JP2012199010A - Fuel cell status diagnostic device - Google Patents

Fuel cell status diagnostic device Download PDF

Info

Publication number
JP2012199010A
JP2012199010A JP2011061073A JP2011061073A JP2012199010A JP 2012199010 A JP2012199010 A JP 2012199010A JP 2011061073 A JP2011061073 A JP 2011061073A JP 2011061073 A JP2011061073 A JP 2011061073A JP 2012199010 A JP2012199010 A JP 2012199010A
Authority
JP
Japan
Prior art keywords
fuel cell
local
state
current
transfer function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011061073A
Other languages
Japanese (ja)
Other versions
JP5742333B2 (en
Inventor
Minoru Okamiya
稔 岡宮
Shinya Sakaguchi
信也 坂口
Hidetsugu Izuhara
英嗣 伊豆原
Keigo Suematsu
啓吾 末松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2011061073A priority Critical patent/JP5742333B2/en
Publication of JP2012199010A publication Critical patent/JP2012199010A/en
Application granted granted Critical
Publication of JP5742333B2 publication Critical patent/JP5742333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell status diagnostic device which can diagnose the status of a fuel cell without causing an increase in the number of components.SOLUTION: The fuel cell status diagnostic device comprises an AC current application unit 51 which applies an AC current having a predetermined waveform to a fuel cell 1, a local current detection unit 4 which detects a local current flowing to a local part of a unit cell 10 to be diagnosed, an operation unit 521 which extracts the AC component from a local current and calculates the frequency characteristics in the AC component, and status diagnosis means 62 which diagnoses the status of the fuel cell based on the correspondence of the frequency characteristics in the AC component and the frequency characteristics in the local current. Since cell voltage detection means for detecting the cell voltage of the unit cell 10 is not required, the status of the fuel cell 1 can be diagnosed without causing an increase in the number of components.

Description

本発明は、燃料電池の状態を診断する燃料電池状態診断装置に関する。   The present invention relates to a fuel cell state diagnosis device that diagnoses the state of a fuel cell.

従来、交流インピーダンス法により燃料電池のインピーダンス(内部抵抗)を測定し、測定したインピーダンスに基づいて、燃料電池の状態を診断する構成が提案されている(例えば、特許文献1参照)。   Conventionally, a configuration has been proposed in which the impedance (internal resistance) of a fuel cell is measured by an AC impedance method, and the state of the fuel cell is diagnosed based on the measured impedance (see, for example, Patent Document 1).

この特許文献1では、燃料電池の単位セルの電圧(セル電圧)を検出するセル電圧センサ、および単位セルの局所部位を流れる電流を検出する局所電流センサの検出値に基づいて、単位セルの局所部位におけるインピーダンスを測定するようにしている。   In Patent Document 1, a local voltage of a unit cell is detected based on a detection value of a cell voltage sensor that detects a voltage (cell voltage) of a unit cell of a fuel cell and a local current sensor that detects a current flowing through a local portion of the unit cell. The impedance at the site is measured.

特開2009−252706号公報JP 2009-252706 A

しかしながら、特許文献1の如く、交流インピーダンス法を用いて交流インピーダンスを測定する構成では、局所電流センサおよびセル電圧センサ(セル電圧検出手段)が必要となるため、燃料電池状態診断装置における部品点数が増加して、コストアップとなる問題がある。特に、セル電圧センサは、特別な絶縁対策等を施す必要があり、コストアップの主要因となる。   However, in the configuration in which the AC impedance is measured using the AC impedance method as in Patent Document 1, a local current sensor and a cell voltage sensor (cell voltage detection means) are required, so the number of parts in the fuel cell state diagnosis device is small. There is a problem that the cost increases. In particular, the cell voltage sensor needs to take special insulation measures and the like, which is a main factor for cost increase.

本発明は上記点に鑑みて、部品点数の増加を招くことなく、燃料電池の状態を診断可能な燃料電池状態診断装置を提供することを目的とする。   An object of the present invention is to provide a fuel cell state diagnosis device capable of diagnosing the state of a fuel cell without causing an increase in the number of parts.

上記目的を達成するため、本発明者らは鋭意検討を重ねた。この結果、燃料電池に対して所定の交流電流を印加した際の電流変動(応答特性)が、燃料電池の状態により異なることに着眼し、燃料電池に交流電流を印加した際の電流変動によって燃料電池の状態を診断する構成を案出した。すなわち、酸素を主成分とする酸化剤ガスと水素を主成分とする燃料ガスとを電気化学反応させて電気エネルギを発生させる単位セル(10)が複数積層された燃料電池(1)の状態を診断する燃料電池状態診断装置であって、燃料電池(1)に対して所定の波形を有する交流電流を印加する交流電流印加手段(51)と、診断対象となる単位セル(10)の局所部位に流れる局所電流を検出する局所電流検出手段(4)と、局所電流から交流成分を抽出して交流成分における周波数特性を算出する周波数特性算出手段(521)と、交流電流における周波数特性と局所電流における周波数特性との対応関係に基づいて燃料電池の状態を診断する状態診断手段(62)と、を備えることを特徴とする。   In order to achieve the above object, the present inventors have made extensive studies. As a result, it is noted that the current fluctuation (response characteristics) when a predetermined alternating current is applied to the fuel cell differs depending on the state of the fuel cell, and the fuel is caused by the current fluctuation when the alternating current is applied to the fuel cell. A configuration for diagnosing the state of the battery has been devised. That is, the state of the fuel cell (1) in which a plurality of unit cells (10) for generating electric energy by electrochemical reaction of an oxidant gas mainly containing oxygen and a fuel gas mainly containing hydrogen are stacked. An apparatus for diagnosing a fuel cell state, comprising: an alternating current applying means (51) for applying an alternating current having a predetermined waveform to the fuel cell (1); and a local part of a unit cell (10) to be diagnosed Local current detecting means (4) for detecting a local current flowing through the current, frequency characteristic calculating means (521) for calculating the frequency characteristics of the alternating current component by extracting the alternating current component from the local current, frequency characteristics and local current in the alternating current And a state diagnosing means (62) for diagnosing the state of the fuel cell on the basis of the correspondence relationship with the frequency characteristic.

これによると、単位セル(10)のセル電圧を検出するセル電圧検出手段を備える必要がないので、部品点数の増加を招くことなく燃料電池(1)の状態を診断することが可能となる。   According to this, since it is not necessary to provide a cell voltage detecting means for detecting the cell voltage of the unit cell (10), it is possible to diagnose the state of the fuel cell (1) without increasing the number of parts.

