JP2012197346A - Chemical heat accumulator and method of manufacturing the same - Google Patents

Chemical heat accumulator and method of manufacturing the same Download PDF

Info

Publication number
JP2012197346A
JP2012197346A JP2011061613A JP2011061613A JP2012197346A JP 2012197346 A JP2012197346 A JP 2012197346A JP 2011061613 A JP2011061613 A JP 2011061613A JP 2011061613 A JP2011061613 A JP 2011061613A JP 2012197346 A JP2012197346 A JP 2012197346A
Authority
JP
Japan
Prior art keywords
heat storage
chemical heat
storage material
chemical
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011061613A
Other languages
Japanese (ja)
Other versions
JP5719649B2 (en
Inventor
Miyo Mochizuki
美代 望月
Takashi Shimazu
孝 志満津
Hiroyuki Itahara
弘幸 板原
Tsutomu Sawada
勉 澤田
Takatsune Fujimura
崇恒 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omi Kogyo Co Ltd
Toyota Central R&D Labs Inc
Omi Mining Co Ltd
Original Assignee
Omi Kogyo Co Ltd
Toyota Central R&D Labs Inc
Omi Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omi Kogyo Co Ltd, Toyota Central R&D Labs Inc, Omi Mining Co Ltd filed Critical Omi Kogyo Co Ltd
Priority to JP2011061613A priority Critical patent/JP5719649B2/en
Publication of JP2012197346A publication Critical patent/JP2012197346A/en
Application granted granted Critical
Publication of JP5719649B2 publication Critical patent/JP5719649B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PROBLEM TO BE SOLVED: To provide a chemical heat accumulator, wherein: the chemical heat-accumulating material structure held by a wall is prevented from adhering to the wall; and shear failure is prevented from occurring.SOLUTION: The chemical heat accumulator 100 includes: the chemical heat-accumulating material structure 21 that contains a granular chemical heat-accumulating material having a mean primary particle size of d [μm]; and a structure-housing member 30 that houses the chemical heat-accumulating material structure 21 and holds at least part of the material structure 21, wherein a ten-point surface roughness Rz [μm] in an inner wall surface abutting on the material structure 21, complying with JIS B 0601, is smaller than the mean primary particle size d.

Description

本発明は、吸放熱を担う化学蓄熱材を用いた化学蓄熱器及びその製造方法に関する。   The present invention relates to a chemical heat storage device using a chemical heat storage material responsible for heat absorption and release and a method for manufacturing the same.

化学反応を利用して熱の吸収、放出を行なうことのできる物質である化学蓄熱材は、従来より広く知られており、種々の分野で利用が検討されている。   A chemical heat storage material, which is a substance that can absorb and release heat by using a chemical reaction, has been widely known, and its use is being studied in various fields.

例えば、多数の気孔を有する生石灰を主体とした化学蓄熱材が開示されており、多数の気孔を有していることにより、穴等の余剰空間が全くない従来の化学蓄熱材に比べ、生石灰から消石灰に変化する過程における体積膨張が吸収され、粒子の破壊、粉化がなくなるとされている(例えば、特許文献1参照)。   For example, a chemical heat storage material mainly composed of quick lime having a large number of pores is disclosed, and by having a large number of pores, compared with a conventional chemical heat storage material that has no excess space such as holes, It is said that volume expansion in the process of changing to slaked lime is absorbed and particle destruction and powdering are eliminated (see, for example, Patent Document 1).

特開平1−225686号公報JP-A-1-225686

しかしながら、化学蓄熱材を用いたシステムでは、例えば上記のように水酸化カルシウムを化学蓄熱材として用いた場合、システム作動中に酸化カルシウムと水酸化カルシウムとの間の下記の可逆反応を繰り返すことになるが、このとき各粒子は数十%に及ぶ体積の膨張・収縮を伴なう。
CaO + HO ⇔ Ca(OH)
そのため、上記従来の技術のように、粒子が気孔を有することである程度の粒子破壊は抑えられることが期待されるが、実際には気孔を有しているだけではその体積変化が大きいために、体積膨張・収縮による影響を吸収しきれないのが実情である。そのため、繰り返される体積変化で化学蓄熱材を構成する粒子が崩壊し、粒子の粉体化を招いて剥離や反応性の低下を来たす課題がある。
However, in a system using a chemical heat storage material, for example, when calcium hydroxide is used as a chemical heat storage material as described above, the following reversible reaction between calcium oxide and calcium hydroxide is repeated during system operation. However, at this time, each particle is accompanied by expansion and contraction of a volume of several tens of percent.
CaO + H 2 O Ca Ca (OH) 2
Therefore, it is expected that the particle breakage to some extent by having the pores as in the above-mentioned conventional technology, but in fact, the volume change is large only by having the pores, The fact is that the effects of volume expansion and contraction cannot be absorbed. Therefore, there is a problem that particles constituting the chemical heat storage material are collapsed by repeated volume changes, causing particles to be pulverized and causing separation and a decrease in reactivity.

本発明は、上記に鑑みなされたものであり、化学蓄熱材を拘束して体積変化を制限すると共に、拘束された化学蓄熱材構造体の収容部材の壁等への固着が防止され、剪断破損が抑制された化学蓄熱器及びその製造方法を提供することを目的とし、該目的を達成することを課題とする。   The present invention has been made in view of the above, and restrains the chemical heat storage material to limit the volume change, and prevents the restrained chemical heat storage material structure from adhering to the wall or the like of the housing member and shear breakage. An object is to provide a chemical regenerator and a method for producing the same, in which the above-mentioned is suppressed, and to achieve the object.

本発明は、化学蓄熱材の成形体である化学蓄熱材構造体をその膨張等による体積変化(膨張差)が著しく生じないように収容部材内の壁等で拘束した場合、壁等と化学蓄熱材構造体との間で剪断応力が生じやすく、その応力で構造体が内部で破損することがあるが、この応力を抑えて化学蓄熱材の破損を防ぐには、化学蓄熱材の一次粒子の粒径に対し、化学蓄熱材を拘束する壁面の粗さが一定の関係を有していることが重要であるとの知見を得、かかる知見に基づいて達成されたものである。   In the present invention, when a chemical heat storage material structure, which is a molded product of a chemical heat storage material, is restrained by a wall or the like in a housing member so that volume change (expansion difference) due to expansion or the like does not occur remarkably, Shear stress is likely to occur between the material structure and the structure may be damaged internally. However, in order to suppress this stress and prevent damage to the chemical heat storage material, the primary particles of the chemical heat storage material The inventors have obtained the knowledge that it is important that the roughness of the wall surface that restrains the chemical heat storage material has a certain relationship with respect to the particle size, and this has been achieved based on such knowledge.

前記目的を達成するために、第1の発明である化学蓄熱器は、
<1> 平均一次粒子径がd[μm]である粒状の化学蓄熱材を含む化学蓄熱材構造体と、前記化学蓄熱材構造体を収容すると共に少なくとも一部を拘束し、前記化学蓄熱材構造体と接する内壁面の、JIS B 0601に準拠した十点表面粗さRz[μm]が前記平均一次粒子径dより小さい構造体収容部材と、を設けて構成したものである。
In order to achieve the object, the chemical heat accumulator which is the first invention is:
<1> A chemical heat storage material structure including a granular chemical heat storage material having an average primary particle size of d [μm], and the chemical heat storage material structure containing the chemical heat storage material structure and restraining at least a part thereof. A structure housing member having a ten-point surface roughness Rz [μm] based on JIS B 0601 of the inner wall surface in contact with the body is smaller than the average primary particle diameter d.

第1の発明においては、成形体である化学蓄熱材構造体を形成する化学蓄熱材の粒子の平均一次粒子径dが、化学蓄熱材構造体を収容すると共にその少なくとも一部を拘束する構造体収容部材の、化学蓄熱材構造体と接する内壁面におけるRz(JIS B 0601に準拠した十点表面粗さ;μm)より大きい関係にあることで、化学蓄熱材の反応時に繰り返し体積変化する場合に、化学蓄熱材の粒子が壁面の凹状の隙間に入り込んで固着するのが回避される。これにより、化学蓄熱材がその反応時における著しい膨張・収縮による体積変化を防ぐために構造体を収容部材の内壁等で拘束する構造でも、壁等と化学蓄熱材構造体との間の剪断が抑えられ、剪断応力の影響を受けて起きる化学蓄熱材の破損が防止され、ひいては化学蓄熱材の耐久性が向上する。また、化学蓄熱材の着脱(交換)時の破壊が生じ難く、着脱交換適性が向上する。   In the first invention, the average primary particle diameter d of the particles of the chemical heat storage material forming the chemical heat storage material structure which is a molded body accommodates the chemical heat storage material structure and restricts at least a part thereof. When the volume of the housing member is repeatedly changed during the reaction of the chemical heat storage material by being larger than Rz (ten-point surface roughness according to JIS B 0601; μm) on the inner wall surface in contact with the chemical heat storage material structure The particles of the chemical heat storage material are prevented from entering and fixing into the concave gaps on the wall surface. This prevents the shear between the wall and the chemical heat storage material structure even when the structure is constrained by the inner wall of the housing member in order to prevent the volume change due to significant expansion and contraction of the chemical heat storage material during the reaction. Therefore, the chemical heat storage material is prevented from being damaged under the influence of shear stress, and the durability of the chemical heat storage material is improved. In addition, the chemical heat storage material is not easily broken when it is attached / detached (exchanged), and the attachment / detachment / exchangeability is improved.

本発明において、「拘束」とは、化学蓄熱材構造体の使用時等における著しい膨張、収縮を制限することを意味する。具体的には、蓄熱反応媒体(例えば水)の脱離(例えば脱水)による化学蓄熱材構造体の収縮と、蓄熱反応媒体の結合(例えば水和)に伴なう化学蓄熱材構造体の膨張との差から生じる化学蓄熱材構造体の崩壊を抑制するのに必要とされる程度に、化学蓄熱材構造体にその体積変化を所定の面で制限する状態が形成されていることをいう。具体的には、構造体収容部材中に化学蓄熱材構造体の真密度比が45%以上63%以下を満たす範囲で収容された状態が好ましい。   In the present invention, “restraint” means limiting significant expansion and contraction during use of the chemical heat storage material structure. Specifically, shrinkage of the chemical heat storage material structure due to desorption (for example, dehydration) of the heat storage reaction medium (for example, water) and expansion of the chemical heat storage material structure due to the combination (for example, hydration) of the heat storage reaction medium. This means that the chemical heat storage material structure is formed with a state that limits the volume change in a predetermined plane to the extent required to suppress the collapse of the chemical heat storage material structure. Specifically, a state in which the true density ratio of the chemical heat storage material structure is accommodated in the structure housing member in a range satisfying 45% or more and 63% or less is preferable.

<2> 前記<1>に記載の第1の発明に係る化学蓄熱器において、化学蓄熱材は、脱水反応に伴なって吸熱し、水和反応に伴なって放熱する水和反応性蓄熱材であることが好ましい。 <2> In the chemical heat storage device according to the first invention described in <1>, the chemical heat storage material absorbs heat with a dehydration reaction and dissipates heat with a hydration reaction. It is preferable that

このような水和反応性の蓄熱材で構成される場合に、吸発熱時に生じる体積膨張、体積収縮が大きく、この体積変化で起きやすい割れ等の破損や変形、及びそれに伴なう反応性の低下を効果的に防止することができる。   When composed of such a hydration-reactive heat storage material, the volume expansion and contraction that occur during heat absorption and heat generation are large, and breakage and deformation such as cracks that easily occur due to this volume change, and the accompanying reactivity. Reduction can be effectively prevented.

