JP2012201412A - Multi-layered container - Google Patents

Multi-layered container Download PDF

Info

Publication number
JP2012201412A
JP2012201412A JP2011070721A JP2011070721A JP2012201412A JP 2012201412 A JP2012201412 A JP 2012201412A JP 2011070721 A JP2011070721 A JP 2011070721A JP 2011070721 A JP2011070721 A JP 2011070721A JP 2012201412 A JP2012201412 A JP 2012201412A
Authority
JP
Japan
Prior art keywords
layer
polyamide resin
multilayer container
mol
gas barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011070721A
Other languages
Japanese (ja)
Inventor
Hisafumi Oda
尚史 小田
Tomonori Kato
智則 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2011070721A priority Critical patent/JP2012201412A/en
Publication of JP2012201412A publication Critical patent/JP2012201412A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a multi-layered container having a gas barrier property and transparency favorable as a food packaging material to be sterilized by boiling and stored at a high temperature.SOLUTION: In the multi-layered container having a layer structure of three or more layers constituted of a layer (X) containing polypropylene as a main component, an adhesion layer (Y) made of an adhesive thermoplastic resin, and a gas barrier layer (Z) made of a polyamide resin (A), the polyamide resin (A) is a polyamide resin consisting of a diamine unit containing a methaxylylene diamine unit of at least 70 mol%, and a dicarboxylic acid unit containing an adipic acid unit of 85-95 mol% and an isophthalic acid unit of 5-15 mol%, and is subjected to hydrothermal treatment at a temperature of not less than 80°C and not more than 100°C.

Description

本発明は、ポリプロピレンを主成分とする多層容器に関し、詳しくは、80℃以上100℃以下の熱水浸漬処理後においても透明性及びガスバリア性に優れる多層容器に関する。   The present invention relates to a multilayer container mainly composed of polypropylene, and more particularly to a multilayer container excellent in transparency and gas barrier properties even after a hot water immersion treatment at 80 ° C. or higher and 100 ° C. or lower.

従来、加熱殺菌処理を必要とされる食品の容器としては、加熱殺菌処理時及び保存時における食品の劣化、変色、褪色を防ぐために缶詰が用いられていた。しかしながら、缶詰を用いた場合においては、酸素や水蒸気等の各種ガスバリア性については高い効果を発現するが、開封前には内容物を視認することができない、電子レンジを用いた加熱処理ができない、充填食品を皿等に盛りつける際に食品を取り出しにくい、使用後の廃棄において重ねることができず廃棄缶詰がかさばり廃棄処理適性に欠けるという問題があった。   Conventionally, as food containers that require heat sterilization treatment, canned foods have been used to prevent deterioration, discoloration, and discoloration of food during heat sterilization treatment and storage. However, in the case of using canned foods, high effects are exhibited for various gas barrier properties such as oxygen and water vapor, but the contents cannot be visually confirmed before opening, and heat treatment using a microwave oven cannot be performed. There is a problem that it is difficult to take out food when placing the filled food on a plate or the like, it cannot be stacked after disposal, and the canned food is bulky and lacks suitability for disposal.

これに代わる食品保存容器としては、熱可塑性樹脂からなる熱成形容器が挙げられ、広く利用されている。特にポリプロピレン(以下、「PP」と略することがある。)からなる容器は、その融点がボイル殺菌処理やレトルト殺菌処理などの加熱殺菌処理温度よりも高いことから、加熱殺菌処理を必要とする食品の保存容器としても広く利用されている。しかし、PPは防湿性に優れるものの、食品の劣化・変色・褪色の原因となる酸素を透過しやすい性質を有しているため、食品を長期保存するための容器としては性能が不十分である。   An alternative food storage container is a thermoformed container made of a thermoplastic resin, and is widely used. In particular, a container made of polypropylene (hereinafter sometimes abbreviated as “PP”) requires a heat sterilization treatment because its melting point is higher than a heat sterilization treatment temperature such as a boil sterilization treatment or a retort sterilization treatment. It is also widely used as a food storage container. However, although PP is excellent in moisture resistance, it has a property of easily permeating oxygen that causes deterioration, discoloration, and discoloration of food, so that performance is insufficient as a container for storing food for a long period of time. .

PPからなる容器で食品の長期保存を可能とする方法としては、中間層として酸素バリア性を持つ熱可塑性樹脂を存在させた多層容器を用いる方法が知られている。ガスバリア層を構成する樹脂としては、エチレン−ビニルアルコール共重合体(以下、「EVOH」と略することがある。)が知られている。EVOHは優れた酸素バリア性を持つ樹脂であり、様々な食品を長期保存するための容器に広く利用されているが、バリア樹脂の分子構造中に水酸基を有することから、酸素バリア性の湿度依存性が高い欠点を有する。特に100℃以上の加熱殺菌処理を必要とする食品を収納、保存する場合においては、加熱殺菌処理時に熱水又は水蒸気に一定時間晒されることになるため、EVOHをガスバリア層とした多層容器は加熱殺菌処理により大きく酸素バリア性が低下する。しかも、EVOHは、加熱殺菌処理後においても酸素バリア性が大幅に低下したままであり、経時的に元の酸素バリア性能に回復していくものの完全な回復には長い時間を要するため、その間に大量の酸素透過を許すこととなり、加熱殺菌処理食品の保存性には問題が残る。   As a method for enabling long-term storage of food in a container made of PP, a method using a multilayer container in which a thermoplastic resin having an oxygen barrier property is present as an intermediate layer is known. As a resin constituting the gas barrier layer, an ethylene-vinyl alcohol copolymer (hereinafter sometimes abbreviated as “EVOH”) is known. EVOH is a resin with excellent oxygen barrier properties and is widely used in containers for long-term storage of various foods. However, since the barrier resin has a hydroxyl group in the molecular structure, the oxygen barrier properties depend on humidity. It has a high defect. In particular, when storing and storing foods that require heat sterilization at 100 ° C or higher, multilayer containers using EVOH as a gas barrier layer are heated because they are exposed to hot water or steam for a certain period of time during heat sterilization. Oxygen barrier properties are greatly reduced by sterilization treatment. In addition, EVOH remains greatly reduced in oxygen barrier properties even after heat sterilization treatment, and although it recovers to the original oxygen barrier performance over time, it takes a long time for complete recovery. A large amount of oxygen permeation is allowed, and a problem remains in the storage stability of the heat-sterilized food.

EVOH以外に酸素バリア性に優れた熱可塑性樹脂としては、ポリメタキシリレンアジパミド(以下、「N−MXD6」と略することがある。)が知られており、ポリオレフィンと組み合わせた多層容器が開示されている(例えば特許文献1を参照)。ポリメタキシリレンアジパミドはメタキシリレンジアミンとアジピン酸とを重縮合させて得られるポリアミド樹脂であり、樹脂の分子構造中に水酸基を有していないことからEVOHよりも湿度依存性が低く、熱水又は水蒸気による加熱殺菌処理時においても酸素バリア性低下が小さいため、容器内部への酸素透過量を低く抑えることができ、加熱殺菌処理食品の保存性を高めることができる。しかしながら、N−MXD6は、PPの熱成形温度である150〜180℃では非常に速く結晶化するため、N−MXD6をガスバリア層として用いた多層容器は、成形時に、N−MXD6層の切断や厚みムラ、白化がみられ、ガスバリア性、透明性等の性能が低下したり、変形したりするという欠点を有する。   In addition to EVOH, as a thermoplastic resin excellent in oxygen barrier properties, polymetaxylylene adipamide (hereinafter sometimes abbreviated as “N-MXD6”) is known, and a multilayer container combined with polyolefin is known. It is disclosed (for example, see Patent Document 1). Polymetaxylylene adipamide is a polyamide resin obtained by polycondensation of metaxylylenediamine and adipic acid, and since it does not have a hydroxyl group in the molecular structure of the resin, it is less dependent on humidity than EVOH, Even during the heat sterilization treatment with hot water or steam, the oxygen barrier property is not significantly lowered, so that the amount of oxygen permeated into the container can be kept low, and the preservability of the heat sterilized food can be enhanced. However, since N-MXD6 crystallizes very rapidly at a thermoforming temperature of PP of 150 to 180 ° C., a multilayer container using N-MXD6 as a gas barrier layer is not capable of cutting the N-MXD6 layer during molding. Thickness unevenness and whitening are observed, and there are drawbacks in that performance such as gas barrier properties and transparency is deteriorated or deformed.

N−MXD6を中間層としたPP多層容器を得るためにはN−MXD6の結晶化速度を小さくする必要があり、N−MXD6にジカルボン酸成分としてイソフタル酸を共重合させる方法(例えば特許文献2を参照)が開示されている。N−MXD6にイソフタル酸を共重合させて結晶化速度を遅くすることにより、PPとの多層容器の成形性が向上されることが記載されており、またレトルト処理(水蒸気処理)条件において多層容器の白化が抑制されることが記載されている。しかしながら、他の加熱殺菌処理法(たとえば、ボイル処理)における多層容器の白化抑制については、なんら記載はない。   In order to obtain a PP multi-layer container having N-MXD6 as an intermediate layer, it is necessary to reduce the crystallization speed of N-MXD6, and a method of copolymerizing N-MXD6 with isophthalic acid as a dicarboxylic acid component (for example, Patent Document 2). For example). It is described that the moldability of a multilayer container with PP is improved by copolymerizing N-MXD6 with isophthalic acid to slow the crystallization rate, and the multilayer container under retort treatment (steam treatment) conditions. It has been described that the whitening of the resin is suppressed. However, there is no description about the whitening suppression of the multilayer container in other heat sterilization treatment methods (for example, boil treatment).

N−MXD6の白化を抑制する手段としては、特定の脂肪酸金属塩を添加する方法(例えば特許文献3を参照)、特定のジアミド化合物又はジエステル化合物を添加する方法(例えば特許文献4を参照)が開示されている。これらの添加剤による白化抑制は、水に直接晒される単層フィルムや、ポリエチレンテレフタレート(以下、「PET」と略することがある。)を用いたPET/N−MXD6/PET多層延伸ボトルのような延伸される用途(例えば特許文献5を参照)には効果があることが開示されている。しかしながら、これらの白化抑制処方は30℃〜60℃程度の常温に近い温度条件下における処方であり、80℃以上の熱水浸漬による加熱殺菌処理後の白化抑制効果は満足できるものではない。
また、特定のジアミド化合物又はジエステル化合物とタルクやベンジリデンソルビトール系の結晶化核剤を組み合わせる方法(例えば特許文献6)で、白化抑制にさらなる効果があることが開示されている。しかしながら、上記化合物を添加したMXD6と透湿度の大きいPPを組み合わせた多層容器において、レトルト処理による加熱殺菌処理後の白化抑制効果は満足できるものではない。また、これらの添加剤は0.1%以上添加しないと効果が小さく、0.1%以上添加すると、N−MXD6が粉っぽくなるとともに、多層容器に成形した際に、N−MXD6と他の樹脂層との接着性が低下するという問題があった。
As a means for suppressing whitening of N-MXD6, a method of adding a specific fatty acid metal salt (for example, see Patent Document 3) and a method of adding a specific diamide compound or a diester compound (for example, see Patent Document 4). It is disclosed. Inhibition of whitening by these additives, such as PET / N-MXD6 / PET multilayer stretched bottles using a single layer film directly exposed to water or polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”). It is disclosed that there is an effect in applications where the film is stretched (see, for example, Patent Document 5). However, these whitening suppression prescriptions are prescriptions under temperature conditions close to room temperature of about 30 ° C. to 60 ° C., and the whitening suppression effect after heat sterilization treatment by hot water immersion at 80 ° C. or higher is not satisfactory.
Further, it is disclosed that a method of combining a specific diamide compound or diester compound and a crystallization nucleating agent of talc or benzylidene sorbitol (for example, Patent Document 6) has a further effect on whitening suppression. However, in the multilayer container combining MXD6 to which the above compound is added and PP having a high moisture permeability, the whitening suppression effect after the heat sterilization treatment by the retort treatment is not satisfactory. In addition, these additives have little effect unless 0.1% or more is added, and when 0.1% or more is added, N-MXD6 becomes powdery and when formed into a multilayer container, N-MXD6 and others There was a problem that the adhesiveness with the resin layer was lowered.

