JP2012198049A - Attachment structure for sensor element - Google Patents

Attachment structure for sensor element Download PDF

Info

Publication number
JP2012198049A
JP2012198049A JP2011060880A JP2011060880A JP2012198049A JP 2012198049 A JP2012198049 A JP 2012198049A JP 2011060880 A JP2011060880 A JP 2011060880A JP 2011060880 A JP2011060880 A JP 2011060880A JP 2012198049 A JP2012198049 A JP 2012198049A
Authority
JP
Japan
Prior art keywords
hall element
circuit board
sensor element
lead frame
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011060880A
Other languages
Japanese (ja)
Inventor
Yoshitaro Arai
由太郎 荒井
Nagaoki Kayama
長興 嘉山
Kenji Kozuki
健次 上月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP2011060880A priority Critical patent/JP2012198049A/en
Priority to KR1020110045036A priority patent/KR20120106507A/en
Priority to CN2011101775634A priority patent/CN102679863A/en
Publication of JP2012198049A publication Critical patent/JP2012198049A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/05Flexible printed circuits [FPCs]

Abstract

PROBLEM TO BE SOLVED: To provide a sensor element that is minimally displaced due to an influence of an ambient temperature for accurately detecting minute displacement.SOLUTION: A flat surface portion of a Hall element 12 is adhered tightly onto a cut surface 16 formed on a shaft 11 with an adhesive, so as to support a circuit board 13 in the air by a lead frame 14. Owing to this structure, even when the lead frame 14 or a solder 15 is thermally expanded, or even when the circuit board 13 is deformed, the Hall element 12 is never displaced against the shaft 11 and measurement accuracy for a rotation angle of the shaft 11 is minimally affected.

Description

本発明は、例えばホール素子等のセンサ素子の取付構造に関するものである。   The present invention relates to a mounting structure for a sensor element such as a Hall element.

金属の薄片から成る一般的なホール素子においては、図3に示すように磁束密度検出面であるチップ面Tに直交する磁界の磁束密度をBとし、ホール素子1に定電流Iを流すと、磁束密度Bによりローレンツ力を受けて起電力が発生する。ホール素子1の出力Vは、Kをホール係数、dをホール素子の厚みとすると、次の(1)式となる。
V=(K/d)B・I …(1)
In a general Hall element made of a thin piece of metal, when the magnetic flux density of a magnetic field orthogonal to the chip surface T that is a magnetic flux density detection surface is B as shown in FIG. An electromotive force is generated by receiving the Lorentz force by the magnetic flux density B. The output V of the Hall element 1 is expressed by the following equation (1), where K is the Hall coefficient and d is the thickness of the Hall element.
V = (K / d) B · I (1)

ホール素子1から成る角度センサでは、磁界方向に対するチップ面Tの角度を検出している。   The angle sensor composed of the Hall element 1 detects the angle of the chip surface T with respect to the magnetic field direction.

しかし、この角度等を検出するためのホール素子1は、周囲温度等により取付位置が変位することがあり、検出精度への影響が生じ易い。   However, the mounting position of the Hall element 1 for detecting this angle or the like may be displaced due to the ambient temperature or the like, and the detection accuracy is likely to be affected.

一般に図4に示すように、ホール素子1からは複数本のリードフレーム2が引き出され、半田3を介して回路基板4に固定されている。そして、例えば被固定体であるシャフト5の切削面等に取り付ける場合には、回路基板4をシャフト5に接着し、ホール素子1はリードフレーム2を介して中空に支持される。   In general, as shown in FIG. 4, a plurality of lead frames 2 are drawn out from the Hall element 1 and fixed to the circuit board 4 via solder 3. For example, when attaching to the cutting surface of the shaft 5 that is a fixed body, the circuit board 4 is bonded to the shaft 5, and the Hall element 1 is supported hollowly via the lead frame 2.

しかし、このホール素子1を用いてシャフト5の回転角度を測定する場合に、シャフト5の回転角度が極めて小さく、例えば5秒程度の分解能が必要な場合には、ホール素子1を搭載する回路基板4、半田3、リードフレーム2の熱膨張等による変形が検出精度に影響してくる。   However, when the rotation angle of the shaft 5 is measured using the Hall element 1, if the rotation angle of the shaft 5 is extremely small and, for example, a resolution of about 5 seconds is required, the circuit board on which the Hall element 1 is mounted. 4. Deformation due to thermal expansion or the like of the solder 3 and the lead frame 2 affects the detection accuracy.

つまり、回路基板4が温度により変形し易い材料であったり、リードフレーム2の長さや半田3の量に差があると、周囲温度の影響により回路基板4が反ったり、或いは図5に示すように半田3やリードフレーム2が熱膨張し、ホール素子1が傾いて変位し、高精度の測定が困難となる。   That is, if the circuit board 4 is a material that easily deforms depending on the temperature, or if there is a difference in the length of the lead frame 2 or the amount of solder 3, the circuit board 4 warps due to the influence of the ambient temperature, or as shown in FIG. Further, the solder 3 and the lead frame 2 are thermally expanded, and the Hall element 1 is tilted and displaced, which makes it difficult to measure with high accuracy.

この課題の1つの解決法として、ホール素子1のパッケージ部を回路基板4に接着し、ホール素子1が動かないようにする方法が考えられるが、熱膨張を阻害されたリードフレーム2がホール素子1のパッケージを歪ませ、この歪みがパッケージ内部の回路基板4を歪ませ、更にはホール素子1を変位させるという新たな問題が生ずる。回路基板4が歪んでも、ホール素子1が単結晶の場合には歪みが少ないが、石英ガラス上にGaAsをスパッタリングしたホール素子1のような場合は歪み易いため、その影響が顕著となる。   One solution to this problem is to attach the package portion of the Hall element 1 to the circuit board 4 so that the Hall element 1 does not move. 1 is distorted, and this distortion distorts the circuit board 4 inside the package, and further causes a new problem that the Hall element 1 is displaced. Even if the circuit board 4 is distorted, if the Hall element 1 is a single crystal, the distortion is small. However, in the case of the Hall element 1 in which GaAs is sputtered on quartz glass, the distortion is likely to occur, and the influence becomes significant.

本発明の目的は、上述の問題点を解消し、センサ素子のリードフレームや、リードフレームと回路基板とを接続する半田等の熱膨張の影響を受け難くし、微小変位の検出を精度良く実施できるセンサ素子の取付構造を提供することにある。   The object of the present invention is to eliminate the above-mentioned problems, make it less susceptible to thermal expansion of the lead frame of the sensor element and the solder connecting the lead frame and the circuit board, etc., and accurately detect minute displacements. An object of the present invention is to provide a mounting structure for a sensor element.

上記目的を達成するための本発明に係るセンサ素子の取付構造は、回路基板にリードフレームを介して取り付けたセンサ素子を被固定体に取り付けるセンサ素子の取付構造において、前記被固定体に前記センサ素子の面を接着剤により接着し、前記回路基板を前記リードフレームを介して中空に支持したことを特徴とする。   In order to achieve the above object, the sensor element mounting structure according to the present invention is a sensor element mounting structure in which a sensor element mounted on a circuit board via a lead frame is mounted on a fixed body, and the sensor is mounted on the fixed body. The element surface is bonded with an adhesive, and the circuit board is supported in a hollow state via the lead frame.

本発明に係るセンサ素子の取付構造によれば、センサ素子を直接に被固定体に接着するので周囲環境の温度が変化してもセンサ素子の変位が生じ難い。   According to the sensor element mounting structure of the present invention, since the sensor element is directly bonded to the fixed body, even if the temperature of the surrounding environment changes, the sensor element is hardly displaced.

実施例1の構成図である。1 is a configuration diagram of Example 1. FIG. 実施例2の構成図である。FIG. 6 is a configuration diagram of Example 2. ホール素子の原理的構成図である。It is a principle block diagram of a Hall element. 従来のホール素子の取付方法の説明図である。It is explanatory drawing of the attachment method of the conventional Hall element. ホール素子が傾いた状態の説明図である。It is explanatory drawing of the state in which the Hall element inclined.

本発明を図1、図2に図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiment shown in FIGS.

図1は本実施例におけるセンサ素子としてのホール素子の取付構造の構成図を示している。例えば、フロート式液面計においては、フロートの上下位置を検出して液位を検出しているが、フロートの上下動をシャフト11の回転に変換し、シャフト11の回転角度から液位を求めることがある。   FIG. 1 shows a configuration diagram of a mounting structure of a Hall element as a sensor element in the present embodiment. For example, in the float type liquid level gauge, the liquid level is detected by detecting the vertical position of the float, but the vertical movement of the float is converted into the rotation of the shaft 11, and the liquid level is obtained from the rotation angle of the shaft 11. Sometimes.

このシャフト11の回転角度を検出する場合に、被固定体として非磁性体である金属製のシャフト11にホール素子12を取り付け、磁界中においてホール素子12に定電流を流すことにより、ホール素子12の出力値からホール素子12の角度変位、つまりシャフト11の回転角を知ることができる。   When the rotation angle of the shaft 11 is detected, the Hall element 12 is attached to a metal shaft 11 that is a non-magnetic material as a fixed body, and a constant current is passed through the Hall element 12 in a magnetic field. From the output value, the angular displacement of the Hall element 12, that is, the rotation angle of the shaft 11 can be known.

本実施例1における回路基板13は、ホール素子12のリードフレーム14の膨張や収縮を阻害しないようにするために、例えば変形し易いフレキシブル基板を用い、この回路基板13にホール素子12は例えば4本のリードフレーム14、半田15を介して接続されている。   The circuit board 13 according to the first embodiment uses, for example, a flexible board that is easily deformed so as not to hinder the expansion and contraction of the lead frame 14 of the hall element 12. The lead frame 14 and the solder 15 are connected to each other.

リードフレーム14の回路基板13への接続に際しては、半田15の量は均一となるようにし、回路基板13にホール素子12を搭載する際には、ホール素子12に永久歪を生じさせるような外力を加えないように注意する必要がある。   When the lead frame 14 is connected to the circuit board 13, the amount of solder 15 is made uniform, and when the Hall element 12 is mounted on the circuit board 13, an external force that causes permanent distortion in the Hall element 12. Care must be taken not to add.

シャフト11に形成した平坦な切削面16に、ホール素子12の表面の平担部が密着するように接着剤により接着し、回路基板13をリードフレーム14により中空に支持する。このとき、接着剤が熱膨張しても接着剤の厚み差によりホール素子12の傾きが生じないように、接着剤はできる限り薄く均一に塗布することが好ましい。また、ホール素子12は電気絶縁層によりコーティングされているが、ホール素子12とシャフト11の間に絶縁板等を介在してもよい。   The flat cutting surface 16 formed on the shaft 11 is bonded with an adhesive so that the flat portion of the surface of the Hall element 12 is in close contact, and the circuit board 13 is supported hollow by the lead frame 14. At this time, it is preferable to apply the adhesive as thinly and uniformly as possible so that the Hall element 12 is not inclined due to the thickness difference of the adhesive even if the adhesive is thermally expanded. The Hall element 12 is coated with an electrical insulating layer, but an insulating plate or the like may be interposed between the Hall element 12 and the shaft 11.

なお、回路基板13上のIC等の回路素子は回路基板13の表面又は裏面或いは双方に配置してもよい。   Note that circuit elements such as ICs on the circuit board 13 may be disposed on the front surface, the back surface, or both of the circuit board 13.

更に、必要に応じて回路基板13、ホール素子12、リードフレーム14の周囲には樹脂17をモールドし、電気絶縁性等を確保すると共に、他物品の衝突から保護することが好ましい。   Furthermore, it is preferable to mold a resin 17 around the circuit board 13, the hall element 12, and the lead frame 14 as necessary to ensure electrical insulation and the like and to protect against collisions with other articles.

このような構造にすることにより、リードフレーム14や半田15に熱膨張が生じても、或いは回路基板13が変形しても、シャフト11の切削面16に接着したホール素子12はシャフト11に対して変位することはなく、シャフト11の回転角の測定精度に及ぼす影響は少ない。   With such a structure, the Hall element 12 adhered to the cutting surface 16 of the shaft 11 is attached to the shaft 11 even if thermal expansion occurs in the lead frame 14 or the solder 15 or the circuit board 13 is deformed. And the influence on the measurement accuracy of the rotation angle of the shaft 11 is small.

図2は実施例2におけるホール素子12の取付構造の構成図を示し、実施例1と同一の部材には同一の符号を付している。   FIG. 2 is a configuration diagram of the mounting structure of the Hall element 12 in the second embodiment, and the same members as those in the first embodiment are denoted by the same reference numerals.

本実施例2においては、ホール素子12をシャフト11に接着し、リードフレーム14を介して回路基板13を中空に配置することは実施例1と同様である。   In the second embodiment, the Hall element 12 is bonded to the shaft 11 and the circuit board 13 is arranged in a hollow via the lead frame 14 as in the first embodiment.

しかし、回路基板13にはホール素子12を非接触で収容するための孔部18が形成されており、ホール素子12はこの孔部18内に配置されている。このように構成することにより、全体として高さが低くなり、構造的に安定する。また、これらの上に樹脂17をモールドすることが好ましいことは、実施例1と同様である。   However, the circuit board 13 has a hole 18 for receiving the Hall element 12 in a non-contact manner, and the Hall element 12 is disposed in the hole 18. By comprising in this way, height becomes low as a whole and it becomes structurally stable. Further, it is preferable to mold the resin 17 on these, as in the first embodiment.

本実施例1、2においては、センサ素子として角度を検出するためのホール素子を用いて説明したが、ホール素子以外にも、磁気抵抗素子、装着位置関係の安定性を要求する他の位置検出センサ、更にはセンサに光を供給するための光ダイオード等にも適用可能である。   In the first and second embodiments, the Hall element for detecting the angle is used as the sensor element. However, in addition to the Hall element, other position detections that require stability of the magnetoresistive element and the mounting position relationship. The present invention can also be applied to a sensor, and further to a photodiode for supplying light to the sensor.

11 シャフト
12 ホール素子
13 回路基板
14 リードフレーム
15 半田
16 切削面
17 樹脂
18 孔部
DESCRIPTION OF SYMBOLS 11 Shaft 12 Hall element 13 Circuit board 14 Lead frame 15 Solder 16 Cutting surface 17 Resin 18 Hole

Claims (4)

回路基板にリードフレームを介して取り付けたセンサ素子を被固定体に取り付けるセンサ素子の取付構造において、前記被固定体に前記センサ素子の面を接着剤により接着し、前記回路基板を前記リードフレームを介して中空に支持したことを特徴とするセンサ素子の取付構造。   In a sensor element mounting structure in which a sensor element attached to a circuit board via a lead frame is attached to a fixed body, a surface of the sensor element is bonded to the fixed body with an adhesive, and the circuit board is attached to the lead frame. A sensor element mounting structure characterized in that the sensor element is supported hollowly. 前記回路基板はフレキシブル基板としたことを特徴とする請求項1に記載のセンサ素子の取付構造。   The sensor circuit mounting structure according to claim 1, wherein the circuit board is a flexible board. 前記回路基板に孔部を形成し、前記センサ素子を前記孔部内に非接触で収容することを特徴とする請求項1又は2に記載のセンサ素子の取付構造。   The sensor element mounting structure according to claim 1, wherein a hole is formed in the circuit board, and the sensor element is accommodated in the hole without contact. 前記センサ素子、回路基板、リードフレームを樹脂によりモールドしたことを特徴とする請求項1又は2又は3に記載のセンサ素子の取付構造。   The sensor element mounting structure according to claim 1, wherein the sensor element, the circuit board, and the lead frame are molded with resin.
JP2011060880A 2011-03-18 2011-03-18 Attachment structure for sensor element Pending JP2012198049A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011060880A JP2012198049A (en) 2011-03-18 2011-03-18 Attachment structure for sensor element
KR1020110045036A KR20120106507A (en) 2011-03-18 2011-05-13 Mounting structure of sensing element
CN2011101775634A CN102679863A (en) 2011-03-18 2011-06-29 Installation structure of sensor elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011060880A JP2012198049A (en) 2011-03-18 2011-03-18 Attachment structure for sensor element