<3> 前記<1>又は前記<2>に記載の第1の発明に係る化学蓄熱器において、化学蓄熱材は、アルカリ土類金属の水酸化物であることが更に好ましい。 <3> In the chemical heat storage device according to the first invention described in <1> or <2>, the chemical heat storage material is more preferably an alkaline earth metal hydroxide.

化学蓄熱材として、アルカリ土類金属の水酸化物を用いるので、上記体積変化が大きいことで本発明の効果がより奏効することに加え、蓄熱・放熱反応(水和・脱水)に対する材料安定性が高い。そのため、長期に亘って安定した蓄熱効果を得ることができる。   Since alkaline earth metal hydroxide is used as the chemical heat storage material, the effect of the present invention is more effective due to the large volume change, as well as material stability against heat storage and heat dissipation reactions (hydration and dehydration). Is expensive. Therefore, a stable heat storage effect can be obtained over a long period of time.

<4> 前記<1>〜前記<3>のいずれか1つに記載の第1の発明に係る化学蓄熱器において、化学蓄熱材構造体を6面体構造に構成し、6面体構造の少なくとも1面を構造体収容部材の内壁と接触させて拘束した態様が好ましい。 <4> In the chemical heat storage device according to the first invention described in any one of the above items <1> to <3>, the chemical heat storage material structure is configured in a hexahedral structure, and at least one of the hexahedral structures is provided. The aspect which made the surface contact the inner wall of a structure accommodation member and restrained is preferable.

化学蓄熱材構造体の6面のうち、1面又は2面以上を、該化学蓄熱材構造体を収容する収容部材の内部壁面に接触させて、化学蓄熱材が膨張・収縮できる空間を規制した状態にすることで、構造体内部の粒子間が適性距離に維持され、化学蓄熱材構造体の著しい体積変化が制限される。これにより、化学蓄熱材構造体及び内壁間での剪断力が軽減され、成形体である構造体の崩壊を防ぐことができる。   Of the six surfaces of the chemical heat storage material structure, one surface or two or more surfaces are brought into contact with the inner wall surface of the housing member that houses the chemical heat storage material structure to regulate the space in which the chemical heat storage material can expand and contract. By setting it in a state, the particles inside the structure are maintained at an appropriate distance, and a significant volume change of the chemical heat storage material structure is limited. Thereby, the shear force between a chemical heat storage material structure and an inner wall is reduced, and collapse of the structure which is a molded object can be prevented.

<5> 前記<1>〜前記<4>のいずれか1つに記載の第1の発明では、収容部材内に収容されている化学蓄熱材構造体の真密度比は、45〜63%である場合が好ましい。 <5> In the first invention according to any one of <1> to <4>, the true density ratio of the chemical heat storage material structure housed in the housing member is 45 to 63%. Some cases are preferred.

真密度が前記範囲内である場合に化学蓄熱材は粒子同士が結着性を示し、粒子間距離が適性距離に保たれる。これより、蓄熱反応媒体(例えばCa(OH)等の金属水酸化物を用いた場合は水)の結合反応が良好に進行すると共に、脱水反応時の体積収縮時には、過剰な変形が抑制され、化学蓄熱材構造体の内壁からの界面分離を小さく抑えることができる。 When the true density is within the above range, the chemical heat storage material exhibits a binding property between particles, and the distance between particles is kept at an appropriate distance. As a result, the binding reaction of the heat storage reaction medium (for example, water when a metal hydroxide such as Ca (OH) 2 is used) proceeds well, and excessive deformation is suppressed during volume shrinkage during the dehydration reaction. The interface separation from the inner wall of the chemical heat storage material structure can be kept small.

<6> 前記<4>又は前記<5>に記載の第1の発明においては、構造体収容部材として、6面の壁を有して6面の内壁で形成された室を有する容器(例えば6つの壁からなる内部中空の6面体)を用い、前記壁の少なくとも1面を蓄熱反応媒体が透過する透過壁とし、前記壁の少なくとも1面を熱伝導性の伝熱壁とした形態が好ましい。 <6> In the first invention described in the above <4> or <5>, the container having a six-sided wall and a six-sided inner wall as the structure housing member (for example, A hollow hexahedron having six walls), and at least one of the walls is a permeable wall through which a heat storage reaction medium passes, and at least one of the walls is a heat conductive heat transfer wall. .

少なくとも1面が蓄熱反応媒体(例えばCa(OH)等の金属水酸化物を用いた場合は水)が透過する透過壁であるため、蓄熱反応媒体の通過抵抗を小さく抑えた反応(例えば水和反応)が可能になり、化学蓄熱の高効率化、高出力化が図れる。また、少なくとも1面が伝熱壁であるため、熱交換が良好に行なえる。 Since at least one surface is a transmission wall through which a heat storage reaction medium (for example, water when a metal hydroxide such as Ca (OH) 2 is used) passes, a reaction (for example, water) that suppresses the passage resistance of the heat storage reaction medium is small. Sum reaction), and it is possible to increase the efficiency and output of chemical heat storage. Moreover, since at least one surface is a heat transfer wall, heat exchange can be performed satisfactorily.

<7> 前記<1>〜前記<5>のいずれか1つに記載の第1の発明における構造体収容部材は、筒状体(例えば少なくとも4面の壁を有する筒状体)と該筒状体の一端及び他端の少なくとも一方を閉塞する蓋材とを有しており、前記筒状体への前記化学蓄熱材構造体の着脱が可能に構成することができる。 <7> The structure housing member in the first invention according to any one of <1> to <5> is a cylindrical body (for example, a cylindrical body having at least four walls) and the cylinder. A lid member that closes at least one of one end and the other end of the cylindrical body, and the chemical heat storage material structure can be attached to and detached from the cylindrical body.

構造体収容部材が筒状体と蓋材とを別に有しており、一体型構造に構成されていないことで、化学蓄熱材構造体の交換時の着脱の際に、膨張による加圧で固着状態にあるために破損したり蓄熱材を脱離できない状態を回避し、蓄熱材構造体の交換効率を高めることができる。   Since the structure housing member has a cylindrical body and a lid material separately, and is not configured as an integral structure, it is fixed by pressure due to expansion when attaching or detaching the chemical heat storage material structure Therefore, it is possible to avoid a state where the heat storage material cannot be detached because it is in a state, and the exchange efficiency of the heat storage material structure can be improved.

また、第2の発明である化学蓄熱器の製造方法は、
<8> 平均一次粒子径がd[μm]である粒状の化学蓄熱材を含む化学蓄熱材構造体を準備する工程と、前記化学蓄熱材構造体を収容すると共に前記化学蓄熱材構造体の少なくとも一部を拘束する構造体収容部材の内壁面の少なくとも一部に表面処理を施し、前記内壁面にJIS B 0601に準拠した十点表面粗さRz[μm]が前記平均一次粒子径dより小さい表面を形成する工程と、前記内壁面を有する構造体収容部材に前記化学蓄熱材構造体を、Rzが平均一次粒子径dより小さい前記表面で該化学蓄熱材構造体の少なくとも一部が拘束されるように収容する工程と、を設けて構成したものである。
Moreover, the manufacturing method of the chemical heat storage device which is 2nd invention is as follows.
<8> A step of preparing a chemical heat storage material structure including a granular chemical heat storage material having an average primary particle diameter of d [μm], and at least one of the chemical heat storage material structures while accommodating the chemical heat storage material structure A surface treatment is applied to at least a part of the inner wall surface of the structure housing member that restrains a part, and the ten-point surface roughness Rz [μm] based on JIS B 0601 is smaller than the average primary particle diameter d on the inner wall surface. A step of forming a surface, and the chemical heat storage material structure is bound to the structure housing member having the inner wall surface, and at least a part of the chemical heat storage material structure is constrained on the surface where Rz is smaller than the average primary particle diameter d. And a step of accommodating the container so as to be accommodated.

第2の発明においては、化学蓄熱材構造体を収容すると共に少なくとも一部を拘束する構造体収容部材の内壁面に対して、該内壁面の一部又は全面のRz(JIS B 0601に準拠した十点表面粗さ;μm)が化学蓄熱材の粒子の平均一次粒子径dより小さくなるように、表面処理を施すことで、化学蓄熱材がその反応時における著しい膨張・収縮による体積変化を防ぐために壁等で拘束された構造でも、化学蓄熱材の粒子が壁面の凹状の隙間に入り込んで固着するのが回避される。
これにより、化学蓄熱材構造体を構造体収容部材に収容した場合に、壁等と化学蓄熱材との間の剪断が小さく抑えられ、剪断応力の影響を受けて起きる化学蓄熱材の破損が防止され、ひいては化学蓄熱材の耐久性が向上する。また、化学蓄熱材の着脱(交換)時の破壊が生じ難く、着脱交換適性が向上する。
In the second invention, with respect to the inner wall surface of the structure housing member that houses the chemical heat storage material structure and restrains at least a part thereof, a part or the entire surface of the inner wall surface is Rz (compliant with JIS B 0601). By applying surface treatment so that the ten-point surface roughness (μm) is smaller than the average primary particle diameter d of the chemical heat storage material particles, the chemical heat storage material can prevent volume changes due to significant expansion and contraction during the reaction. Therefore, even when the structure is constrained by a wall or the like, the particles of the chemical heat storage material are prevented from entering and fixing into the concave gap on the wall surface.
As a result, when the chemical heat storage material structure is housed in the structure housing member, the shear between the wall or the like and the chemical heat storage material is suppressed to a small level, and damage to the chemical heat storage material caused by the influence of shear stress is prevented. As a result, the durability of the chemical heat storage material is improved. In addition, the chemical heat storage material is not easily broken when it is attached / detached (exchanged), and the attachment / detachment / exchangeability is improved.

<9> 前記<8>に記載の第2の発明に係る化学蓄熱器の製造方法において、化学蓄熱材構造体を収容する構造体収容部材の内壁面の少なくとも一部に施す表面処理としては、(1)ラッピング加工による研磨、(2)メッキ処理、又は(3)樹脂被覆処理、あるいは(4)ポリイミド材、フッ素樹脂材、及び不織布から選ばれるいずれかを貼付する処理が好ましい態様である。ポリイミド材及びフッ素樹脂材には、例えば、ポリイミドフィルムやポリイミドシート、フッ素樹脂フィルムやフッ素樹脂シートなどを用いることができる。 <9> In the method for manufacturing a chemical regenerator according to the second invention described in <8>, as the surface treatment applied to at least a part of the inner wall surface of the structure housing member that houses the chemical heat storage material structure, A preferable aspect is (1) polishing by lapping, (2) plating, (3) resin coating, or (4) a process of attaching any one selected from a polyimide material, a fluororesin material, and a nonwoven fabric. As the polyimide material and the fluororesin material, for example, a polyimide film, a polyimide sheet, a fluororesin film, a fluororesin sheet, or the like can be used.

上記のうち、(1)ラッピング加工による研磨又は(2)メッキ処理による表面処理では、所望とする耐熱温度を確保することが可能であり、300℃を超える比較的高温に曝される可能性があるときの表面処理法として適している。また、(3)樹脂被覆処理又は(4)ポリイミド材、フッ素系樹脂材、又は不織布の貼付処理では、300℃以下での比較的低温での使用が想定される場合に、より低コストで簡易に所望とする滑り性を得ることができる。   Among the above, (1) polishing by lapping or (2) surface treatment by plating treatment can ensure a desired heat-resistant temperature and may be exposed to a relatively high temperature exceeding 300 ° C. It is suitable as a surface treatment method at certain times. In addition, (3) Resin coating treatment or (4) Polyimide material, fluorine resin material, or non-woven fabric sticking treatment is simpler at a lower cost when it is assumed to be used at a relatively low temperature of 300 ° C or lower. The desired slipperiness can be obtained.