また、請求項2に記載の発明では、請求項1に記載の燃料電池状態診断装置において、交流電流における周波数特性を入力とし、局所電流における周波数特性を出力とした局所伝達関数を算出する局所伝達関数算出手段(522)と、燃料電池(1)の状態に応じて予め設定された複数の基準伝達関数を記憶する記憶手段(61)と、を備え、状態診断手段(62)は、複数の基準伝達関数から伝達関数算出手段(522)にて算出された局所伝達関数に対応する基準伝達関数を選択し、選択した基準伝達関数に基づいて燃料電池(1)の状態を特定することを特徴とする。   Further, in the invention according to claim 2, in the fuel cell state diagnosis apparatus according to claim 1, the local transfer for calculating the local transfer function having the frequency characteristic in the alternating current as an input and the frequency characteristic in the local current as an output is calculated. A function calculation means (522) and a storage means (61) for storing a plurality of reference transfer functions set in advance according to the state of the fuel cell (1). The state diagnosis means (62) A reference transfer function corresponding to the local transfer function calculated by the transfer function calculating means (522) is selected from the reference transfer function, and the state of the fuel cell (1) is specified based on the selected reference transfer function. And

このように、燃料電池(1)に対して所定の交流電流を印加した際の局所電流の変動を示す局所伝達関数を算出することで、燃料電池(1)の状態を診断することができる。   Thus, the state of the fuel cell (1) can be diagnosed by calculating the local transfer function indicating the fluctuation of the local current when a predetermined alternating current is applied to the fuel cell (1).

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

第1実施形態に係る燃料電池システムの概略構成図である。1 is a schematic configuration diagram of a fuel cell system according to a first embodiment. 第1実施形態に係る信号処理装置の模式図である。1 is a schematic diagram of a signal processing device according to a first embodiment. 局所伝達関数の周波数特性の一例を示すナイキスト線図である。It is a Nyquist diagram which shows an example of the frequency characteristic of a local transfer function. 燃料電池の状態に応じた局所伝達関数の周波数特性を示すナイキスト線図である。It is a Nyquist diagram which shows the frequency characteristic of the local transfer function according to the state of a fuel cell. 交流電流の周波数を変化させた場合の局所伝達関数の周波数特性を示すボード線図である。It is a Bode diagram which shows the frequency characteristic of a local transfer function at the time of changing the frequency of an alternating current. 本実施形態の信号処理装置および制御装置にて行う制御処理を示すフローチャートである。It is a flowchart which shows the control processing performed with the signal processing apparatus and control apparatus of this embodiment. 第2実施形態に係る信号処理装置の模式図である。It is a schematic diagram of the signal processing apparatus which concerns on 2nd Embodiment.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
本発明の第1実施形態について図1〜図6に基づいて説明する。図1は、本実施形態に係る燃料電池システムの概略構成図であり、図2は、本実施形態に係る信号処理装置5の模式図である。この燃料電池システムは、電気自動車の一種である、いわゆる燃料電池車両に適用されており、車両走行用電動モータ等の電気負荷に電力を供給するものである。
(First embodiment)
1st Embodiment of this invention is described based on FIGS. FIG. 1 is a schematic configuration diagram of a fuel cell system according to the present embodiment, and FIG. 2 is a schematic diagram of a signal processing device 5 according to the present embodiment. This fuel cell system is applied to a so-called fuel cell vehicle, which is a kind of electric vehicle, and supplies electric power to an electric load such as an electric motor for vehicle travel.

まず、燃料電池システムは、図1に示すように、水素と酸素との電気化学反応を利用して電力を発生する燃料電池1を備えている。燃料電池1は、図示しない車両走行用電動モータや2次電池といった各種電気負荷に供給される電気エネルギを出力するもので、本実施形態では、固体高分子電解質型燃料電池を採用している。より具体的には、燃料電池1は、基本単位となる単位セル10が複数積層され、各単位セル10が電気的に直列に接続されて構成されたものである。   First, as shown in FIG. 1, the fuel cell system includes a fuel cell 1 that generates electric power using an electrochemical reaction between hydrogen and oxygen. The fuel cell 1 outputs electric energy supplied to various electric loads such as a vehicle driving electric motor and a secondary battery (not shown). In this embodiment, a solid polymer electrolyte fuel cell is employed. More specifically, the fuel cell 1 is configured by stacking a plurality of unit cells 10 as basic units and electrically connecting each unit cell 10 in series.

図2に示すように、各単位セル10は、固体高分子からなる電解質膜100aの両側面に一対の電極100b、100cが配置された膜電極接合体(MEA:Membrane Electrode Assembly)100と、この膜電極接合体100を狭持する一対のセパレータ101、102で構成されている。   As shown in FIG. 2, each unit cell 10 includes a membrane electrode assembly (MEA) 100 in which a pair of electrodes 100b and 100c are disposed on both side surfaces of an electrolyte membrane 100a made of a solid polymer, It consists of a pair of separators 101 and 102 that sandwich the membrane electrode assembly 100.

一対のセパレータ101、102は、カーボン材や導電性金属よりなる板状プレートからなり、アノード電極100bと対向する面に水素が流れる水素流路(図示略)が形成され、カソード電極100cと対向する面に空気が流れる空気流路(図示略)が形成されている。   The pair of separators 101 and 102 is made of a plate plate made of a carbon material or a conductive metal, and a hydrogen flow path (not shown) through which hydrogen flows is formed on a surface facing the anode electrode 100b, and faces the cathode electrode 100c. An air flow path (not shown) through which air flows is formed on the surface.

単位セル10では、以下に示すように、水素と酸素とを電気化学反応させて、電気エネルギを出力する。   In the unit cell 10, as shown below, hydrogen and oxygen are electrochemically reacted to output electric energy.

(負極側:アノード電極)H→2H+2e
(正極側:カソード電極)2H+1/2O+2e→H
図1に戻り、燃料電池1と電気負荷2との間には、双方向に電力を伝達可能なDC−DCコンバータ(図示略)を介して電気的に接続されている。DC−DCコンバータは、燃料電池1から電気負荷、あるいは電気負荷から燃料電池1への電力の流れを制御するものである。
(Negative electrode side: anode electrode) H 2 → 2H + + 2e
(Positive electrode side: cathode electrode) 2H + + 1 / 2O 2 + 2e → H 2 O
Returning to FIG. 1, the fuel cell 1 and the electrical load 2 are electrically connected via a DC-DC converter (not shown) capable of transmitting power in both directions. The DC-DC converter controls the flow of electric power from the fuel cell 1 to the electric load or from the electric load to the fuel cell 1.

燃料電池1における積層された複数の単位セル10の間には、診断対象となる特定の単位セル10(以下、診断対象セル10と称する。)の局所部位に流れる電流(局所電流)を検出する局所電流検出部4(局所電流検出手段)が設けられている。局所電流検出部4は、積層された単位セル10の間の任意の部位に設けることができる。   Between the plurality of unit cells 10 stacked in the fuel cell 1, a current (local current) flowing in a local portion of a specific unit cell 10 (hereinafter referred to as a diagnostic target cell 10) to be diagnosed is detected. A local current detection unit 4 (local current detection means) is provided. The local current detection unit 4 can be provided at any part between the stacked unit cells 10.

局所電流検出部4は、診断対象セル10における水素出口部付近、空気出口部付近を含む複数部位に流れる局所電流を検出するために、複数の電流センサ(本実施形態では5個)を有して構成されている。局所電流検出部4を構成する電流センサとしては、シャント抵抗や磁気等を利用した周知のセンサを用いることができる。局所電流検出部4から出力される出力信号は、後述する信号処理装置5の演算処理部52にて演算処理される。なお、信号処理装置5については後述する。   The local current detection unit 4 includes a plurality of current sensors (5 in the present embodiment) in order to detect local currents flowing in a plurality of parts including the vicinity of the hydrogen outlet and the vicinity of the air outlet in the diagnosis target cell 10. Configured. As the current sensor constituting the local current detection unit 4, a known sensor using a shunt resistance, magnetism, or the like can be used. The output signal output from the local current detection unit 4 is arithmetically processed by the arithmetic processing unit 52 of the signal processing device 5 described later. The signal processing device 5 will be described later.

