JP4059306B2 - Servo capacitive vacuum sensor - Google Patents

Servo capacitive vacuum sensor Download PDF

Info

Publication number
JP4059306B2
JP4059306B2 JP15074898A JP15074898A JP4059306B2 JP 4059306 B2 JP4059306 B2 JP 4059306B2 JP 15074898 A JP15074898 A JP 15074898A JP 15074898 A JP15074898 A JP 15074898A JP 4059306 B2 JP4059306 B2 JP 4059306B2
Authority
JP
Japan
Prior art keywords
electrode
internal space
servo
vacuum sensor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15074898A
Other languages
Japanese (ja)
Other versions
JPH11326093A (en
Inventor
治三 宮下
昭子 葭村
正喜 江刺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP15074898A priority Critical patent/JP4059306B2/en
Publication of JPH11326093A publication Critical patent/JPH11326093A/en
Application granted granted Critical
Publication of JP4059306B2 publication Critical patent/JP4059306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はサーボ式静電容量型真空センサに関し、特に、絶対圧力値を静電容量の変化に基づき測定する真空センサの改良に関する。
【0002】
【従来の技術】
近年半導体製造プロセス技術により小型かつ測定範囲の広い圧力測定用センサが開発されてきた。例えばIEEE Electron Device Societyにおいて開催されたTRANSDUCER 97 の1997 International Conference on Solid-State Sensor and Actuators Chicago, June 16-19, 1997 講演予稿集 Volume 2, p.1457-p.1460などに発表されたサーボ式静電容量型真空センサ(以下「真空センサ」という)がある。この真空センサの構造を図6に示す。図6では真空センサの実際の構造に比較して厚みを誇張して示している。
【0003】
図6において、真空センサは、シリコン基板131と、シリコン基板131の両側に接合されたパイレックス基板132,133で構成されている。中間のシリコン基板131にはダイアフラム状の電極部134が形成される。電極部134と上側のパイレックス基板132の間には内部空間139が形成され、電極部134と下側のパイレックス基板133との間には内部空間140が形成されている。内部空間139には導入口141を通して外部から測定対象である気体(以下「被測定気体」という)が導入される。内部空間140はゲッター材154が収容されたゲッター室153と通じており、内部空間140とゲッター室153はゲッター材154によって排気され、高真空状態に保持されている。電極部134は、内部空間139に導入された被測定気体の圧力を受ける。電極部134は、その中央部下側に肉厚部135を有し、肉厚部135の周囲に肉薄部136を有する。肉厚部135は下方に凸状となっている。電極部134は、肉厚部135と肉薄部136の全体が変位する可動電極である。電極部134では、被測定気体の圧力を受けると、下側の内部空間140が高真空状態に保持されているので、肉薄部136が下方向へ変形し、中央の肉厚部135が下方へ変位する。
【0004】
上記構造を有する電極部134は、一定の厚みを有するシリコン基板131の両面を半導体製造プロセス技術を応用してエッチングすることにより形成される。また上記パイレックス基板132,133はパイレックスガラスで形成され、絶縁性と高剛性を有している。パイレックス基板132における内部空間139側の面にはサーボ電極137が設けられている。サーボ電極137はp++シリコン層で形成される。サーボ電極137は電極部134に対向している。パイレックス基板133における内部空間140側の面には固定電極138が設けられている。固定電極138は肉厚部135に対向している。肉厚部135は固定電極138に対する電極として機能し、肉厚部135と固定電極138の間で間隔に応じた静電容量が決まる。
【0005】
上側のパイレックス基板132には、導電性端子を形成するための3つの貫通孔が形成される。第1の貫通孔にはAl(アルミニウム)電極142が設けられかつサーボ電極137に接続される導電性エポキシ樹脂143が充填されている。第2の貫通孔にはAl電極144が設けられかつシリコン部145を介して電極部134に接続される導電性エポキシ樹脂146が充填されている。第3の貫通孔にはAl電極147が設けられかつシリコン部148を介して固定電極138に接続される導電性エポキシ樹脂149が充填されている。各エポキシ樹脂143,146,149にはそれぞれリード線150,151,152が電気的に接続されている。リード線150,151,152はそれぞれ図示しない外部回路に接続される。詳しくは、リード線150は外部回路内のサーボ電圧出力部に接続され、リード線151は外部回路内の基準電位部に接続され、リード線152は外部回路内の検出部に接続される。サーボ電極137にはリード線150を通してサーボ電圧が印加される。
【0006】
上記構成において、導入口141を通して被測定気体が内部空間139に導入されると、電極部134は被測定気体の圧力を受け、前述のごとく肉薄部136が下方向へ変形し、肉厚部135が内部空間140側へ変位する。その結果、電極部134の肉厚部135と固定電極138との間の間隔が変化し、肉厚部135と固定電極138の間の静電容量が変化する。この静電容量の変化は例えば交流ブリッジ回路からなる検出部によって検出される。検出部の検出作用に基づいて、電極部134に加わる圧力と釣り合うように、パイレックス基板132のサーボ電極137にサーボ電圧が印加される。電極部134においてサーボ電圧による静電引力と被測定気体による圧力との間に釣り合いが生じ、電極部134は中央位置に保たれる。印加されたサーボ電圧の2乗と上記圧力の間には比例関係があるため、サーボ電極137に与えられたサーボ電圧を測定することにより、上記真空センサに加わった被測定気体の圧力を測定することができる。
【0007】
【発明が解決しようとする課題】
前述した従来の真空センサは次の問題を有する。
【0008】
電極部134を変位させて静電容量の変化を検知する方式の真空センサで微小圧力の測定を高い精度で行えるようにするためには、電極部134の肉厚部135と固定電極138との間の静電容量を大きくすることが要求される。静電容量を大きくするためには、電極部134における肉厚部135の対向部の面積を大きくすること、あるいは肉厚部135と固定電極138の間のギャップを狭くすることが必要である。しかしながら、従来の真空センサで静電容量を大きくする場合、構造上、電極部134の中央に質量の大きな肉厚部135を設ける必要があり、このため、電極部134の肉厚部135が重りとして作用し、外部からの振動に感応しやすく、測定感度および測定精度に悪い影響を与えるという問題が起きる。
【0009】
さらに従来の真空センサでは、被測定気体の圧力測定時、肉厚部135と固定電極138の間の静電容量が、被測定気体の圧力が加わっていないときの静電容量と同じになるように、サーボ電極137にサーボ電圧を印加する。圧力が加わっていないときの静電容量は、真空センサごとに主に電極部134の肉厚部135と固定電極138の間の間隔に依存してバラツキを有し、この間隔に起因する静電容量のバラツキは真空センサの製造バラツキおよび温度により変化する熱膨張に依存する。このため従来の真空センサによれば、真空センサに圧力が加わっていない状態での肉厚部135と固定電極138の間の静電容量を各真空センサごとに計測しなければならないという問題があった。
【0010】
本発明の目的は、上記の問題を解決することにあり、構造的に振動に対する感応性を抑え、製造バラツキや温度による熱膨張の依存性を少なくし、真空センサごとの静電容量の計測を不要とし、微小圧力の測定精度を高め、小型で高感度かつ広範囲の圧力測定を行えるサーボ式静電容量型真空センサを提供することにある。
【0011】
【課題を解決するための手段および作用】
本発明に係るサーボ式静電容量型真空センサは、上記目的を達成するため、次のように構成される。
真空センサは、シリコン基板を第1ガラス基板と第2ガラス基板の間に配置し、シリコン基板と第1ガラス基板、シリコン基板と第2ガラス基板をそれぞれ接合して三層構造を有する。シリコン基板は電極部を備え、電極部と第1ガラス基板の間には例えば第1ガラス基板に形成された気体導入口を通して外部と通じる第1内部空間が形成され、電極部と第2ガラス基板の間には高真空状態に保持される第2内部空間が形成される。電極部は気体導入口から第1内部空間に導入された気体の圧力を受ける。電極部は、気体の圧力を受けて変位する可動電極と、可動電極の周囲に可動電極を支持するように形成されかつ気体の圧力を受けても変位しない周囲電極とからなる。可動電極の第2内部空間側の面と周囲電極の第2内部空間側の面は同一面として形成される。第2ガラス基板における第2内部空間側の面に、可動電極に対向する固定電極と、周囲電極に対向する参照電極が設けられる。第1ガラス基板における第1内部空間側の面には可動電極に接近して対向する凸状サーボ電極が設けられる。