本発明によれば、化学蓄熱材を拘束して体積変化を制限すると共に、拘束された化学蓄熱材構造体の収容部材の壁等への固着が防止され、剪断破損が抑制された化学蓄熱器及びその製造方法を提供することができる。   According to the present invention, the chemical heat storage material is restrained by restricting the volume change by restraining the chemical heat storage material, and the sticking of the restrained chemical heat storage material structure to the wall or the like of the housing member is prevented, and the shear damage is suppressed. And a manufacturing method thereof.

本発明の実施形態に係る化学蓄熱器を示す斜視図である。It is a perspective view which shows the chemical heat storage device which concerns on embodiment of this invention. 図1に示す化学蓄熱器の構造を分解して示す分解図である。It is an exploded view which decomposes | disassembles and shows the structure of the chemical heat storage device shown in FIG. 成形体を拘束するための2つのL字型治具を間隔を空けて配置した状態を示す写真である。It is a photograph which shows the state which has arrange | positioned the 2 L-shaped jig | tool for restraining a molded object at intervals. (A)は構造体を取り出しときに破損し、治具に固着した化学蓄熱材が残存している状態を示す写真であり、(B)は化学蓄熱材構造体に割れが生じている状態を示す写真である。(A) is a photograph showing a state in which the chemical heat storage material is damaged when the structure is taken out and is fixed to the jig, and (B) is a state in which the chemical heat storage material structure is cracked. It is a photograph shown.

以下、図面を参照して、本発明の化学蓄熱器の実施形態について詳細に説明すると共に、該説明を通じて、本発明の化学蓄熱器の製造方法の実施形態についても詳述する。なお、下記の実施形態において、化学蓄熱材としてアルカリ土類金属の水酸化物である水酸化カルシウム(Ca(OH))を用いた形態を中心に説明する。但し、本発明においては、下記の実施形態に制限されるものではない。 Hereinafter, embodiments of the chemical heat storage device of the present invention will be described in detail with reference to the drawings, and embodiments of the method for manufacturing the chemical heat storage device of the present invention will be described in detail through the description. In addition, in the following embodiment, it demonstrates centering on the form using calcium hydroxide (Ca (OH) 2 ) which is a hydroxide of an alkaline-earth metal as a chemical heat storage material. However, the present invention is not limited to the following embodiments.

本発明の化学蓄熱器及びその製造方法に係る実施形態を図1〜図4を参照して説明する。本実施形態は、化学蓄熱材としてCa(OH)の粒状物を用い、これを6面体である直方体に成形した化学蓄熱材構造体を、6壁を有し、そのうち広幅な2壁は水分(蓄熱反応媒体)を透過する不織布(透過壁)で形成され、他の4つの側壁は熱伝導性のステンレス鋼板(伝熱壁)で形成された6面体容器に収容し、構造体の6面全てが6壁で拘束されている構造となっている。 DESCRIPTION OF EMBODIMENTS Embodiments relating to a chemical heat storage device and a method for producing the same according to the present invention will be described with reference to FIGS. In the present embodiment, a granular material of Ca (OH) 2 is used as a chemical heat storage material, and the chemical heat storage material structure formed into a hexahedron rectangular parallelepiped has six walls, of which two wide walls are moisture. It is formed of a non-woven fabric (permeation wall) that passes through the (heat storage reaction medium), and the other four side walls are housed in a hexahedral container formed of a heat conductive stainless steel plate (heat transfer wall). All are constrained by six walls.

図1〜図2に示すように、本実施形態の化学蓄熱器100は、狭幅長尺状の2つのステンレス鋼材11及び狭幅短尺状の2つのステンレス鋼材13とステンレス鋼製の枠材(不図示)に不織布を取り付けてなる2つの水分透過壁15とを用いて内部中空の6面体構造に形成された構造体拘束容器(構造体収容部材)30と、この構造体拘束容器に収容され、Ca(OH)の粉体をプレス成形法により成形した直方体のCa(OH)構造体21とを備えている。 As shown in FIGS. 1 to 2, the chemical heat accumulator 100 according to the present embodiment includes two narrow-width long stainless steel materials 11, two narrow-width short-length stainless steel materials 13, and a stainless steel frame material ( A structure restraining container (structure housing member) 30 formed in an internal hollow hexahedron structure using two moisture permeable walls 15 formed by attaching a nonwoven fabric to an unillustrated), and housed in this structure restraining container , And a Ca (OH) 2 structure 21 of a rectangular parallelepiped formed by press molding of Ca (OH) 2 powder.

構造体拘束容器30は、図1〜図2に示すように、ステンレス鋼材11及びステンレス鋼材13で無端枠の構造を形成する4つの伝熱壁と、ステンレス鋼製の枠材(不図示)に不織布を取り付けてなる2つの水分透過壁(透過壁)15とで形成されたものである。4つの伝熱壁は連結された状態で熱伝導性を有する側壁として設けられている。Ca(OH)構造体21の6面は、構造体拘束容器30の6面の内壁に少なくとも接触した状態となっている。Ca(OH)構造体21が水和反応により膨張すると、構造体の外形は内壁で規制されて形状が保たれると共に、内壁との密着が上がり、伝熱壁を介して外部に放熱できるようになっている。また、水和反応時の体積膨張は、Ca(OH)構造体と各内壁との間の僅かな隙間と構造体中の気孔体積分の空間で吸収される。逆に、Ca(OH)構造体21が脱水反応により収縮すると、構造体は内壁との密着により収縮が制限され、形状が保たれる。 As shown in FIGS. 1 to 2, the structure-constraint container 30 includes four heat transfer walls that form an endless frame structure with the stainless steel material 11 and the stainless steel material 13, and a stainless steel frame material (not shown). It is formed with two moisture permeable walls (permeable walls) 15 to which a nonwoven fabric is attached. The four heat transfer walls are provided as side walls having thermal conductivity in a connected state. The six surfaces of the Ca (OH) 2 structure 21 are in contact with at least the inner walls of the six surfaces of the structure restraining container 30. When the Ca (OH) 2 structure 21 expands due to a hydration reaction, the outer shape of the structure is restricted by the inner wall and the shape is maintained, and the close contact with the inner wall is increased, and heat can be radiated to the outside through the heat transfer wall. It is like that. Further, the volume expansion during the hydration reaction is absorbed in a slight gap between the Ca (OH) 2 structure and each inner wall and a space corresponding to the pore volume in the structure. On the contrary, when the Ca (OH) 2 structure 21 contracts due to the dehydration reaction, the contraction of the structure is restricted due to the close contact with the inner wall, and the shape is maintained.

水分透過壁15は、化学繊維を用いて作製された不織布であり、その枠材の部分でステンレス鋼材11及びステンレス鋼材13と互いに接合されている。水分透過壁15が設けられることで、構造体拘束容器30の内部に収容されたCa(OH)構造体21での水和反応又は脱水反応の際に発生する水分移動が可能な構成になっている。 The moisture permeable wall 15 is a non-woven fabric produced using chemical fibers, and is joined to the stainless steel material 11 and the stainless steel material 13 at the frame material portion. By providing the moisture permeable wall 15, it is possible to transfer moisture generated during the hydration reaction or dehydration reaction in the Ca (OH) 2 structure 21 accommodated in the structure restraining container 30. ing.

水分透過壁15には、水分透過が可能な孔を有する板状の材料を制限なく使用することが可能であり、例えばステンレス鋼(例えばSUS316L)製のメッシュ材であってもよい。また、メッシュ状のものに限られず、他の形状を任意に選択して孔が設けられたものを用いることができる。例えば複数の円形の孔が所定間隔で設けられているものでもよい。   For the moisture permeable wall 15, a plate-like material having holes that allow moisture to permeate can be used without limitation. For example, a mesh material made of stainless steel (for example, SUS316L) may be used. Moreover, it is not restricted to a mesh-like thing, The thing which selected the other shape arbitrarily and provided the hole can be used. For example, a plurality of circular holes may be provided at predetermined intervals.

また、水分透過壁の材質としては、化学蓄熱材構造体(本実施形態ではCa(OH)構造体)の膨張・収縮に追従又は制限を与えられるものであればよく、蓄放熱反応媒体(本実施形態では水)で腐食、軟化等や錆などの劣化を起こし難いものが好ましい。具体的には、ステンレス鋼材やアルミニウム材などの金属材料、樹脂材料などでもよい。 Moreover, as a material of a moisture permeation | transmission wall, what is necessary is just to be able to follow or restrict | limit expansion / contraction of a chemical heat storage material structure (Ca (OH) 2 structure in this embodiment). In the present embodiment, water) which is difficult to cause deterioration such as corrosion, softening and rust is preferable. Specifically, a metal material such as a stainless steel material or an aluminum material, a resin material, or the like may be used.

ステンレス鋼材11及びステンレス鋼材13は、蓄放熱反応媒体(本実施形態では水)で腐食、軟化等や錆などの劣化を起こし難く、熱伝導性を付与できる材質が好ましい。例えば、ステンレス鋼材やアルミニウム材などの金属材料が挙げられる。   The stainless steel material 11 and the stainless steel material 13 are preferably made of a material that is unlikely to cause deterioration such as corrosion, softening, rust and the like with a heat storage and heat dissipation reaction medium (water in the present embodiment) and can impart thermal conductivity. For example, metal materials, such as stainless steel material and aluminum material, are mentioned.

構造体拘束容器30の中空内部は、6面の内壁で50mm×30mm×3mmのサイズに形成されており、中空部の内寸は後述のようにCa(OH)構造体21のサイズとほぼ同サイズとなっている。 The hollow interior of the structure-constrained container 30 is formed in a size of 50 mm × 30 mm × 3 mm with six inner walls, and the inner dimension of the hollow portion is approximately the size of the Ca (OH) 2 structure 21 as described later. It is the same size.

中空内部の大きさは、目的や収容される化学蓄熱材構造体(本実施形態ではCa(OH)構造体)の種類(すなわち膨張・収縮率)、体積に合わせて任意に選択することができる。 The size of the hollow interior can be arbitrarily selected according to the purpose, the type of chemical heat storage material structure (Ca (OH) 2 structure in this embodiment) (ie, expansion / contraction rate), and volume. it can.