燃料電池1のカソード電極100c側には、酸素を主成分とする酸化剤ガス(空気)を燃料電池1に供給するための空気供給配管20、並びに、燃料電池1にて電気化学反応を終えた余剰空気および空気極で生成された生成水を燃料電池1から外気へ排出するための空気排出配管21が接続されている。   On the cathode electrode 100 c side of the fuel cell 1, the air supply pipe 20 for supplying an oxidant gas (air) containing oxygen as a main component to the fuel cell 1 and the electrochemical reaction in the fuel cell 1 are finished. An air discharge pipe 21 for discharging surplus air and generated water generated by the air electrode from the fuel cell 1 to the outside air is connected.

空気供給配管20の最上流部には、大気中から吸入した空気を燃料電池1に圧送するための空気ポンプ22が設けられ、空気排出配管21には、燃料電池1内の空気の圧力を調整するための空気調圧弁23が設けられている。なお、本実施形態では、空気ポンプ22および空気調圧弁23によって、所定の流量および圧力の空気を燃料電池1に供給する空気供給手段が構成される。   An air pump 22 for pumping air sucked from the atmosphere to the fuel cell 1 is provided at the most upstream portion of the air supply pipe 20, and an air pressure in the fuel cell 1 is adjusted in the air discharge pipe 21. An air pressure regulating valve 23 is provided. In the present embodiment, the air pump 22 and the air pressure regulating valve 23 constitute air supply means for supplying air of a predetermined flow rate and pressure to the fuel cell 1.

燃料電池1のアノード電極100b側には、水素を主成分とする燃料ガスを燃料電池1に供給するための水素供給配管30、アノード電極100b側に溜まった生成水を微量な水素と共に燃料電池1から外部へ排出するための水素排出配管31が接続されている。   On the anode electrode 100b side of the fuel cell 1, a hydrogen supply pipe 30 for supplying a fuel gas containing hydrogen as a main component to the fuel cell 1, and the generated water collected on the anode electrode 100b side together with a trace amount of hydrogen, the fuel cell 1 A hydrogen discharge pipe 31 for discharging from the outside to the outside is connected.

水素供給配管30の最上流部には、高圧水素が充填された高圧水素タンク32が設けられ、水素供給配管30における高圧水素タンク32と燃料電池1との間には、燃料電池1に供給される水素の圧力を調整する水素調圧弁33が設けられている。なお、本実施形態では、この水素調圧弁33によって、所望の圧力の水素を燃料電池1に供給する燃料ガス側のガス供給手段が構成される。   A high-pressure hydrogen tank 32 filled with high-pressure hydrogen is provided at the uppermost stream portion of the hydrogen supply pipe 30, and is supplied to the fuel cell 1 between the high-pressure hydrogen tank 32 and the fuel cell 1 in the hydrogen supply pipe 30. A hydrogen pressure regulating valve 33 for adjusting the hydrogen pressure is provided. In the present embodiment, the hydrogen pressure regulating valve 33 constitutes a fuel gas side gas supply means for supplying hydrogen at a desired pressure to the fuel cell 1.

水素排出配管31には、生成水を微量な水素とともに外気へ排出するために所定の時間間隔で開閉する電磁弁34が設けられている。なお、上述の電気化学反応では、アノード電極100b側において生成水は発生しないものの、アノード電極100b側には、カソード電極100c側から各セル10の電解質膜100aを透過した生成水が溜まるおそれがある。このため、本実施形態では、水素排出配管31および電磁弁34を設けている。   The hydrogen discharge pipe 31 is provided with an electromagnetic valve 34 that opens and closes at predetermined time intervals in order to discharge the produced water together with a small amount of hydrogen to the outside air. In the above-described electrochemical reaction, generated water is not generated on the anode electrode 100b side, but generated water that has permeated the electrolyte membrane 100a of each cell 10 from the cathode electrode 100c side may accumulate on the anode electrode 100b side. . For this reason, in this embodiment, the hydrogen discharge piping 31 and the solenoid valve 34 are provided.

燃料電池システムには、各種制御を行う発電制御手段としての制御装置(ECU)6が設けられている。この制御装置6は、入力信号に基づいて、燃料電池システムを構成する各種電気式アクチュエータの作動を制御するもので、CPU、およびROM、RAM等の記憶手段61からなる周知のマイクロコンピュータとその周辺回路にて構成されている。   The fuel cell system is provided with a control device (ECU) 6 as power generation control means for performing various controls. The control device 6 controls the operation of various electric actuators constituting the fuel cell system based on an input signal. The control device 6 includes a well-known microcomputer comprising a CPU, a storage means 61 such as a ROM, a RAM, and the like. It consists of a circuit.

具体的には、制御装置6の入力側には、信号処理装置5、および車室内に設けられた車両起動スイッチ6aに接続されており、信号処理装置5および車両起動スイッチ6aからの出力信号が入力される。なお、車両起動スイッチ6aは、空気ポンプ22、空気調圧弁23、水素調圧弁33、電磁弁34等の作動開始信号を出力する開始信号出力手段の機能を兼ねる。なお、制御装置6の出力側には、上述の空気ポンプ22、空気調圧弁23、水素調圧弁33、電磁弁34等の各種電気式アクチュエータ、および信号処理装置5が接続されている。   Specifically, the input side of the control device 6 is connected to a signal processing device 5 and a vehicle activation switch 6a provided in the vehicle interior, and output signals from the signal processing device 5 and the vehicle activation switch 6a are received. Entered. The vehicle start switch 6a also functions as a start signal output unit that outputs operation start signals for the air pump 22, the air pressure regulating valve 23, the hydrogen pressure regulating valve 33, the electromagnetic valve 34, and the like. Note that the electric pump 22, the air pressure regulating valve 23, the hydrogen pressure regulating valve 33, the various electromagnetic actuators such as the electromagnetic valve 34, and the signal processing device 5 are connected to the output side of the control device 6.

本実施形態の制御装置6は、信号処理装置5と双方向に通信可能に構成されており、信号処理装置5からの出力に基づいて、燃料電池1の状態を診断する。本実施形態では、制御装置6の一部および信号処理装置5が燃料電池1の状態を診断する燃料電池状態診断装置として機能する。   The control device 6 of the present embodiment is configured to be capable of bidirectional communication with the signal processing device 5 and diagnoses the state of the fuel cell 1 based on the output from the signal processing device 5. In the present embodiment, a part of the control device 6 and the signal processing device 5 function as a fuel cell state diagnosis device that diagnoses the state of the fuel cell 1.