特開平02−125733号公報JP 02-125733 A 特開2004−160987号公報JP 2004-160987 A 特開平11−315207号公報JP 11-315207 A 特開2000−248176号公報JP 2000-248176 A 特開2001−199024号公報JP 2001-199024 A 特開2011−26417号公報JP 2011-26417 A

本発明の目的は、80℃以上100℃以下の熱水処理によるボイル殺菌処理(以下、熱水処理と呼ぶ)や高温保管が必要な食品の包装材料として好適なガスバリア性及び透明性を有する多層容器を提供することである。   An object of the present invention is a multilayer having gas barrier properties and transparency suitable as packaging materials for foods that require boiling sterilization treatment (hereinafter referred to as hot water treatment) by hot water treatment at 80 ° C. or higher and 100 ° C. or lower or high temperature storage. Is to provide a container.

本発明者らは、熱水処理や高温保管後のガスバリア性及び透明性を兼ね備えた多層容器について鋭意研究を重ねた結果、特定のポリアミド樹脂をガスバリア層に用いることにより、熱水処理によるボイル殺菌処理後においてもガスバリア性及び透明性に優れることを見出し、本発明を完成するに至った。   As a result of intensive research on multilayer containers having gas barrier properties and transparency after hot water treatment and high-temperature storage, the present inventors have used a specific polyamide resin for the gas barrier layer, thereby enabling boil sterilization by hot water treatment. It has been found that the gas barrier property and transparency are excellent even after the treatment, and the present invention has been completed.

すなわち本発明は、ポリプロピレンを主成分とする層(X)、接着性熱可塑性樹脂からなる接着層(Y)、及びポリアミド樹脂(A)からなるガスバリア層(Z)が内層から外層へこの順に積層された3層以上の層構成を有する多層容器であって、前記ポリアミド樹脂(A)が、メタキシリレンジアミン単位を70モル%以上含むジアミン単位とアジピン酸単位を85乃至95モル%及びイソフタル酸単位を5乃至15モル%含むジカルボン酸単位とからなるポリアミド樹脂である多層容器   That is, in the present invention, a layer (X) mainly composed of polypropylene, an adhesive layer (Y) made of an adhesive thermoplastic resin, and a gas barrier layer (Z) made of a polyamide resin (A) are laminated in this order from the inner layer to the outer layer. A multilayer container having a layer structure of three or more layers, wherein the polyamide resin (A) comprises 85 to 95 mol% of a diamine unit and adipic acid unit containing 70 mol% or more of metaxylylenediamine units, and isophthalic acid Multilayer container which is a polyamide resin composed of dicarboxylic acid units containing 5 to 15 mol% of units

本発明の多層容器は、80℃以上100℃以下の熱水浸漬によるボイル殺菌処理(以下、熱水処理と呼ぶ)や高温保管が必要な食品の包装材料として好適なガスバリア性及び透明性を有する。したがって、食品を長期保存することができ、しかも熱水処理や高温保管といった熱履歴を加えた後においても透明性が保持されるため内容物を視認することができ、顧客の利便性向上を図ることができる。   The multilayer container of the present invention has gas barrier properties and transparency suitable as a packaging material for foods that require boil sterilization treatment (hereinafter referred to as hot water treatment) by hot water immersion at 80 ° C. or higher and 100 ° C. or lower or high temperature storage. . Therefore, food can be stored for a long period of time, and the contents can be visually confirmed even after applying a heat history such as hot water treatment or high-temperature storage, so that the convenience of customers can be improved. be able to.

本発明の多層容器は、ポリプロピレンを主成分とする層(以下、「PP層」と略することがある。)(X)、接着性熱可塑性樹脂からなる接着層(Y)、及びガスバリア層(Z)の少なくとも3層が内層から外層へこの順に積層されてなるものである。
前記3層の外側に更に接着層やPP層、あるいはポリアミド6など別の熱可塑性樹脂からなる層が積層されていてもよい。例えば、多層容器に特徴を持たせるためにPP層の内側に、ポリカーボネートや各種イージーピール性樹脂からなる熱可塑性樹脂層を積層することができる。これらに限らず、目的に応じて様々な熱可塑性樹脂層を積層することが可能である。本発明の多層容器は、内層側から外側へPP層/接着層/ガスバリア層/ポリアミドの4層構造やPP層/接着層/ガスバリア層/接着層/PP層の5層構造であることが好ましい。
また、前記3層がその順に積層されていればよく、その層間に中間層が積層されていてもよい。例えば、多層シート及び多層容器製造時にトリミングしてできたトリミングくずを粉砕して、粉砕物を単独で、又はPPや他の熱可塑性樹脂と混合してリサイクル樹脂層として、PP層と接着層との間に中間層として積層することができる。
The multilayer container of the present invention comprises a layer containing polypropylene as a main component (hereinafter sometimes abbreviated as “PP layer”) (X), an adhesive layer (Y) made of an adhesive thermoplastic resin, and a gas barrier layer ( At least three layers Z) are laminated in this order from the inner layer to the outer layer.
A layer made of another thermoplastic resin such as an adhesive layer, a PP layer, or polyamide 6 may be further laminated outside the three layers. For example, in order to give a characteristic to a multilayer container, a thermoplastic resin layer made of polycarbonate or various easy peel resins can be laminated inside the PP layer. Not limited to these, various thermoplastic resin layers can be laminated according to the purpose. The multilayer container of the present invention preferably has a four-layer structure of PP layer / adhesive layer / gas barrier layer / polyamide from the inner layer side to the outer side and a five-layer structure of PP layer / adhesive layer / gas barrier layer / adhesive layer / PP layer. .
Moreover, the said 3 layer should just be laminated | stacked in that order, and the intermediate | middle layer may be laminated | stacked between the layers. For example, the trimming waste generated by trimming at the time of manufacturing the multilayer sheet and the multilayer container is pulverized, and the pulverized product alone or mixed with PP or other thermoplastic resin as a recycled resin layer, the PP layer and the adhesive layer It can be laminated as an intermediate layer.

本発明の多層容器を構成するPP層(X)は、ポリプロピレンを主成分とする層であり、ガスバリア層を食品から隔離する役割や、容器に食品を収納後、トップフィルムと接着するためのシーラントとしての役割を有する。ポリプロピレンは公知のものを使用することができる。具体的にはその化学構造から、ホモポリプロピレン、プロピレン−エチレンランダムコポリマー、プロピレン−エチレンブロックコポリマーが挙げられる。
本発明において、「ポリプロピレンを主成分とする」とは、ポリプロピレンを50質量%以上含むことを意味し、好ましくは70質量%以上である。PP層には本発明の効果を損なわない範囲でポリプロピレンの酸化劣化を防止するための酸化防止剤や艶消剤、耐候安定剤、紫外線吸収剤、結晶化核剤、可塑剤、難燃剤、帯電防止剤等の添加剤を加えることができる。また、場合によってはポリプロピレンの物性を改質するためにポリエチレンやエチレン−α−オレフィン共重合体等の熱可塑性樹脂を加えることもできる。
PP層(X)の厚さは特に限定されないが、強度及びコストの観点から、20〜2000μmが好ましく、50〜1000μmがより好ましい。
The PP layer (X) constituting the multilayer container of the present invention is a layer mainly composed of polypropylene, and has a role of isolating the gas barrier layer from food and a sealant for adhering to the top film after the food is stored in the container. As a role. A well-known thing can be used for a polypropylene. Specific examples thereof include homopolypropylene, propylene-ethylene random copolymer, and propylene-ethylene block copolymer.
In the present invention, “mainly composed of polypropylene” means containing 50% by mass or more of polypropylene, and preferably 70% by mass or more. In the PP layer, antioxidants, matting agents, weathering stabilizers, UV absorbers, crystallization nucleating agents, plasticizers, flame retardants, electrification to prevent oxidative degradation of polypropylene within the range not impairing the effects of the present invention. Additives such as inhibitors can be added. In some cases, a thermoplastic resin such as polyethylene or ethylene-α-olefin copolymer may be added to modify the physical properties of polypropylene.
Although the thickness of PP layer (X) is not specifically limited, From a viewpoint of intensity | strength and cost, 20-2000 micrometers is preferable and 50-1000 micrometers is more preferable.

本発明の多層容器を構成する接着層(Y)は、PP層とガスバリア層とを十分な強度で接着する役割を有する。接着層に使用される接着性熱可塑性樹脂としては、例えば、オレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン類等が挙げられる。この中でも、ポリプロピレンを主成分とする酸変性熱可塑性樹脂が、PP層との接着性の面から特に好ましく用いられる。
接着層(Y)の厚さは特に限定されないが、接着性及びコストの観点から、1〜200μmが好ましく、5〜100μmがより好ましい。
The adhesive layer (Y) constituting the multilayer container of the present invention has a role of adhering the PP layer and the gas barrier layer with sufficient strength. Examples of the adhesive thermoplastic resin used in the adhesive layer include acid-modified polyolefins obtained by modifying an olefin resin with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, and maleic anhydride. Among these, an acid-modified thermoplastic resin mainly composed of polypropylene is particularly preferably used from the viewpoint of adhesiveness with the PP layer.
Although the thickness of an adhesion layer (Y) is not specifically limited, From a viewpoint of adhesiveness and cost, 1-200 micrometers is preferable and 5-100 micrometers is more preferable.

本発明の多層容器を構成するガスバリア層(Z)は、容器外部から進入する酸素を遮断し、食品の酸化劣化を防止する役割を有する。良好なガスバリア性の観点から、ガスバリア層(Z)を構成するポリアミド樹脂(A)の23℃、60%RH環境下における酸素透過係数が0.09ml・mm/m2・day・atm以下であることが好ましく、0.05〜0.09ml・mm/m2・day・atmであることがより好ましい。酸素透過係数は、ASTM D3985に準じて測定することができ、例えばOX−TRAN 2/21(商品名、モコン社製)を使用して測定することができる。
ガスバリア層(Z)の厚さは特に限定されないが、ガスバリア性、透明性及びコストの観点から、1〜400μmが好ましく、5〜150μmがより好ましい。また、本発明の多層容器におけるガスバリア層(Z)の厚みは、ガスバリア性、透明性及びコストの観点から、多層容器の総厚みに対して2〜20%の範囲であることが好ましく、より好ましくは3〜18%であり、さらに好ましくは5〜15%である。
The gas barrier layer (Z) constituting the multilayer container of the present invention has a role of blocking oxygen entering from the outside of the container and preventing oxidative deterioration of food. From the viewpoint of good gas barrier properties, the polyamide resin (A) constituting the gas barrier layer (Z) has an oxygen permeability coefficient of 0.09 ml · mm / m 2 · day · atm or less in an environment of 23 ° C. and 60% RH. It is preferably 0.05 to 0.09 ml · mm / m 2 · day · atm. The oxygen permeability coefficient can be measured according to ASTM D3985, and can be measured using, for example, OX-TRAN 2/21 (trade name, manufactured by Mocon).
Although the thickness of a gas barrier layer (Z) is not specifically limited, 1-400 micrometers is preferable from a viewpoint of gas barrier property, transparency, and cost, and 5-150 micrometers is more preferable. In addition, the thickness of the gas barrier layer (Z) in the multilayer container of the present invention is preferably in the range of 2 to 20%, more preferably from the total thickness of the multilayer container, from the viewpoints of gas barrier properties, transparency and cost. Is 3 to 18%, more preferably 5 to 15%.