Publications (1)

Publication Number Publication Date
JP2012198049A true JP2012198049A (en) 2012-10-18

Family

ID=46812158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011060880A Pending JP2012198049A (en) 2011-03-18 2011-03-18 Attachment structure for sensor element

Country Status (3)

Country Link
JP (1) JP2012198049A (en)
KR (1) KR20120106507A (en)
CN (1) CN102679863A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514707U (en) * 1978-07-14 1980-01-30
JPH08236584A (en) * 1995-02-28 1996-09-13 Texas Instr Japan Ltd Semiconductor device
JP2000241696A (en) * 1999-02-17 2000-09-08 Canon Inc Holding/mounting method for optical sensor package

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006001393B4 (en) * 2005-06-30 2010-01-28 Murata Mfg. Co., Ltd., Nagaokakyo-shi Detecting device and rotation angle sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514707U (en) * 1978-07-14 1980-01-30
JPH08236584A (en) * 1995-02-28 1996-09-13 Texas Instr Japan Ltd Semiconductor device
JP2000241696A (en) * 1999-02-17 2000-09-08 Canon Inc Holding/mounting method for optical sensor package

Also Published As

Publication number Publication date
CN102679863A (en) 2012-09-19
KR20120106507A (en) 2012-09-26

Similar Documents

Publication Publication Date Title
US7716984B2 (en) Acceleration sensor device having piezo-resistors measuring acceleration
JP6194624B2 (en) Physical quantity detection element and physical quantity detection device
CN103115720B (en) Quartz girder resonant mode micro-pressure sensor chip with silicon substrate single island structure
JP2000028694A (en) Micromaching magnetic field sensor and its manufacture
JPH11295172A (en) Semiconductor pressure sensor
JP2015179042A (en) current sensor
CN102519351B (en) Method for measuring warpage of electronic packaging product
EP2617677B1 (en) Structure for isolating a microstructure die from packaging stress
JP5360503B2 (en) Magnetic detection device, rotation angle detection device and stroke amount detection device using the same
JP5630630B2 (en) Coreless current sensor
JP2012198049A (en) Attachment structure for sensor element
US10788387B2 (en) Component having a micromechanical sensor module
JP3420847B2 (en) Thermal dependency detection device and method of manufacturing the same
US20160091526A1 (en) Sensor
WO2014088021A1 (en) Acceleration sensor
CN110793705A (en) Resonance pressure transmitter
EP2866012A1 (en) A sensor element comprising a constraining layer
KR101178039B1 (en) Calibration sensor target for capacitive displacement sensor
Kalinkina et al. Reducing the Temperature Error of Thin-Film Structures of Micromechanical Elements in Mechatronic Pressure Sensors
JP4059306B2 (en) Servo capacitive vacuum sensor
CN110793706A (en) Pressure sensor manufacturing method
CN110763393A (en) Pressure sensor
JP2004028746A (en) Pressure sensor and manufacturing method for pressure sensor
CN114167082A (en) Monocrystalline silicon flexible accelerometer
JP2019148511A (en) Biological information acquisition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130327

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130327

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015