真空センサでは、さらに好ましくは、可動電極の第2内部空間側の面と周囲電極の第2内部空間側の面からなる上記同一面が、被測定気体の圧力が加わっていないとき、固定電極および参照電極が設けられた第2ガラス基板における第2内部空間側の面に平行である。
上記真空センサの電極部では、被測定気体の圧力を受けて変位する肉薄の可動電極をほぼ中央に設け、その周りに被測定気体の圧力で変位しない肉厚の周囲電極を設け、可動電極を支持するようにした。ここで被測定気体は、例えば、粘性流、分子流、あるいはその中間領域の流れ特性を有する気体である。また真空センサで測定可能な圧力範囲は可動電極と周囲電極に関する上記変位特性を有する範囲である。電極部の一方の側には気体導入口を介して外部と通じる第1内部空間と、他方の側には高真空状態に保持された第2内部空間が形成されている。可動電極と周囲電極の第2内部空間側の面は同一面となっている。可動電極に圧力が加わっていないときに、上記同一面に対向して平行でかつ同一間隔で、可動電極に対して固定電極が設けられ、周囲電極に対して参照電極が設けられる。可動電極に被測定気体の圧力が加わると、可動電極は第2内部空間側に変位し可動電極と固定電極の間の間隔が狭くなるが、肉厚の周囲電極は変位せず、周囲電極と参照電極の間隔は一定に保持される。上記真空センサでは、電極部の中央に重り作用を有する肉厚部が存在しないので、振動や衝撃が真空センサに加わったときにも、電極部にノイズの原因となる不必要な振動が発生せず、測定の感度や精度に関する従来の問題が解消される。特に微小圧力の測定精度を向上できる。またサーボ電極に必要なサーボ電圧を印加することにより、可動電極に加わる被測定気体の圧力とサーボ電圧による静電引力とを釣り合わせるようにした。上記の真空センサによれば、サーボ電圧の値を決めるにあたって、可動電極と固定電極の間で決まる第1静電容量(C1)と、周囲電極と固定電極の間で決まる第2静電容量(Cs)とを利用することによって、各真空センサごとの製造バラツキを解消し、温度の依存性をなくすことが可能である。
【0012】
【発明の実施の形態】
以下に、本発明の好適な実施形態を添付図面に基づいて説明する。
【0013】
図1〜図5を参照して本発明に係るサーボ式静電容量型真空センサの代表的実施形態を説明する。図1の断面図は、説明の便宜上、実際の真空センサの構造に比較して厚みを誇張して示している。また図2は図1のA−A線矢視断面、図3は図1のB−B線矢視断面、図4は図1のC−C線矢視断面をそれぞれ示している。図5は真空センサと外部回路の関係を示す構成図である。
【0014】
図1に示すごとく真空センサ11は三層の積層構造を有している。中央に位置する層はシリコン基板12である。シリコン基板12の上側および下側にはパイレックス基板13,14が設けられている。パイレックス基板13,14はパイレックスガラスで作られた板状部材であり、絶縁性を有しかつ高い剛性を有している。パイレックス基板13,14はシリコン基板12に陽極接合されている。このシリコン基板12には電極部20が設けられる。電極部20は、パイレックス基板13,14に挟まれかつシリコン基板12の周囲の支持壁部38で囲まれた空間(図3に示す)の中に形成されている。
【0015】
電極部20はシリコン基板を利用して形成される。電極部20は、ほぼ中央に形成された肉薄の可動電極21と、可動電極21の周囲に位置し可動電極21を支持するように形成された肉厚の周囲電極22とから構成されている。可動電極21は例えば5μm程度の厚みを有するシリコン薄膜である。可動電極21は、後述するように、電極部20が被測定気体の圧力を受けるときに変形して変位を生じる。可動電極21の平面形状は図3に示すように例えば四角である。可動電極21は、図1に示すごとく、後述する下側の固定電極24および上側のサーボ電極16に対向しており、例えば接地電位等の基準電位に保持され、かつ固定電極24との間で静電容量を生じさせ、あるいはサーボ電極16との間で静電引力を生じさせる。一方、周囲電極22は例えば400μm未満の厚みを有するシリコン厚膜である。周囲電極22の平面形状は、例えば図3に示されるごとく四角のほぼ環状である。周囲電極22のほぼ中央に可動電極21が形成される。また周囲電極22は、図1に示すごとく、後述する下側の参照電極25に対向しており、参照電極25との間で静電容量を生じさせる。電極部20は全体として単体であり、可動電極21と周囲電極22は一体的に形成されている。電極部20が被測定気体の圧力を受けて可動電極21で変位が生じたとき、周囲電極22は変位せず、可動電極21を支持する。
【0016】
上記構造を有する電極部20は、例えば厚み400μmのシリコン基板を用意し、このシリコン基板の両面にエッチング等の半導体製造プロセスを応用して作られる。図1に示された電極部20において、シリコン層23は、エッチングの際にエッチングストップ層として残ることにより形成される。シリコン層23の一部が上記可動電極21になる。図1で、可動電極21は、シリコン層23の他の部分に対して作用が異なることから、断面の描き方を異ならせて示している。シリコン層23における可動電極21以外の他の部分は、周囲電極22と重なっており、周囲電極と同等に作用する。半導体製造プロセスを応用して作られる電極部20は、可動電極21の下面と周囲電極22の下面が同一面となるように形成されている。このことは、可動電極21それ自体、および周囲電極22の下面部が上記シリコン層23で作られることから明らかである。エッチングによって電極部20が上記形状に形成されることから可動電極21の上側に凹所22aが形成される。
【0017】
上記電極部20が形成されたシリコン基板12の両側にパイレックス基板13,14が陽極接合される。電極部20は、その製造工程で、肉厚の周囲電極22の縁部が下側のパイレックス基板14に陽極接合される。電極部20とパイレックス基板13の間には内部空間S1が形成される。内部空間S1は、例えばパイレックス基板13に形成された導入口15を通して真空センサ11の外部と通じており、外部から被測定気体が導入される。可動電極21は凹所22aを通して内部空間S1に対し露出している。なお被測定気体を内部空間S1に導入するための導入口は、パイレックス基板13以外の箇所にも形成することができる。また電極部20とパイレックス基板14の間には高真空状態に保持された内部空間S2が形成されている。内部空間S2は封止された空間である。
【0018】
上側のパイレックス基板13に形成された導入口15は外部と内部空間S1を連通し、この導入口15を通して外部から内部空間S1に被測定気体が導入される。ここで真空センサ11の測定対象である気体は、例えば、粘性流、分子流、またはそれらの中間領域の流れ特性を有する気体である。また真空センサ11の測定対象である圧力範囲は、可動電極21の変位が生じかつ周囲電極22に変位が生じないような範囲である。このような圧力範囲に含まれる対象であれば、上記気体以外の一般的な流体も真空センサ11の測定対象に含まれる。パイレックス基板13の内部空間S1側の面には、ほぼ中央部に、可動電極21に対向するように突出した凸状のサーボ電極16が形成されている。サーボ電極16は、別に用意したシリコン基板に半導体製造プロセス技術を応用してp型(あるいはn型)のシリコン層17を形成すると共にエッチングを行うことにより作られる。サーボ電極16の凸部はパイレックス基板13より下方に向かって突出している。サーボ電極16の凸部の形状は、電極部20の凹所22aの形状とほぼ一致している。サーボ電極16にはシリコン層17とAl電極18を通して外部からサーボ電圧が印加されるようになっている。Al電極18は蒸着等の方法により形成され、シリコン層17の端部はAl電極18に接続されている。サーボ電極16は、Al電極18を介して外部回路50(例えば交流ブリッジ回路またはマイコンで構成される演算処理手段等を含む回路)に接続され、サーボ電圧が印加される。
【0019】
図2に示すように、サーボ電極16の凸部の先端面は例えば正方形の形状を有し、シリコン層17の端部はAl電極18に接続されている。また導入口15は例えば4か所に形成されている。なお図1と図2を比較すると、例えば導入口15の位置や個数が正確に一致していないが、説明の便宜上理解しやすいように図示されている。
【0020】
下側のパイレックス基板14の内部空間S2側の面には、静電容量検出用固定電極24(以下「固定電極24」と簡略化する)と参照電極25が設けられている。参照電極25は固定電極24の周囲に電気的絶縁状態で設けられる。固定電極24は可動電極21に対向して設けられ、参照電極25は周囲電極22に対向して設けられている。電極部20に被測定気体の圧力が加わらない場合において、可動電極21と周囲電極22の各下面は、同一面となっており、固定電極24と参照電極25が設けられた面に対して平行になっている。このとき可動電極21および固定電極24の間隔と周囲電極22および参照電極25の間隔とは実質的に等しくなっている。固定電極24と参照電極25は例えばシリコン層で形成される。上記構造に基づき、可動電極21と固定電極24、周囲電極22と参照電極25の各々によって静電容量が検出される。参照電極25は、後述する計算式に基づいて特定の値を求めるための静電容量を作り出す電極であり、製造バラツキをなくすゼロ点補償を行い、かつ温度依存性をなくす温度補償を行うために設けられた電極である。
【0021】
上記に説明したように、電極部20の可動電極21の両側には内部空間S1,S2が形成される。導入口15を通して外部から被測定気体が内部空間S1に導入されると、当該被測定気体の圧力が可動電極21に加わり、内部空間S2が高真空に保たれているので、可動電極21は内部空間S2側に変位する。可動電極21の周囲を支持する周囲電極22は、厚膜として形成されているので、変位しない。
【0022】