次に、本実施形態の信号処理装置5について説明する。信号処理装置5は、診断対象セル10の出力電流に対して任意の周波数の交流電流を印加する交流印加部51、および局所電流検出部4で検出された局所電流を演算処理する演算処理部52、診断対象セル10の出力電流を検出する出力電流センサ53等で構成されている。   Next, the signal processing device 5 of the present embodiment will be described. The signal processing device 5 includes an alternating current application unit 51 that applies an alternating current of an arbitrary frequency to the output current of the diagnosis target cell 10, and an arithmetic processing unit 52 that performs arithmetic processing on the local current detected by the local current detection unit 4. The output current sensor 53 detects the output current of the diagnosis target cell 10 and the like.

交流印加部51は、診断対象セル10の出力電流に任意の周波数で正弦波等の交流電流を印加する交流電流印加手段を構成している。本実施形態の交流印加部51は、異なる複数の周波数を合成した交流信号を燃料電池1の出力信号に印加可能に構成されている。なお、交流印加部51にて印加する交流電流は、燃料電池1の発電状態に影響しないように、燃料電池1における発電電流の10%以下とすることが好ましい。   The alternating current application unit 51 constitutes alternating current application means for applying an alternating current such as a sine wave at an arbitrary frequency to the output current of the diagnosis target cell 10. The AC application unit 51 of the present embodiment is configured to be able to apply an AC signal obtained by synthesizing a plurality of different frequencies to the output signal of the fuel cell 1. The alternating current applied by the alternating current application unit 51 is preferably 10% or less of the generated current in the fuel cell 1 so as not to affect the power generation state of the fuel cell 1.

演算処理部52は、交流印加部51にて印加した交流電流と同一周波数の交流成分を抽出し、抽出した交流成分の周波数特性を算出する演算部521と、演算部521での演算結果に基づいて診断対象セルの各局所部位における局所伝達関数Fnを算出する局所伝達関数算出部522を有して構成されている。なお、本実施形態では、演算部521が周波数特性算出手段を構成し、局所伝達関数算出部522が局所伝達関数算出手段を構成している。   The arithmetic processing unit 52 extracts an alternating current component having the same frequency as the alternating current applied by the alternating current applying unit 51, and calculates a frequency characteristic of the extracted alternating current component, based on a calculation result in the calculating unit 521. The local transfer function calculation unit 522 that calculates the local transfer function Fn in each local region of the diagnosis target cell is configured. In the present embodiment, the calculation unit 521 constitutes a frequency characteristic calculation unit, and the local transfer function calculation unit 522 constitutes a local transfer function calculation unit.

演算部521は、交流印加部51にて診断対象セル10に交流電流を印加した際、出力電流センサ53および局所電流検出部4の各電流センサから、交流印加部51にて印加した交流電流と同一周波数の交流成分を抽出し、各交流成分における周波数特性(ゲインや位相差等)を算出する。なお、演算部521で求めた出力電流センサ53の交流成分における周波数特性は、実質的に交流印加部51にて印加した交流電流の周波数特性と同じ特性となる。   When the alternating current application unit 51 applies an alternating current to the diagnosis target cell 10, the calculation unit 521 uses the alternating current applied by the alternating current application unit 51 from each of the output current sensor 53 and the local current detection unit 4. AC components with the same frequency are extracted, and frequency characteristics (gain, phase difference, etc.) for each AC component are calculated. The frequency characteristic of the AC component of the output current sensor 53 obtained by the calculation unit 521 is substantially the same as the frequency characteristic of the AC current applied by the AC application unit 51.

局所伝達関数算出部522は、演算部521で求めた出力電流センサ53の交流成分における周波数特性(全体での電流変動)ΔIを入力とし、局所電流検出部4の各電流センサの交流成分における周波数特性(局所電流変動)Δinを出力とした局所伝達関数Fnを算出する。局所伝達関数算出部522において算出した局所伝達関数Fnの周波数特性は、図3に示すような軌跡となる。図3は、局所伝達関数Fnの周波数特性の一例を示すナイキスト線図であり、図中のRe(F)が実数部、Im(F)が虚数部、Abs(F)がゲイン、θ(F)が位相差を示している。   The local transfer function calculation unit 522 receives the frequency characteristic (overall current fluctuation) ΔI of the AC component of the output current sensor 53 obtained by the calculation unit 521 as an input, and the frequency of the AC component of each current sensor of the local current detection unit 4. A local transfer function Fn with the characteristic (local current fluctuation) Δin as an output is calculated. The frequency characteristic of the local transfer function Fn calculated by the local transfer function calculation unit 522 becomes a locus as shown in FIG. FIG. 3 is a Nyquist diagram showing an example of the frequency characteristic of the local transfer function Fn, where Re (F) is a real part, Im (F) is an imaginary part, Abs (F) is a gain, and θ (F ) Indicates the phase difference.

この局所伝達関数Fnは、診断対象セル10に対して交流電流を印加した際の電流変動(応答特性)を示しており、その周波数特性が燃料電池1の状態に応じて変化する。このため、本実施形態では、制御装置6にて、局所伝達関数算出部522で算出した局所伝達関数Fnに基づいて燃料電池1の状態を診断する診断処理を行う。本実施形態では、制御装置6における燃料電池1の状態を診断する構成(ソフトウェアおよびハードウェアを含む。)を状態診断手段62とする。   The local transfer function Fn indicates a current fluctuation (response characteristic) when an alternating current is applied to the diagnosis target cell 10, and the frequency characteristic changes according to the state of the fuel cell 1. For this reason, in this embodiment, the control device 6 performs a diagnosis process for diagnosing the state of the fuel cell 1 based on the local transfer function Fn calculated by the local transfer function calculation unit 522. In this embodiment, a configuration (including software and hardware) for diagnosing the state of the fuel cell 1 in the control device 6 is referred to as a state diagnosis unit 62.

次に、本実施形態における燃料電池1の状態の診断方法について、図4および図5に基づいて説明する。図4は、燃料電池1の状態に応じた局所伝達関数Fnの周波数特性を示すナイキスト線図である。また、図5は、交流電流の周波数を変化させた場合の局所伝達関数Fnの周波数特性を示すボード線図であり、図5の(a)が周波数を変化させた場合のゲインの変化を示し、(b)が周波数を変化させた場合の位相差の変化を示している。   Next, a method for diagnosing the state of the fuel cell 1 in the present embodiment will be described with reference to FIGS. 4 and 5. FIG. 4 is a Nyquist diagram showing the frequency characteristics of the local transfer function Fn according to the state of the fuel cell 1. FIG. 5 is a Bode diagram showing the frequency characteristics of the local transfer function Fn when the frequency of the alternating current is changed. FIG. 5A shows the change in gain when the frequency is changed. (B) shows the change in phase difference when the frequency is changed.

図4に示すように、燃料電池1の状態が正常状態(正常)、酸素が欠乏した状態(酸素欠乏)、および水素が欠乏した状態(水素欠乏)では、それぞれ異なる周波数特性を示すことが分かる。   As shown in FIG. 4, it can be seen that the fuel cell 1 exhibits different frequency characteristics in a normal state (normal), an oxygen-deficient state (oxygen-deficient), and a hydrogen-deficient state (hydrogen-deficient). .