本発明の多層容器を構成するガスバリア層(Z)は、ポリアミド樹脂(A)からなり、該ポリアミド樹脂(A)は、メタキシリレンジアミン単位を70モル%以上含むジアミン単位とアジピン酸単位を85乃至95モル%及びイソフタル酸単位を5乃至15モル%含むジカルボン酸単位とからなる。
ポリアミド樹脂(A)中のジアミン単位は、優れたガスバリア性を発現させる観点から、メタキシリレンジアミン単位を70モル%以上含むことが好ましく、より好ましくは80モル%以上100モル%以下、特に好ましくは90モル%以上100モル%以下である。メタキシリレンジアミン単位以外のジアミン単位を構成しうる化合物としては、パラキシリレンジアミン等の芳香環を含むジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン等の脂環式ジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、2−メチル−1,5−ペンタンジアミン等の直鎖脂肪族ジアミン等を例示できるが、これらに限定されるものではない。
The gas barrier layer (Z) constituting the multilayer container of the present invention comprises a polyamide resin (A), and the polyamide resin (A) contains 85 diamine units and adipic acid units containing 70 mol% or more of metaxylylenediamine units. To 95 mol% and dicarboxylic acid units containing 5 to 15 mol% of isophthalic acid units.
The diamine unit in the polyamide resin (A) preferably contains a metaxylylenediamine unit in an amount of 70 mol% or more, more preferably 80 mol% or more and 100 mol% or less, particularly from the viewpoint of developing excellent gas barrier properties. Is 90 mol% or more and 100 mol% or less. Compounds that can constitute diamine units other than metaxylylenediamine units include diamines containing aromatic rings such as paraxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane. Linear aliphatic diamines such as alicyclic diamine such as tetramethylene diamine, hexamethylene diamine, nonamethylene diamine and 2-methyl-1,5-pentane diamine, etc., are not limited thereto. .

ポリアミド樹脂(A)中のジカルボン酸単位は、アジピン酸単位85〜95モル%及びイソフタル酸単位15〜5モル%を含む。より好ましくは、ポリアミド樹脂(A)中のジカルボン酸単位は、アジピン酸単位88〜93モル%及びイソフタル酸単位12〜7モル%を含むことが好ましく、アジピン酸単位90〜95モル%及びイソフタル酸単位10〜5モル%を含むことがさらに好ましい。
ジカルボン酸単位のうち、アジピン酸単位を85モル%以上含むことにより、ガスバリア性の低下や結晶性の過度の低下を避けることができる。また、イソフタル酸単位を5モル%以上含むことにより、ポリアミド樹脂(A)の非晶性が増加して結晶化速度が低下するため、容器成形時の熱成形性が良好になるとともに、80℃〜100℃の熱水浸漬処理によるボイル殺菌処理や高温保管時の白化の抑制が可能である。
またイソフタル酸単位の含有量が15モル%を超えると、ポリアミド樹脂(A)の重合が、多層容器の成形に必要な溶融粘度まで到達しないため多層容器の作製が困難となり、さらにポリアミド樹脂(A)が結晶性をほとんど示さなくなるため、該ポリアミド樹脂(A)をガスバリア層として用いたPP多層容器は80℃〜100℃の熱水浸漬処理によるボイル殺菌処理や高温保管時の白化が大きくなり好ましくない。
The dicarboxylic acid unit in the polyamide resin (A) contains 85 to 95 mol% adipic acid units and 15 to 5 mol% isophthalic acid units. More preferably, the dicarboxylic acid unit in the polyamide resin (A) preferably contains 88 to 93 mol% adipic acid units and 12 to 7 mol% isophthalic acid units, and 90 to 95 mol% adipic acid units and isophthalic acid units. More preferably, the unit contains 10 to 5 mol%.
By including 85 mol% or more of adipic acid units among dicarboxylic acid units, it is possible to avoid a decrease in gas barrier properties and an excessive decrease in crystallinity. In addition, when the isophthalic acid unit is contained in an amount of 5 mol% or more, the non-crystalline property of the polyamide resin (A) is increased and the crystallization speed is decreased. It is possible to suppress boil sterilization by hot water immersion treatment at ˜100 ° C. and whitening during high temperature storage.
If the isophthalic acid unit content exceeds 15 mol%, the polyamide resin (A) does not reach the melt viscosity required for molding the multilayer container, making it difficult to produce the multilayer container. ) Hardly shows crystallinity, and PP multi-layer containers using the polyamide resin (A) as a gas barrier layer are preferable because they increase boil sterilization treatment by hot water immersion treatment at 80 ° C. to 100 ° C. and whitening during high-temperature storage. Absent.

本発明において、ポリアミド樹脂(A)は結晶性であり、且つ脱偏光光度法における160℃における結晶化による半結晶化時間(ST(P))が、80秒以上700秒以下であることが好ましく、より好ましくは80秒以上650秒以下の範囲となるポリアミド樹脂である。該ポリアミド樹脂を適度な結晶性とすることで、多層容器を80℃以上100℃以下で熱水処理しても、極端な白化を抑制し、透明性を維持することができる。また前記半結晶化時間を80秒以上に制御することで、多層構造物の深絞り成形等の二次加工時に結晶化による白化や成形不良を抑制する事が出来る。前記半結晶化時間が700秒以下であれば、二次加工性を保持したまま、結晶性が過度に低下するのを防ぐことができ、さらに熱水処理時のポリアミド層の軟化により多層構造物および多層成形品が変形することを抑制できる In the present invention, the polyamide resin (A) is crystalline, and the half crystallization time (ST (P)) by crystallization at 160 ° C. in the depolarization photometric method is preferably 80 seconds or more and 700 seconds or less. The polyamide resin is more preferably in the range of 80 seconds to 650 seconds. By making the polyamide resin appropriate crystallinity, even if the multilayer container is subjected to hot water treatment at 80 ° C. or higher and 100 ° C. or lower, extreme whitening can be suppressed and transparency can be maintained. In addition, by controlling the half crystallization time to 80 seconds or more, whitening and molding defects due to crystallization can be suppressed during secondary processing such as deep drawing of a multilayer structure. If the half crystallization time is 700 seconds or less, it is possible to prevent the crystallinity from being excessively lowered while maintaining the secondary workability, and further, the polyamide layer is softened during the hot water treatment to thereby provide a multilayer structure. And can prevent deformation of multilayer molded products

本発明におけるポリアミド樹脂(A)は、100℃、1時間の乾熱処理前後のDSCによる求めた結晶化度の上昇が1%以下あることが好ましく、0.5%以下であることがさらに好ましい。乾熱処理前後のDSCにより求めた結晶化度の上昇が1%を超える場合、熱水処理時に結晶化に伴う白化が発生することとなり好ましくない。
なお、本願発明における乾熱処理とは、熱風乾燥機等で、乾燥熱処理することを指し、必ずしも窒素雰囲気下である必要はない。
In the polyamide resin (A) in the present invention, the increase in crystallinity obtained by DSC before and after dry heat treatment at 100 ° C. for 1 hour is preferably 1% or less, and more preferably 0.5% or less. If the increase in crystallinity obtained by DSC before and after dry heat treatment exceeds 1%, whitening due to crystallization occurs during hydrothermal treatment, which is not preferable.
The dry heat treatment in the present invention refers to a dry heat treatment using a hot air dryer or the like, and is not necessarily in a nitrogen atmosphere.

ポリアミド樹脂(A)は、メタキシリレンジアミンを70モル%以上含むジアミン成分とアジピン酸85〜95モル%及びイソフタル酸15〜5モル%を含むジカルボン酸成分とを重縮合することで得ることができる。重縮合時に分子量調整剤として少量のモノアミンやモノカルボン酸を加えてもよい。
ポリアミド樹脂(A)は、溶融重合法により重縮合した後、さらに固相重合することにより製造されたものであることが好ましい。溶融重縮合法としては、例えばジアミン成分とジカルボン酸成分とからなるナイロン塩を、水の存在下に加圧下で昇温し、加えた水および縮合水を除きながら溶融状態で重合させる方法が挙げられる。また、ジアミン成分を溶融状態のジカルボン酸成分に直接加えて、重縮合する方法を挙げることもできる。この場合、反応系を均一な液状状態に保つために、ジアミン成分をジカルボン酸成分に連続的に加え、その間、反応温度が生成するオリゴアミド及びポリアミド樹脂の融点よりも下回らないように反応系を昇温しつつ重縮合が進められる。
The polyamide resin (A) can be obtained by polycondensing a diamine component containing 70 mol% or more of metaxylylenediamine and a dicarboxylic acid component containing 85 to 95 mol% adipic acid and 15 to 5 mol% isophthalic acid. it can. A small amount of monoamine or monocarboxylic acid may be added as a molecular weight modifier during polycondensation.
The polyamide resin (A) is preferably produced by polycondensation by a melt polymerization method and further solid phase polymerization. Examples of the melt polycondensation method include a method in which a nylon salt composed of a diamine component and a dicarboxylic acid component is heated in pressure in the presence of water and polymerized in a molten state while removing the added water and condensed water. It is done. Moreover, the method of adding a diamine component directly to the dicarboxylic acid component of a molten state, and performing polycondensation can also be mentioned. In this case, in order to keep the reaction system in a uniform liquid state, the diamine component is continuously added to the dicarboxylic acid component, and during this time, the reaction system is raised so that the reaction temperature does not fall below the melting point of the generated oligoamide and polyamide resins. The polycondensation proceeds while warming.

固相重合は、溶融重縮合で得られたポリマーを一旦取り出した後に行うことが好ましい。固相重合で用いられる加熱装置としては、連続式の加熱装置よりも、気密性に優れ、高度に酸素とポリアミド樹脂との接触を絶つことができる回分式加熱装置が好ましく、特にタンブルドライヤー、コニカルドライヤー、ロータリードライヤー等と称される回転ドラム式の加熱装置およびナウタミキサーと称される内部に回転翼を備えた円錐型の加熱装置が好適に使用できるが、これらに限定されるものではない。   The solid phase polymerization is preferably performed after once taking out the polymer obtained by melt polycondensation. The heating device used in the solid-phase polymerization is preferably a batch heating device that is superior in airtightness and highly capable of cutting off the contact between oxygen and the polyamide resin, and more particularly a tumble dryer or conical. A rotary drum-type heating device called a dryer or a rotary dryer and a conical heating device called a Nauta mixer with a rotating blade inside can be preferably used, but are not limited thereto.

ポリアミド樹脂の固相重合工程は、例えば、ポリアミド樹脂ペレット同士が融着したり、ポリアミド樹脂ペレットが装置内壁に付着したりしないように、ポリアミド樹脂の結晶化度を高める第一の工程、ポリアミド樹脂の分子量を高める第二の工程、所望の分子量まで固相重合を進めた後にポリアミド樹脂を冷却する第三の工程により進められることが好ましい。第一の工程はポリアミド樹脂のガラス転移温度以下で行うことが好ましい。第二の工程は減圧下でポリアミド樹脂の融点よりも低い温度で行うことが好ましいが、これに限定されるものではない。   The solid phase polymerization step of the polyamide resin is, for example, a first step of increasing the degree of crystallinity of the polyamide resin so that the polyamide resin pellets are not fused to each other and the polyamide resin pellets are not attached to the inner wall of the apparatus. It is preferable to proceed by the second step of increasing the molecular weight, and the third step of cooling the polyamide resin after proceeding the solid phase polymerization to the desired molecular weight. The first step is preferably performed at a temperature lower than the glass transition temperature of the polyamide resin. The second step is preferably performed at a temperature lower than the melting point of the polyamide resin under reduced pressure, but is not limited thereto.

ポリアミド樹脂(A)は、本発明の効果を損なわない範囲で、滑剤、艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、結晶化核剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、ゲル化防止剤等の任意の添加剤を含有してもよい。 Polyamide resin (A) is a lubricant, matting agent, heat stabilizer, weather stabilizer, UV absorber, crystallization nucleator, plasticizer, flame retardant, antistatic agent, as long as the effects of the present invention are not impaired. You may contain arbitrary additives, such as a coloring inhibitor and an antigelling agent.