一方、下側のパイレックス基板14には電極ピン31,32,33,34が設けられる。各電極ピン31〜34は、それぞれ、パイレックス基板14に形成された電極部用貫通孔、固定電極用貫通孔、参照電極用貫通孔、サーボ電極用貫通孔に接着剤としての導電性エポキシ樹脂35で固定されている。電極ピン31は電極部20に接続され、電極ピン32は固定電極24に接続され、電極ピン33は参照電極25に接続されている。参照電極25は、図4に示すごとく好ましくは固定電極24の周囲にこれを囲むように配置される。電極ピン31〜24の各々にはAl電極36が設けられている。また電極ピン34は、シリコンで作られた接続部37を介して前述のAl電極18およびシリコン層17に接続され、さらにサーボ電極16に接続される。
【0023】
なお図1〜図3で38はシリコンで形成された支持壁部、図1で39はシリコン層、40は深い窪み、41はゲッター材である。支持壁部38は、図2および図3に示されるように、電極部20の周囲を囲むように全周に形成されている。内部空間S2は、窪み40に収納されたゲッター材41で部材から発生するガスが吸着され、前述のごとく高真空に保持される。また図1と図4を比較すると、例えば4つの電極ピンの設置位置が正確に一致していないが、図1では4つの電極ピンの設置関係が明確になるように断面部を一部変更して図示している。
【0024】
図1に示した構造では、シリコン基板12に対しその両側に絶縁性かつ高剛性を有するパイレックス基板13,14を接合させた積層構造としたが、積層される両側の基板はパイレックスガラス(コーニング(株)社製)に限定されず、その代わりにシリコン基板の材料と同じあるいは非常に近い熱膨張係数を持つ材料、例えばSDガラス(ホウケイ酸ガラス;ホーヤ(株)社製)を用いることもできる。
【0025】
シリコン基板12は、EPW(エチレンジアミンピロカテコール水溶液)やTMAH(水酸化テトラメチルアンモニウム)などのエッチング溶液によりウェットエッチングされ、その片面に、底部の少なくとも一部が平らな凹所を形成し、次にその凹所の表面に半導体拡散技術によって上記シリコン層23が形成される。また凹所の端にはゲッター材41を収納するための窪み40が形成される。
【0026】
シリコン基板12とパイレックス基板14は上記窪み40にゲッター材41を収納した後に真空中で接合され、内部空間S2が形成される。その後、シリコン基板12を上記エッチング溶液により選択エッチングして、可動電極21および周囲電極22からなる電極部20と支持壁部38とが形成される。
【0027】
電極部20に被測定気体の圧力が加わらないとき、可動電極21と周囲電極22の各下面が形成する面と固定電極24と参照電極25が設けられた面との間隔は、例えば10μm程度である。可動電極21と固定電極24の各々の面積は例えば□4mm(一辺が4mmの正方形)である。また参照電極25は同面積あるいは固定電極24の面積に対して一定比率の面積となるように形成されている。可動電極21と固定電極24によって静電容量C1のコンデンサが構成され、周囲電極22と参照電極25によって静電容量Csのコンデンサが構成される。
【0028】
凸状のサーボ電極16は、電極部20の周囲電極22と接触しないように配置されている。サーボ電極16と可動電極21の間の間隔は例えば10μm程度になるように設定されている。可動電極21の周囲に位置する周囲電極22の厚みは前述のごとく約400μmであるので、実際の構造では、サーボ電極16の凸部は凹所22aの内部に入り込んだ状態で配置される。
【0029】
図5は真空センサ11と外部回路50の関係を示す。固定電極24はパイレックス基板14の対応する貫通孔におけるAl電極36と導電性エポキシ樹脂35と電極ピン32を介して外部回路50に接続され、参照電極25はパイレックス基板14の対応する貫通孔におけるAl電極36と導電性エポキシ樹脂35と電極ピン33を介して外部回路50に接続されている。一方、電極部20は、シリコン層23と対応する貫通孔におけるAl電極36と導電性エポキシ樹脂35と電極ピン31を介して外部回路50と接続されている。なお電極部20は接地電位等の基準電位に保持される。さらにサーボ電極16は、シリコン層17、Al電極18、接続部37、シリコン層39、パイレックス基板14の対応する貫通孔におけるAl電極36および導電性エポキシ樹脂35と電極ピン34を介して外部回路50に接続されている。外部回路50では、電極ピン31,32,33との接続関係に基づき上記の静電容量C1と静電容量Csが入力され、予め用意された下記の計算式に基づいて特定の値を計算する。そしてこの値がほぼ0になるように、電極ピン34に対して印加するサーボ電圧を定め、電極ピン34を通してサーボ電極16にサーボ電圧を印加する。印加されたサーボ電圧による静電引力と被測定気体の圧力とが釣り合うと、可動電極21での変位が0になり、上記特定の値も0になる。
【0030】
真空センサ11では、導入口15から被測定気体が内部空間S1内に入ると、可動電極21に対して内部空間S2側に変位させる圧力が加わる。このとき周囲電極22は被測定気体の圧力によって内部空間S2側に変位しない。サーボ電極16には、静電容量C1と静電容量Csを利用して作られた計算式「C1−Cs×(固定電極24の面積)/(参照電極25の面積)」の値が0となるように、外部回路50によりサーボ電圧が印加される。サーボ電圧によって可動電極21に対して可動電極21に加わった圧力と等しい静電引力が逆向きに加えられる。これにより可動電極21は常に変位のない状態に保たれる。静電引力とサーボ電圧の2乗とは比例関係にあるので、印加したサーボ電圧を検出することにより、被測定気体により加わった圧力を求めることができる。そこで外部回路50には当該関係に基づいて圧力値を算出する演算部が内蔵され、演算部で算出された圧力値が計測値として出力される。
【0031】
真空センサ11では可動電極21と固定電極24の間に形成されたギャップの間隔は10μmと狭く設定され、真空センサ11でも真空センサごとに製造バラツキを有し、温度依存性を有する。しかし本実施形態による真空センサ11によれば、構造上、各真空センサで圧力が加わっていない状態で可動電極21および固定電極24の間隔と周囲電極22および参照電極25の間隔とが等しいので、回路設計上、製造バラツキおよび温度依存性に拘らず、圧力が加わっていない場合の上記計算式「C1−Cs×(固定電極24の面積)/(参照電極25の面積)」の値は0になる。さらに被測定気体が導入口15から入ってその圧力を検出する場合、「C1−Cs×(固定電極24の面積)/(参照電極25の面積)」が0となるように、すなわち静電引力と圧力が釣り合うように、サーボ電極16にサーボ電圧を印加して可動電極21の位置を常に変位のない状態に保つことができる。従って真空センサ11による圧力検出は、構造上および制御の回路構成上、電極の間のギャップ間隔に関する真空センサごとの製造バラツキおよび温度依存性の影響を受けない。
【0032】
本実施形態による真空センサ11では、電極部20のほぼ中央に圧力を受けて変位する肉薄の可動電極21を形成し、周囲に変位しない肉厚の周囲電極22を形成した。可動電極21は質量が小さく、また周囲電極22を一体化して電極部20を作っているため、振動および衝撃により電極の位置関係は変化しにくく、真空センサの動作を安定化させることができる。
【0033】
【発明の効果】
以上の説明で明らかなように本発明によれば、次の効果を奏する。
【0034】
被測定気体の圧力に受けて変位する可動電極を電極部のほぼ中央に形成し、その周囲に肉厚の周囲電極を形成したため、従来の真空センサに比較して中央に重り部分がなく、振動および衝撃による影響を排除でき、安定した動作を行う真空センサを実現できる。さらに振動等の影響に強く安定して検出動作を行い、かつ可動電極と固定電極の間隔、周囲電極と参照電極の間隔を例えば10μm程度に狭くし各々の間隔で決まる静電容量が大きくなるように構成したため、高い圧力の測定は勿論のこと、微小な圧力の測定に対しても高い測定感度を達成することができる。
【0035】
さらに、電極部に圧力が加わっていない状態で、可動電極と周囲電極の各下面が同一面となり、かつ可動電極と固定電極の間隔、周囲電極と参照電極の間の間隔が等しくなる構造としたため、可動電極、周囲電極、固定電極、参照電極の各々を設計目的に応じて再現性良くかつ歩留まり良く作ることができ、圧力のない状態での可動電極と固定電極間の静電容量、周囲電極と参照電極間の静電容量の比を設計通りに歩留まり良く実現できる。また真空センサごとの電極間のギャップ間隔の製造バラツキも補償することができる。
【0036】
また電極部に圧力が加わる状態でも、周囲電極・参照電極間の静電容量に固定電極面積を参照電極面積で割った値を掛け、この値を可動電極・固定電極間の静電容量の値から引くという操作を演算処理により実施し、差し引かれた値が実質的に0となるようにサーボ電圧を印加し、可動電極の変位を0に保つように構成したため、真空センサごとの電極間のギャップ間隔の製造バラツキを解消し、温度に依存しない正しい圧力指示値を得ることができる。
【0037】
またサーボ式の構造を採用することにより肉薄の可動電極に機械的歪みが生じないようにしたため、真空センサに機械疲労が加わらず、真空センサの寿命を長くでき、長期に渡って信頼性の高い測定を行うことができる。
【図面の簡単な説明】
【図1】本発明に係るサーボ式静電容量型真空センサの代表的実施形態を示す要部縦断面図である。
【図2】図1におけるA−A線矢視断面図である。
【図3】図1におけるB−B線矢視断面図である。
【図4】図1におけるC−C線矢視断面図である。
【図5】真空センサと外部回路の関係を示す構成図である。
【図6】従来のサーボ式静電容量型真空センサの要部縦断面図である。
【符号の説明】
11 サーボ式静電容量型真空センサ
12 シリコン基板
13,14 パイレックス基板
15 導入口
16 サーボ電極
20 電極部
21 可動電極
22 周囲電極
24 静電容量検出用固定電極
25 参照電極
31〜34 電極ピン