このため、燃料電池1の状態が正常状態(正常)、酸素が欠乏した状態(酸素欠乏)、および水素が欠乏した状態(水素欠乏)における伝達関数を基準伝達関数として予め制御装置6の記憶手段61に記憶し、記憶手段61に記憶した各基準伝達関数と、局所伝達関数算出部522にて算出した局所伝達関数Fnとを比較することで、燃料電池1の状態を推定することが可能となる。   For this reason, the storage means of the control device 6 is preliminarily stored with the transfer function in the normal state (normal) of the fuel cell 1, the oxygen-deficient state (oxygen-deficient), and the hydrogen-deficient state (hydrogen-deficient) as the reference transfer function. It is possible to estimate the state of the fuel cell 1 by comparing each reference transfer function stored in 61 and the local transfer function Fn calculated by the local transfer function calculation unit 522. Become.

また、図5に示すように、燃料電池1の状態が正常状態(正常)、酸素が欠乏した状態(酸素欠乏)、および水素が欠乏した状態(水素欠乏)では、10Hz以下の周波数帯域で、ゲインおよび位相差が顕著に異なることが分かる。   Further, as shown in FIG. 5, when the fuel cell 1 is in a normal state (normal), in an oxygen-deficient state (oxygen-deficient), and in a hydrogen-deficient state (hydrogen-deficient), in a frequency band of 10 Hz or less, It can be seen that the gain and phase difference are significantly different.

従って、交流印加部51にて印加する交流電流の周波数を10Hz以下とし、当該交流電流を印加した際に局所伝達関数算出部522にて算出した局所伝達関数Fnと、記憶手段61に記憶した各基準伝達関数との対応関係を比較照合することで、燃料電池1の状態を精度よく推定することが可能となる。   Therefore, the frequency of the alternating current applied by the alternating current application unit 51 is set to 10 Hz or less, and when the alternating current is applied, the local transfer function Fn calculated by the local transfer function calculation unit 522 and each of the storage means 61 stored in the storage unit 61. By comparing and collating the correspondence with the reference transfer function, the state of the fuel cell 1 can be accurately estimated.

なお、単位セル10では、水素流路の出口側にて水素欠乏が生じ易いため、水素流路の出口側付近の局所電流を用いて算出した局所伝達関数Fnを用いることで、燃料電池1の水素欠乏を精度よく推定することができる。また、単位セル10では、空気流路の出口側にて酸素欠乏が生じ易いため、空気流路の出口側付近の局所電流を用いて算出した局所伝達関数Fnを用いることで、燃料電池1の酸素欠乏を精度よく推定することができる。   In the unit cell 10, hydrogen deficiency is likely to occur on the outlet side of the hydrogen flow path. Therefore, by using the local transfer function Fn calculated using the local current near the outlet side of the hydrogen flow path, Hydrogen deficiency can be accurately estimated. In the unit cell 10, oxygen deficiency is likely to occur on the outlet side of the air flow path. Therefore, by using the local transfer function Fn calculated using the local current near the outlet side of the air flow path, Oxygen deficiency can be accurately estimated.

次に、上記構成に係る燃料電池システムにおいて、正常状態、水素欠乏状態、および酸素欠乏状態といった三種類の状態を診断する状態診断処理の流れを、図6に示すフローチャートにより説明する。図6に示す制御フローは、車両起動スイッチ6aが投入(ON)されて、燃料電池1の発電状態となるとスタートする。なお、図6では、信号処理装置5および制御装置6にて行う処理を1つのフローチャートで示している。   Next, the flow of the state diagnosis process for diagnosing three types of states of the normal state, the hydrogen deficient state, and the oxygen deficient state in the fuel cell system according to the above configuration will be described with reference to the flowchart shown in FIG. The control flow shown in FIG. 6 starts when the vehicle start switch 6a is turned on (ON) and the fuel cell 1 enters the power generation state. In FIG. 6, processing performed by the signal processing device 5 and the control device 6 is shown in one flowchart.

車両が起動すると、まず、信号処理装置5の交流印加部51から診断対象セル10に単一周波数の正弦波を有する交流電流を印加する(S10)。交流印加部51で印加する交流電流の周波数は、10Hz以下に設定されており、予め記憶手段61に記憶されている。   When the vehicle starts, first, an alternating current having a single frequency sine wave is applied from the alternating current application unit 51 of the signal processing device 5 to the diagnosis target cell 10 (S10). The frequency of the alternating current applied by the alternating current application unit 51 is set to 10 Hz or less, and is stored in the storage unit 61 in advance.

次に、出力電流センサ53および局所電流検出部4の各電流センサからの出力信号を読み込む(S20)。そして、演算処理部52の演算部521にて出力電流センサ53および局所電流検出部4の出力信号から、交流印加部51にて印加した交流電流と同一周波数の交流成分を抽出し、各交流成分における周波数特性を算出する(S30)。   Next, output signals from the output current sensor 53 and each current sensor of the local current detector 4 are read (S20). And the alternating current component of the same frequency as the alternating current applied in the alternating current application part 51 is extracted from the output signal of the output current sensor 53 and the local current detection part 4 in the calculating part 521 of the arithmetic processing part 52, and each alternating current component is extracted. The frequency characteristic at is calculated (S30).

次に、ステップS30にて算出した出力電流センサ53の交流成分における周波数特性(全体での電流変動)ΔIを入力とし、局所電流検出部4の各電流センサの交流成分における周波数特性(局所電流変動)Δinを出力とした局所伝達関数Fnを算出する(S40)。   Next, the frequency characteristic (total current fluctuation) ΔI of the AC component of the output current sensor 53 calculated in step S30 is input, and the frequency characteristic (local current fluctuation) of the AC component of each current sensor of the local current detector 4 is input. ) A local transfer function Fn with Δin as an output is calculated (S40).

次に、ステップS40にて算出した局所伝達関数Fnを、予め記憶手段61に記憶された通常状態、水素欠乏状態、および酸素欠乏状態における基準伝達関数と照合する(S50)。具体的には、交流印加部51にて印加した交流電流と同一周波数における局所伝達関数Fnのゲインおよび位相差に最も近いゲインおよび位相差となる基準伝達関数を選択する。   Next, the local transfer function Fn calculated in step S40 is collated with the reference transfer functions in the normal state, the hydrogen-deficient state, and the oxygen-deficient state stored in advance in the storage unit 61 (S50). Specifically, the reference transfer function that selects the gain and phase difference closest to the gain and phase difference of the local transfer function Fn at the same frequency as the alternating current applied by the AC application unit 51 is selected.

次に、ステップS50にて選択した基準伝達関数に対応する燃料電池1の状態が、水素欠乏であるか否かを判定する(S60)。この結果、水素欠乏であると判定された場合は、今回の燃料電池1の状態を水素欠乏と診断する(S70)。なお、水素欠乏と判定された場合、燃料電池1への水素の供給量が不足していることが原因と考えられるため、例えば、水素調圧弁33の開度を増大させ、高圧水素タンク32からの水素の供給量を増大させることにより、水素欠乏を解消することが可能となる。   Next, it is determined whether or not the state of the fuel cell 1 corresponding to the reference transfer function selected in step S50 is a hydrogen deficiency (S60). As a result, when it is determined that there is a hydrogen deficiency, the current state of the fuel cell 1 is diagnosed as a hydrogen deficiency (S70). If it is determined that the amount of hydrogen is deficient, it is considered that the supply amount of hydrogen to the fuel cell 1 is insufficient. For example, the opening of the hydrogen pressure regulating valve 33 is increased and By increasing the amount of hydrogen supplied, hydrogen deficiency can be eliminated.