また、必要に応じて、非晶性ポリアミド樹脂(B)をポリアミド樹脂(A)に溶融混合して使用することも可能である。具体的な非晶性ポリアミド樹脂(B)は、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(以下、6T/6Iと呼ぶ)であり、テレフタル酸、イソフタル酸、及びヘキサメチレンジアミンを重縮合して得られる共重合体である。ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマーにおいて、6T/6Iの配合比は、50/50〜10/90(モル%)、好ましくは45/55〜15/85(%モル)、さらに好ましくは40/60〜20/80(モル%)である。N−6T/6Iは、ブロック共重合体であってもランダム共重合体であってもよい。N−6T/6Iとしては市販品を用いることができ、例えばノバミッドX21(商品名、三菱エンジニアリングプラスチックス社製)、シーラPA3426(三井デュポンポリケミカル社製)を用いてもよい。   If necessary, the amorphous polyamide resin (B) can be melt-mixed with the polyamide resin (A) for use. A specific amorphous polyamide resin (B) is polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (hereinafter referred to as 6T / 6I), which is a polycondensation of terephthalic acid, isophthalic acid, and hexamethylenediamine. It is a copolymer obtained by doing this. In the polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer, the blending ratio of 6T / 6I is 50/50 to 10/90 (mol%), preferably 45/55 to 15/85 (% mol), more preferably Is 40/60 to 20/80 (mol%). N-6T / 6I may be a block copolymer or a random copolymer. As N-6T / 6I, a commercially available product can be used. For example, Novamid X21 (trade name, manufactured by Mitsubishi Engineering Plastics) or SEALA PA3426 (manufactured by Mitsui DuPont Polychemical) may be used.

ポリアミド樹脂(A)に非晶性ポリアミド樹脂(B)を溶融混合する場合のポリアミド樹脂(B)の含有量は、(A):(B)が80〜100質量%:20〜0質量%であり、好ましくは85〜100質量%:15〜0質量%である。ポリアミド樹脂(A)の結晶化速度がイソフタル酸単位の導入により遅い場合には、ポリアミド(B)を含有させる必要はない。
また、ポリアミド樹脂(A)における非晶性ポリアミド樹脂(B)の含有量が20質量%以下であれば、ガスバリア性が良好で、加熱殺菌処理後の白化が抑制された容器を得ることができる。
The content of the polyamide resin (B) when the amorphous polyamide resin (B) is melt-mixed with the polyamide resin (A) is (A) :( B) is 80 to 100% by mass: 20 to 0% by mass. Yes, preferably 85 to 100% by mass: 15 to 0% by mass. When the crystallization rate of the polyamide resin (A) is slow due to the introduction of isophthalic acid units, it is not necessary to contain the polyamide (B).
Further, when the content of the amorphous polyamide resin (B) in the polyamide resin (A) is 20% by mass or less, a container having good gas barrier properties and suppressing whitening after the heat sterilization treatment can be obtained. .

前記非晶性ポリアミド(B)は、基本的には従来公知の、水共存下での溶融重縮合法あるいは水不存在下の溶融重縮合法や、これらの溶融重縮合法で得られたポリアミドを更に固相重合する方法などによって製造することが出来る。溶融重縮合反応は1段階で行っても良いし、また多段階に分けて行っても良い。これらは回分式反応装置から構成されていてもよいし、また連続式反応装置から構成されていてもよい。また溶融重縮合工程と固相重合工程は連続的に運転してもよいし、分割して運転してもよい。   The amorphous polyamide (B) is basically a conventionally known polyamide obtained by a melt polycondensation method in the presence of water or a melt polycondensation method in the absence of water, or these melt polycondensation methods. Can be produced by a method of further solid-phase polymerization. The melt polycondensation reaction may be performed in one stage or may be performed in multiple stages. These may be comprised from a batch-type reaction apparatus, and may be comprised from the continuous-type reaction apparatus. The melt polycondensation step and the solid phase polymerization step may be operated continuously or may be operated separately.

ポリアミド樹脂(A)と非晶性ポリアミド樹脂(B)とは、任意の混合方法及び/又は混練方法を適用して調製することができる。混合方法としては、例えば、回転中空容器内にポリアミド樹脂ペレットを投入し混合してもよく、定量フィーダーを用いてホッパーに所定量投入してもよい。混練方法としては、例えば溶融混練が挙げられる。また、ポリアミド樹脂(A)と非晶性ポリアミド樹脂(B)とを混合及び/又は混練して調製してもよい。特に、ドライブレンドし、混合物をホッパーに一括投入して、調製することが特に好ましい。   The polyamide resin (A) and the amorphous polyamide resin (B) can be prepared by applying any mixing method and / or kneading method. As a mixing method, for example, polyamide resin pellets may be charged and mixed in a rotating hollow container, or a predetermined amount may be charged into a hopper using a quantitative feeder. Examples of the kneading method include melt kneading. The polyamide resin (A) and the amorphous polyamide resin (B) may be mixed and / or kneaded. In particular, it is particularly preferable to prepare by dry blending and pouring the mixture into a hopper.

また、ポリアミド樹脂(A)は、熱水処理による殺菌処理後のさらなる白化抑制及びブリードアウトの観点から、炭素数18〜50の脂肪酸金属塩、炭素数8〜30の脂肪酸と炭素数2〜10のジアミンとから得られるジアミド化合物、及び炭素数8〜30の脂肪酸と炭素数2〜10のジオールとから得られるジエステル化合物からなる群から選ばれる少なくとも1種を含有してもよい。またその配合量は、ポリアミド樹脂(A)100質量部に対して、好ましくは0.01〜1.0質量部、より好ましくは0.02〜0.8質量部、さらに好ましくは0.02〜0.5質量部含有していてもよい。上記脂肪酸金属塩、ジアミド化合物及びジエステル化合物は、1種類のみを含有してもよく、2種以上を組み合わせて含有してもよい。   In addition, the polyamide resin (A) is a fatty acid metal salt having 18 to 50 carbon atoms, a fatty acid having 8 to 30 carbon atoms and 2 to 10 carbon atoms from the viewpoint of further whitening suppression and bleed-out after sterilization treatment by hot water treatment. It may contain at least one selected from the group consisting of a diamide compound obtained from the diamine and a diester compound obtained from a fatty acid having 8 to 30 carbon atoms and a diol having 2 to 10 carbon atoms. Moreover, the compounding quantity becomes like this. Preferably it is 0.01-1.0 mass part with respect to 100 mass parts of polyamide resins (A), More preferably, it is 0.02-0.8 mass part, More preferably, it is 0.02-. You may contain 0.5 mass part. The said fatty acid metal salt, diamide compound, and diester compound may contain only 1 type, and may contain it in combination of 2 or more type.

本発明で用いることができる脂肪酸金属塩としては、熱水処理による殺菌処理後の白化抑制効果及びポリアミド樹脂(A)中における均一分散性の観点から、炭素数18〜50、好ましくは炭素数18〜34の脂肪酸金属塩が好ましい。
脂肪酸は側鎖や二重結合があってもよいが、ステアリン酸(炭素数18)、エイコ酸(炭素数20)、ベヘン酸(炭素数22)、モンタン酸(炭素数28)、トリアコンタン酸(炭素数30)などの直鎖飽和脂肪酸が好ましい。脂肪酸と塩を形成する金属に特に制限はないが、ナトリウム、カリウム、リチウム等のアルカリ金属、カルシウム、バリウム、マグネシウム、ストロンチウム等のアルカリ土類金属、およびアルミニウム、亜鉛等が例示できる。これらの中でもナトリウム、カリウム、リチウム、カルシウム、アルミニウム、または亜鉛が特に好ましい。
脂肪酸金属塩の具体例としては、ステアリン酸ナトリウム、ステアリン酸カルシウム、モンタン酸ナトリウム、モンタン酸カルシウム等が例示でき、これらの中でも、白化抑制効果の観点から、ステアリン酸カルシウム、モンタン酸カルシウムが好ましい。上記脂肪酸金属塩は、1種類のみを含有してもよく、2種以上を組み合わせて含有してもよい。
The fatty acid metal salt that can be used in the present invention has 18 to 50 carbon atoms, preferably 18 carbon atoms, from the viewpoint of whitening suppression effect after sterilization treatment by hot water treatment and uniform dispersibility in the polyamide resin (A). ~ 34 fatty acid metal salts are preferred.
Fatty acids may have side chains or double bonds, but stearic acid (18 carbon atoms), eicoic acid (20 carbon atoms), behenic acid (22 carbon atoms), montanic acid (28 carbon atoms), triacontanoic acid Straight chain saturated fatty acids such as (C30) are preferred. The metal that forms a salt with the fatty acid is not particularly limited, and examples thereof include alkali metals such as sodium, potassium and lithium, alkaline earth metals such as calcium, barium, magnesium and strontium, and aluminum and zinc. Among these, sodium, potassium, lithium, calcium, aluminum, or zinc is particularly preferable.
Specific examples of the fatty acid metal salt include sodium stearate, calcium stearate, sodium montanate, calcium montanate and the like. Among these, calcium stearate and calcium montanate are preferable from the viewpoint of whitening suppression effect. The said fatty acid metal salt may contain only 1 type and may contain it in combination of 2 or more type.

本発明で用いることができるジアミド化合物としては、熱水処理による殺菌処理後の白化抑制効果及びポリアミド樹脂(A)中における均一分散性の観点から、炭素数8〜30の脂肪酸と炭素数2〜10のジアミンとから得られるジアミド化合物が好ましい。
ジアミド化合物の脂肪酸成分としては、側鎖や二重結合があってもよいが直鎖脂肪酸が好ましく、ステアリン酸(炭素数18)、エイコ酸(炭素数20)、ベヘン酸(炭素数22)、モンタン酸(炭素数28)、トリアコンタン酸(炭素数30)等が例示できる。脂肪酸成分は1種類を単独で使用してもよく、2種類以上を組み合わせてもよい。
ジアミド化合物のジアミン成分としては、エチレンジアミン、ブチレンジアミン、ヘキサンジアミン、キシリレンジアミン、ビス(アミノメチル)シクロヘキサン等が例示できる。ジアミン成分は1種類を単独で使用してもよく、2種類以上を組み合わせてもよい。
ジアミド化合物としては、炭素数8〜30の脂肪酸とエチレンジアミンとから得られるジアミド化合物、又はモンタン酸と炭素数2〜10のジアミンとから得られるジアミド化合物が好ましく、ステアリン酸とエチレンジアミンとから得られるジアミド化合物が特に好ましい。ジアミド化合物は1種類のみを含有してもよく、2種以上を組み合わせて含有してもよい。
As the diamide compound that can be used in the present invention, fatty acid having 8 to 30 carbon atoms and 2 to 2 carbon atoms from the viewpoint of whitening suppression effect after sterilization treatment by hot water treatment and uniform dispersibility in the polyamide resin (A). Diamide compounds obtained from 10 diamines are preferred.
As the fatty acid component of the diamide compound, there may be a side chain or a double bond, but a straight chain fatty acid is preferable, stearic acid (carbon number 18), eicoic acid (carbon number 20), behenic acid (carbon number 22), Examples include montanic acid (carbon number 28), triacontanoic acid (carbon number 30), and the like. One type of fatty acid component may be used alone, or two or more types may be combined.
Examples of the diamine component of the diamide compound include ethylenediamine, butylenediamine, hexanediamine, xylylenediamine, and bis (aminomethyl) cyclohexane. A diamine component may be used individually by 1 type, and may combine two or more types.
The diamide compound is preferably a diamide compound obtained from a fatty acid having 8 to 30 carbon atoms and ethylenediamine, or a diamide compound obtained from montanic acid and a diamine having 2 to 10 carbon atoms, and a diamide obtained from stearic acid and ethylenediamine. Compounds are particularly preferred. A diamide compound may contain only 1 type and may contain it in combination of 2 or more type.