6面の内壁のうち、ステンレス鋼材11及びステンレス鋼材13で形成される4面の内壁には、耐熱性のポリイミドフィルム(カプトン(登録商標)Hタイプ、東レ・デュポン(株)製)が貼付され、十点表面粗さ(Rz)が内部に収容されるCa(OH)構造体21のCa(OH)粉の一次粒子の平均粒径(平均一次粒子径d)より小さくなるように調整されている。RzがCa(OH)粉の平均一次粒子径dより大きくなると、Ca(OH)の粒子が壁に存在する凹状の隙間に入り込んで固着しやすくなる。したがって、Rz<平均一次粒子径dの関係を満足することにより、Ca(OH)構造体21が体積変化した際でも壁面を移動できる滑り性が得られ、Ca(OH)構造体21が内壁面で拘束された構造とした場合に、内壁面とCa(OH)構造体との間の剪断が抑えられ、剪断力の影響で生じる構造体の破損が防止される。これにより、化学蓄熱材の耐久性が向上する。また、化学蓄熱材構造体21の着脱(交換)時には、その破壊が生じ難くなり、着脱交換が容易に行なえる。 Heat resistant polyimide film (Kapton (registered trademark) H type, manufactured by Toray DuPont Co., Ltd.) is affixed to the four inner walls formed of stainless steel material 11 and stainless steel material 13 among the six inner walls. The ten-point surface roughness (Rz) is adjusted to be smaller than the average particle size (average primary particle size d) of the primary particles of Ca (OH) 2 powder of the Ca (OH) 2 structure 21 accommodated therein. Has been. When Rz becomes larger than the average primary particle diameter d of the Ca (OH) 2 powder, Ca (OH) 2 particles enter the concave gaps existing on the wall and are easily fixed. Therefore, by satisfying the relationship of Rz <average primary particle diameter d, slipperiness capable of moving the wall surface even when the volume of the Ca (OH) 2 structure 21 is changed is obtained, and the Ca (OH) 2 structure 21 is When the structure is constrained by the inner wall surface, shearing between the inner wall surface and the Ca (OH) 2 structure is suppressed, and damage to the structure caused by the influence of the shearing force is prevented. Thereby, durability of a chemical heat storage material improves. In addition, when the chemical heat storage material structure 21 is attached / detached (exchanged), the chemical heat storage material structure 21 is less likely to be broken, and can be easily attached and detached.

Rz<平均一次粒子径dの関係を満たす表面処理としては、ポリイミドフィルムのほかポリイミドシートを用いてもよい。また、該表面処理の方法として、テフロン(登録商標)やグラファイトテフロン(登録商標)等のフッ素樹脂フィルムやシートなどのフッ素系樹脂材、又は不織布を貼付する方法を挙げることができる。また、貼付処理する方法のほか、ラッピング加工による研磨、メッキ処理、及び樹脂被覆処理などを挙げることができる。
前記ラッピング加工は、ラップ定盤と被加工物(本実施例では構造体拘束容器30)との間にダイヤモンド砥粒と研磨液を介して両者を擦り合わせながら回転させ、超微小の除去を行なう研磨方法である。
前記メッキ処理は、構造体拘束容器30の内壁面をなす表面を電気めっきや無電解めっき等の方法により金属薄膜で覆う表面処理方法である。
前記樹脂被覆処理は、樹脂を溶剤に溶解又は分散させた塗布液をコーティングする方法である。ここで用いる樹脂に特に制限はなく、所望とするRzに合わせて適宜選択することができる。
As the surface treatment satisfying the relationship of Rz <average primary particle diameter d, a polyimide sheet may be used in addition to the polyimide film. Examples of the surface treatment method include a method of attaching a fluororesin material such as a fluororesin film or sheet such as Teflon (registered trademark) or graphite Teflon (registered trademark), or a non-woven fabric. In addition to the method of applying a sticking process, polishing by lapping, plating, resin coating, and the like can be given.
The lapping process is performed by rotating the lapping plate between the lapping surface plate and the workpiece (in this embodiment, the structure-constrained container 30) while rubbing both of them together with a diamond abrasive and a polishing liquid to remove ultrafine particles. This is a polishing method to be performed.
The plating treatment is a surface treatment method in which the surface forming the inner wall surface of the structure-constraint container 30 is covered with a metal thin film by a method such as electroplating or electroless plating.
The resin coating treatment is a method of coating a coating solution in which a resin is dissolved or dispersed in a solvent. There is no restriction | limiting in particular in resin used here, According to Rz desired, it can select suitably.

Rzが化学蓄熱材の平均一次粒子径dより小さい関係を満たす限り、平均一次粒子径d及びRzの範囲に特に制限はないが、Rzの範囲としては、脱離の点で、1.5μm以下の範囲が好適であり、より好ましくは1μm以下の範囲である。   As long as Rz satisfies the relationship smaller than the average primary particle diameter d of the chemical heat storage material, the range of the average primary particle diameter d and Rz is not particularly limited, but the range of Rz is 1.5 μm or less in terms of desorption. Is preferable, and the range of 1 μm or less is more preferable.

ここで、十点表面粗さ(Rz)は、JIS B 0601(1994)に準拠して測定される値である。   Here, the ten-point surface roughness (Rz) is a value measured according to JIS B 0601 (1994).

本実施形態における構造体拘束容器30は、Ca(OH)構造体21を収容すると共にその6面全体を拘束していることにより、脱水反応に伴なって吸熱し、水和反応に伴なって放熱する際に著しい体積膨張・体積収縮が起きないようになっている。 The structure restraining container 30 in the present embodiment accommodates the Ca (OH) 2 structure 21 and restrains the entire six surfaces thereof, thereby absorbing heat accompanying the dehydration reaction and accompanying the hydration reaction. Therefore, no significant volume expansion or contraction occurs during heat dissipation.

Ca(OH)構造体21が拘束されるとは、Ca(OH)構造体21の使用時等における著しい膨張、収縮を制限することを意味する。本実施形態の場合、脱水反応(蓄熱反応媒体の脱離)したときのCa(OH)構造体21の収縮と、水和反応(蓄熱反応媒体の結合)したときのCa(OH)構造体21の膨張との差を、Ca(OH)構造体21の崩壊が抑制される程度に、Ca(OH)構造体21に構造体拘束容器30の器壁が接触して体積変化が小さく制限された状態が形成されていることをいう。 And Ca (OH) 2 structure 21 is constrained, significant expansion in the use or the like of the Ca (OH) 2 structure 21, meaning to limit the shrinkage. For this embodiment, the shrinkage of the Ca (OH) 2 structure 21 when the (binding of the heat storage reaction medium) the hydration reaction is Ca (OH) 2 structure when the (elimination of the heat storage reaction medium) dehydration reaction The difference from the expansion of the body 21 is such that the wall of the structure restraining container 30 comes into contact with the Ca (OH) 2 structure 21 to such an extent that the collapse of the Ca (OH) 2 structure 21 is suppressed. It means that a small restricted state is formed.

−化学蓄熱材−
Ca(OH)構造体21は、化学蓄熱材であるCa(OH)の粒状物(平均一次粒子径6〜8μm)をプレス成形した真密度比57%の成形体である。化学蓄熱材は、化学反応を利用して熱の吸収、放出を行なうことのできる物質であり、構造体内部に粉体として存在させる。化学蓄熱材が粒体又は粒状であるとは、粒子を含む粉末の状態をいう。
-Chemical heat storage material-
The Ca (OH) 2 structure 21 is a molded body having a true density ratio of 57% obtained by press-molding Ca (OH) 2 granules (average primary particle diameter of 6 to 8 μm), which is a chemical heat storage material. A chemical heat storage material is a substance that can absorb and release heat using a chemical reaction, and is present as a powder in the structure. The chemical heat storage material being granular or granular means a state of powder containing particles.

化学蓄熱材としては、例えば、水酸化カルシウム(Ca(OH))のほか、水酸化マグネシウム(Mg(OH))、水酸化バリウム(Ba(OH))及びその水和物(Ba(OH)・HO)などのアルカリ土類金属の無機水酸化物や、水酸化リチウム一水和物(LiOH・HO)などのアルカリ金属の無機水酸化物、酸化アルミニウム三水和物(Al・3HO)などの無機酸化物などを挙げることができる。中でも、脱水反応に伴なって吸熱し、水和反応に伴なって放熱する水和反応性蓄熱材が好ましく、特に水酸化カルシウム(Ca(OH))好ましい。 Examples of the chemical heat storage material include calcium hydroxide (Ca (OH) 2 ), magnesium hydroxide (Mg (OH) 2 ), barium hydroxide (Ba (OH) 2 ), and hydrates thereof (Ba ( Inorganic hydroxides of alkaline earth metals such as (OH) 2 · H 2 O), inorganic hydroxides of alkali metals such as lithium hydroxide monohydrate (LiOH · H 2 O), aluminum oxide trihydrate Inorganic oxides such as a product (Al 2 O 3 .3H 2 O) can be given. Among them, a hydration reactive heat storage material that absorbs heat with a dehydration reaction and dissipates heat with a hydration reaction is preferable, and calcium hydroxide (Ca (OH) 2 ) is particularly preferable.

ここで、水酸化カルシウム(Ca(OH))を例に蓄熱と放熱について説明する。
化学蓄熱材であるCa(OH)は、脱水に伴なって蓄熱(吸熱)し、水和(水酸化カルシウムへの復原)に伴なって放熱(発熱)する構成となる。すなわち、Ca(OH)は、以下に示す反応により蓄熱、放熱を可逆的に繰り返することができる。
Ca(OH) ⇔ CaO + H
またこれに、蓄熱量、発熱量Qを併せて示すと、以下のようになる。
Ca(OH) + Q → CaO + H
CaO + HO → Ca(OH) + Q
Here, heat storage and heat dissipation will be described using calcium hydroxide (Ca (OH) 2 ) as an example.
Ca (OH) 2 , which is a chemical heat storage material, stores heat (absorbs heat) as it dehydrates, and dissipates heat (generates heat) as it hydrates (restores to calcium hydroxide). That is, Ca (OH) 2 can reversibly repeat heat storage and heat dissipation by the reactions shown below.
Ca (OH) 2 Ca CaO + H 2 O
In addition, when the heat storage amount and the heat generation amount Q are also shown, this is as follows.
Ca (OH) 2 + Q → CaO + H 2 O
CaO + H 2 O → Ca (OH) 2 + Q

粒状の化学蓄熱材の平均粒径としては、平均一次粒子径(d)で50μm以下が好ましい。成形体内部に存在している化学蓄熱材の平均一次粒子径dが50μm以下であると、成形性の点で好適であると共に、粘土鉱物を併用したときには粘土鉱物との間の反応生成物が得られ、より強固な多孔構造が得られる。中でも、平均一次粒子径は、30μm以下がより好ましく、10μm以下が更に好ましい。また、平均一次粒子径の下限は、0.1μmが望ましい。   As an average particle diameter of a granular chemical heat storage material, 50 micrometers or less are preferable at an average primary particle diameter (d). When the average primary particle diameter d of the chemical heat storage material present in the molded body is 50 μm or less, it is preferable in terms of moldability, and when a clay mineral is used in combination, a reaction product between the clay mineral and the clay mineral is present. And a stronger porous structure is obtained. Among these, the average primary particle diameter is more preferably 30 μm or less, and further preferably 10 μm or less. Further, the lower limit of the average primary particle size is desirably 0.1 μm.

本発明においては、「十点表面粗さ(Rz)<化学蓄熱材の平均一次粒子径d」の関係を満たす範囲で構成されるが、中でも化学蓄熱材構造体の固着をより効果的に防ぎ、体積変化に伴なう剪断の影響で生じる化学蓄熱材構造体の破壊をより回避する観点から、化学蓄熱材の平均一次粒子径dとRzとの差(=d−Rz;μm)は、1.5μm以下であることが好ましく、1μm以下であることがより好ましい。   In the present invention, it is configured in a range satisfying the relationship of “ten-point surface roughness (Rz) <average primary particle diameter d of chemical heat storage material”, and in particular, the chemical heat storage material structure is more effectively prevented from sticking. From the viewpoint of further avoiding the destruction of the chemical heat storage material structure caused by the shear effect accompanying the volume change, the difference between the average primary particle diameter d and Rz of the chemical heat storage material (= d−Rz; μm) is: It is preferably 1.5 μm or less, and more preferably 1 μm or less.