一方、ステップS60の判定処理の結果、水素欠乏でないと判定された場合は、ステップS50にて選択した基準伝達関数に対応する燃料電池1の状態が、酸素欠乏であるか否かを判定する(S80)。この結果、酸素欠乏であると判定された場合は、今回の燃料電池1の状態を酸素欠乏と診断し(S90)、酸素欠乏でないと判定された場合は、今回の燃料電池1の状態を正常と診断する(S100)。なお、酸素欠乏と判定された場合、カソード電極100c側に生成水が溜っていることが原因と考えられるので、空気調圧弁23の開度を増大させてカソード側に溜まった生成水を燃料電池1の内部から排出することで、酸素欠乏を解消することが可能となる。   On the other hand, as a result of the determination process in step S60, when it is determined that there is no hydrogen deficiency, it is determined whether the state of the fuel cell 1 corresponding to the reference transfer function selected in step S50 is oxygen deficient ( S80). As a result, when it is determined that there is an oxygen deficiency, the current state of the fuel cell 1 is diagnosed as being oxygen deficient (S90), and when it is determined that there is no oxygen deficiency, the current state of the fuel cell 1 is normal. Is diagnosed (S100). If it is determined that there is an oxygen deficiency, it is considered that the generated water is accumulated on the cathode electrode 100c side. Therefore, the generated water accumulated on the cathode side is increased by increasing the opening of the air pressure regulating valve 23. By exhausting from inside 1, it becomes possible to eliminate oxygen deficiency.

以上説明した本実施形態の構成によれば、燃料電池1における診断対象セル10に対して所定の交流電流を印加した際の局所電流の変動を示す局所伝達関数Fnを算出することで、燃料電池1の状態を診断することができる。このような構成では、単位セル10のセル電圧を検出するセル電圧検出手段を備える必要がないので、部品点数の増加を招くことなく燃料電池1の状態を診断することが可能となる。従って、燃料電池1の状態を診断する構成によって燃料電システムのコストが増大してしまうことを回避することができる。   According to the configuration of the present embodiment described above, the fuel cell is calculated by calculating the local transfer function Fn indicating the fluctuation of the local current when a predetermined alternating current is applied to the diagnosis target cell 10 in the fuel cell 1. One state can be diagnosed. In such a configuration, since it is not necessary to provide a cell voltage detecting means for detecting the cell voltage of the unit cell 10, it is possible to diagnose the state of the fuel cell 1 without increasing the number of parts. Therefore, it is possible to avoid an increase in the cost of the fuel electric system due to the configuration for diagnosing the state of the fuel cell 1.

(第2実施形態)
次に、本発明の第2実施形態について図7に基づいて説明する。図7は、本実施形態に係る信号処理装置5の模式図である。なお、本実施形態では、第1実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 7 is a schematic diagram of the signal processing device 5 according to the present embodiment. In the present embodiment, description of the same or equivalent parts as in the first embodiment will be omitted or simplified.

上述の第1実施形態では、交流印加部51にて単一周波数の交流電流を印加するようにしているが、本実施形態では、交流印加部51にて異なる周波数を合成した合成波を有する交流電流を印加するようにしている。なお、交流電流は、燃料電池1の状態により周波数特性が顕著に異なる傾向を示す周波数同士を合成した合成波とすることが好ましい。   In the first embodiment described above, an alternating current having a single frequency is applied by the alternating current application unit 51. However, in this embodiment, an alternating current having a combined wave obtained by combining different frequencies by the alternating current application unit 51. An electric current is applied. Note that the alternating current is preferably a combined wave obtained by synthesizing frequencies that tend to have frequency characteristics that are significantly different depending on the state of the fuel cell 1.

具体的には、本実施形態の信号処理装置5の演算処理部52には、FFT処理部523が設けられている。このFFT処理部523は、FFT(高速フーリエ変換)により、出力電流センサ53および局所電流検出部4の各電流センサからの出力信号から異なる周波数毎に交流成分を抽出するものである。   Specifically, an FFT processing unit 523 is provided in the arithmetic processing unit 52 of the signal processing device 5 of the present embodiment. The FFT processing unit 523 extracts an AC component for each different frequency from output signals from the output current sensor 53 and the current sensors of the local current detection unit 4 by FFT (Fast Fourier Transform).

本実施形態の演算処理部52では、FFT処理部523にて、出力電流センサ53および局所電流検出部4の各電流センサからの出力信号から異なる周波数毎に交流成分を抽出し、演算部521にてFFT処理部523で抽出された各交流成分の周波数特性を算出する。   In the arithmetic processing unit 52 of the present embodiment, the FFT processing unit 523 extracts an AC component for each different frequency from the output signals from the current sensors of the output current sensor 53 and the local current detection unit 4, and outputs the AC component to the arithmetic unit 521. The frequency characteristic of each AC component extracted by the FFT processing unit 523 is calculated.

本実施形態の構成によれば、異なる周波数を合成した合成波形の交流電流を印加することで、局所伝達関数算出部522にて周波数特性の異なる局所伝達関数Fnを一度に算出することが可能となる。さらに、燃料電池1の状態により周波数特性が顕著に異なる傾向を示す周波数同士を合成した合成波の交流電流を診断対象セル10に印加した場合、局所伝達関数算出部522にて、基準伝達関数の周波数特性に強い相関を有する局所伝達関数Fnを算出することが可能となる。この結果、燃料電池1の状態を診断する際の診断精度の向上を図ることができる。   According to the configuration of the present embodiment, it is possible to calculate the local transfer function Fn having different frequency characteristics at a time by the local transfer function calculation unit 522 by applying an alternating current having a combined waveform obtained by combining different frequencies. Become. Furthermore, when an alternating current of a combined wave obtained by synthesizing frequencies whose frequency characteristics tend to be significantly different depending on the state of the fuel cell 1 is applied to the diagnosis target cell 10, the local transfer function calculation unit 522 It becomes possible to calculate the local transfer function Fn having a strong correlation with the frequency characteristic. As a result, it is possible to improve the diagnostic accuracy when diagnosing the state of the fuel cell 1.

(他の実施形態)
以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、各請求項に記載した範囲を逸脱しない限り、各請求項の記載文言に限定されず、当業者がそれらから容易に置き換えられる範囲にも及び、かつ、当業者が通常有する知識に基づく改良を適宜付加することができる。例えば、以下のように種々変形可能である。
(Other embodiments)
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, Unless it deviates from the range described in each claim, it is not limited to the wording of each claim, and those skilled in the art Improvements based on the knowledge that a person skilled in the art normally has can be added as appropriate to the extent that they can be easily replaced. For example, various modifications are possible as follows.