35 エポキシ樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a servo-type capacitive vacuum sensor, and more particularly to an improvement of a vacuum sensor that measures an absolute pressure value based on a change in capacitance.
[0002]
[Prior art]
In recent years, a sensor for pressure measurement having a small size and a wide measuring range has been developed by a semiconductor manufacturing process technology. For example, the servo type presented in TRANSDUCER 97 held at IEEE Electron Device Society, 1997 International Conference on Solid-State Sensor and Actuators Chicago, June 16-19, 1997 Proceedings Volume 2, p.1457-p.1460 There is a capacitance type vacuum sensor (hereinafter referred to as “vacuum sensor”). The structure of this vacuum sensor is shown in FIG. In FIG. 6, the thickness is exaggerated as compared with the actual structure of the vacuum sensor.
[0003]
In FIG. 6, the vacuum sensor includes a silicon substrate 131 and pyrex substrates 132 and 133 bonded to both sides of the silicon substrate 131. A diaphragm-like electrode portion 134 is formed on the intermediate silicon substrate 131. An internal space 139 is formed between the electrode portion 134 and the upper Pyrex substrate 132, and an internal space 140 is formed between the electrode portion 134 and the lower Pyrex substrate 133. A gas as a measurement target (hereinafter referred to as “measurement gas”) is introduced into the internal space 139 from the outside through the inlet 141. The internal space 140 communicates with the getter chamber 153 in which the getter material 154 is accommodated, and the internal space 140 and the getter chamber 153 are exhausted by the getter material 154 and kept in a high vacuum state. The electrode part 134 receives the pressure of the gas to be measured introduced into the internal space 139. The electrode part 134 has a thick part 135 below the center part, and has a thin part 136 around the thick part 135. The thick part 135 is convex downward. The electrode part 134 is a movable electrode in which the entire thick part 135 and thin part 136 are displaced. When the electrode portion 134 receives the pressure of the gas to be measured, the lower internal space 140 is maintained in a high vacuum state, so that the thin portion 136 is deformed downward, and the central thick portion 135 is downward. Displace.
[0004]
The electrode part 134 having the above structure is formed by etching both surfaces of a silicon substrate 131 having a certain thickness by applying a semiconductor manufacturing process technique. The Pyrex substrates 132 and 133 are made of Pyrex glass and have insulating properties and high rigidity. A servo electrode 137 is provided on the surface of the Pyrex substrate 132 on the inner space 139 side. The servo electrode 137 is formed of a p ++ silicon layer. The servo electrode 137 faces the electrode portion 134. A fixed electrode 138 is provided on the surface of the Pyrex substrate 133 on the inner space 140 side. The fixed electrode 138 faces the thick portion 135. The thick part 135 functions as an electrode for the fixed electrode 138, and the capacitance according to the interval is determined between the thick part 135 and the fixed electrode 138.
[0005]
The upper Pyrex substrate 132 is formed with three through holes for forming conductive terminals. The first through hole is provided with an Al (aluminum) electrode 142 and filled with a conductive epoxy resin 143 connected to the servo electrode 137. The second through hole is provided with an Al electrode 144 and filled with a conductive epoxy resin 146 connected to the electrode part 134 via the silicon part 145. The third through hole is provided with an Al electrode 147 and filled with a conductive epoxy resin 149 connected to the fixed electrode 138 through the silicon portion 148. Lead wires 150, 151, and 152 are electrically connected to the epoxy resins 143, 146, and 149, respectively. Lead wires 150, 151, and 152 are connected to external circuits (not shown). Specifically, the lead wire 150 is connected to a servo voltage output unit in the external circuit, the lead wire 151 is connected to a reference potential unit in the external circuit, and the lead wire 152 is connected to a detection unit in the external circuit. A servo voltage is applied to the servo electrode 137 through the lead wire 150.