本発明で用いることができるジエステル化合物は、熱水処理後の白化抑制効果及びポリアミド樹脂(A)中における均一分散性の観点から、炭素数8〜30の脂肪酸と炭素数2〜10のジオールとから得られるジエステル化合物が好ましい。
ジエステル化合物の脂肪酸成分としては、上記ジアミド化合物の脂肪酸成分と同様である。ジエステル化合物のジオール成分としては、エチレングリコール、プロパンジオール、ブタンジオール、ヘキサンジオール、キシリレングリコール、シクロヘキサンジメタノール等が例示できる。ジオール成分は1種類を単独で使用してもよく、2種類以上を組み合わせてもよい。
ジエステル化合物としては、炭素数8〜30の脂肪酸とエチレングリコール及び/又は1,3−ブタンジオールからなるジオールとから得られるジエステル化合物が好ましく、主としてモンタン酸とエチレングリコール及び/又は1,3−ブタンジオールからなるジオールとから得られるジエステル化合物が特に好ましい。ジエステル化合物は1種類のみを含有してもよく、2種以上を組み合わせて含有してもよい。
The diester compound that can be used in the present invention is a fatty acid having 8 to 30 carbon atoms and a diol having 2 to 10 carbon atoms from the viewpoint of whitening suppression effect after hydrothermal treatment and uniform dispersibility in the polyamide resin (A). Diester compounds obtained from are preferred.
The fatty acid component of the diester compound is the same as the fatty acid component of the diamide compound. Examples of the diol component of the diester compound include ethylene glycol, propanediol, butanediol, hexanediol, xylylene glycol, and cyclohexanedimethanol. A diol component may be used individually by 1 type, and may combine two or more types.
The diester compound is preferably a diester compound obtained from a fatty acid having 8 to 30 carbon atoms and a diol composed of ethylene glycol and / or 1,3-butanediol, and mainly montanic acid and ethylene glycol and / or 1,3-butane. Diester compounds obtained from diols consisting of diols are particularly preferred. A diester compound may contain only 1 type and may contain it in combination of 2 or more type.

本発明の多層容器は、80℃以上100℃以下で熱水処理した後の多層容器のヘイズ値(h(a))を、熱水処理前の多層容器のヘイズ値(h(b))で除した値H(H=h(a)/h(b))の値が、1.0以上1.4以下であることが好ましく、1.0以上1.2以下であることがさらに好ましい。
多層容器の熱水処理後のヘイズ値の上昇が上記範囲であれば、内容物を視認することができるため、熱処理後の多層容器の透明性は実用的な範囲となる。
In the multilayer container of the present invention, the haze value (h (a)) of the multilayer container after hydrothermal treatment at 80 ° C. or more and 100 ° C. or less is the haze value (h (b)) of the multilayer container before hydrothermal treatment. The value of the divided value H (H = h (a) / h (b)) is preferably 1.0 or more and 1.4 or less, and more preferably 1.0 or more and 1.2 or less.
If the increase in the haze value after the hot water treatment of the multilayer container is in the above range, the contents can be visually recognized, and thus the transparency of the multilayer container after the heat treatment is in a practical range.

本発明の多層容器は、押出成形、押出・吹込み成形等の任意の方法により製造することができる。例えば、3台の押出機、フィードブロック、Tダイ、冷却ロール、巻き取り機等を備えた多層シート製造装置を用い、1台目の押出機からPPを、2台目の押出機から接着性樹脂を、3台目の押出機からガスバリア層(Z)を構成するポリアミド樹脂(A)をそれぞれ押し出し、フィードブロックを介してPP層/接着層/ガスバリア層/接着層/PP層の3種5層構造の多層シートを製造し、これを加熱軟化した後、真空、圧空、又は真空と圧空を併用した熱成形法によってシートを金型に密着させて容器形状に成形し、これをトリミングして容器を得る方法が挙げられる。ここで、熱成形時のシート表面温度としては、賦形性の観点から、130〜200℃の範囲が好ましく、150〜180℃の範囲がより好ましい。なお、多層シート製造装置や容器の成形方法についてはこれらに限定されるものではなく、任意の方法を適用することができる。   The multilayer container of the present invention can be produced by any method such as extrusion molding, extrusion / blow molding. For example, using a multilayer sheet manufacturing apparatus equipped with three extruders, a feed block, a T-die, a cooling roll, a winder, etc., PP is adhesive from the first extruder and adhesiveness from the second extruder. The polyamide resin (A) constituting the gas barrier layer (Z) is extruded from a third extruder, respectively, and the PP layer / adhesive layer / gas barrier layer / adhesive layer / PP layer 3 types 5 through the feed block After producing a multilayer sheet with a layer structure and heat-softening it, the sheet is brought into close contact with the mold by vacuum, compressed air, or a thermoforming method using a combination of vacuum and compressed air, and formed into a container shape, and then trimmed The method of obtaining a container is mentioned. Here, the sheet surface temperature during thermoforming is preferably in the range of 130 to 200 ° C and more preferably in the range of 150 to 180 ° C from the viewpoint of formability. The multilayer sheet manufacturing apparatus and the container forming method are not limited to these, and any method can be applied.

本発明の多層容器の形状は特に限定されず、例えば、ボトル、カップ、チューブ、トレイ、タッパウェア等の成形容器であってもよく、また、パウチ、スタンディングパウチ、ジッパー式保存袋等の袋状容器であってもよい。また、多層容器がフランジ部分を有する場合には、そのフランジ部分にイージーピール機能を付与するための特殊加工を施してもよい。   The shape of the multilayer container of the present invention is not particularly limited, and may be, for example, a molded container such as a bottle, a cup, a tube, a tray, or tupperware, or a bag shape such as a pouch, a standing pouch, or a zipper-type storage bag. It may be a container. Moreover, when a multilayer container has a flange part, you may give the special process for providing an easy peel function to the flange part.

本発明の多層容器には顧客の購入意欲を高めるために内容物を可視化したい様々な物品を収納、保存することができる。例えば、水産加工品、畜産加工品、飯類、液体食品が挙げられる。例えば、マグロ、カツオ、サケ、マス、サバ、イワシ、サンマ、ニシン、ウナギ、カニ、ホタテ、赤貝、アサリ、カキ、バイ貝、北寄貝、トップシェル、イカ、海苔、ヒジキ、寒天、クキワカメ、昆布等の水煮、油漬、燻製油漬、蒲焼き、トマト漬け等の水産加工品、コンビーフ、牛肉、ソーセージ、ハム、豚肉、鶏肉、鶏卵、うずら卵等の塩漬、油漬、水煮、味付等の畜産加工品、カレー、シチュー、ハッシュドビーフ、パスタソース、調理用ソース等のソース類や洋風スープ、中華スープ、和風スープ等のスープ類等の液体食品、ミカン、桃、パインアップル、サクランボ、アンズ、クリ、ブドウ等や、トマト、コーン、タケノコ、キノコ類等の農産加工品、犬や猫等向けのペットフード食材がある。   The multilayer container of the present invention can store and store various articles whose contents are to be visualized in order to increase the customer's willingness to purchase. For example, processed marine products, processed livestock products, rice, and liquid food. For example, tuna, bonito, salmon, trout, mackerel, sardine, saury, herring, eel, crab, scallop, red shellfish, clams, oysters, mussel, northern shellfish, top shell, squid, laver, hijiki, agar, sardine, kelp, etc. Seafood products such as boiled, oiled, smoked oiled, smoked, tomato pickled, corned beef, beef, sausage, ham, pork, chicken, chicken egg, quail egg, salted, oiled, boiled, seasoned Processed products, curry, stew, hashed beef, pasta sauce, sauces for cooking, liquid foods such as soups such as Western soup, Chinese soup, Japanese soup, mandarin, peach, pineapple, cherry, apricot, chestnut , Grapes, processed agricultural products such as tomatoes, corn, bamboo shoots and mushrooms, and pet food ingredients for dogs and cats.

本発明の多層容器を熱水処理により殺菌処理する方法としては、カゴに入れ一定温度
の熱水槽に一定時間 浸漬したあと、冷水槽にとる湿熱式が挙げられるが、この方法に限定されるものではない。また、殺菌処理温度としては、好ましくは80℃〜100℃の範囲であり、殺菌時間としては好ましくは10〜120分である。
Examples of the method for sterilizing the multilayer container of the present invention by hot water treatment include a wet heat method in which the multilayer container is immersed in a hot water tank at a constant temperature in a basket and then taken in a cold water tank, but is limited to this method. is not. The sterilization temperature is preferably in the range of 80 ° C to 100 ° C, and the sterilization time is preferably 10 to 120 minutes.

以下に、実施例に基づいて本発明を更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、本実施例において各種測定は以下の方法により行った。
(1)半結晶化時間
脱偏光光度法により測定した。具体的には、ポリマー結晶化速度測定装置(コタキ製作所製、形式:MK701)を使用し、以下の条件で測定した。
試料溶融温度:270℃
試料溶融時間:3分
結晶化油浴温度:160℃
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In this example, various measurements were performed by the following methods.
(1) Semi-crystallization time It measured by the depolarization photometric method. Specifically, a polymer crystallization rate measuring device (manufactured by Kotaki Seisakusho, model: MK701) was used, and measurement was performed under the following conditions.
Sample melting temperature: 270 ° C
Sample melting time: 3 minutes Crystallization oil bath temperature: 160 ° C

(2)DSCによる結晶化度(%)
熱風乾燥機にて、100℃・1時間の乾燥熱処理したポリアミド樹脂(A)及び未処理のポリアミド樹脂(A)を示差走査熱量測定装置((株)島津製作所製、DSC-60)を用いて、昇温速度10℃/分で窒素気流下にDSC測定を行い、測定中の結晶化に起因するピーク温度(結晶化ピーク温度)及び発熱ピーク(熱量(1))と融解に起因するピーク温度(融点)及び吸熱ピーク(熱量(2))から下記式(1)を用いて結晶化度を求めた。なお、結晶融解熱(熱量(3))は151J/gとし、熱量A及びBは絶対値で示される。
結晶化度=((熱量(2))−(熱量(1)))/(熱量(3))×100 (%)・・(1)
(2) Crystallinity by DSC (%)
Using a differential scanning calorimeter (DSC-60, manufactured by Shimadzu Corporation), the polyamide resin (A) and the untreated polyamide resin (A) subjected to a dry heat treatment at 100 ° C. for 1 hour in a hot air dryer are used. DSC measurement was performed in a nitrogen stream at a heating rate of 10 ° C./min. Peak temperature (crystallization peak temperature) due to crystallization during the measurement, exothermic peak (calorie (1)) and peak temperature due to melting The crystallinity was determined from the (melting point) and endothermic peak (calorie (2)) using the following formula (1). The heat of crystal melting (calorie (3)) is 151 J / g, and the calories A and B are indicated by absolute values.
Crystallinity = ((calorie (2)) − (calorie (1))) / (calorie (3)) × 100 (%) (1)

(3)ガスバリア性
ASTM D3985に準じて測定した。具体的には、酸素透過率測定装置(OX−TRAN 2/21A、商品名、モコン社製)を使用し、ポリアミド樹脂(A)からなるガスバリアフィルムの23℃、60%RH環境下における酸素透過係数(ml・mm/m2・day・atm)を測定した。
(3) Gas barrier properties Measured according to ASTM D3985. Specifically, using an oxygen permeability measuring device (OX-TRAN 2 / 21A, trade name, manufactured by Mocon), oxygen permeability in a 23 ° C., 60% RH environment of a gas barrier film made of polyamide resin (A). The coefficient (ml · mm / m 2 · day · atm) was measured.

(4)ヘイズ(Haze)
オートクレーブ(SR−240、商品名、(株)トミー精工製)を用いて単層フィルム、多層容器及び多層パウチを90℃で30分熱水浸漬処理し、熱処理前後の容器側面部を切り出し、JIS K−7105に準じてヘイズを測定した。なお、前記レトルト処理時間には加熱及び冷却時間は含まれない。測定装置は、色彩・濁度測定器(商品名:COH−300A、日本電色工業社製)を使用した。ヘイズ測定箇所における厚さを測定し、厚さ100μmに換算した値とした。ヘイズ値が小さいほど、透明性が高いことを示す。
(4) Haze
A single layer film, a multilayer container and a multilayer pouch were immersed in hot water at 90 ° C. for 30 minutes using an autoclave (SR-240, trade name, manufactured by Tommy Seiko Co., Ltd.). Haze was measured according to K-7105. The retort processing time does not include heating and cooling time. As the measuring device, a color / turbidity measuring device (trade name: COH-300A, manufactured by Nippon Denshoku Industries Co., Ltd.) was used. The thickness at the haze measurement location was measured and taken as a value converted to a thickness of 100 μm. It shows that transparency is so high that a haze value is small.