(1)上述の第1実施形態では、演算部521にて出力電流センサ53の交流成分における周波数特性を算出し、算出した出力電流センサ53の交流成分における周波数特性を局所伝達関数Fnの入力としているが、これに限定されない。演算部521で求めた出力電流センサ53の交流成分における周波数特性は、実質的に交流印加部51にて印加した交流電流の周波数特性と同じ特性となるため、交流印加部51にて印加する交流電流の周波数特性を局所伝達関数Fnの入力としてもよい。これによれば、出力電流センサ53を省略することができるので、燃料電池1の状態を診断する構成の部品点数の低減を図ることができる。   (1) In the first embodiment described above, the calculation unit 521 calculates the frequency characteristic of the AC component of the output current sensor 53, and uses the calculated frequency characteristic of the AC component of the output current sensor 53 as the input of the local transfer function Fn. However, it is not limited to this. Since the frequency characteristic of the AC component of the output current sensor 53 obtained by the calculation unit 521 is substantially the same as the frequency characteristic of the AC current applied by the AC application unit 51, the AC applied by the AC application unit 51 The frequency characteristic of the current may be used as the input of the local transfer function Fn. According to this, since the output current sensor 53 can be omitted, the number of parts having a configuration for diagnosing the state of the fuel cell 1 can be reduced.

(2)上述の各実施形態では、各伝達関数のゲインおよび位相差の相関に基づいて局所伝達関数Fnと基準伝達関数とを照合する例を説明したが、これに限定されず、例えば、各伝達関数におけるゲインおよび位相差と、局所電流検出部4にて検出した電流値との組み合わせにより照合するようにしてもよい。   (2) In each of the above-described embodiments, the example in which the local transfer function Fn and the reference transfer function are collated based on the correlation between the gain and the phase difference of each transfer function has been described. You may make it collate by the combination of the gain and phase difference in a transfer function, and the electric current value detected in the local electric current detection part 4. FIG.

(3)上述の各実施形態のように、交流印加部51にて印加する交流電流の周波数を10Hz以下とすることが好ましいが、これに限定されず、例えば、0.1Hz〜数百kHzまでの間の任意の周波数としてもよい。   (3) As in the above-described embodiments, the frequency of the alternating current applied by the alternating current application unit 51 is preferably 10 Hz or less, but is not limited to this, for example, from 0.1 Hz to several hundred kHz. It is good also as arbitrary frequency between.

(4)上述の各実施形態では、交流印加部51にて印加する交流電流の周波数を一定としているが、これに限定されず、例えば、交流印加部51にて印加する交流電流の周波数を可変させ、変化させた周波数毎に燃料電池1の状態を診断するようにしてもよい。   (4) In the above-described embodiments, the frequency of the alternating current applied by the alternating current application unit 51 is constant. However, the present invention is not limited to this. For example, the frequency of the alternating current applied by the alternating current application unit 51 is variable. The state of the fuel cell 1 may be diagnosed for each changed frequency.

(5)上述の各実施形態では、局所電流検出部4を単位セル10の局所部位(複数箇所)に複数の電流センサで構成する例を説明したが、これに限定されず、例えば、単位セル10の局所部位(一箇所)に対応して配置された単一の電流センサで構成してもよい。   (5) In each of the above-described embodiments, the example in which the local current detection unit 4 is configured with a plurality of current sensors in the local part (plural places) of the unit cell 10 is described. However, the present invention is not limited to this. You may comprise with the single electric current sensor arrange | positioned corresponding to ten local site | parts (one place).

(6)上述の各実施形態では、交流印加部51にて診断対象セル10に対して単一周波数の正弦波、または正弦波を合成した合成波を有する交流電流を印加する構成としているが、これに限定されず、例えば、単一周波数の矩形波やインパルス波、または、これらの合成波を有する交流電流を印加する構成としてもよい。   (6) In each of the above-described embodiments, the alternating current application unit 51 is configured to apply an alternating current having a single frequency sine wave or a synthesized wave obtained by synthesizing the sine wave to the diagnosis target cell 10. However, the present invention is not limited to this. For example, a configuration may be adopted in which an alternating current having a single-frequency rectangular wave or impulse wave, or a synthesized wave thereof is applied.

(7)上述の各実施形態では、交流印加部51にて診断対象セル10に対して交流電流を印加する構成としているが、これに限定されず、例えば、DC−DCコンバータを用いて診断対象セル10に対して交流電流を印加する構成としてもよい。これにより、燃料電池1の状態を診断する構成の部品点数の低減を図ることができる。   (7) In each above-mentioned embodiment, although it is set as the structure which applies an alternating current with respect to the diagnostic object cell 10 in the alternating current application part 51, it is not limited to this, For example, it is a diagnostic object using a DC-DC converter. It is good also as a structure which applies an alternating current with respect to the cell 10. FIG. Thereby, reduction of the number of parts of the structure which diagnoses the state of the fuel cell 1 can be aimed at.

(8)上述の各実施形態では、信号処理装置5および制御装置6にて正常状態、水素欠乏状態、および酸素欠乏状態といった三種類の状態を診断する状態診断処理を行う例を説明したが、これに限定されない。例えば、燃料電池1の単位セル10の局所部位が乾燥するドライアップ、燃料電池1の単位セル10へ過剰に水素が供給される水素供給過剰、燃料電池1の単位セル10へ過剰に酸素(空気)が供給される酸素供給過剰等においても、局所伝達関数Fnが異なる周波数特性が示す。このため、ドライアップ、水素供給過剰、酸素供給過剰等の状態における局所伝達関数Fnを算出し、ドライアップ、水素供給過剰、酸素供給過剰等の状態を診断するようにしてもよい。   (8) In each of the above-described embodiments, the signal processing device 5 and the control device 6 have been described as examples of performing the state diagnosis processing for diagnosing three types of states such as a normal state, a hydrogen deficient state, and an oxygen deficient state. It is not limited to this. For example, a dry-up in which a local part of the unit cell 10 of the fuel cell 1 is dried, an excessive hydrogen supply in which hydrogen is excessively supplied to the unit cell 10 of the fuel cell 1, and an excessive amount of oxygen (air) to the unit cell 10 of the fuel cell 1 ), The frequency characteristics of the local transfer function Fn are different. Therefore, a local transfer function Fn in a state such as dry-up, excessive hydrogen supply, excessive oxygen supply, or the like may be calculated to diagnose a state such as dry-up, excessive hydrogen supply, excessive oxygen supply, or the like.

(9)上述の各実施形態では、局所電流検出部4および出力電流センサ53からの出力信号を信号処理装置5の演算処理部52にて演算する例を説明したが、これに限定されず、例えば、演算処理部52にて行う処理を、制御装置6にて行うようにしてもよい。   (9) In each of the above-described embodiments, the example in which the output signals from the local current detection unit 4 and the output current sensor 53 are calculated by the calculation processing unit 52 of the signal processing device 5 has been described. For example, the processing performed by the arithmetic processing unit 52 may be performed by the control device 6.

(10)上述の各実施形態では、燃料電池車両に搭載された燃料電池1の状態を診断する例を説明したが、これに限定されず、船舶及びポータブル発電器等の移動体や設置型の燃料電池1の状態を診断するようにしてもよい。   (10) In each of the above-described embodiments, the example of diagnosing the state of the fuel cell 1 mounted on the fuel cell vehicle has been described. However, the present invention is not limited to this, and it is not limited to this. The state of the fuel cell 1 may be diagnosed.