[0006]
In the above configuration, when the gas to be measured is introduced into the internal space 139 through the inlet 141, the electrode portion 134 receives the pressure of the gas to be measured, and the thin portion 136 is deformed downward as described above, so that the thick portion 135 is obtained. Is displaced toward the inner space 140 side. As a result, the interval between the thick part 135 of the electrode part 134 and the fixed electrode 138 changes, and the capacitance between the thick part 135 and the fixed electrode 138 changes. This change in capacitance is detected by, for example, a detection unit including an AC bridge circuit. A servo voltage is applied to the servo electrode 137 of the Pyrex substrate 132 so as to balance the pressure applied to the electrode unit 134 based on the detection action of the detection unit. In the electrode part 134, a balance arises between the electrostatic attraction by the servo voltage and the pressure by the gas to be measured, and the electrode part 134 is kept at the center position. Since there is a proportional relationship between the square of the applied servo voltage and the pressure, the pressure of the gas to be measured applied to the vacuum sensor is measured by measuring the servo voltage applied to the servo electrode 137. be able to.
[0007]
[Problems to be solved by the invention]
The conventional vacuum sensor described above has the following problems.
[0008]
In order to make it possible to measure a minute pressure with high accuracy using a vacuum sensor that detects a change in capacitance by displacing the electrode part 134, the thickness part 135 of the electrode part 134 and the fixed electrode 138 It is required to increase the capacitance between them. In order to increase the capacitance, it is necessary to increase the area of the opposing portion of the thick portion 135 in the electrode portion 134 or to narrow the gap between the thick portion 135 and the fixed electrode 138. However, when the capacitance is increased with the conventional vacuum sensor, it is necessary to provide a thick portion 135 having a large mass at the center of the electrode portion 134 due to the structure. For this reason, the thick portion 135 of the electrode portion 134 is weighted. This causes a problem that it tends to be sensitive to vibration from the outside and adversely affects measurement sensitivity and measurement accuracy.
[0009]
Furthermore, in the conventional vacuum sensor, when measuring the pressure of the gas to be measured, the capacitance between the thick portion 135 and the fixed electrode 138 is the same as the capacitance when the pressure of the gas to be measured is not applied. In addition, a servo voltage is applied to the servo electrode 137. The electrostatic capacitance when no pressure is applied varies depending on the interval between the thick portion 135 of the electrode portion 134 and the fixed electrode 138 for each vacuum sensor, and the electrostatic capacitance caused by this interval varies. Capacitance variation depends on vacuum sensor manufacturing variation and thermal expansion that varies with temperature. For this reason, according to the conventional vacuum sensor, there is a problem that the capacitance between the thick portion 135 and the fixed electrode 138 must be measured for each vacuum sensor in a state where no pressure is applied to the vacuum sensor. It was.
[0010]
The object of the present invention is to solve the above-mentioned problems, structurally suppressing the sensitivity to vibration, reducing the dependence on thermal expansion due to manufacturing variations and temperature, and measuring the capacitance of each vacuum sensor. An object of the present invention is to provide a servo-type capacitive vacuum sensor that is unnecessary, increases the measurement accuracy of minute pressure, is small, has high sensitivity, and can perform pressure measurement over a wide range.
[0011]
[Means and Actions for Solving the Problems]
The servo capacitive vacuum sensor according to the present invention is configured as follows to achieve the above object.
The vacuum sensor has a three-layer structure in which a silicon substrate is disposed between a first glass substrate and a second glass substrate, and the silicon substrate and the first glass substrate, and the silicon substrate and the second glass substrate are bonded to each other. The silicon substrate includes an electrode portion, and a first internal space that communicates with the outside through, for example, a gas inlet formed in the first glass substrate is formed between the electrode portion and the first glass substrate, and the electrode portion and the second glass substrate are formed. A second internal space that is maintained in a high vacuum state is formed between the two. The electrode portion receives the pressure of the gas introduced into the first internal space from the gas inlet. The electrode portion includes a movable electrode that is displaced by receiving a gas pressure, and a surrounding electrode that is formed to support the movable electrode around the movable electrode and is not displaced even when the gas pressure is received. The surface on the second internal space side of the movable electrode and the surface on the second internal space side of the surrounding electrode are formed as the same surface. A fixed electrode facing the movable electrode and a reference electrode facing the surrounding electrode are provided on the surface of the second glass substrate on the second internal space side. A convex servo electrode facing the movable electrode is provided on the surface of the first glass substrate on the first internal space side.
In the vacuum sensor, more preferably, when the pressure of the gas to be measured is not applied to the same surface formed by the surface on the second internal space side of the movable electrode and the surface on the second internal space side of the surrounding electrode, The second glass substrate provided with the reference electrode is parallel to the surface on the second internal space side.
In the electrode part of the vacuum sensor, a thin movable electrode that is displaced by the pressure of the gas to be measured is provided in the center, and a thick surrounding electrode that is not displaced by the pressure of the gas to be measured is provided around the movable electrode. I tried to support it. Here, the gas to be measured is, for example, a gas having a viscous flow, a molecular flow, or a flow characteristic in an intermediate region thereof. The pressure range measurable by the vacuum sensor is a range having the above displacement characteristics with respect to the movable electrode and the surrounding electrode. A first internal space that communicates with the outside through a gas inlet is formed on one side of the electrode portion, and a second internal space that is maintained in a high vacuum state is formed on the other side. The surface of the movable electrode and the surrounding electrode on the second internal space side is the same surface. When no pressure is applied to the movable electrode, a fixed electrode is provided for the movable electrode and parallel to the same surface and at the same interval, and a reference electrode is provided for the surrounding electrode. When the pressure of the gas to be measured is applied to the movable electrode, the movable electrode is displaced to the second internal space side, and the interval between the movable electrode and the fixed electrode is narrowed, but the thick surrounding electrode is not displaced, The distance between the reference electrodes is kept constant. In the above vacuum sensor, there is no thick part having a weighting action at the center of the electrode part, so even when vibration or impact is applied to the vacuum sensor, unnecessary vibrations that cause noise are generated in the electrode part. Therefore, the conventional problems concerning the sensitivity and accuracy of measurement are solved. In particular, the measurement accuracy of minute pressure can be improved. Further, by applying a necessary servo voltage to the servo electrode, the pressure of the gas to be measured applied to the movable electrode is balanced with the electrostatic attraction by the servo voltage. According to the vacuum sensor described above, in determining the value of the servo voltage, the first capacitance (C1) determined between the movable electrode and the fixed electrode, and the second capacitance determined between the surrounding electrode and the fixed electrode ( Cs) can be used to eliminate manufacturing variations for each vacuum sensor and eliminate temperature dependence.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
[0013]
A representative embodiment of a servo capacitive vacuum sensor according to the present invention will be described with reference to FIGS. The cross-sectional view of FIG. 1 exaggerates the thickness as compared with the actual structure of the vacuum sensor for convenience of explanation. 2 shows a cross section taken along line AA in FIG. 1, FIG. 3 shows a cross section taken along line BB in FIG. 1, and FIG. 4 shows a cross section taken along line CC in FIG. FIG. 5 is a block diagram showing the relationship between the vacuum sensor and the external circuit.
[0014]
As shown in FIG. 1, the vacuum sensor 11 has a three-layer structure. The layer located in the center is the silicon substrate 12. Pyrex substrates 13 and 14 are provided on the upper and lower sides of the silicon substrate 12. The Pyrex substrates 13 and 14 are plate-shaped members made of Pyrex glass, have insulating properties and high rigidity. The Pyrex substrates 13 and 14 are anodically bonded to the silicon substrate 12. An electrode portion 20 is provided on the silicon substrate 12. The electrode portion 20 is formed in a space (shown in FIG. 3) sandwiched between the Pyrex substrates 13 and 14 and surrounded by the support wall portion 38 around the silicon substrate 12.