なお、化学蓄熱材の平均一次粒子径dは、レーザー回折・散乱粒度分布計SALD−2000A〔(株)島津製作所製〕を用いて、レーザー回折散乱法により測定される値である。   The average primary particle diameter d of the chemical heat storage material is a value measured by a laser diffraction / scattering method using a laser diffraction / scattering particle size distribution analyzer SALD-2000A (manufactured by Shimadzu Corporation).

Ca(OH)構造体21の真密度比は57%であるが、化学蓄熱材構造体の真密度比としては、45〜63%の範囲に調節することが好ましい。真密度比とは、気孔を除いた構造体を構成する実質的な成分比率がどの程度であるかを示し、気孔が少ないほど真密度比は高くなる。真密度比が45〜63%の範囲であると、化学蓄熱材は粒子同士が結着性を示し、粒子間距離が適性距離に保たれる。具体的には、真密度が45%以上であると、体積変化を構造体の崩壊等が起きない程度に抑えることができ、また真密度が63%以下であると、堆積膨張できる許容体積が確保され、良好な反応性が得られる。
これにより、Ca(OH)構造体21での水和反応(蓄熱反応媒体の結合反応)が良好に進行すると共に、脱水反応時の体積収縮時には、過剰な変形が抑制され、Ca(OH)構造体21の内壁からの界面分離を小さく抑えることができる。
本発明における化学蓄熱材構造体の真密度比は、51〜60%の範囲がより好ましく、55〜59%の範囲が特に好ましい形態である。
The true density ratio of the Ca (OH) 2 structure 21 is 57%, but the true density ratio of the chemical heat storage material structure is preferably adjusted to a range of 45 to 63%. The true density ratio indicates how much the substantial component ratio of the structure excluding the pores is, and the smaller the pores, the higher the true density ratio. When the true density ratio is in the range of 45 to 63%, the chemical heat storage material has a binding property between particles, and the distance between the particles is kept at an appropriate distance. Specifically, if the true density is 45% or more, the volume change can be suppressed to such an extent that the structure does not collapse, and if the true density is 63% or less, the allowable volume that can be deposited and expanded is sufficient. Secured and good reactivity is obtained.
As a result, the hydration reaction (binding reaction of the heat storage reaction medium) in the Ca (OH) 2 structure 21 proceeds well, and excessive deformation is suppressed during volume shrinkage during the dehydration reaction, and Ca (OH) The interface separation from the inner wall of the two structures 21 can be kept small.
The true density ratio of the chemical heat storage material structure in the present invention is more preferably in the range of 51 to 60%, and particularly preferably in the range of 55 to 59%.

前記真密度比は、化学蓄熱材構造体の質量[g]と体積[ml]とを計測し、計測値をもとに下記式から算出される値である。
真密度比[%]=(質量/体積)/真密度×100
The true density ratio is a value calculated from the following equation based on a measured value obtained by measuring the mass [g] and the volume [ml] of the chemical heat storage material structure.
True density ratio [%] = (mass / volume) / true density × 100

また、Ca(OH)構造体21は、50mm×30mm×3mmのサイズに形成されており、構造体拘束容器30の内寸と同サイズに成形されることで、拘束状態が形成されており、成形時の蓄熱材粉体の粒子間距離を略一定に保つことができる。これにより、Ca(OH)構造体21の体積膨張・収縮に伴なう内部クラックの発生が抑制されると共に、発生した内部クラックを自己補修することができる。また、外形上の曲げ、反り等の変形を抑制することで外部欠損が抑制される効果も期待でき、収縮時の欠損は膨張時に自己修復できる効果が得られる。 In addition, the Ca (OH) 2 structure 21 is formed in a size of 50 mm × 30 mm × 3 mm, and is formed in the same size as the inner size of the structure-constraint container 30 so that a restrained state is formed. The distance between the particles of the heat storage material powder during molding can be kept substantially constant. Thereby, generation | occurrence | production of the internal crack accompanying the volume expansion / contraction of the Ca (OH) 2 structure 21 is suppressed, and the generated internal crack can be self-repaired. In addition, an effect of suppressing external defects by suppressing deformation such as bending and warping on the outer shape can be expected, and an effect that the defects at the time of contraction can be self-repaired at the time of expansion is obtained.

このような観点から、化学蓄熱材構造体は、プレス成形後の外寸が、構造体収容部材の内寸と同等ないし同等とみなせる範囲にある場合が好ましい。また、化学蓄熱材構造体のプレス成形後の外形が、構造体拘束容器の中空内部の形状と相似の関係にある態様であってもよく、この場合は、蓄放熱反応媒体の少なくとも一部を脱離した後の化学蓄熱材構造体の各面と、構造体拘束部材の中空部の各面との相似比が等しい状態にある態様が好ましい。互いに相似比が等しいと、化学蓄熱材構造体を収容し、使用時の化学蓄熱材構造体の膨張、収縮させた場合に、構造体拘束容器の中空部の内壁面に対して良好な密着が得られる。相似比は、対比する形状間で各辺等の比が同じことをさし、例えば、6面体の場合は3次元座標軸(XYZ軸)の3軸方向における各辺の比が等しいことをいう。この場合、化学蓄熱材構造体の膨潤・収縮したときに、構造体拘束容器30内で各面が均等に拘束される。更に加えて、上記と同様の理由から、Ca(OH)構造体などアルカリ土類金属の水酸化物の化学蓄熱材構造体が用いられ、真密度比55〜59%の範囲で充填されている形態が好ましい。 From such a viewpoint, it is preferable that the chemical heat storage material structure has an outer dimension after press molding within a range that can be regarded as equivalent to or equivalent to the inner dimension of the structure housing member. Moreover, the external shape after press molding of the chemical heat storage material structure may be in an aspect similar to the shape of the hollow inside of the structure-constrained container. A mode in which the similarity ratio between each surface of the chemical heat storage material structure after desorption and each surface of the hollow portion of the structure restraining member is equal is preferable. If the similarity ratios are equal to each other, the chemical heat storage material structure is accommodated, and when the chemical heat storage material structure is expanded and contracted during use, good adhesion to the inner wall surface of the hollow portion of the structure restraining container is obtained. can get. The similarity ratio means that the ratio of each side is the same between the shapes to be compared. For example, in the case of a hexahedron, the ratio of each side in the three-axis direction of the three-dimensional coordinate axis (XYZ axis) is equal. In this case, when the chemical heat storage material structure is swollen or contracted, each surface is evenly restrained in the structure restraining container 30. In addition, for the same reason as described above, an alkaline earth metal hydroxide chemical heat storage material structure such as a Ca (OH) 2 structure is used, and it is filled in a range of true density ratio of 55 to 59%. Are preferred.

化学蓄熱材の化学蓄熱材構造体中における含有比率としては、体積比率では、構造体全体積に対して20〜80体積%(構造体全質量に対して20〜80質量%)が好ましく、30〜70体積%(構造体全質量に対して30〜70質量%)がより好ましい。化学蓄熱材の含有量は、20体積%以上又は20質量%以上であると、吸発熱量を高く保つことができ、80体積%以下又は80質量%以下であると、構造強度のより高い構造体が得られる。   The content ratio of the chemical heat storage material in the chemical heat storage material structure is preferably 20 to 80% by volume (20 to 80% by mass with respect to the total mass of the structure) in terms of volume ratio, 30 -70 volume% (30-70 mass% with respect to the structure total mass) is more preferable. When the content of the chemical heat storage material is 20% by volume or more or 20% by mass or more, the heat absorption and heat generation amount can be kept high, and when it is 80% by volume or less or 80% by mass or less, the structure having higher structural strength. The body is obtained.

−有機バインダー−
化学蓄熱材構造体(本実施形態ではCa(OH)構造体21)は、粒状の化学蓄熱材(本実施形態ではCa(OH))と共に、有機バインダーを用いて成形されてもよい。
-Organic binder-
The chemical heat storage material structure (Ca (OH) 2 structure 21 in this embodiment) may be molded using an organic binder together with the granular chemical heat storage material (Ca (OH) 2 in this embodiment).

粒状の化学蓄熱材は、一般に粒子同士のくっつきが悪く成形し難いため、構造体成形性の付与(結着成分)のために有機バインダーを併用してもよい。また、有機バインダーの併用により、結晶制御、多孔化なども向上させることができる。   Since the granular chemical heat storage material generally has poor adhesion between particles and is difficult to mold, an organic binder may be used in combination for imparting structure formability (binding component). Moreover, crystal control and porosity can be improved by using an organic binder in combination.

有機バインダーとしては、例えば、変性又は未変性の各種ポリビニルアルコール(PVA)、カルボキシメチルセルロース等のセルロース系樹脂、水性ウレタン等のウレタン樹脂、デンプンなどの樹脂成分や、ジエチレングリコール(DEG)、エタノールなどの溶剤成分、等を好適に用いることができる。   Examples of the organic binder include various modified or unmodified polyvinyl alcohols (PVA), cellulose resins such as carboxymethyl cellulose, urethane resins such as aqueous urethane, resin components such as starch, and solvents such as diethylene glycol (DEG) and ethanol. Components, etc. can be suitably used.

−粘土鉱物−
化学蓄熱材構造体(本実施形態ではCa(OH)構造体21)は、粒状の化学蓄熱材(及び必要に応じて前記有機バインダー)を用いるほか、さらに粘土鉱物を用いて成形してもよい。この場合には、化学蓄熱材の粉体間に粘土鉱物が介在した構造が得られ、粘土鉱物が多孔の骨格構造をなし、その中に化学蓄熱材の粉体が分散保持された構造に形成されてもよい。構造中、化学蓄熱材の粉体は分散状態で保持され、多孔により水蒸気の拡散性に優れているため、多くの粉体において上記反応を起こしやすいようになっている。
-Clay minerals-
The chemical heat storage material structure (Ca (OH) 2 structure 21 in the present embodiment) may be formed by using a granular chemical heat storage material (and the organic binder as necessary) and further using a clay mineral. Good. In this case, a structure in which clay minerals intervene between the powders of the chemical heat storage material is obtained, and the clay mineral has a porous skeleton structure, in which the powder of the chemical heat storage material is dispersed and held. May be. In the structure, the powder of the chemical heat storage material is held in a dispersed state and is excellent in water vapor diffusibility due to the porosity, so that the above reaction is likely to occur in many powders.

化学蓄熱材構造体(本実施形態ではCa(OH)構造体21)は、層リボン構造を有する粘土鉱物の少なくとも1種を含有することが好ましい。層リボン構造を有する粘土鉱物は、輝石に似た単鎖が複数本結合して四面体リボンを形成している粘土鉱物(層状珪酸塩鉱物)であり、化学蓄熱材に粘度を与え、多孔構造を形成すると共に、構造体の構造強度を高く保つことができる。また、水蒸気の拡散性も付与できる。 The chemical heat storage material structure (Ca (OH) 2 structure 21 in this embodiment) preferably contains at least one clay mineral having a layered ribbon structure. Clay minerals with a layered ribbon structure are clay minerals (layered silicate minerals) in which a plurality of single chains resembling pyroxene are combined to form a tetrahedral ribbon, giving viscosity to chemical heat storage materials and having a porous structure And the structural strength of the structure can be kept high. Moreover, the diffusibility of water vapor | steam can also be provided.