1 燃料電池
10 単位セル
4 局所電流検出部(局所電流検出手段)
51 交流印加部(交流電流印加手段)
521 演算部(周波数特性算出手段)
522 局所伝達関数算出部(局所伝達関数算出手段)
61 記憶手段
62 状態診断手段
DESCRIPTION OF SYMBOLS 1 Fuel cell 10 Unit cell 4 Local current detection part (local current detection means)
51 AC application section (AC current application means)
521 Calculation unit (frequency characteristic calculation means)
522 Local transfer function calculation unit (local transfer function calculation means)
61 Storage means 62 State diagnosis means

Claims (2)

酸素を主成分とする酸化剤ガスと水素を主成分とする燃料ガスとを電気化学反応させて電気エネルギを発生させる単位セル(10)が複数積層された燃料電池(1)の状態を診断する燃料電池状態診断装置であって、
前記燃料電池(1)に対して所定の波形を有する交流電流を印加する交流電流印加手段(51)と、
診断対象となる前記単位セル(10)の局所部位に流れる局所電流を検出する局所電流検出手段(4)と、
前記局所電流から交流成分を抽出して前記交流成分における周波数特性を算出する周波数特性算出手段(521)と、
前記交流電流における周波数特性と前記局所電流における周波数特性との対応関係に基づいて前記燃料電池の状態を診断する状態診断手段(62)と、
を備えることを特徴とする燃料電池状態診断装置。
Diagnosing the state of the fuel cell (1) in which a plurality of unit cells (10) for generating electric energy by electrochemical reaction of an oxidant gas mainly containing oxygen and a fuel gas mainly containing hydrogen are stacked. A fuel cell condition diagnosis device,
AC current application means (51) for applying an AC current having a predetermined waveform to the fuel cell (1);
Local current detection means (4) for detecting a local current flowing in a local part of the unit cell (10) to be diagnosed;
Frequency characteristic calculating means (521) for extracting an alternating current component from the local current and calculating a frequency characteristic in the alternating current component;
A state diagnosing means (62) for diagnosing the state of the fuel cell based on the correspondence relationship between the frequency characteristic in the alternating current and the frequency characteristic in the local current;
A fuel cell state diagnosis apparatus comprising:
前記交流電流における周波数特性を入力とし、前記局所電流における周波数特性を出力とした局所伝達関数を算出する局所伝達関数算出手段(522)と、
前記燃料電池(1)の状態に応じて予め設定された複数の基準伝達関数を記憶する記憶手段(61)と、を備え、
前記状態診断手段(62)は、前記複数の基準伝達関数から前記伝達関数算出手段(522)にて算出された前記局所伝達関数に対応する基準伝達関数を選択し、選択した基準伝達関数に基づいて前記燃料電池(1)の状態を特定することを特徴とする請求項1に記載の燃料電池状態診断装置。
A local transfer function calculating means (522) for calculating a local transfer function having the frequency characteristic in the alternating current as an input and the frequency characteristic in the local current as an output;
Storage means (61) for storing a plurality of reference transfer functions set in advance according to the state of the fuel cell (1),
The state diagnosis means (62) selects a reference transfer function corresponding to the local transfer function calculated by the transfer function calculation means (522) from the plurality of reference transfer functions, and based on the selected reference transfer function The fuel cell state diagnosis apparatus according to claim 1, wherein the state of the fuel cell (1) is specified.
JP2011061073A 2011-03-18 2011-03-18 Fuel cell condition diagnosis device Active JP5742333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011061073A JP5742333B2 (en) 2011-03-18 2011-03-18 Fuel cell condition diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011061073A JP5742333B2 (en) 2011-03-18 2011-03-18 Fuel cell condition diagnosis device

Publications (2)

Publication Number Publication Date
JP2012199010A true JP2012199010A (en) 2012-10-18
JP5742333B2 JP5742333B2 (en) 2015-07-01

Family

ID=47181063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011061073A Active JP5742333B2 (en) 2011-03-18 2011-03-18 Fuel cell condition diagnosis device

Country Status (1)

Country Link
JP (1) JP5742333B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448766B1 (en) * 2012-12-27 2014-10-10 현대자동차 주식회사 Diagnosis system for fuel cell stack
KR101448767B1 (en) * 2012-12-27 2014-10-13 현대자동차 주식회사 Heat management system during diagnosing fuel cell stack
CN110462434A (en) * 2017-03-09 2019-11-15 法雷奥开关和传感器有限责任公司 Method, ultrasonic sensor apparatus and the motor vehicles of the functional status of ultrasonic sensor are determined using the transfer function of ultrasonic sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297408A (en) * 2002-01-31 2003-10-17 Denso Corp Water content sensor and fuel cell system using the same
JP2009252706A (en) * 2008-04-11 2009-10-29 Denso Corp Impedance measuring device of fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297408A (en) * 2002-01-31 2003-10-17 Denso Corp Water content sensor and fuel cell system using the same
JP2009252706A (en) * 2008-04-11 2009-10-29 Denso Corp Impedance measuring device of fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448766B1 (en) * 2012-12-27 2014-10-10 현대자동차 주식회사 Diagnosis system for fuel cell stack
KR101448767B1 (en) * 2012-12-27 2014-10-13 현대자동차 주식회사 Heat management system during diagnosing fuel cell stack
US9423468B2 (en) 2012-12-27 2016-08-23 Hyundai Motor Company Diagnostic system and method for fuel cell stack
CN110462434A (en) * 2017-03-09 2019-11-15 法雷奥开关和传感器有限责任公司 Method, ultrasonic sensor apparatus and the motor vehicles of the functional status of ultrasonic sensor are determined using the transfer function of ultrasonic sensor

Also Published As

Publication number Publication date
JP5742333B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5793989B2 (en) Fuel cell condition diagnosis device
JP5724911B2 (en) Fuel cell diagnostic device
JP4821962B2 (en) Fuel cell system
EP2124280B1 (en) A fuel cell system, electrode catalyst degradation judgment method, and moving body
KR101592704B1 (en) Method for diagnosing state of fuel cell stack and controlling fuel cell system
JP5838773B2 (en) Fuel cell diagnostic device
JP5849864B2 (en) Fuel cell diagnostic device
EP2306572B1 (en) Fuel cell system
JP5617749B2 (en) Gas concentration measuring device
EP3136486A1 (en) Diagnostic device
JP2014203562A (en) Fuel cell monitoring device
JP2013109949A (en) Fuel cell system
JP5811958B2 (en) Dry / wet index measuring device and fuel cell diagnostic device
JP5742333B2 (en) Fuel cell condition diagnosis device
JP5857454B2 (en) Fuel cell system
JP5779952B2 (en) Fuel cell system
US10714775B2 (en) Fuel cell system
CN108140856B (en) Method and device for determining state of fuel cell
JP6024315B2 (en) Fuel cell diagnostic device
CA2972354A1 (en) State detection device and method for fuel cell
JP2009193900A (en) Fuel cell system
JP6380534B2 (en) Fuel cell impedance measuring apparatus and fuel cell impedance measuring method
JP6642229B2 (en) Fuel cell system
JP2005209577A (en) Fuel cell system
JP2017168299A (en) Flooding determination method in fuel battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5742333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250