[0015]
The electrode part 20 is formed using a silicon substrate. The electrode portion 20 is composed of a thin movable electrode 21 formed substantially at the center and a thick peripheral electrode 22 formed so as to be positioned around and support the movable electrode 21. The movable electrode 21 is a silicon thin film having a thickness of about 5 μm, for example. As will be described later, the movable electrode 21 is deformed and displaced when the electrode portion 20 receives the pressure of the gas to be measured. The planar shape of the movable electrode 21 is, for example, a square as shown in FIG. As shown in FIG. 1, the movable electrode 21 is opposed to a lower fixed electrode 24 and an upper servo electrode 16 described later, and is held at a reference potential such as a ground potential, and between the fixed electrode 24 and the movable electrode 21. An electrostatic capacity is generated or an electrostatic attractive force is generated between the servo electrode 16 and the electrostatic capacity. On the other hand, the peripheral electrode 22 is a silicon thick film having a thickness of less than 400 μm, for example. The planar shape of the peripheral electrode 22 is, for example, a substantially rectangular shape as shown in FIG. The movable electrode 21 is formed in the approximate center of the surrounding electrode 22. Further, as shown in FIG. 1, the peripheral electrode 22 faces a lower reference electrode 25 described later, and generates a capacitance with the reference electrode 25. The electrode part 20 is a single unit as a whole, and the movable electrode 21 and the peripheral electrode 22 are integrally formed. When the electrode unit 20 receives the pressure of the gas to be measured and the movable electrode 21 is displaced, the surrounding electrode 22 is not displaced and supports the movable electrode 21.
[0016]
The electrode unit 20 having the above-described structure is manufactured by preparing a silicon substrate having a thickness of 400 μm, for example, and applying a semiconductor manufacturing process such as etching on both sides of the silicon substrate. In the electrode part 20 shown in FIG. 1, the silicon layer 23 is formed by remaining as an etching stop layer during etching. A part of the silicon layer 23 becomes the movable electrode 21. In FIG. 1, the movable electrode 21 is shown in a different manner of drawing the cross section because the action is different with respect to other portions of the silicon layer 23. The other part of the silicon layer 23 other than the movable electrode 21 overlaps with the peripheral electrode 22 and acts in the same manner as the peripheral electrode. The electrode portion 20 made by applying a semiconductor manufacturing process is formed so that the lower surface of the movable electrode 21 and the lower surface of the peripheral electrode 22 are flush with each other. This is apparent from the fact that the movable electrode 21 itself and the lower surface portion of the peripheral electrode 22 are made of the silicon layer 23. Since the electrode portion 20 is formed in the above shape by etching, a recess 22 a is formed above the movable electrode 21.
[0017]
Pyrex substrates 13 and 14 are anodically bonded to both sides of the silicon substrate 12 on which the electrode portion 20 is formed. The electrode portion 20 is anodically bonded to the lower Pyrex substrate 14 at the edge of the thick surrounding electrode 22 in the manufacturing process. An internal space S <b> 1 is formed between the electrode unit 20 and the Pyrex substrate 13. The internal space S1 communicates with the outside of the vacuum sensor 11 through an inlet 15 formed in the Pyrex substrate 13, for example, and a gas to be measured is introduced from the outside. The movable electrode 21 is exposed to the internal space S1 through the recess 22a. Note that the inlet for introducing the gas to be measured into the internal space S <b> 1 can be formed at a place other than the Pyrex substrate 13. Further, an internal space S <b> 2 that is maintained in a high vacuum state is formed between the electrode unit 20 and the Pyrex substrate 14. The internal space S2 is a sealed space.
[0018]
The introduction port 15 formed in the upper Pyrex substrate 13 communicates the outside and the internal space S1, and the gas to be measured is introduced from the outside into the internal space S1 through the introduction port 15. Here, the gas to be measured by the vacuum sensor 11 is, for example, a gas having a viscous flow, a molecular flow, or a flow characteristic in an intermediate region thereof. The pressure range that is a measurement target of the vacuum sensor 11 is a range in which the movable electrode 21 is displaced and the surrounding electrode 22 is not displaced. If it is a target included in such a pressure range, a general fluid other than the above gas is also included in the measurement target of the vacuum sensor 11. On the surface of the Pyrex substrate 13 on the inner space S1 side, a convex servo electrode 16 that protrudes so as to face the movable electrode 21 is formed in a substantially central portion. The servo electrode 16 is formed by applying a semiconductor manufacturing process technique to a separately prepared silicon substrate to form a p-type (or n-type) silicon layer 17 and performing etching. The convex portion of the servo electrode 16 protrudes downward from the Pyrex substrate 13. The shape of the convex portion of the servo electrode 16 substantially matches the shape of the recess 22 a of the electrode portion 20. A servo voltage is applied to the servo electrode 16 from the outside through the silicon layer 17 and the Al electrode 18. The Al electrode 18 is formed by a method such as vapor deposition, and the end of the silicon layer 17 is connected to the Al electrode 18. The servo electrode 16 is connected to an external circuit 50 (for example, an AC bridge circuit or a circuit including arithmetic processing means constituted by a microcomputer) via the Al electrode 18 and applied with a servo voltage.
[0019]
As shown in FIG. 2, the tip surface of the convex portion of the servo electrode 16 has a square shape, for example, and the end portion of the silicon layer 17 is connected to the Al electrode 18. Moreover, the inlet 15 is formed in four places, for example. When FIG. 1 is compared with FIG. 2, for example, the positions and the number of the introduction ports 15 are not exactly the same, but are illustrated for easy understanding.
[0020]
A capacitance detecting fixed electrode 24 (hereinafter simply referred to as “fixed electrode 24”) and a reference electrode 25 are provided on the surface of the lower Pyrex substrate 14 on the inner space S2 side. The reference electrode 25 is provided around the fixed electrode 24 in an electrically insulated state. The fixed electrode 24 is provided to face the movable electrode 21, and the reference electrode 25 is provided to face the surrounding electrode 22. When the pressure of the gas to be measured is not applied to the electrode unit 20, the lower surfaces of the movable electrode 21 and the surrounding electrode 22 are the same surface and are parallel to the surface on which the fixed electrode 24 and the reference electrode 25 are provided. It has become. At this time, the distance between the movable electrode 21 and the fixed electrode 24 and the distance between the surrounding electrode 22 and the reference electrode 25 are substantially equal. The fixed electrode 24 and the reference electrode 25 are formed of, for example, a silicon layer. Based on the above structure, the capacitance is detected by each of the movable electrode 21 and the fixed electrode 24, the surrounding electrode 22, and the reference electrode 25. The reference electrode 25 is an electrode that creates a capacitance for obtaining a specific value based on a calculation formula described later, and performs zero point compensation that eliminates manufacturing variations and temperature compensation that eliminates temperature dependence. It is an electrode provided.
[0021]
As described above, the internal spaces S1 and S2 are formed on both sides of the movable electrode 21 of the electrode unit 20. When the gas to be measured is introduced from the outside into the internal space S1 through the introduction port 15, the pressure of the gas to be measured is applied to the movable electrode 21, and the internal space S2 is kept at a high vacuum. It is displaced toward the space S2. Since the surrounding electrode 22 supporting the periphery of the movable electrode 21 is formed as a thick film, it is not displaced.
[0022]
On the other hand, the lower Pyrex substrate 14 is provided with electrode pins 31, 32, 33, and 34. Each of the electrode pins 31 to 34 has a conductive epoxy resin 35 as an adhesive agent in an electrode portion through hole, a fixed electrode through hole, a reference electrode through hole, and a servo electrode through hole formed in the Pyrex substrate 14. It is fixed with. The electrode pin 31 is connected to the electrode portion 20, the electrode pin 32 is connected to the fixed electrode 24, and the electrode pin 33 is connected to the reference electrode 25. As shown in FIG. 4, the reference electrode 25 is preferably arranged around the fixed electrode 24 so as to surround it. An Al electrode 36 is provided on each of the electrode pins 31 to 24. Further, the electrode pin 34 is connected to the Al electrode 18 and the silicon layer 17 described above via a connection portion 37 made of silicon, and further connected to the servo electrode 16.
