かつ最大粒子径が180μm以下であることを特徴とする粉体塗料組成物。
A powder coating composition for use in a flat conveying device having a conveying speed of 15 m / min or more,
A powder coating composition having a volume average particle diameter of 20 to 40 μm, a ratio of the particle diameter of 11 μm or less is less than 12%, a true specific gravity of 1.3 to 2.0, and a maximum particle diameter of 180 μm or less. object.
100℃から10℃/分で昇温させた時の最低溶融粘度が400Pa・s以下である請求項1に記載の粉体塗料組成物。   The powder coating composition according to claim 1, wherein the minimum melt viscosity when heated from 100 ° C to 10 ° C / min is 400 Pa · s or less. 体積平均粒子径が20〜40μm、粒子径が11μm以下の割合が12%未満、真比重が1.3〜2.0、かつ最大粒子径が180μm以下である粉体塗料組成物を搬送スピードが15m/分以上の平置き搬送装置による塗装工程を有することを特徴とする粉体塗装方法。   The conveyance speed of the powder coating composition having a volume average particle size of 20 to 40 μm, a particle size of 11 μm or less is less than 12%, a true specific gravity of 1.3 to 2.0, and a maximum particle size of 180 μm or less. A powder coating method comprising a coating process using a flat conveying device of 15 m / min or more. 更に、前記粉体塗料組成物を塗装後に遠赤外線、近赤外線又は誘導加熱を備えた焼付硬化装置による焼付工程を有する請求項3に記載の粉体塗装方法。   Furthermore, the powder coating method of Claim 3 which has a baking process by the baking hardening apparatus provided with far infrared rays, near infrared rays, or induction heating after coating the said powder coating composition. 焼付け硬化までの間に、被塗装物を100℃〜130℃で60秒以内で予備加熱保持する工程を有する請求項3又は4に記載の粉体塗装方法。   5. The powder coating method according to claim 3, further comprising a step of preheating and holding the object to be coated at 100 ° C. to 130 ° C. within 60 seconds before baking and curing. 請求項3〜5のいずれか1項に記載の粉体塗装方法を用いて得られることを特徴する塗装物。   A coated article obtained by using the powder coating method according to any one of claims 3 to 5.
JP2011069975A 2011-03-28 2011-03-28 Coating composition and coating method Pending JP2012201859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011069975A JP2012201859A (en) 2011-03-28 2011-03-28 Coating composition and coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011069975A JP2012201859A (en) 2011-03-28 2011-03-28 Coating composition and coating method

Publications (1)

Publication Number Publication Date
JP2012201859A true JP2012201859A (en) 2012-10-22

Family

ID=47183183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011069975A Pending JP2012201859A (en) 2011-03-28 2011-03-28 Coating composition and coating method

Country Status (1)

Country Link
JP (1) JP2012201859A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302283A (en) * 1996-05-10 1997-11-25 Morton Internatl Inc Electrostatically chargeable plastic powder coating material for triboelectrification coating and triboelectrification coating method
JPH1017792A (en) * 1996-07-03 1998-01-20 Dainippon Toryo Co Ltd Powder coating composition
JPH1072557A (en) * 1996-03-12 1998-03-17 Kao Corp Powder coating material
JPH11100546A (en) * 1997-09-29 1999-04-13 Nippon Paint Co Ltd Imidazole adduct complex catalyst for rapid-curing epoxy powder coating material and powder coating material
JP2005179581A (en) * 2003-12-22 2005-07-07 Dainippon Toryo Co Ltd Powder coating composition and powder coated article
JP2005248046A (en) * 2004-03-05 2005-09-15 Kansai Paint Co Ltd Thermosetting powder coating material for wheel, method for forming coating film by using the coating material, manufacturing method for painted product therewith, and painted product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072557A (en) * 1996-03-12 1998-03-17 Kao Corp Powder coating material
JPH09302283A (en) * 1996-05-10 1997-11-25 Morton Internatl Inc Electrostatically chargeable plastic powder coating material for triboelectrification coating and triboelectrification coating method
JPH1017792A (en) * 1996-07-03 1998-01-20 Dainippon Toryo Co Ltd Powder coating composition
JPH11100546A (en) * 1997-09-29 1999-04-13 Nippon Paint Co Ltd Imidazole adduct complex catalyst for rapid-curing epoxy powder coating material and powder coating material
JP2005179581A (en) * 2003-12-22 2005-07-07 Dainippon Toryo Co Ltd Powder coating composition and powder coated article
JP2005248046A (en) * 2004-03-05 2005-09-15 Kansai Paint Co Ltd Thermosetting powder coating material for wheel, method for forming coating film by using the coating material, manufacturing method for painted product therewith, and painted product

Similar Documents

Publication Publication Date Title
JP3021657B2 (en) Base lacquer for coating polyolefin substrates and direct coating method of polyolefin substrates
JP6360809B2 (en) Multi-layer coating formation method
JP4159983B2 (en) Solvent-containing paints curable by physical, thermal or thermal and actinic radiation and their use
JP2018103179A (en) Two-coat single cure powder coating
JPWO2016063614A1 (en) Multi-layer coating formation method
WO2019074041A1 (en) Powder coating material composition and method for forming coating film
JP2010168524A (en) Two-pack coating composition and coating method
WO2017119373A1 (en) Powder coating composition, process for producing powder coating composition, and coated article
JP2006192384A (en) Multiple layer coating film forming method and coating film structure
EP2283086A1 (en) Powder coating composition
JP2007500256A (en) Solid pigment formulations and their dispersions in organic solvents, their preparation and their use
US20210380818A1 (en) Pro gel cap style multifunctional composition
JP2012201859A (en) Coating composition and coating method
US8034853B2 (en) Powder coating composition
JP4256116B2 (en) Method for forming glitter coating film
JP4374486B2 (en) Method for improving coating film smoothness of thermosetting liquid coating composition
JP3107289B2 (en) Method for producing powder coating composition
JP2008221128A (en) Method for improving cissing resistance of coating film
JP4191024B2 (en) Powder coating composition and powder coating
Pietschmann Powder Coatings
JP6420733B2 (en) Painting method
CN115851021A (en) Powder coating composition with stable champagne color effect and coating thereof
JP2003003122A (en) Thermally curable powder coating and method of forming thermally curable coating film
JP2003286441A (en) Coating composition comprising water-dispersed thermosetting mat powder
JP2006232973A (en) Brilliant coating composition, method for forming brilliant coating film and coated article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303