粘土鉱物としては、例えば、セピオライト〔MgSi1230(OH)・(OH・8HOで表される含水マグネシウム珪酸塩〕、アタパルジャイト〔パリゴルスカイト;=(Mg・AL)Si10(OH)・4HOで表されるパリゴルスカイト構造を有する含水珪酸マグネシウム、線径5μm以下〕、カオリナイト〔カオリン;=Al(Si)(OH)で表されるアルミニウム珪酸塩、線径1μm以下〕などが挙げられ、これらの1種又は2種以上を組み合わせて用いることができる。また、粘土鉱物は上市された市販品を用いてもよく、市販品の例として、近江鉱業(株)製のトルコ産セピオライトなどを使用できる。 Examples of the clay mineral include sepiolite [hydrated magnesium silicate represented by Mg 8 Si 12 O 30 (OH) 4. (OH 2 ) 4 .8H 2 O], attapulgite [palygorskite; = (Mg · AL) 2 Hydrous magnesium silicate having a palygorskite structure represented by Si 4 O 10 (OH) · 4H 2 O, wire diameter of 5 μm or less, kaolinite [kaolin; = Al 2 (Si 2 O 5 ) (OH) 4 Aluminum silicate, wire diameter of 1 μm or less], and the like, and one or more of these can be used in combination. As the clay mineral, a commercially available product may be used. As an example of a commercially available product, Turkish sepiolite manufactured by Omi Mining Co., Ltd. can be used.

層リボン構造を有する粘土鉱物は、これに属しない下記ベントナイトと比較し、シンタリング(凝集化)が少ない利点がある。特にセピオライトは、化学蓄熱材の脱水温度に近い温度で焼結され、該温度ではシンタリングによる比表面積の減少が少ない利点がある。
粘土鉱物は、このような利点を考慮して用途等に応じて適宜選択すればよい。
A clay mineral having a layered ribbon structure has an advantage of less sintering (aggregation) compared to the following bentonite which does not belong to this. In particular, sepiolite is sintered at a temperature close to the dehydration temperature of the chemical heat storage material, and there is an advantage that the specific surface area is less reduced by sintering at that temperature.
The clay mineral may be appropriately selected according to the application and the like in consideration of such advantages.

なお、化学蓄熱材構造体(本実施形態ではCa(OH)構造体21)は、層リボン構造を有する粘土鉱物に属しないベントナイトを含んでもよく、粘土鉱物とベントナイトとを混合してもよい。ベントナイトは、層リボン構造を有する粘土鉱物と比較し、接着力が強い粘土鉱物であり、単体で(粘土鉱物と混合されない状態で)強固な多孔質構造を得ることができる。また、例えば金属壁への接合強度を向上することに寄与し、ベントナイトを用いた組成でも化学蓄熱材の粉体間に細孔が形成された多孔質構造が得られる。
本発明においては、層リボン構造の粘土鉱物とベントナイトとを混合した粘土鉱物を粒状の化学蓄熱材と混合する構成であってもよい。この場合、ベントナイトの比率は、層リボン構造を有する粘土鉱物に対して10〜40質量%とするのが好ましい。
In addition, the chemical heat storage material structure (Ca (OH) 2 structure 21 in the present embodiment) may include bentonite that does not belong to the clay mineral having a layer ribbon structure, or may mix clay mineral and bentonite. . Bentonite is a clay mineral having a stronger adhesive force than a clay mineral having a layered ribbon structure, and can obtain a strong porous structure alone (in a state where it is not mixed with the clay mineral). Further, for example, it contributes to improving the bonding strength to the metal wall, and a porous structure in which pores are formed between the powders of the chemical heat storage material can be obtained even with a composition using bentonite.
In this invention, the structure which mixes the clay mineral which mixed the clay mineral and bentonite of a layer ribbon structure with a granular chemical heat storage material may be sufficient. In this case, the ratio of bentonite is preferably 10 to 40% by mass with respect to the clay mineral having a layer ribbon structure.

粘土鉱物の化学蓄熱材構造体(本実施形態ではCa(OH)構造体21)中における含有量としては、構造体全質量に対して、10〜40質量%の範囲が好ましく、25〜35質量%の範囲がより好ましい。粘土鉱物の含有量は、10質量以上であると、より高い構造強度が得られやすく、40質量%以下であると、より高い吸発熱量が得られやすい。 The content of the clay mineral in the chemical heat storage material structure (Ca (OH) 2 structure 21 in this embodiment) is preferably in the range of 10 to 40% by mass with respect to the total mass of the structure, and 25 to 35. A range of mass% is more preferred. When the content of the clay mineral is 10 mass or more, higher structural strength is easily obtained, and when it is 40 mass% or less, a higher endothermic heat generation amount is easily obtained.

−他の成分−
化学蓄熱材構造体(本実施形態ではCa(OH)構造体21)には、上記した成分以外に、場合により不可避的不純物や添加剤などの他の成分が含有されていてもよい。
-Other ingredients-
The chemical heat storage material structure (Ca (OH) 2 structure 21 in the present embodiment) may contain other components such as inevitable impurities and additives in addition to the components described above.

次に、本実施形態に係る化学蓄熱器100の製造方法について説明する。
本実施形態に係る化学蓄熱器100の作製にあたり、まず、平均一次粒子径dμmの粒状の化学蓄熱材としてCa(OH)を用い、プレス成形して図2に示すように50mm×30mm×3mmのサイズの直方体のCa(OH)構造体(化学蓄熱材構造体)21を作製する(以下、この工程を「構造体準備工程」ともいう。)。プレス成形時の成形条件は、化学蓄熱材の組成や性状及び厚み等の形状に合わせて適宜選択すればよい。
Next, the manufacturing method of the chemical heat storage device 100 which concerns on this embodiment is demonstrated.
In producing the chemical heat storage device 100 according to the present embodiment, first, Ca (OH) 2 is used as a granular chemical heat storage material having an average primary particle diameter of d μm, press-molded, and 50 mm × 30 mm × 3 mm as shown in FIG. A rectangular parallelepiped Ca (OH) 2 structure (chemical heat storage material structure) 21 is prepared (hereinafter, this process is also referred to as “structure preparation process”). What is necessary is just to select the molding conditions at the time of press molding suitably according to shapes, such as a composition, a property, and thickness of a chemical heat storage material.

本実施形態における構造体準備工程では、Ca(OH)粉をプレス成形することにより成形体を形成するが、必ずしもプレス成形を行なって準備する必要はなく、市販のCa(OH)の成形体を使用してもよい。成形加工は、プレス成形に限らず、他の成形方法を用いて行なってもよい。 In the structure preparation step in the present embodiment, a molded body is formed by press-molding Ca (OH) 2 powder, but it is not always necessary to prepare by performing press-molding, and commercially available Ca (OH) 2 is molded. The body may be used. The forming process is not limited to press forming, and may be performed using other forming methods.

図2に示すように50mm×30mm×3mmの断面矩形の筒状の構造体拘束容器(構造体収容部材)30を用意し、その内壁面の全面に耐熱性のポリイミドフィルム(カプトン(登録商標)Hタイプ、東レ・デュポン(株)製)を貼付することによって、表面処理を施す(以下、この工程を「表面処理工程」ともいう。)。表面処理の詳細については、既述の通りである。これにより、JIS B 0601に準拠した十点表面粗さ(Rz)を、内部に収容されるCa(OH)構造体21のCa(OH)粉の平均一次粒子径dより小さくなるように調整することができる。 As shown in FIG. 2, a cylindrical structure restraining container (structure housing member) 30 having a rectangular cross section of 50 mm × 30 mm × 3 mm is prepared, and a heat-resistant polyimide film (Kapton (registered trademark)) is formed on the entire inner wall surface. Surface treatment is performed by attaching H type (Toray DuPont Co., Ltd.) (hereinafter, this step is also referred to as “surface treatment step”). The details of the surface treatment are as described above. Thereby, 10-point surface roughness (Rz) based on JIS B 0601 is made smaller than the average primary particle diameter d of Ca (OH) 2 powder of Ca (OH) 2 structure 21 accommodated inside. Can be adjusted.

そして、構造体拘束容器30の開口する一端から、得られたCa(OH)構造体21を挿入し、構造体拘束容器30の開口する前記一端及びその他端を蓋材13で閉塞する(以下、この工程を「構造体収容工程」ともいう。)。このとき、Ca(OH)構造体21のCa(OH)粒子の平均一次粒子径dは、構造体拘束容器30の表面処理された内壁面(カプトン貼付面)のRzより大きくなっている。 Then, the obtained Ca (OH) 2 structure 21 is inserted from one end of the structure restraining container 30 that is opened, and the one end and the other end of the structure restraining container 30 that are opened are closed with the lid member 13 (hereinafter referred to as the lid 13). This process is also referred to as a “structure housing process”). At this time, the average primary particle diameter d of the Ca (OH) 2 particles of the Ca (OH) 2 structure 21 is larger than Rz of the inner wall surface (kapton attachment surface) subjected to the surface treatment of the structure restraining container 30. .

構造体拘束容器30は、図1〜図2に示すように、ステンレス鋼材11及びステンレス鋼材13で無端形状を形成する4つの伝熱壁と、ステンレス鋼製の枠材(不図示)に不織布を取り付けてなる2つの水分透過壁(透過壁)15とで形成されたものである。このとき、Ca(OH)構造体21の6面が構造体拘束容器30の6面の内壁に密着はしていないが接触した状態となっている。Ca(OH)構造体21が水和反応して膨張したときには、構造体の外形は内壁で規制されることで形状が保たれ、内壁との密着が上がって伝熱壁を介して外部に放熱することができる。また、水和反応時の体積膨張は、Ca(OH)構造体と各内壁との間の僅かな隙間と構造体中の気孔体積分の空間で吸収される。 As shown in FIGS. 1 to 2, the structure-constrained container 30 is made of a non-woven fabric on four heat transfer walls that form an endless shape with the stainless steel material 11 and the stainless steel material 13, and a stainless steel frame material (not shown). It is formed by two moisture permeable walls (permeation walls) 15 attached. At this time, the six surfaces of the Ca (OH) 2 structure 21 are not in close contact with the inner walls of the six surfaces of the structure-constraint container 30 but are in contact with each other. When the Ca (OH) 2 structure 21 expands due to a hydration reaction, the outer shape of the structure is restricted by the inner wall, and the shape is maintained. It can dissipate heat. Further, the volume expansion during the hydration reaction is absorbed in a slight gap between the Ca (OH) 2 structure and each inner wall and a space corresponding to the pore volume in the structure.

以上のようにして、化学蓄熱材構造体であるCa(OH)構造体21の6面を、構造体拘束容器30の「Rz<Ca(OH)構造体21の平均一次粒子径d」の関係を満たす6面の内壁で拘束した化学蓄熱器が作製される。 As described above, the “Rz <Ca (OH) 2 structure 21 average primary particle diameter d” of the structure restraining container 30 is applied to the six surfaces of the Ca (OH) 2 structure 21 that is the chemical heat storage material structure. A chemical heat accumulator restrained by the six inner walls satisfying the above relationship is produced.

以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof.

(実施例1)
化学蓄熱材として、平均一次粒子径が0.8μmの水酸化カルシウム(Ca(OH))の白色粉末(JIS R 9001 等級:特号)を用意し、この白色粉末と、有機バインダーとして前記白色粉末との合計量に対して1質量%となる量のポリビニルアルコール(PVA)と、イオン交換水とを混合し、スプレードライを用いて造粒することにより、蓄熱材構造体を作製するための前駆組成物を調製した。
なお、平均一次粒子径は、レーザー回折・散乱粒度分布計SALD−2000A〔(株)島津製作所製〕を用いて、レーザー回折散乱法により測定した値である。
Example 1
A white powder (JIS R 9001 grade: special name) of calcium hydroxide (Ca (OH) 2 ) having an average primary particle size of 0.8 μm is prepared as a chemical heat storage material, and the white powder is used as an organic binder. For producing a heat storage material structure by mixing polyvinyl alcohol (PVA) in an amount of 1% by mass with respect to the total amount of powder and ion-exchanged water, and granulating using spray drying. A precursor composition was prepared.
The average primary particle diameter is a value measured by a laser diffraction / scattering method using a laser diffraction / scattering particle size distribution analyzer SALD-2000A (manufactured by Shimadzu Corporation).

得られた前駆組成物をプレス成形法により成形し、縦50mm×横30mm×厚さ3mmのサイズの成形体を得た。得られた成形体の真密度比は、57%であった。   The obtained precursor composition was molded by a press molding method to obtain a molded body having a size of 50 mm long × 30 mm wide × 3 mm thick. The true density ratio of the obtained molded body was 57%.

次いで、この成形体に対して、700℃で60分間の加熱処理(焼成)を施し、前駆組成物中のCa(OH)を脱水すると共に、PVAを除去し、これと同時に雰囲気中の炭酸カルシウムを分解して脱炭酸を施した。 Next, this molded body was subjected to heat treatment (baking) at 700 ° C. for 60 minutes to dehydrate Ca (OH) 2 in the precursor composition and remove PVA, and at the same time, carbon dioxide in the atmosphere. Calcium was decomposed and decarboxylated.

次に、上記のような加熱処理を終えた成形体を、その6面を支持、拘束することができる所定の治具にセットした。
具体的には、ステンレス鋼板の一方面に材質が化学繊維の不織布を取り付け、この不織布の上にステンレス鋼製の2つのL字型治具を、その長辺と短辺とが互いに向き合うように図3に示すようにして配置しておき、L字型治具で取り囲まれた中(50mm×30mm×3mm)に、上記の成形体をセットした。続いて、一方面に不織布が取り付けられたステンレス鋼板をさらに1枚用意し、この不織布付のステンレス鋼板を前記成形体上に、その不織布面が成形体と接する向きに重ね合わせた。このようにして、成形体の2つの平面を不織布からなるガス透過性の透過壁で支持、拘束されるようにすると共に、4つの側面をL字型治具で支持、拘束されるようにした。
Next, the molded body after the heat treatment as described above was set in a predetermined jig capable of supporting and restraining the six surfaces.
Specifically, a non-woven fabric made of chemical fiber is attached to one surface of a stainless steel plate, and two stainless steel L-shaped jigs are placed on the non-woven fabric so that the long side and the short side face each other. Arranged as shown in FIG. 3, the above-described molded body was set inside (50 mm × 30 mm × 3 mm) surrounded by an L-shaped jig. Subsequently, another stainless steel plate with a nonwoven fabric attached on one side was prepared, and the stainless steel plate with the nonwoven fabric was superposed on the molded body so that the nonwoven fabric surface was in contact with the molded body. In this way, the two flat surfaces of the molded body were supported and restrained by the gas permeable permeation wall made of nonwoven fabric, and the four side surfaces were supported and restrained by the L-shaped jig. .

このとき、2つのL字型治具の、これらで取り囲まれる領域に面した各表面、すなわち成形体の4つの側面と接する各表面は、耐熱性のポリイミドフィルム(カプトン(登録商標)Hタイプ、東レ・デュポン(株)製)を貼付することにより、十点表面粗さ(Rz)が0.2μmに調整されている。また、不織布(透過壁)の表面における前記Rzは、1μmである。
なお、十点表面粗さ(Rz)は、JIS B 0601(1994)に準拠して測定される値である。
At this time, each surface of the two L-shaped jigs facing the region surrounded by them, that is, each surface in contact with the four side surfaces of the molded body, is a heat-resistant polyimide film (Kapton (registered trademark) H type, The ten-point surface roughness (Rz) is adjusted to 0.2 μm by pasting Toray DuPont Co., Ltd. The Rz on the surface of the nonwoven fabric (transmission wall) is 1 μm.
The ten-point surface roughness (Rz) is a value measured according to JIS B 0601 (1994).

上記のように、成形体の6面を覆った状態で200℃にて30分間保持し、成形体を水和反応させた。その後、再び加熱して500℃に昇温し15分間保持(脱水・焼成)した後、降温して200℃に保持(水和)した。このように温度を昇降させて焼成、水和させる操作を4回繰り返して行なった。   As described above, the molded body was held for 30 minutes at 200 ° C. in a state of covering the six surfaces of the molded body to cause a hydration reaction. Then, it heated again, heated up to 500 degreeC, hold | maintained for 15 minutes (dehydration and baking), and then fell and hold | maintained (hydrated) at 200 degreeC. Thus, the operation of raising and lowering the temperature and firing and hydrating were repeated four times.

焼成、水和の反応終了後、成形体を不織布が付いた状態で取り出し、化学蓄熱構造体を得た。このとき、成形体(化学蓄熱構造体)側面のL字型治具(カプトン面)への固着はみられず、剥れや割れ等の発生なく、綺麗な矩形の状態で取り外すことができた。   After the completion of the firing and hydration reactions, the molded body was taken out with the nonwoven fabric attached to obtain a chemical heat storage structure. At this time, the side of the molded body (chemical heat storage structure) was not fixed to the L-shaped jig (Kapton surface), and it was possible to remove it in a clean rectangular state without any peeling or cracking. .

取り外した化学蓄熱構造体を、図2に示すようにステンレス鋼材(SUS316L)で成形された50mm×30mm×3mmサイズの筒断面が矩形の筒状体の中に挿入し、挿入方向における筒状体の底部と天部とをSUS316L製の蓋材で閉塞し、化学蓄熱器を作製した。ここで、筒状体の4つの内壁及び蓋材の内壁は、上記同様に、耐熱性のポリイミドフィルム(カプトン(登録商標)Hタイプ、東レ・デュポン(株)製)が貼付されて、Rz=0.2μmに調整されている。
これにより、化学蓄熱構造体は、6面全てが金属壁に接して支持されていることで、反応時の膨張等に伴なう崩壊を防ぎ、筒状体から取り出す際には内壁面への固着が抑制されて剥れや割れ等の発生が防止される。
As shown in FIG. 2, the removed chemical heat storage structure is inserted into a 50 mm × 30 mm × 3 mm cylinder having a rectangular cross section formed of stainless steel (SUS316L), and the cylinder in the insertion direction is inserted. The bottom part and the top part were closed with a cover material made of SUS316L to produce a chemical heat accumulator. Here, the four inner walls of the cylindrical body and the inner wall of the lid material are attached with a heat-resistant polyimide film (Kapton (registered trademark) H type, manufactured by Toray DuPont Co., Ltd.), and Rz = It is adjusted to 0.2 μm.
As a result, the chemical heat storage structure is supported on all six surfaces in contact with the metal wall, thereby preventing collapse associated with expansion during the reaction, etc. The sticking is suppressed and the occurrence of peeling or cracking is prevented.

(実施例2)
実施例1において、2つのL字型治具の、成形体の4つの側面と接する各表面に貼付したポリイミドフィルム(カプトンHタイプ)を、テフロン(登録商標)テープに変更し、Rzを0.7μmに調整したこと以外は、実施例1と同様にして、化学蓄熱構造体及び化学蓄熱器を作製した。結果を下記表1に示す。
(Example 2)
In Example 1, the polyimide film (Kapton H type) affixed to each surface of the two L-shaped jigs in contact with the four side surfaces of the molded body was changed to a Teflon (registered trademark) tape, and Rz was set to 0.00. A chemical heat storage structure and a chemical heat storage were produced in the same manner as in Example 1 except that the thickness was adjusted to 7 μm. The results are shown in Table 1 below.

(実施例3)
実施例1において、PVA(白色粉末との合計量に対して1質量%)を、近江鉱業(株)製のミラクレー(登録商標)Pシリーズ トルコ産セピオライト粉末P−300(MgSi1230(OH)(OH・8HO;白色粉末との合計量に対して1質量%)に代えたこと以外は、実施例1と同様にして、化学蓄熱構造体及び化学蓄熱器を作製した。結果を下記表1に示す。
(Example 3)
In Example 1, PVA (1% by mass with respect to the total amount with white powder) was added to Miracle (registered trademark) P series Turkish sepiolite powder P-300 (MgSi 12 O 30 (OH) manufactured by Omi Mining Co., Ltd. ) 4 (OH 2) 4 · 8H 2 O; except for instead of 1% by mass) with respect to the total amount of the white powder in the same manner as in example 1, producing a chemical heat storage structure and chemical heat accumulator did. The results are shown in Table 1 below.

(比較例1〜3)
実施例1において、2つのL字型治具の、成形体の4つの側面と接する各表面にポリイミドフィルム(カプトンHタイプ)を貼付する処理を、下記表1に示すような処理に変更してRzを調整するようにしたこと以外は、実施例1と同様にして、化学蓄熱構造体及び化学蓄熱器を作製した。
なお、比較例1では、L字型治具をワイヤーカットして得たままのものを用いた。
(Comparative Examples 1-3)
In Example 1, the process of sticking a polyimide film (Kapton H type) to each surface of the two L-shaped jigs in contact with the four side surfaces of the molded body was changed to the process shown in Table 1 below. A chemical heat storage structure and a chemical heat storage were produced in the same manner as in Example 1 except that Rz was adjusted.
In Comparative Example 1, an L-shaped jig obtained by wire cutting was used.


前記表1に示すように、実施例2〜3では、実施例1と同様に、成形体を取り出して化学蓄熱構造体を得る際に、成形体(化学蓄熱構造体)側面のL字型治具(カプトン面)への固着はみられず、剥れや割れ等の発生なく、綺麗な矩形の状態で取り外すことができた。したがって、得られた化学蓄熱構造体を用いて化学蓄熱器を作製した場合、6面全てが金属壁に接して拘束されていることで、反応時の膨張等に伴なう崩壊を防ぎ、筒状体から取り出す際には、内壁面への固着が抑制されて剥れや割れ等の発生を防止することができた。   As shown in Table 1, in Examples 2 to 3, as in Example 1, when the molded body was taken out to obtain the chemical heat storage structure, the L-shaped jig on the side of the molded body (chemical heat storage structure) was used. There was no sticking to the tool (Kapton surface), and it could be removed in a clean rectangular state without peeling or cracking. Therefore, when a chemical heat storage device is produced using the obtained chemical heat storage structure, all six surfaces are constrained in contact with the metal wall, thereby preventing collapse associated with expansion during reaction, etc. When taking out from the shaped body, sticking to the inner wall surface was suppressed, and the occurrence of peeling or cracking could be prevented.