(5)熟成型の成形性評価
プラグアシストを備えた圧空真空成形機(浅野研究所製)を使用して、セラミックヒーター温度:480℃にてシート表面温度を170℃に加熱後、圧空真空成形を行った。得られた熱成型容器の底面、側面を観察し、以下の基準で評価を行った。
○:伸びムラなく、良好な成形品
×:伸びムラによる外観不良を生じる
(5) Formability evaluation of mature molding Using a compressed air vacuum forming machine (manufactured by Asano Laboratories) equipped with plug assist, after heating the sheet surface temperature to 170 ° C at a ceramic heater temperature: 480 ° C, compressed air vacuum forming Went. The bottom and side surfaces of the obtained thermoformed container were observed and evaluated according to the following criteria.
○: Good molded product without stretch unevenness ×: Appearance defect due to stretch unevenness

実施例1
撹拌機、分縮器、冷却器、温度計、滴下槽および窒素ガス導入管を備えたジャケット付反応缶に、モル比でアジピン酸(AdA)(旭化成製)が95モル%とイソフタル酸(IPA)(エーアイジーインターナショナル製)が5モル%となる様に投入し、十分窒素置換した後、さらに窒素気流下で170℃まで昇温してジカルボン酸を流動状態とした後、メタキシリレンジアミン(MXDA)(三菱ガス化学製)100モル%を撹拌下に滴下した。この間、内温を連続的に245℃まで昇温させ、またメタキシリレンジアミンの滴下とともに留出する水は分縮器および冷却器を通して系外に除いた。メタキシリレンジアミン滴下終了後、内温を連続的に255℃まで昇温し、15分間反応を継続した。その後、反応系内圧を600mmHgまで10分間で連続的に減圧し、その後、40分間反応を継続した。この間、反応温度を260℃まで連続的に昇温させた。反応終了後、反応缶内を窒素ガスにて0.2MPaの圧力を掛けポリマーを重合槽下部のノズルよりストランドとして取出し、水冷後に切断し、ペレット形状のポリマーを得た。
Example 1
In a reactor equipped with a jacket equipped with a stirrer, a partial condenser, a cooler, a thermometer, a dropping tank and a nitrogen gas introduction tube, 95 mol% of adipic acid (AdA) (manufactured by Asahi Kasei) and isophthalic acid (IPA) ) (Manufactured by AI International Co., Ltd.) was added so as to be 5 mol%, sufficiently substituted with nitrogen, further heated to 170 ° C. under a nitrogen stream to make the dicarboxylic acid fluid, and then metaxylylenediamine ( MXDA) (manufactured by Mitsubishi Gas Chemical) was added dropwise with stirring. During this time, the internal temperature was continuously raised to 245 ° C., and the water distilled with the addition of metaxylylenediamine was removed out of the system through a condenser and a cooler. After the completion of the dropwise addition of metaxylylenediamine, the internal temperature was continuously raised to 255 ° C., and the reaction was continued for 15 minutes. Thereafter, the internal pressure of the reaction system was continuously reduced to 600 mmHg over 10 minutes, and then the reaction was continued for 40 minutes. During this time, the reaction temperature was continuously raised to 260 ° C. After completion of the reaction, the inside of the reaction vessel was pressurized with nitrogen gas at a pressure of 0.2 MPa, the polymer was taken out as a strand from the nozzle at the bottom of the polymerization tank, and was cut after water cooling to obtain a pellet-shaped polymer.

次にこのペレットをステンレス製の回転ドラム式の加熱装置に仕込み、5rpmで回転させた。十分窒素置換し、さらに少量の窒素気流下にて反応系内を室温から140℃まで昇温した。反応系内温度が140℃に達した時点で1torr以下まで減圧を行い、更に系内温度を110分間で180℃まで昇温した。系内温度が190℃に達した時点から、同温度にて190分間、固相重合反応を継続した。反応終了後、減圧を終了し窒素気流下にて系内温度を下げ、60℃に達した時点でペレットを取り出すことにより、メタキシリレンジアミン単位とアジピン酸単位95モル%及びイソフタル酸単位5モル%とからなるポリメタキシリレンアジパミド/ポリメタキシリレンイソフタルアミドコポリマー(以下、「N−MXD6/MXDI」と略することがある。)(ポリアミド樹脂(A1))を得た。 Next, this pellet was charged into a stainless steel drum-type heating device and rotated at 5 rpm. The atmosphere in the reaction system was raised from room temperature to 140 ° C. under a small nitrogen flow. When the reaction system temperature reached 140 ° C., the pressure was reduced to 1 torr or less, and the system temperature was further increased to 180 ° C. in 110 minutes. From the time when the system temperature reached 190 ° C., the solid state polymerization reaction was continued for 190 minutes at the same temperature. After completion of the reaction, the decompression was terminated, the system temperature was lowered under a nitrogen stream, and when the temperature reached 60 ° C., the pellets were taken out, so that metaxylylenediamine units, 95 mol% adipic acid units, and 5 mol isophthalic acid units were obtained. % Polymetaxylylene adipamide / polymetaxylylene isophthalamide copolymer (hereinafter sometimes abbreviated as “N-MXD6 / MXDI”) (polyamide resin (A1)).

次に、前記ポリアミド樹脂(A1)を単軸押出機にて押し出し、膜厚50μmのガスバリアフィルムを作製した。ポリアミド樹脂(A1)からなるガスバリアフィルムの160℃における半結晶化時間、結晶化度、23℃・60%RH環境下における酸素透過係数を測定した。結果を表1に示す。   Next, the polyamide resin (A1) was extruded with a single screw extruder to produce a gas barrier film having a thickness of 50 μm. The semi-crystallization time at 160 ° C., the crystallinity, and the oxygen permeability coefficient in a 23 ° C./60% RH environment of the gas barrier film made of the polyamide resin (A1) were measured. The results are shown in Table 1.

3台の押出機、フィードブロック、Tダイ、冷却ロール、巻き取り機等を備えた多層シート製造装置を用い、1台目の押出機からポリプロピレン(日本ポリプロ社製、商品名:ノバテックPP、グレード名:FY6、メルトインデックス:2.5)を260℃で、2台目の押出機から接着性樹脂(三井化学社製、商品名:アドマー、グレード:QB515)を230℃で、3台目の押出機からポリアミド樹脂(A1)を260℃でそれぞれ押し出し、フィードブロックを介してPP層(X層)/接着層(Y層)/ガスバリア層(Z層)/接着層(Y層)/PP層(X層)の3種5層構造の多層シートを製造した。なお、各層の厚みは、425/25/100/25/425(μm)とした。
次いで、プラグアシストを備えた圧空真空成形機を使用して、シート表面温度が170℃に達した時点で熱成形を行い、開口部79mm角×底部63mm×深さ25mm、表面積110cm2、容積100mlの容器を作製した。得られたカップ状容器を90℃で30分熱水浸漬処理し、熱水処理前後の容器側面部ヘイズを測定した。結果を表1に示す。
また、4台の押出機、フィードブロック、Tダイ、冷却ロール、巻き取り機等を備えた多層シート製造装置を用い、1台目の押出機からポリプロピレン(日本ポリプロ社製、商品名:ノバテックPP、グレード名:FY6、メルトインデックス:2.5)を260℃で、2台目の押出機から接着性樹脂(三井化学社製、商品名:アドマー、グレード:QB515)を230℃で、3台目の押出機からポリアミド樹脂(A1)を260℃で、4台目の押出機からポリアミド6樹脂(宇部興産株式会社製 商品名:UBEナイロン6、グレード:1024B)を240℃でそれぞれ押し出し、フィードブロックを介してPP層(X層)/接着層(Y層)/ガスバリア層(Z層)/ポリアミド6層の4種4層構造の多層シートを製造した。なお、各層の厚みは、120/10/30/120/20(μm)とした。
次いで、ヒートシール機を用いて、4方シール形状のPP多層パウチ(縦200mm、横100mm)を作成し、水10ccを入れて、ヒートシールした後、オートクレーブ(トミー精工製SR−240)にて90℃で30分熱水浸漬処理し、熱水処理前後のパウチフィルムのヘイズを測定した。結果を表1に示す。
Using a multilayer sheet manufacturing apparatus equipped with three extruders, feed block, T die, cooling roll, winder, etc., polypropylene (from Nippon Polypro Co., Ltd., trade name: Novatec PP, grade) from the first extruder Name: FY6, melt index: 2.5) at 260 ° C. Adhesive resin (manufactured by Mitsui Chemicals, trade name: Admer, grade: QB515) from the second extruder at 230 ° C. Polyamide resin (A1) is extruded from the extruder at 260 ° C., and PP layer (X layer) / adhesive layer (Y layer) / gas barrier layer (Z layer) / adhesive layer (Y layer) / PP layer through the feed block A multilayer sheet having a three-kind five-layer structure (layer X) was produced. The thickness of each layer was 425/25/100/25/425 (μm).
Next, using a compressed air vacuum forming machine equipped with plug assist, when the sheet surface temperature reaches 170 ° C., thermoforming is performed, and the opening 79 mm square × bottom 63 mm × depth 25 mm, surface area 110 cm 2 , volume 100 ml. A container was prepared. The obtained cup-shaped container was immersed in hot water at 90 ° C. for 30 minutes, and the container side surface haze before and after the hot water treatment was measured. The results are shown in Table 1.
In addition, using a multilayer sheet manufacturing apparatus equipped with four extruders, a feed block, a T die, a cooling roll, a winder, etc., polypropylene (from Nippon Polypro Co., Ltd., trade name: Novatec PP) , Grade name: FY6, melt index: 2.5) at 260 ° C., adhesive resin (Mitsui Chemicals, trade name: Admer, grade: QB515) from the second extruder at 230 ° C., 3 units The polyamide resin (A1) is extruded from the eye extruder at 260 ° C., and the polyamide 6 resin (product name: UBE nylon 6, grade: 1024B manufactured by Ube Industries, Ltd.) is extruded from the fourth extruder at 240 ° C. and fed. A multilayer sheet having 4 types and 4 layers of PP layer (X layer) / adhesive layer (Y layer) / gas barrier layer (Z layer) / polyamide 6 layer was produced through the block. The thickness of each layer was 120/10/30/120/20 (μm).
Next, using a heat sealing machine, create a four-way sealed PP multilayer pouch (vertical 200 mm, horizontal 100 mm), put 10 cc of water, heat seal, and then autoclave (SR-240 manufactured by Tommy Seiko). Hot water immersion treatment was performed at 90 ° C. for 30 minutes, and the haze of the pouch film before and after the hot water treatment was measured. The results are shown in Table 1.

実施例2
メタキシリレンジアミン単位とアジピン酸単位94モル%及びイソフタル酸単位6モル%とからなるN−MXD6/MXDI(ポリアミド樹脂(A2))としたこと以外は、実施例1と同様に、フィルム試作を実施し、160℃における半結晶化時間、結晶化度、23℃・60%RH環境下における酸素透過係数を測定した。結果を表1に示す。また、PP多層カップを成形し、90℃30分熱水浸漬処理し、熱水処理前後の容器側面部及びパウチフィルムのヘイズを測定した。結果を表1に示す。
Example 2
A prototype film was produced in the same manner as in Example 1 except that N-MXD6 / MXDI (polyamide resin (A2)) composed of metaxylylenediamine units, 94 mol% of adipic acid units and 6 mol% of isophthalic acid units was used. The measurement was carried out to measure the half crystallization time at 160 ° C., the degree of crystallinity, and the oxygen transmission coefficient in an environment of 23 ° C. and 60% RH. The results are shown in Table 1. In addition, a PP multilayer cup was molded, immersed in hot water at 90 ° C. for 30 minutes, and the haze of the container side surface and the pouch film before and after the hot water treatment was measured. The results are shown in Table 1.

実施例3
メタキシリレンジアミン単位とアジピン酸単位90モル%及びイソフタル酸単位10モル%とからなるN−MXD6/MXDI(ポリアミド樹脂(A3))としたこと以外は、実施例1と同様に、フィルム試作を実施し、160℃における半結晶化時間、結晶化度、23℃・60%RH環境下における酸素透過係数を測定した。結果を表1に示す。また、PP多層カップ及びパウチを成形し、90℃で30分ボイル処理し、ボイル処理前後の容器側面部及びパウチフィルムのヘイズを測定した。結果を表1に示す。
Example 3
A film prototype was prepared in the same manner as in Example 1 except that N-MXD6 / MXDI (polyamide resin (A3)) composed of a metaxylylenediamine unit, 90 mol% adipic acid units and 10 mol% isophthalic acid units was used. The measurement was carried out to measure the half crystallization time at 160 ° C., the degree of crystallinity, and the oxygen transmission coefficient in an environment of 23 ° C. and 60% RH. The results are shown in Table 1. In addition, a PP multilayer cup and a pouch were molded, boiled at 90 ° C. for 30 minutes, and the haze of the container side surface and the pouch film before and after the boil treatment was measured. The results are shown in Table 1.

実施例4
メタキシリレンジアミン単位とアジピン酸単位85モル%及びイソフタル酸単位15モル%とからなるN−MXD6/MXDI(ポリアミド樹脂(A4))としたこと以外は、実施例1と同様に、フィルム試作を実施し、160℃における半結晶化時間、結晶化度、23℃60%RH環境下における酸素透過係数を測定した。結果を表1に示す。また、PP多層カップ及びパウチを成形し、90℃・30分ボイル処理し、ボイル処理前後の容器側面部及びパウチフィルムのヘイズを測定した。結果を表1に示す。
Example 4
A film prototype was prepared in the same manner as in Example 1 except that N-MXD6 / MXDI (polyamide resin (A4)) composed of metaxylylenediamine units, 85 mol% adipic acid units and 15 mol% isophthalic acid units was used. The measurement was carried out, and the semi-crystallization time at 160 ° C., the crystallinity, and the oxygen transmission coefficient in an environment of 23 ° C. and 60% RH were measured. The results are shown in Table 1. In addition, a PP multilayer cup and a pouch were molded, boiled at 90 ° C. for 30 minutes, and the haze of the container side surface and the pouch film before and after the boil treatment was measured. The results are shown in Table 1.

参考例1
メタキシリレンジアミン単位とアジピン酸単位94モル%及びイソフタル酸単位6モル%とからなるN−MXD6/MXDI(ポリアミド樹脂(A2))100質量部に、エチレンビスステアリルアミド(EBS)(商品名:アルフローH−50T、日油(株)製)0.2質量部をドライブレンドした樹脂を37mmφ2軸押出機により、押出温度260℃〜270℃、スクリュー回転数100rpmにて、ストランド状の樹脂を押出し、水冷後、ペレタイズして、ポリアミド樹脂組成物を作成した。このポリアミド樹脂組成物とした以外は、実施例1と同様に、フィルム試作を実施し、160℃における半結晶化時間、結晶化度、23℃60%RH環境下における酸素透過係数を測定した。結果を表1に示す。また、PP多層カップ及びパウチを成形し、90℃30分熱水浸漬処理し、熱水処理前後の容器側面部及びパウチフィルムのヘイズを測定した。結果を表1に示す。
Reference example 1
To 100 parts by mass of N-MXD6 / MXDI (polyamide resin (A2)) comprising metaxylylenediamine units, 94 mol% of adipic acid units and 6 mol% of isophthalic acid units, ethylene bisstearylamide (EBS) (trade name: Alflow H-50T (manufactured by NOF Corporation) extruded 0.2 parts by mass of a resin in a strand form using a 37 mmφ twin screw extruder at an extrusion temperature of 260 ° C. to 270 ° C. and a screw speed of 100 rpm. After cooling with water, it was pelletized to prepare a polyamide resin composition. Except that this polyamide resin composition was used, a film trial was made in the same manner as in Example 1, and the half crystallization time at 160 ° C., the degree of crystallinity, and the oxygen permeation coefficient at 23 ° C. and 60% RH were measured. The results are shown in Table 1. Moreover, PP multilayer cup and pouch were shape | molded, 90 degreeC 30 minute hot water immersion process, and the haze of the container side part before and behind a hot water process and a pouch film were measured. The results are shown in Table 1.

比較例1
ポリアミド樹脂(A)の組成比を、モル比でアジピン酸を100モル%とした以外は実施例1と同様にして、ポリアミド樹脂(A5)を得た。実施例1と同様に、フィルム試作を実施し、160℃における半結晶化時間、結晶化度、23℃60%RH環境下における酸素透過係数を測定した。結果を表1に示す。また、PP多層カップ及びパウチを成形し、90℃で30分熱水浸漬処理し、熱水処理前後の容器側面部及びパウチフィルムのヘイズを測定した。結果を表1に示す。
Comparative Example 1
A polyamide resin (A5) was obtained in the same manner as in Example 1 except that the composition ratio of the polyamide resin (A) was changed to 100 mol% of adipic acid in terms of molar ratio. Film prototyping was carried out in the same manner as in Example 1, and the semi-crystallization time at 160 ° C., the degree of crystallinity, and the oxygen permeability coefficient at 23 ° C. and 60% RH were measured. The results are shown in Table 1. Moreover, PP multilayer cup and pouch were shape | molded, and the hot water immersion process was performed at 90 degreeC for 30 minutes, and the haze of the container side part before and behind a hot water process and a pouch film was measured. The results are shown in Table 1.

比較例2
メタキシリレンジアミン単位とアジピン酸単位96モル%及びイソフタル酸単位4モル%とからなるN−MXD6/MXDI(ポリアミド樹脂(A6))としたこと以外は、実施例1と同様に、フィルム試作を実施し、160℃における半結晶化時間、結晶化度、23℃60%RH環境下における酸素透過係数を測定した。結果を表1に示す。また、PP多層カップ及びパウチを成形し、90℃30分熱水浸漬処理し、熱水処理前後の容器側面部及びパウチフィルムのヘイズを測定した。結果を表1に示す。
Comparative Example 2
A film prototype was produced in the same manner as in Example 1 except that N-MXD6 / MXDI (polyamide resin (A6)) composed of a metaxylylenediamine unit, 96 mol% of adipic acid units and 4 mol% of isophthalic acid units was used. The measurement was carried out, and the semi-crystallization time at 160 ° C., the crystallinity, and the oxygen transmission coefficient in an environment of 23 ° C. and 60% RH were measured. The results are shown in Table 1. Moreover, PP multilayer cup and pouch were shape | molded, 90 degreeC 30 minute hot water immersion process, and the haze of the container side part before and behind a hot water process and a pouch film were measured. The results are shown in Table 1.

比較例3
メタキシリレンジアミン単位とジアミン単位がアジピン酸単位80モル%及びイソフタル酸単位20モル%とからなるN−MXD6/MXDI(ポリアミド樹脂(A7))としたこと以外は、実施例1と同様に、フィルム試作を実施し、160℃における半結晶化時間、結晶化度、23℃60%RH環境下における酸素透過係数を測定した。結果を表1に示す。また、PP多層カップ及びパウチを成形し、90℃で30分熱水浸漬処理し、熱水処理前後の容器側面部及びパウチフィルムのヘイズを測定した。結果を表1に示す。
Comparative Example 3
As in Example 1, except that the metaxylylenediamine unit and the diamine unit were N-MXD6 / MXDI (polyamide resin (A7)) composed of 80 mol% adipic acid units and 20 mol% isophthalic acid units. A prototype film was prepared, and the half crystallization time at 160 ° C., the crystallinity, and the oxygen permeability coefficient at 23 ° C. and 60% RH were measured. The results are shown in Table 1. Moreover, PP multilayer cup and pouch were shape | molded, and the hot water immersion process was performed at 90 degreeC for 30 minutes, and the haze of the container side part before and behind a hot water process and a pouch film was measured. The results are shown in Table 1.

比較例4
実施例2で試作したフィルム、PP多層カップ、パウチを、オートクレーブ(トミー精工製SR−240)にて121℃30分のレトルト処理し、レトルト処理後の容器側面部及びパウチフィルムのヘイズを測定した。結果を表2に示す。
Comparative Example 4
The film, PP multilayer cup, and pouch produced in Example 2 were retorted at 121 ° C. for 30 minutes in an autoclave (Tomy Seiko SR-240), and the haze of the container side surface and the pouch film after retorting was measured. . The results are shown in Table 2.

比較例5
実施例4で試作したフィルム、PP多層カップ、パウチを、オートクレーブ(トミー精工製SR−240)にて121℃30分のレトルト処理し、レトルト処理後の容器側面部及びパウチフィルムのヘイズを測定した。結果を表2に示す。
Comparative Example 5
The film, PP multilayer cup, and pouch produced in Example 4 were retorted at 121 ° C. for 30 minutes in an autoclave (Tomy Seiko SR-240), and the haze of the container side surface and the pouch film after retorting was measured. . The results are shown in Table 2.

Figure 2012201412
AdA:アジピン酸
IPA:イソフタル酸
MXDA:メタキシレンジアミン
EBS:エチレンビスステアリルアミド
N.D.:PP多層容器成形できないためデータ無し
1)フィルムの厚さ:50μm厚
2)PP多層容器=PP(425μm)/接着層(25μm)/ガスバリア層(100μm)/接着層(25μm)/PP(425μm)のカップ状容器。容器側面についてhazeを測定した。
3)90℃、30分熱水浸漬処理
4) Haze比=(h(a))/(h(b))
5)PP多層パウチ=PP(120μm)/接着層(10μm)/ガスバリア層(30μm)/ポリアミド6層(120μm)
Figure 2012201412
AdA: adipic acid IPA: isophthalic acid MXDA: metaxylenediamine EBS: ethylenebisstearylamide D. : No data because PP multilayer container cannot be molded 1) Film thickness: 50 μm thickness 2) PP multilayer container = PP (425 μm) / adhesive layer (25 μm) / gas barrier layer (100 μm) / adhesive layer (25 μm) / PP (425 μm) ) Cup-shaped container. The haze was measured on the side of the container.
3) Hot water immersion treatment at 90 ° C. for 30 minutes 4) Haze ratio = (h (a)) / (h (b))
5) PP multilayer pouch = PP (120 μm) / adhesive layer (10 μm) / gas barrier layer (30 μm) / polyamide 6 layer (120 μm)

Figure 2012201412
1)フィルムの厚さ:50μm厚
2)PP多層容器=PP(425μm)/接着層(25μm)/ガスバリア層(100μm)/接着層(25μm)/PP(425μm)容器の側面についてhazeを測定した。
3)121℃、30分加圧熱水処理
4) Haze比=(h(a))/(h(b))
5)PP多層パウチ=PP(120μm)/接着層(10μm)/ガスバリア層(30μm)/ポリアミド6層(120μm)
Figure 2012201412
1) Film thickness: 50 μm thickness 2) PP multilayer container = PP (425 μm) / adhesive layer (25 μm) / gas barrier layer (100 μm) / adhesive layer (25 μm) / PP (425 μm) The haze was measured on the side of the container. .
3) Pressurized hot water treatment at 121 ° C for 30 minutes 4) Haze ratio = (h (a)) / (h (b))
5) PP multilayer pouch = PP (120 μm) / adhesive layer (10 μm) / gas barrier layer (30 μm) / polyamide 6 layer (120 μm)

イソフタル酸単位を含まないポリアミド樹脂(A5)を用いた比較例1では、熱水処理前の単層フィルムのヘイズが2%であったが、熱水処理後のフィルムは79%と透明性が悪化した。また、ポリアミド樹脂(A5)は半結晶化時間が短いため、PP多層容器への成形はできなかった。また、イソフタル酸単位が4mol%のポリアミド樹脂(A6)を用いた比較例2は、半結晶化時間は長くなるものの、単層フィルムのヘイズは大きく悪化した。また、PP多層容器やPP多層パウチでの白化抑制は実用的なレベルまで十分改善できていない。
さらに、イソフタル酸単位が20mol%のポリアミド樹脂(A7)の比較例3は、単層フィルムのボイル処理後のヘイズはほとんど変化がなく、透明性は良好であるものの、多層シート成形時に、ポリアミド樹脂(A7)からなるガスバリア層が安定して層を形成できないため、多層容器及び多層パウチ成形ができなかった。一方、本発明であるイソフタル酸単位が5〜15モル%のポリアミド樹脂(A1〜A4)を用いた実施例1〜4では、半結晶化時間が80秒以上700秒以下であり、また、熱水処理後の結晶化度の変化も小さいため、熱水処理後のフィルムのヘイズは、大きく上昇せず、透明性を維持することができた。このように、単層フィルムでのヘイズ変化も小さかったため、多層容器及び多層パウチの熱水処理前後のヘイズ変化は小さく、白化を十分に抑制ができた。また、23℃60%RHでの酸素透過係数の値も、比較例1のイソフタル酸を含まないポリアミド(A5)と比較しても良好な値を示した。
また、本発明であるイソフタル酸単位が5〜15モル%のポリアミド樹脂(A1〜A4)を121℃30分で加圧熱水処理したフィルム、PP多層容器・PP多層パウチではヘイズが悪化した。
一方、本発明のソフタル酸単位が5〜15モル%のポリアミド樹脂(A1〜A4)を本願の熱水処理条件である80〜100℃の熱水浸漬処理を行った場合には、白化抑制剤を添加しなくとも、白化抑制剤を添加した場合(参考例1)と同レベル、あるいはそれ以上の透明性を示した(参考例1)。
In Comparative Example 1 using the polyamide resin (A5) not containing an isophthalic acid unit, the haze of the single layer film before the hot water treatment was 2%, but the film after the hot water treatment had a transparency of 79%. It got worse. Moreover, since the polyamide resin (A5) has a short half-crystallization time, it could not be molded into a PP multilayer container. In Comparative Example 2 using the polyamide resin (A6) having an isophthalic acid unit of 4 mol%, the haze of the single layer film was greatly deteriorated although the half crystallization time was increased. Further, whitening suppression in PP multilayer containers and PP multilayer pouches has not been sufficiently improved to a practical level.
Further, in Comparative Example 3 of the polyamide resin (A7) having an isophthalic acid unit of 20 mol%, the haze after the boil treatment of the single layer film is hardly changed and the transparency is good. Since the gas barrier layer made of (A7) could not be stably formed, the multilayer container and the multilayer pouch could not be formed. On the other hand, in Examples 1 to 4 using a polyamide resin (A1 to A4) having 5 to 15 mol% of isophthalic acid units according to the present invention, the half crystallization time is 80 seconds to 700 seconds, Since the change in crystallinity after the water treatment was small, the haze of the film after the hot water treatment did not increase greatly, and the transparency could be maintained. Thus, since the haze change in the single layer film was also small, the haze change before and after the hot water treatment of the multilayer container and the multilayer pouch was small, and whitening could be sufficiently suppressed. Further, the value of the oxygen permeation coefficient at 23 ° C. and 60% RH was also good compared to the polyamide (A5) containing no isophthalic acid in Comparative Example 1.
Moreover, the haze deteriorated in the film, PP multilayer container / PP multilayer pouch in which the polyamide resin (A1 to A4) having 5 to 15 mol% of isophthalic acid unit according to the present invention was subjected to pressurized hot water treatment at 121 ° C. for 30 minutes.
On the other hand, when the polyamide resin (A1 to A4) having 5 to 15 mol% of the sophthalic acid unit of the present invention is subjected to hot water immersion treatment at 80 to 100 ° C. which is the hydrothermal treatment condition of the present application, a whitening inhibitor Even when no whitening agent was added, the same level of transparency as in the case of adding a whitening inhibitor (Reference Example 1) or higher (Reference Example 1).

本発明の多層容器は、80℃以上100℃以下の熱水処理による殺菌処理後や高温保管後においても、ガスバリア性及び透明性に優れることから食品の保存及び視認が可能である。さらに、本発明のガスバリア層に特定の樹脂を使用することで、白化抑制材を使用せずとも透明性を維持できるため、コストを抑えることが可能である。その結果、顧客の利便性が必要な食品の包装材料として、その工業的価値は高い。   The multi-layer container of the present invention is excellent in gas barrier properties and transparency even after sterilization by hot water treatment at 80 ° C. or higher and 100 ° C. or lower, and can be stored and visually confirmed. Furthermore, by using a specific resin for the gas barrier layer of the present invention, it is possible to maintain the transparency without using a whitening inhibitor, and thus it is possible to reduce costs. As a result, its industrial value is high as a packaging material for foods that require customer convenience.

Claims (8)

ポリプロピレンを主成分とする層(X)、接着性熱可塑性樹脂からなる接着層(Y)、及びポリアミド樹脂(A)からなるガスバリア層(Z)が内層から外層へこの順に積層された3層以上の層構成を有する多層容器であって、前記ポリアミド樹脂(A)が、メタキシリレンジアミン単位を70モル%以上含むジアミン単位とアジピン酸単位を85乃至95モル%及びイソフタル酸単位を5乃至15モル%含むジカルボン酸単位とからなるポリアミド樹脂である多層容器。   Three or more layers in which a layer (X) mainly composed of polypropylene, an adhesive layer (Y) made of an adhesive thermoplastic resin, and a gas barrier layer (Z) made of a polyamide resin (A) are laminated in this order from the inner layer to the outer layer. The polyamide resin (A) comprises a diamine unit containing at least 70 mol% of metaxylylenediamine units, 85 to 95 mol% of adipic acid units, and 5 to 15 of isophthalic acid units. A multilayer container which is a polyamide resin composed of a dicarboxylic acid unit containing mol%. 前記ポリアミド樹脂(A)の、脱偏光光度法による160℃での結晶化における半結晶化時間(ST(P))が80秒以上700秒以下である、請求項1に記載の多層容器。 2. The multilayer container according to claim 1, wherein the polyamide resin (A) has a semi-crystallization time (ST (P)) in crystallization at 160 ° C. by depolarization photometry of 80 seconds or more and 700 seconds or less. 前記ポリアミド樹脂(A)の、100℃、1時間の乾熱処理前後のDSCによる求めた結晶化度の上昇が1%以下である請求項1または2に記載の多層容器。 The multilayer container according to claim 1 or 2, wherein an increase in crystallinity of the polyamide resin (A) obtained by DSC before and after dry heat treatment at 100 ° C for 1 hour is 1% or less. 前記ポリアミド樹脂(A)の23℃、60%RH環境下における酸素透過係数が0.09ml・mm/m2・day・atm以下である、請求項1乃至3のいずれかに記載の多層容器。 The multilayer container according to any one of claims 1 to 3, wherein the polyamide resin (A) has an oxygen permeability coefficient of 0.09 ml · mm / m 2 · day · atm or less in an environment of 23 ° C and 60% RH. 前記多層容器を80℃以上100℃以下で熱水処理した際のヘイズ値(h(a))と、熱水処理前のヘイズ値(h(b))の比H(=h(a)/h(b))が1.0〜1.40である請求項1乃至4のいずれかに記載の多層容器。   A ratio H (= h (a) / of haze value (h (a)) when the multilayer container is hydrothermally treated at 80 ° C. or higher and 100 ° C. or lower and haze value (h (b)) before hydrothermal treatment. The multilayer container according to any one of claims 1 to 4, wherein h (b)) is 1.0 to 1.40. 前記ガスバリア層(Z)の厚みが、多層容器の総厚みに対して2〜20%である、請求項1乃至5のいずれかに記載の多層容器。   The multilayer container according to any one of claims 1 to 5, wherein a thickness of the gas barrier layer (Z) is 2 to 20% with respect to a total thickness of the multilayer container. 前記ガスバリア層(Z)の外側に他のポリアミドが積層された1乃至6のいずれかに記載の多層容器。   The multilayer container according to any one of 1 to 6, wherein another polyamide is laminated outside the gas barrier layer (Z). 前記ガスバリア層(Z)の外層側に接着性熱可塑性樹脂からなる接着層(Y)、ポリプロピレンを主成分とする層(X)が内層から外層へこの順に積層された1乃至7のいずれかに記載の多層容器。
The adhesive layer (Y) made of an adhesive thermoplastic resin on the outer layer side of the gas barrier layer (Z), and the layer (X) mainly composed of polypropylene are laminated in this order from the inner layer to the outer layer. The multilayer container as described.
JP2011070721A 2011-03-28 2011-03-28 Multi-layered container Withdrawn JP2012201412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011070721A JP2012201412A (en) 2011-03-28 2011-03-28 Multi-layered container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070721A JP2012201412A (en) 2011-03-28 2011-03-28 Multi-layered container

Publications (1)

Publication Number Publication Date
JP2012201412A true JP2012201412A (en) 2012-10-22

Family

ID=47182800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011070721A Withdrawn JP2012201412A (en) 2011-03-28 2011-03-28 Multi-layered container

Country Status (1)

Country Link
JP (1) JP2012201412A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203811A1 (en) 2013-06-21 2014-12-24 三菱エンジニアリングプラスチックス株式会社 Crystalline thermoplastic resin composition and molded article
WO2015083558A1 (en) * 2013-12-05 2015-06-11 三菱瓦斯化学株式会社 Multilayer container
WO2017061356A1 (en) * 2015-10-09 2017-04-13 三菱瓦斯化学株式会社 Multilayer container for medical use and method for producing multilayer container for medical use
JP2019014491A (en) * 2017-07-04 2019-01-31 凸版印刷株式会社 Squeeze container
US11911341B2 (en) 2016-02-16 2024-02-27 Mitsubishi Gas Chemical Company, Inc. Multilayer vessel, and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203811A1 (en) 2013-06-21 2014-12-24 三菱エンジニアリングプラスチックス株式会社 Crystalline thermoplastic resin composition and molded article
WO2015083558A1 (en) * 2013-12-05 2015-06-11 三菱瓦斯化学株式会社 Multilayer container
KR20160094955A (en) * 2013-12-05 2016-08-10 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Multilayer container
JPWO2015083558A1 (en) * 2013-12-05 2017-03-16 三菱瓦斯化学株式会社 Multi-layer container
RU2671332C1 (en) * 2013-12-05 2018-10-30 Мицубиси Гэс Кемикал Компани, Инк. Multilayer container
KR102355668B1 (en) 2013-12-05 2022-01-26 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Multilayer container
WO2017061356A1 (en) * 2015-10-09 2017-04-13 三菱瓦斯化学株式会社 Multilayer container for medical use and method for producing multilayer container for medical use
CN108289786A (en) * 2015-10-09 2018-07-17 三菱瓦斯化学株式会社 The manufacturing method of medical laminated vessel and medical laminated vessel
JPWO2017061356A1 (en) * 2015-10-09 2018-08-02 三菱瓦斯化学株式会社 MEDICAL MULTILAYER CONTAINER AND METHOD FOR PRODUCING MEDICAL MULTILAYER CONTAINER
US11911341B2 (en) 2016-02-16 2024-02-27 Mitsubishi Gas Chemical Company, Inc. Multilayer vessel, and application thereof
JP2019014491A (en) * 2017-07-04 2019-01-31 凸版印刷株式会社 Squeeze container

Similar Documents

Publication Publication Date Title
JP4910958B2 (en) Preservation method of heat sterilized food
JP2011037199A (en) Multilayer container
EP1413429B1 (en) Gas-barrier multi-layer structure
JP6981255B2 (en) Dry blend mixture
KR20090013202A (en) Polyamide resin composition
JP6634826B2 (en) Multilayer container
JP6898061B2 (en) Multi-layer container
JP5471009B2 (en) Multi-layer container
JP2012201412A (en) Multi-layered container
JP5315599B2 (en) Resin composition and multilayer structure
JP5731744B2 (en) Multi-layer container
JP5617422B2 (en) Multi-layer container
JP5407521B2 (en) Resin composition and packaging material
JP5672826B2 (en) Multi-layer container
JP2007211159A (en) Resin composition and multilayer structure
JP2010241910A (en) Resin composition and multilayer structure
JP2982972B2 (en) Multilayer structure and multilayer package
WO2023171065A1 (en) Multilayer body and multilayer container
JP2018053033A (en) Polyamide resin composition and multilayer molded body
JP6661914B2 (en) Polyamide resin composition, molded article and method for producing molded article
US20240018317A1 (en) Oxygen absorbing resin composition, oxygen absorbing film, oxygen absorbing multi-layer film, and cover material
KR20240046776A (en) Stretched films, multilayer films and packaging materials
KR101647864B1 (en) Storage method
JP2011131579A (en) Oxygen absorbing multilayered body for heat-sterilized food

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603