[0023]
In FIG. 1 to FIG. 3, reference numeral 38 denotes a supporting wall portion formed of silicon, in FIG. 1, 39 denotes a silicon layer, 40 denotes a deep depression, and 41 denotes a getter material. As shown in FIGS. 2 and 3, the support wall portion 38 is formed on the entire circumference so as to surround the periphery of the electrode portion 20. In the internal space S2, the gas generated from the member is adsorbed by the getter material 41 accommodated in the recess 40, and is maintained at a high vacuum as described above. Also, comparing FIG. 1 and FIG. 4, for example, the installation positions of the four electrode pins are not exactly the same, but in FIG. 1, the cross-section is partially changed so that the installation relationship of the four electrode pins is clear. Are shown.
[0024]
In the structure shown in FIG. 1, the silicon substrate 12 has a laminated structure in which Pyrex substrates 13 and 14 having insulating properties and high rigidity are bonded to both sides thereof. However, it is also possible to use a material having the same or very similar thermal expansion coefficient as that of the silicon substrate, for example, SD glass (borosilicate glass; manufactured by Hoya Co., Ltd.). .
[0025]
The silicon substrate 12 is wet-etched with an etching solution such as EPW (ethylenediamine pyrocatechol aqueous solution) or TMAH (tetramethylammonium hydroxide), and at least a part of the bottom is formed into a flat recess on one side thereof. The silicon layer 23 is formed on the surface of the recess by a semiconductor diffusion technique. A recess 40 for accommodating the getter material 41 is formed at the end of the recess.
[0026]
The silicon substrate 12 and the Pyrex substrate 14 are joined in a vacuum after the getter material 41 is accommodated in the recess 40 to form an internal space S2. Thereafter, the silicon substrate 12 is selectively etched with the above etching solution to form the electrode portion 20 including the movable electrode 21 and the peripheral electrode 22 and the support wall portion 38.
[0027]
When the pressure of the gas to be measured is not applied to the electrode unit 20, the distance between the surface formed by the lower surfaces of the movable electrode 21 and the surrounding electrode 22, and the surface on which the fixed electrode 24 and the reference electrode 25 are provided is, for example, about 10 μm. is there. The area of each of the movable electrode 21 and the fixed electrode 24 is, for example, □ 4 mm (a square with a side of 4 mm). The reference electrode 25 is formed so as to have the same area or a fixed area relative to the area of the fixed electrode 24. The movable electrode 21 and the fixed electrode 24 constitute a capacitor having a capacitance C1, and the peripheral electrode 22 and the reference electrode 25 constitute a capacitor having a capacitance Cs.
[0028]
The convex servo electrode 16 is disposed so as not to contact the peripheral electrode 22 of the electrode portion 20. The interval between the servo electrode 16 and the movable electrode 21 is set to be about 10 μm, for example. Since the thickness of the peripheral electrode 22 positioned around the movable electrode 21 is about 400 μm as described above, in the actual structure, the convex portion of the servo electrode 16 is arranged in a state of entering the inside of the recess 22a.
[0029]
FIG. 5 shows the relationship between the vacuum sensor 11 and the external circuit 50. The fixed electrode 24 is connected to the external circuit 50 through the Al electrode 36, the conductive epoxy resin 35, and the electrode pin 32 in the corresponding through hole of the Pyrex board 14, and the reference electrode 25 is Al in the corresponding through hole of the Pyrex board 14. The electrode 36, the conductive epoxy resin 35, and the electrode pin 33 are connected to the external circuit 50. On the other hand, the electrode portion 20 is connected to the external circuit 50 through the Al electrode 36, the conductive epoxy resin 35, and the electrode pin 31 in the through hole corresponding to the silicon layer 23. The electrode unit 20 is held at a reference potential such as a ground potential. Further, the servo electrode 16 is connected to the external circuit 50 via the silicon layer 17, the Al electrode 18, the connection portion 37, the silicon layer 39, the Al electrode 36 and the conductive epoxy resin 35 and the electrode pins 34 in the corresponding through holes of the Pyrex substrate 14. It is connected to the. In the external circuit 50, the capacitance C1 and the capacitance Cs are input based on the connection relationship with the electrode pins 31, 32, 33, and a specific value is calculated based on the following formula prepared in advance. . Then, a servo voltage to be applied to the electrode pin 34 is determined so that this value becomes almost zero, and the servo voltage is applied to the servo electrode 16 through the electrode pin 34. When the electrostatic attractive force due to the applied servo voltage and the pressure of the gas to be measured are balanced, the displacement at the movable electrode 21 becomes zero, and the specific value becomes zero.
[0030]
In the vacuum sensor 11, when the gas to be measured enters the internal space S <b> 1 from the introduction port 15, a pressure for displacing the movable electrode 21 toward the internal space S <b> 2 is applied. At this time, the surrounding electrode 22 is not displaced toward the internal space S2 due to the pressure of the gas to be measured. The servo electrode 16 has a calculation formula “C1−Cs × (area of the fixed electrode 24) / (area of the reference electrode 25)” created using the capacitance C1 and the capacitance Cs as 0. Thus, the servo voltage is applied by the external circuit 50. An electrostatic attractive force equal to the pressure applied to the movable electrode 21 is applied in the opposite direction to the movable electrode 21 by the servo voltage. Thereby, the movable electrode 21 is always kept in a state without displacement. Since the electrostatic attraction force and the square of the servo voltage are in a proportional relationship, the pressure applied by the gas to be measured can be obtained by detecting the applied servo voltage. Therefore, the external circuit 50 includes a calculation unit that calculates a pressure value based on the relationship, and the pressure value calculated by the calculation unit is output as a measurement value.
[0031]
In the vacuum sensor 11, the gap formed between the movable electrode 21 and the fixed electrode 24 is set as narrow as 10 μm, and the vacuum sensor 11 also has manufacturing variations for each vacuum sensor and has temperature dependence. However, according to the vacuum sensor 11 of the present embodiment, because of the structure, the distance between the movable electrode 21 and the fixed electrode 24 and the distance between the surrounding electrode 22 and the reference electrode 25 are equal when no pressure is applied to each vacuum sensor. In the circuit design, the value of the above calculation formula “C1−Cs × (area of the fixed electrode 24) / (area of the reference electrode 25)” when the pressure is not applied is 0 regardless of manufacturing variation and temperature dependency. Become. Further, when the gas to be measured enters from the inlet 15 and detects its pressure, “C1−Cs × (the area of the fixed electrode 24) / (the area of the reference electrode 25)” becomes 0, that is, electrostatic attractive force. Thus, the servo voltage can be applied to the servo electrode 16 so that the position of the movable electrode 21 can be maintained without any displacement. Therefore, the pressure detection by the vacuum sensor 11 is not affected by the manufacturing variation and temperature dependency of each vacuum sensor with respect to the gap interval between the electrodes in terms of structure and control circuit configuration.
[0032]
In the vacuum sensor 11 according to the present embodiment, the thin movable electrode 21 that is displaced by receiving pressure is formed in the approximate center of the electrode portion 20, and the thick peripheral electrode 22 that is not displaced around is formed. Since the movable electrode 21 has a small mass and the electrode portion 20 is formed by integrating the surrounding electrodes 22, the positional relationship of the electrodes hardly changes due to vibration and impact, and the operation of the vacuum sensor can be stabilized.
[0033]
【The invention's effect】
As is apparent from the above description, the present invention has the following effects.
[0034]
A movable electrode that is displaced by the pressure of the gas to be measured is formed almost at the center of the electrode, and a thick surrounding electrode is formed around it, so there is no weight in the center compared to conventional vacuum sensors, and vibration occurs. Further, it is possible to realize a vacuum sensor that can eliminate the influence of an impact and perform stable operation. Furthermore, the detection operation is strong and stable against the influence of vibration and the like, and the interval between the movable electrode and the fixed electrode and the interval between the surrounding electrode and the reference electrode are reduced to, for example, about 10 μm so that the capacitance determined by each interval is increased. Therefore, high measurement sensitivity can be achieved not only for measurement of high pressure but also for measurement of minute pressure.