また、比較例1〜3では、前記表1に示すように、内壁のRzで表される表面粗さが、用いた化学蓄熱材の平均一次粒子径より大きいために、水和反応させた際に蓄熱材粒子が凹状の隙間に入り込んで固着してしまい、図4(A)に示すように、いずれも取り外した際に治具に付着残りが発生し、比較例1では図4(B)のように割れが発生した。   Moreover, in Comparative Examples 1-3, as shown in the said Table 1, since the surface roughness represented by Rz of an inner wall is larger than the average primary particle diameter of the used chemical heat storage material, when hydrated, As shown in FIG. 4 (A), the heat storage material particles enter into the concave gaps and adhere to the jig when removed, and the comparative example 1 shows that FIG. 4 (B). Cracks occurred as in

上記の実施形態及び実施例では、表面処理としてポリイミドフィルムを貼付する方法を中心に説明したが、ポリイミド材以外のフッ素系樹脂材や不織布を貼付する方法でも同様に固着の発生が防止され、剪断破損に対して良好な結果が得られる。また、表面処理として、貼付する方法のほか、ラッピング加工による研磨やメッキ処理、樹脂被覆処理を行なった場合にも、同様に固着の発生が防止され、剪断破損に対して良好な結果が得られる。   In the above-described embodiments and examples, the description is centered on the method of sticking a polyimide film as a surface treatment, but the method of sticking a fluorine resin material or a non-woven fabric other than the polyimide material similarly prevents the occurrence of sticking and shearing. Good results are obtained for breakage. Further, in addition to the method of attaching as a surface treatment, the occurrence of sticking is similarly prevented when a lapping process, a polishing process, a plating process, or a resin coating process is performed. .

11,13・・・伝熱壁
15・・・透過壁
21・・・Ca(OH)構造体(化学蓄熱材構造体)
23・・・ポリイミドフィルム(ポリイミド材)
30・・・構造体拘束容器(構造体収容部材)
11, 13 ... Heat transfer wall 15 ... Transmission wall 21 ... Ca (OH) 2 structure (chemical heat storage material structure)
23 ... Polyimide film (Polyimide material)
30 ... Structure restraint container (structure housing member)

Claims (10)

平均一次粒子径がd[μm]である粒状の化学蓄熱材を含む化学蓄熱材構造体と、
前記化学蓄熱材構造体を収容すると共に前記化学蓄熱材構造体の少なくとも一部を拘束し、前記化学蓄熱材構造体と接する内壁面の、JIS B 0601に準拠した十点表面粗さRz[μm]が前記平均一次粒子径dより小さい構造体収容部材と、
を備えた化学蓄熱器。
A chemical heat storage material structure including a granular chemical heat storage material having an average primary particle diameter of d [μm];
Ten-point surface roughness Rz [μm based on JIS B 0601 of the inner wall surface that accommodates the chemical heat storage material structure and restrains at least a part of the chemical heat storage material structure and is in contact with the chemical heat storage material structure ] A structure housing member smaller than the average primary particle diameter d,
Chemical regenerator with
前記化学蓄熱材は、脱水反応に伴なって吸熱し、水和反応に伴なって放熱する水和反応性蓄熱材である請求項1に記載の化学蓄熱器。   The chemical heat storage material according to claim 1, wherein the chemical heat storage material is a hydration reactive heat storage material that absorbs heat with a dehydration reaction and dissipates heat with a hydration reaction. 前記化学蓄熱材は、アルカリ土類金属の水酸化物である請求項1又は請求項2に記載の化学蓄熱器。   The chemical heat storage material according to claim 1, wherein the chemical heat storage material is an alkaline earth metal hydroxide. 前記化学蓄熱材構造体は、6面体構造を有し、前記6面体構造の少なくとも1面は前記構造体収容部材の内壁と接して拘束されている請求項1〜請求項3のいずれか1項に記載の化学蓄熱器。   The chemical heat storage material structure has a hexahedral structure, and at least one surface of the hexahedral structure is constrained in contact with an inner wall of the structure housing member. The chemical regenerator described in 1. 前記化学蓄熱材構造体は、真密度比が45〜63%である請求項1〜請求項4のいずれか1項に記載の化学蓄熱器。   The chemical heat storage device according to any one of claims 1 to 4, wherein the chemical heat storage material structure has a true density ratio of 45 to 63%. 前記構造体収容部材は、6面の壁を有し、前記壁の少なくとも1面は蓄熱反応媒体が透過する透過壁であり、前記壁の少なくとも1面は熱伝導性の伝熱壁である請求項4又は請求項5に記載の化学蓄熱器。   The structure housing member has six walls, at least one of the walls is a transmission wall through which a heat storage reaction medium passes, and at least one of the walls is a heat conductive heat transfer wall. Item 6. The chemical heat accumulator according to item 4 or item 5. 前記構造体収容部材は、筒状体と該筒状体の一端及び他端の少なくとも一方を閉塞する蓋材とを有し、前記筒状体への前記化学蓄熱材構造体の着脱が可能に構成されている請求項1〜請求項6のいずれか1項に記載の化学蓄熱器。   The structure housing member includes a cylindrical body and a lid member that closes at least one of one end and the other end of the cylindrical body, and the chemical heat storage material structure can be attached to and detached from the cylindrical body. The chemical heat accumulator according to any one of claims 1 to 6, which is configured. 平均一次粒子径がd[μm]である粒状の化学蓄熱材を含む化学蓄熱材構造体を準備する工程と、
前記化学蓄熱材構造体を収容すると共に前記化学蓄熱材構造体の少なくとも一部を拘束する構造体収容部材の内壁面の少なくとも一部に表面処理を施し、前記内壁面にJIS B 0601に準拠した十点表面粗さRz[μm]が前記平均一次粒子径dより小さい表面を形成する工程と、
前記内壁面を有する構造体収容部材に前記化学蓄熱材構造体を、Rzが平均一次粒子径dより小さい前記表面で該化学蓄熱材構造体の少なくとも一部が拘束されるように収容する工程と、
を有する化学蓄熱器の製造方法。
Preparing a chemical heat storage material structure including a granular chemical heat storage material having an average primary particle diameter of d [μm];
Surface treatment is applied to at least a part of the inner wall surface of the structure housing member that houses the chemical heat storage material structure and restrains at least a part of the chemical heat storage material structure, and conforms to JIS B 0601 on the inner wall surface. Forming a surface having a ten-point surface roughness Rz [μm] smaller than the average primary particle diameter d;
Storing the chemical heat storage material structure in the structure housing member having the inner wall surface such that at least a part of the chemical heat storage material structure is constrained on the surface where Rz is smaller than the average primary particle diameter d; ,
A method for manufacturing a chemical regenerator.
前記表面処理として、前記内壁面の少なくとも一部に、ラッピング加工による研磨、メッキ処理、及び樹脂被覆処理から選ばれるいずれかの処理を行なう請求項8に記載の化学蓄熱器の製造方法。   The method for manufacturing a chemical regenerator according to claim 8, wherein as the surface treatment, at least a part of the inner wall surface is subjected to any treatment selected from polishing by lapping, plating treatment, and resin coating treatment. 前記表面処理として、前記内壁面の少なくとも一部に、ポリイミド材、フッ素系樹脂材、及び不織布から選ばれるいずれかを貼付する処理を行なう請求項8に記載の化学蓄熱器の製造方法。   The method for producing a chemical regenerator according to claim 8, wherein as the surface treatment, a process of attaching any one selected from a polyimide material, a fluorine resin material, and a nonwoven fabric to at least a part of the inner wall surface is performed.
JP2011061613A 2011-03-18 2011-03-18 Chemical regenerator and manufacturing method thereof Active JP5719649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011061613A JP5719649B2 (en) 2011-03-18 2011-03-18 Chemical regenerator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011061613A JP5719649B2 (en) 2011-03-18 2011-03-18 Chemical regenerator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012197346A true JP2012197346A (en) 2012-10-18
JP5719649B2 JP5719649B2 (en) 2015-05-20

Family

ID=47179910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011061613A Active JP5719649B2 (en) 2011-03-18 2011-03-18 Chemical regenerator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5719649B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213690A (en) * 1986-03-14 1987-09-19 Mitsui Kensaku Toishi Kk Heat accumulating device
JP2002162183A (en) * 2000-11-27 2002-06-07 National Institute Of Advanced Industrial & Technology Heat storage panel and manufacturing method thereof
JP2002162182A (en) * 2000-11-27 2002-06-07 National Institute Of Advanced Industrial & Technology Heat storage body and manufacturing method thereof
JP2009133590A (en) * 2007-11-30 2009-06-18 Toyota Central R&D Labs Inc Heat storage device and its manufacturing method
JP2009132844A (en) * 2007-11-30 2009-06-18 Toyota Central R&D Labs Inc Molded article of chemical heat storage material and method for producing the same
JP2010181051A (en) * 2009-02-03 2010-08-19 Toyota Central R&D Labs Inc Chemical heat storage reactor and method of manufacturing chemical heat storage material compact with filter
JP2010230268A (en) * 2009-03-27 2010-10-14 Toyoda Gosei Co Ltd Chemical heat pump device and method of using the same
JP2011027311A (en) * 2009-07-24 2011-02-10 Toyota Central R&D Labs Inc Chemical heat storage device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213690A (en) * 1986-03-14 1987-09-19 Mitsui Kensaku Toishi Kk Heat accumulating device
JP2002162183A (en) * 2000-11-27 2002-06-07 National Institute Of Advanced Industrial & Technology Heat storage panel and manufacturing method thereof
JP2002162182A (en) * 2000-11-27 2002-06-07 National Institute Of Advanced Industrial & Technology Heat storage body and manufacturing method thereof
JP2009133590A (en) * 2007-11-30 2009-06-18 Toyota Central R&D Labs Inc Heat storage device and its manufacturing method
JP2009132844A (en) * 2007-11-30 2009-06-18 Toyota Central R&D Labs Inc Molded article of chemical heat storage material and method for producing the same
JP2010181051A (en) * 2009-02-03 2010-08-19 Toyota Central R&D Labs Inc Chemical heat storage reactor and method of manufacturing chemical heat storage material compact with filter
JP2010230268A (en) * 2009-03-27 2010-10-14 Toyoda Gosei Co Ltd Chemical heat pump device and method of using the same
JP2011027311A (en) * 2009-07-24 2011-02-10 Toyota Central R&D Labs Inc Chemical heat storage device

Also Published As

Publication number Publication date
JP5719649B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5785932B2 (en) Chemical heat storage material structure, manufacturing method thereof, and chemical heat storage
JP5749049B2 (en) Chemical regenerator and manufacturing method thereof
JP4911002B2 (en) Heat exchange type heat utilization apparatus and manufacturing method thereof
JP5223314B2 (en) Heat storage device
JP5547896B2 (en) CHEMICAL HEAT STORAGE REACTOR AND METHOD FOR PRODUCING CHEMICAL HEAT STORAGE MATERIAL WITH FILTER
JP6411837B2 (en) Solid alkaline fuel cell
JP5277621B2 (en) Chemical heat storage material molded body and manufacturing method thereof
JP5374683B2 (en) Chemical heat storage material molded body and manufacturing method thereof
JP5297669B2 (en) Chemical heat storage material composite and its manufacturing method
JP2009149838A (en) Formed product of chemical thermal storage medium, and method for producing the same
JP5719660B2 (en) Chemical regenerator and manufacturing method thereof
JP5719649B2 (en) Chemical regenerator and manufacturing method thereof
JP5749050B2 (en) Chemical regenerator and manufacturing method thereof
JP2009256519A (en) Chemical thermal storage medium composite and method for producing the same
JP2009256520A (en) Chemical thermal storage medium composite and method for producing the same
JP5554103B2 (en) Heat accumulator
JP5277138B2 (en) Regenerator and method for manufacturing the same
JP5231077B2 (en) Chemical heat storage material composite and its manufacturing method
JP5401782B2 (en) Thermal storage device and manufacturing method thereof
JP5503377B2 (en) Manufacturing method of chemical heat storage material structure
WO2020130066A1 (en) Platy chemical heat-storage object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5719649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250