[0035]
In addition, since the lower surface of the movable electrode and the surrounding electrode are the same surface with no pressure applied to the electrode portion, the distance between the movable electrode and the fixed electrode and the distance between the surrounding electrode and the reference electrode are equal. The movable electrode, the surrounding electrode, the fixed electrode, and the reference electrode can be made with good reproducibility and yield according to the design purpose. The capacitance between the movable electrode and the fixed electrode without pressure, the surrounding electrode The ratio of the capacitance between the reference electrode and the reference electrode can be realized as designed with good yield. Further, it is possible to compensate for manufacturing variations in the gap interval between the electrodes for each vacuum sensor.
[0036]
Even when pressure is applied to the electrode, the capacitance between the surrounding electrode and the reference electrode is multiplied by the value obtained by dividing the fixed electrode area by the reference electrode area, and this value is the value of the capacitance between the movable electrode and the fixed electrode. Since the operation of subtracting is performed by arithmetic processing, the servo voltage is applied so that the subtracted value is substantially zero, and the displacement of the movable electrode is maintained at zero, so that the gap between the electrodes for each vacuum sensor is The manufacturing variation of the gap interval can be eliminated, and a correct pressure indication value independent of temperature can be obtained.
[0037]
In addition, by adopting a servo structure, the thin movable electrode is not mechanically strained, so the vacuum sensor is not subject to mechanical fatigue, and the life of the vacuum sensor can be extended, providing long-term reliability. Measurements can be made.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an essential part showing a representative embodiment of a servo capacitive vacuum sensor according to the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
3 is a cross-sectional view taken along line BB in FIG.
4 is a cross-sectional view taken along line CC in FIG. 1. FIG.
FIG. 5 is a configuration diagram showing a relationship between a vacuum sensor and an external circuit.
FIG. 6 is a longitudinal sectional view of a main part of a conventional servo-type capacitive vacuum sensor.
[Explanation of symbols]
11 Servo-type capacitive vacuum sensor
12 Silicon substrate
13,14 Pyrex board
15 introduction port
16 Servo electrodes
20 electrodes
21 Movable electrode
22 Ambient electrode
24 Fixed electrode for capacitance detection
25 Reference electrode
31-34 Electrode pins
35 Epoxy resin

Claims (2)

シリコン基板を第1ガラス基板と第2ガラス基板の間に配置し、前記シリコン基板と前記第1ガラス基板、前記シリコン基板と前記第2ガラス基板をそれぞれ接合して三層構造を形成し、
前記シリコン基板は電極部を備え、前記電極部と前記第1ガラス基板の間には気体導入口を通して外部と通じる第1内部空間が形成され、前記電極部と前記第2ガラス基板の間には高真空状態に保持される第2内部空間が形成され、前記電極部は前記気体導入口から前記第1内部空間に導入された気体の圧力を受け、
前記電極部は、前記気体の圧力を受けて変位する可動電極と、前記可動電極の周囲に前記可動電極を支持するように形成されかつ前記気体の圧力を受けても変位しない周囲電極とからなり、前記可動電極の前記第2内部空間側の面と前記周囲電極の前記第2内部空間側の面は同一面として形成され、
前記第2ガラス基板における前記第2内部空間側の面に、前記可動電極に対向する固定電極と、前記周囲電極に対向する参照電極を設け、
前記第1ガラス基板における前記第1内部空間側の面に、前記可動電極に接近して対向する凸状サーボ電極を設けた、
ことを特徴とするサーボ式静電容量型真空センサ。
A silicon substrate is disposed between the first glass substrate and the second glass substrate, the silicon substrate and the first glass substrate, and the silicon substrate and the second glass substrate are joined to form a three-layer structure,
The silicon substrate includes an electrode portion, a first internal space communicating with the outside through a gas inlet is formed between the electrode portion and the first glass substrate, and between the electrode portion and the second glass substrate. A second internal space that is maintained in a high vacuum state is formed, and the electrode portion receives the pressure of the gas introduced into the first internal space from the gas inlet,
The electrode portion includes a movable electrode that is displaced by receiving the pressure of the gas, and a peripheral electrode that is formed to support the movable electrode around the movable electrode and that is not displaced even by receiving the pressure of the gas. The surface of the movable electrode on the second internal space side and the surface of the peripheral electrode on the second internal space side are formed as the same surface,
On the surface of the second glass substrate on the second internal space side, a fixed electrode facing the movable electrode and a reference electrode facing the surrounding electrode are provided,
Provided on the surface of the first glass substrate on the first internal space side is a convex servo electrode that is close to and opposed to the movable electrode,
A servo-type capacitive vacuum sensor.
前記可動電極の前記第2内部空間側の面と前記周囲電極の前記第2内部空間側の面からなる前記同一面は、前記気体の圧力が加わっていないとき、前記固定電極および前記参照電極が設けられた前記第2ガラス基板における前記第2内部空間側の面に平行であることを特徴とする請求項1記載のサーボ式静電容量型真空センサ。The same surface formed by the surface of the movable electrode on the second internal space side and the surface of the peripheral electrode on the second internal space side is configured so that the fixed electrode and the reference electrode are arranged when the gas pressure is not applied. The servo capacitive vacuum sensor according to claim 1, wherein the servo glass vacuum sensor is parallel to a surface of the second glass substrate provided on the second internal space side.
JP15074898A 1998-05-14 1998-05-14 Servo capacitive vacuum sensor Expired - Fee Related JP4059306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15074898A JP4059306B2 (en) 1998-05-14 1998-05-14 Servo capacitive vacuum sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15074898A JP4059306B2 (en) 1998-05-14 1998-05-14 Servo capacitive vacuum sensor

Publications (2)

Publication Number Publication Date
JPH11326093A JPH11326093A (en) 1999-11-26
JP4059306B2 true JP4059306B2 (en) 2008-03-12

Family

ID=15503567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15074898A Expired - Fee Related JP4059306B2 (en) 1998-05-14 1998-05-14 Servo capacitive vacuum sensor

Country Status (1)

Country Link
JP (1) JP4059306B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324398A (en) * 2000-03-07 2001-11-22 Anelva Corp Corrosion resistant vacuum sensor
JP2001255225A (en) * 2000-03-10 2001-09-21 Anelva Corp Static capacitance type vacuum sensor

Also Published As

Publication number Publication date
JPH11326093A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JP3114570B2 (en) Capacitive pressure sensor
US4769738A (en) Electrostatic capacitive pressure sensor
US5483834A (en) Suspended diaphragm pressure sensor
JP4044307B2 (en) Pressure sensor
US8631707B2 (en) Differential temperature and acceleration compensated pressure transducer
FI126999B (en) Improved pressure gauge box
US6293154B1 (en) Vibration compensated pressure sensing assembly
US6598483B2 (en) Capacitive vacuum sensor
KR20040079323A (en) Semiconductor pressure sensor having diaphragm
TW201333439A (en) Capacitive pressure sensor with improved electrode structure
JP2013235002A (en) Separation mode capacitor for sensor
JPS63308529A (en) Capacitive pressure converter
JPH11295176A (en) Differential pressure sensor
JP4540775B2 (en) Servo capacitive vacuum sensor
JP2007225344A (en) Pressure sensor
JP4059306B2 (en) Servo capacitive vacuum sensor
JPH07174652A (en) Semiconductor pressure sensor and its manufacture as well as pressure detection method
JP2005195423A (en) Pressure sensor
JP2002055008A (en) Vacuum sensor with built-in thin-film getter
US7398694B2 (en) Pressure sensor and method for manufacturing pressure sensor
JP2010002421A (en) Servo electrostatic capacitance type vacuum sensor
JP2000121475A (en) Electrostatic capacity type pressure detector
JPS583081Y2 (en) Diffusion type semiconductor pressure sensor
JPH06323939A (en) Capacitance-type sensor
JPH0777471A (en) Capacitive pressure sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees