JP5503377B2 - Manufacturing method of chemical heat storage material structure - Google Patents

Manufacturing method of chemical heat storage material structure Download PDF

Info

Publication number
JP5503377B2
JP5503377B2 JP2010083898A JP2010083898A JP5503377B2 JP 5503377 B2 JP5503377 B2 JP 5503377B2 JP 2010083898 A JP2010083898 A JP 2010083898A JP 2010083898 A JP2010083898 A JP 2010083898A JP 5503377 B2 JP5503377 B2 JP 5503377B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
dehydration
chemical heat
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010083898A
Other languages
Japanese (ja)
Other versions
JP2011213882A (en
Inventor
昌司 原
美代 望月
孝 志満津
英夫 曽布川
一久 矢野
喜章 福嶋
弘幸 板原
勉 澤田
崇恒 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Omi Mining Co Ltd
Original Assignee
Toyota Central R&D Labs Inc
Omi Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc, Omi Mining Co Ltd filed Critical Toyota Central R&D Labs Inc
Priority to JP2010083898A priority Critical patent/JP5503377B2/en
Publication of JP2011213882A publication Critical patent/JP2011213882A/en
Application granted granted Critical
Publication of JP5503377B2 publication Critical patent/JP5503377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は、吸放熱を担う化学蓄熱材を用いた化学蓄熱材構造物の製造方法に関する。   The present invention relates to a method for manufacturing a chemical heat storage material structure using a chemical heat storage material that absorbs and dissipates heat.

化学反応を利用して熱の吸収、放出を行なうことのできる物質である化学蓄熱材は、従来より広く知られており、種々の分野で利用が検討されている。   A chemical heat storage material, which is a substance that can absorb and release heat by using a chemical reaction, has been widely known, and its use is being studied in various fields.

例えば、粉体の化学蓄熱材を一次成形して得た一次粒子に、所定の割合で粘土鉱物を混合して二次成形した成形体を焼成して成る化学蓄熱材成形体が開示されており(例えば、特許文献1参照)、350〜500℃の範囲内で焼成すること、水酸化物の状態である化学蓄熱材の脱水反応が生じない温度で焼成することが記載されている。   For example, a chemical heat storage material molded body is disclosed, which is obtained by firing a molded body that is obtained by primary molding of a powder chemical heat storage material and mixing clay mineral at a predetermined ratio and then secondary molding. (For example, refer to Patent Document 1), it is described that firing within a range of 350 to 500 ° C. and firing at a temperature at which a dehydration reaction of a chemical heat storage material in a hydroxide state does not occur.

特開2009−132844号公報JP 2009-132844 A

しかしながら、350〜500℃程度の焼成温度で焼成して成る上記従来の化学蓄熱材成形体では、焼成温度が比較的低いために、蓄熱・放熱反応を行なわせた場合に水和、脱水する過程で成形体に反りや割れ等が生じやすく、このような脆性を改善し得る技術の確立が求められている。   However, in the conventional chemical heat storage material molded body fired at a firing temperature of about 350 to 500 ° C., the firing temperature is relatively low, and therefore the process of hydration and dehydration when the heat storage / heat radiation reaction is performed. Therefore, warping and cracking are likely to occur in the molded body, and establishment of a technique capable of improving such brittleness is demanded.

その一方、成形体の構造強度をより高めるためには、通常600℃ないし700℃以上ともなる高温での焼成が必要とされているが、高温下に曝して焼成すると、強度は得られるものの、化学蓄熱材と粘土鉱物との反応によるシリケート形成に伴なって水和・脱水する水酸化物等の蓄熱材量が減少し、焼成後に成形体の反応性、すなわち蓄熱・放熱性が低下する課題がある。   On the other hand, in order to further increase the structural strength of the molded body, firing at a high temperature of usually 600 ° C. to 700 ° C. or more is required. The amount of heat storage material such as hydroxide that hydrates and dehydrates with the formation of silicate due to the reaction between chemical heat storage material and clay mineral, and the reactivity of the molded product after firing, that is, heat storage and heat dissipation, decreases. There is.

本発明は、上記に鑑みなされたものであり、強度を確保しつつ、従来に比べて優れた蓄熱・放熱性(水和・脱水量)を有する蓄熱材構造物を作製することができる化学蓄熱材構造物の製造方法を提供することを目的とし、該目的を達成することを課題とする。   The present invention has been made in view of the above, and is a chemical heat storage capable of producing a heat storage material structure having excellent heat storage / heat dissipation properties (hydration / dehydration amount) as compared with the prior art while ensuring strength. It aims at providing the manufacturing method of a material structure, and makes it a subject to achieve this objective.

本発明は、技術的に背反関係にある、焼成後構造物の強度と蓄熱・放熱反応性(水和・脱水量)との両立、つまり反りや割れ等が生じない程度の強度を保ちながら反応率を高めるのに、化学蓄熱材及び粘土鉱物の反応生成物であるシリケートの形成割合の制御が必要であり、それは焼成条件での制御が可能との知見を得、かかる知見に基づいて達成されたものである。   The present invention has a technically contradictory relationship between the strength of the fired structure and heat storage / heat release reactivity (hydration / dehydration amount), that is, while maintaining strength that does not cause warping or cracking. In order to increase the rate, it is necessary to control the rate of formation of silicate, which is a reaction product of chemical heat storage materials and clay minerals, and this is achieved based on the knowledge that control under firing conditions is possible. It is a thing.

前記目的を達成するために、本発明の化学蓄熱材構造物の製造方法は、
<1> 少なくとも、粉状の化学蓄熱材と、層リボン構造を有する粘土鉱物とを混合する混合工程と、焼成温度を600℃以上800℃未満の温度領域で制御し、焼成時間を、焼成後に蓄熱・放熱反応させた際の水和量及び脱水量の少なくとも一方(質量基準)が前記混合される化学蓄熱材の脱水反応による総脱水量の60質量%以上の範囲になるように制御し、前記混合工程で得られた混合物を焼成して、前記化学蓄熱材及び前記粘土鉱物の反応生成物であってアルカリ土類金属の少なくとも一種を含むシリケートが形成される焼成工程と、を設けて構成したものである。
In order to achieve the above object, the method for producing a chemical heat storage material structure of the present invention comprises:
<1> At least a mixing step of mixing a powdery chemical heat storage material and a clay mineral having a layered ribbon structure, and controlling a firing temperature in a temperature range of 600 ° C. or more and less than 800 ° C., and firing time after firing Control so that at least one of hydration amount and dehydration amount (mass basis) at the time of heat storage and heat dissipation reaction is in the range of 60% by mass or more of the total dehydration amount by dehydration reaction of the mixed chemical heat storage material, firing the mixture obtained in the mixing step, provided, a firing step of silicate is made form comprising at least one of said chemical heat storage material and alkaline earth metal comprising the reaction product of the clay mineral It is composed.

本発明においては、化学蓄熱材及び粘土鉱物の反応生成物であるシリケートの形成割合を、焼成後に蓄熱・放熱させた際の水和量及び/又は脱水量(質量)の変化幅が大きくなるように、焼成時の焼成温度及び/又は焼成時間を制御することで、化学蓄熱材と粘土鉱物とが接触する両者界面での反応性(シリケートの形成性)を所望の強度と蓄熱・放熱性とが得られるように選択することができる。これにより、水和・脱水反応に伴なう反りや割れ等の発生を防止できる強度を維持しながら、蓄熱・放熱反応性を高めることができる。   In the present invention, the rate of change in the amount of hydration and / or dehydration (mass) when the rate of formation of silicate, which is a reaction product of a chemical heat storage material and clay mineral, is stored and released after firing is increased. In addition, by controlling the firing temperature and / or firing time during firing, the reactivity (silicate formability) at the interface where the chemical heat storage material and the clay mineral are in contact with each other has the desired strength and heat storage / heat dissipation properties. Can be selected. As a result, the heat storage / heat radiation reactivity can be enhanced while maintaining the strength that can prevent the occurrence of warping, cracking, and the like associated with the hydration / dehydration reaction.

混合物に仕込まれた化学蓄熱材の脱水反応が焼成時に進行する過程で、600℃以上800℃未満の所定の温度領域で行なう焼成を、焼成後において蓄熱・放熱反応させた際の水和量及び/又は脱水量(質量基準)が脱水反応を充分に行なわせて化学蓄熱材から生成される総脱水量の60質量%以上が維持される時間の範囲で行なうようにすると、化学蓄熱材と粘土鉱物との接触界面を適度に低下させることができ、両者の反応生成物の生成で強度を保つが、化学蓄熱材が減少し過ぎない程度にその反応が抑えられるので、蓄熱・放熱性も向上させることができる。   In the process in which the dehydration reaction of the chemical heat storage material charged in the mixture proceeds during firing, the amount of hydration when firing is performed in a predetermined temperature range of 600 ° C. or more and less than 800 ° C., and the heat storage / heat dissipation reaction is performed after firing, and If the amount of dehydration (mass basis) is such that the dehydration reaction is sufficiently performed and 60% by mass or more of the total amount of dehydration generated from the chemical heat storage material is maintained, the chemical heat storage material and clay The contact interface with the mineral can be reduced moderately, and the strength of the reaction product is maintained, but the reaction is suppressed to the extent that the chemical heat storage material does not decrease too much, improving heat storage and heat dissipation. Can be made.

> 前記<>に記載の化学蓄熱材構造物の製造方法では、蓄熱・放熱性をより向上させる観点から、焼成後に蓄熱・放熱反応させた際の水和量及び脱水量の少なくとも一方(質量基準)が前記総脱水量の80質量%以上の範囲で維持されるように、焼成時間を制御することがより好ましい態様である。 < 2 > In the method for producing a chemical heat storage material structure according to < 1 >, at least one of a hydration amount and a dehydration amount when the heat storage and heat release reaction is performed after firing from the viewpoint of further improving heat storage and heat release properties. It is a more preferable aspect to control the firing time so that (mass basis) is maintained in the range of 80% by mass or more of the total dehydrated amount.

> 前記<1>又は前記<2>に記載の化学蓄熱材構造物の製造方法において、焼成工程前に、更に、化学蓄熱材を予め600℃未満の温度領域で脱水反応させる脱水工程を有している態様が好ましい。 < 3 > In the method for producing a chemical heat storage material structure according to <1> or < 2>, a dehydration step of further dehydrating the chemical heat storage material in a temperature region of less than 600 ° C. in advance before the firing step. The aspect which has is preferable.

焼成工程に移行する前に予め、焼成が開始しない600℃未満の温度領域で混合物に含まれる化学蓄熱材の脱水反応を行なわせることで、化学蓄熱材の粒子径が小径化し、粘土鉱物とクリアランスが増えるので、粘土鉱物と接触する界面が減少し、両者間の反応で生成するシリケート量を抑えることができる。これにより、反りや割れ等を生じない程度の高い強度を維持すると共に、蓄熱・放熱反応性の向上により効果的である。   Before proceeding to the firing step, the chemical heat storage material contained in the mixture undergoes a dehydration reaction in a temperature range below 600 ° C. at which the firing does not start, thereby reducing the particle size of the chemical heat storage material, and removing the clay mineral and clearance. Therefore, the number of interfaces that come into contact with clay minerals is reduced, and the amount of silicate produced by the reaction between the two can be suppressed. Thereby, while maintaining the high intensity | strength which does not produce a curvature, a crack, etc., it is more effective by the improvement of heat storage and heat dissipation reactivity.

> 前記<>に記載の化学蓄熱材構造物の製造方法において、脱水工程では、前記混合物の乾燥質量に対する化学蓄熱材の脱水量の比率が、脱水前の化学蓄熱材を脱水反応させて生成される総脱水量の50質量%以内である範囲で脱水が行なわれる態様が好ましい。更に好ましくは、総脱水量の20質量%以内の範囲で脱水される。 < 4 > In the method for producing a chemical heat storage material structure according to < 3 >, in the dehydration step, the ratio of the dehydration amount of the chemical heat storage material to the dry mass of the mixture causes the chemical heat storage material before dehydration to undergo a dehydration reaction. An embodiment in which dehydration is performed within a range of 50% by mass or less of the total amount of dehydration produced in this manner is preferable. More preferably, dehydration is performed within a range of 20% by mass or less of the total dehydration amount.

化学蓄熱材の脱水反応による脱水量の比率を、混合物の乾燥質量の50質量%以内、更には20質量%以内に抑えることで、反りや割れ等を生じない程度の高い強度を維持すると共に、蓄熱・放熱反応性の向上効果をも高めることができる。   By maintaining the ratio of the amount of dehydration due to the dehydration reaction of the chemical heat storage material within 50% by mass of the dry mass of the mixture, and further within 20% by mass, maintaining a high strength that does not cause warping or cracking, The effect of improving heat storage / heat radiation reactivity can also be enhanced.

> 前記<>に記載の化学蓄熱材構造物の製造方法において、脱水工程では、脱水前の化学蓄熱材の体積の減少率が20%以内である範囲で脱水を行なう態様が好ましい。更に好ましくは、脱水前の化学蓄熱材の体積の減少率が10%以内である範囲で脱水される。
また、前記<1>〜前記<5>のいずれか1つに記載の化学蓄熱材構造物の製造方法において、焼成工程で形成されるシリケートの化学蓄熱材に対する質量比率は、1〜15質量%の範囲であることが好ましい。
< 5 > In the method for producing a chemical heat storage material structure according to < 3 >, the dehydration step is preferably performed in such a manner that dehydration is performed within a range where the volume reduction rate of the chemical heat storage material before dehydration is within 20%. More preferably, dehydration is performed in a range where the volume reduction rate of the chemical heat storage material before dehydration is within 10%.
Moreover, in the manufacturing method of the chemical heat storage material structure according to any one of <1> to <5>, the mass ratio of the silicate formed in the firing step to the chemical heat storage material is 1 to 15% by mass. It is preferable to be in the range.

体積の減少率を20質量%、更には10質量%以内に抑えることで、強度を保ちながら、粘土鉱物との間のクリアランスが増すので、粘土鉱物と接触する界面が減少し、両者間の反応で生成するシリケート量を抑えることができる。これにより、反りや割れ等を生じない程度の高い強度を維持すると共に、蓄熱・放熱反応性の向上効果が高い。   By suppressing the volume reduction rate to 20% by mass or even 10% by mass or less, the clearance between the clay mineral increases while maintaining the strength, so the interface in contact with the clay mineral decreases and the reaction between the two Can reduce the amount of silicate generated. Thereby, while maintaining the high intensity | strength which does not produce a curvature, a crack, etc., the improvement effect of a thermal storage and a thermal radiation reactivity is high.

> 前記<1>〜前記<>のいずれか1つに記載の化学蓄熱材構造物の製造方法において、化学蓄熱材は、アルカリ土類金属の水酸化物であることが好ましい。更には、アルカリ土類金属がカルシウムである水酸化カルシウムがより好適である。
化学蓄熱材として、アルカリ土類金属の水酸化物が用いられるので、蓄熱・放熱反応(水和・脱水)に対する材料安定性が高い。そのため、長期に亘って安定した蓄熱効果を得ることができる。
< 6 > In the method for producing a chemical heat storage material structure according to any one of <1> to < 5 >, the chemical heat storage material is preferably an alkaline earth metal hydroxide. Furthermore, calcium hydroxide in which the alkaline earth metal is calcium is more preferable.
Since alkaline earth metal hydroxide is used as the chemical heat storage material, the material stability against heat storage and heat release reaction (hydration / dehydration) is high. Therefore, a stable heat storage effect can be obtained over a long period of time.

本発明によれば、強度を確保しつつ、従来に比べて優れた蓄熱・放熱性(水和・脱水量)を有する蓄熱材構造物を作製することができる化学蓄熱材構造物の製造方法を提供することができる。   According to the present invention, there is provided a method for producing a chemical heat storage material structure capable of producing a heat storage material structure having excellent heat storage and heat dissipation properties (hydration / dehydration amount) as compared with the conventional technology while ensuring strength. Can be provided.

脱水、焼成等の各処理を順次施す際の温度変化を示したグラフである。It is the graph which showed the temperature change at the time of performing each process, such as dehydration and baking, sequentially. 脱水、焼成等の各処理を順次施したときの重量変化の結果を熱重量測定により示すグラフである。It is a graph which shows the result of a weight change when each process, such as dehydration and baking, is performed sequentially by thermogravimetry. 実施例1及び比較例1のメルビナイトの生成量を対比して示すグラフである。It is a graph which compares and shows the production amount of the merbinite of Example 1 and Comparative Example 1. 実施例1及び比較例1の反応率を対比して示すグラフである。4 is a graph showing the reaction rates of Example 1 and Comparative Example 1 in comparison.

以下、本発明の化学蓄熱材構造物の製造方法について詳細に説明する。
本発明の化学蓄熱材構造物の製造方法は、少なくとも粉状の化学蓄熱材と層リボン構造を有する粘土鉱物とを混合する混合工程と、得られた混合物を、前記化学蓄熱材及び前記粘土鉱物の反応生成物であってアルカリ土類金属の少なくとも一種を含むシリケートが、焼成後に蓄熱・放熱反応させた際の水和量及び脱水量の少なくとも一方(質量基準)の変化幅が大きくなる比率で形成されるように、焼成温度及び焼成時間の少なくとも一方を制御して焼成する焼成工程とを設けて構成されている。本発明における焼成工程では、焼成温度を600℃以上800℃未満の温度領域で制御し、焼成時間を、焼成後に蓄熱・放熱反応させた際の水和量及び脱水量の少なくとも一方(質量基準)が前記混合される化学蓄熱材の脱水反応による総脱水量の60質量%以上の範囲になるように制御し、混合工程で得られた混合物を焼成して、化学蓄熱材及び粘土鉱物の反応生成物であってアルカリ土類金属の少なくとも一種を含むシリケートを形成する。本発明の化学蓄熱材構造物の製造方法は、好ましくは焼成工程の前に更に脱水工程を有し、必要に応じて、更に他の工程を設けて構成されてもよい。
Hereinafter, the manufacturing method of the chemical heat storage material structure of the present invention will be described in detail.
The method for producing a chemical heat storage material structure of the present invention includes a mixing step of mixing at least a powdery chemical heat storage material and a clay mineral having a layered ribbon structure, and the obtained mixture is mixed with the chemical heat storage material and the clay mineral. Silicate containing at least one kind of alkaline earth metal is a ratio that increases the change width of at least one of hydration amount and dehydration amount (mass basis) when subjected to heat storage and heat release reaction after firing. And a firing step of firing by controlling at least one of a firing temperature and a firing time. In the firing step in the present invention, the firing temperature is controlled in a temperature range of 600 ° C. or more and less than 800 ° C., and the firing time is at least one of the hydration amount and the dehydration amount when the heat storage / heat release reaction is performed after firing (mass basis). Is controlled to be in the range of 60% by mass or more of the total dehydration amount by the dehydration reaction of the chemical heat storage material to be mixed, and the reaction mixture of the chemical heat storage material and clay mineral is produced by firing the mixture obtained in the mixing step A silicate containing at least one alkaline earth metal. The method for producing a chemical heat storage material structure of the present invention preferably has a dehydration step prior to the firing step, and may be further provided with other steps as necessary.

本発明においては、焼成を焼成温度及び/又は焼成時間を制御して行なうことで、粉状の化学蓄熱材を小径化する等して、化学蓄熱材と粘土鉱物との間の接触界面を低減させることにより両者間の反応性(シリケートの生成性)を抑制、言い換えると化学蓄熱材(例えばCa(OH)2)の減少量を抑制することができる。これにより、焼成過程での化学蓄熱材及び粘土鉱物間の反応と焼成後の化学蓄熱材の存在量とのバランスを保ち、反応時の反りや割れ等に耐える強度を具えながら蓄熱・放熱反応性を向上させることができる。 In the present invention, the contact temperature between the chemical heat storage material and the clay mineral is reduced by reducing the diameter of the powdered chemical heat storage material by controlling the baking temperature and / or the baking time. By doing so, it is possible to suppress the reactivity (silicate formation) between the two, in other words, the amount of decrease in the chemical heat storage material (for example, Ca (OH) 2 ) can be suppressed. This maintains the balance between the reaction between the chemical heat storage material and clay mineral in the firing process and the existing amount of the chemical heat storage material after firing, and provides heat storage and heat dissipation reactivity while having the strength to withstand warping and cracking during the reaction. Can be improved.

なお、蓄熱・放熱反応させた際の水和量及び/又は脱水量の変化幅が大きくなることは、焼成後に存在する化学蓄熱材の割合が従来より多く、蓄熱反応又は放熱反応が活発に進行して水和反応時に蓄える水量又は脱水反応時に排する水量が増すことを意味する。   It should be noted that the amount of change in the amount of hydration and / or dehydration when heat storage and heat release reactions are increased is that the proportion of chemical heat storage materials present after firing is higher than in the past, and the heat storage reaction or heat release reaction proceeds actively. This means that the amount of water stored during the hydration reaction or the amount of water discharged during the dehydration reaction increases.

−混合工程−
本発明における混合工程は、少なくとも、粉状の化学蓄熱材と、層リボン構造を有する粘土鉱物とを混合する。混合により得られた混合物を更に成形処理して用いてもよい。
-Mixing process-
In the mixing step in the present invention, at least a powdery chemical heat storage material and a clay mineral having a layered ribbon structure are mixed. The mixture obtained by mixing may be further molded and used.

混合は、化学蓄熱材と粘土鉱物とを混ざり合わせることが可能な方法であれば、特に制限はなく、場合に応じて適宜選択することができる。混合方法の具体的な例として、(1)粉体の化学蓄熱材と粉体の粘土鉱物とを混合して混合粉体を調製する方法、(2)化学蓄熱材と粘土鉱物とをともに粉砕することにより混合して混合粉体を調製する方法、(3)粉体の化学蓄熱材と粉体の粘土鉱物とをともに媒質中に分散懸濁して混合し、濾過や乾燥等で乾粉化して混合粉体を調製する方法、(4)化学蓄熱材を媒質に分散懸濁した蓄熱材懸濁液と、粘土鉱物を媒質に分散懸濁した粘土鉱物懸濁液とを混合し、濾過や乾燥等で乾粉化して混合粉体を調製する方法、等を挙げることができる。   The mixing is not particularly limited as long as the chemical heat storage material and the clay mineral can be mixed together, and can be appropriately selected depending on the case. Specific examples of mixing methods include (1) a method of preparing a mixed powder by mixing a powdered chemical heat storage material and a powdered clay mineral, and (2) pulverizing both the chemical heat storage material and the clay mineral. (3) The powdered chemical heat storage material and the powdered clay mineral are both dispersed and suspended in the medium, mixed, and then dried by filtration, drying, etc. (4) Mixing a heat storage material suspension in which a chemical heat storage material is dispersed and suspended in a medium and a clay mineral suspension in which a clay mineral is dispersed and suspended in a medium, filtering and drying And the like, and the like, and the like.

分散懸濁する場合、分散は公知の分散機、攪拌機を適宜選択し、分散条件を調節することにより行なえる。このとき用いられる媒質は、分散質の分散が可能で濾過や加熱等により除去可能な液体を採用することができ、例えば、水、溶剤、又はこれらの混合溶媒などを使用できる。   In the case of dispersion suspension, the dispersion can be performed by appropriately selecting a known disperser and stirrer and adjusting the dispersion conditions. The medium used at this time can employ a liquid that can disperse the dispersoid and can be removed by filtration, heating, or the like. For example, water, a solvent, or a mixed solvent thereof can be used.

(化学蓄熱材)
本発明における混合物(又はその成形体)は、粉状の化学蓄熱材の少なくとも1種を含有する。化学蓄熱材は、化学反応を利用して熱の吸収、放出を行うことのできる物質であり、構造物内部に粉体として存在させる。化学蓄熱材が粉状であるとは、粒子を含む粉末の状態をいう。
(Chemical heat storage material)
The mixture (or molded product thereof) in the present invention contains at least one powdery chemical heat storage material. A chemical heat storage material is a substance that can absorb and release heat using a chemical reaction, and is present as a powder in the structure. The chemical heat storage material being powdery means a state of powder containing particles.

化学蓄熱材としては、例えば、水酸化カルシウム(Ca(OH))、水酸化マグネシウム(Mg(OH))、水酸化バリウム(Ba(OH))及びその水和物(Ba(OH)・HO)などのアルカリ土類金属の無機水酸化物や、水酸化リチウム一水和物(LiOH・HO)などのアルカリ金属の無機水酸化物、酸化アルミニウム三水和物(Al・3HO)などの無機酸化物水和物など、MgAl(OH)OHなどの層状複水酸化物などを挙げることができる。
中でも、脱水反応に伴なって吸熱し、水和反応に伴なって放熱する水和反応性蓄熱材が好ましく、特に水酸化カルシウム(Ca(OH))好ましい。
また、化学蓄熱材は、上市された市販品を用いてもよく、市販品の例として、近江鉱業(株)製のイブキライムNEO−1(Ca(OH))などを使用できる。
Examples of the chemical heat storage material include calcium hydroxide (Ca (OH) 2 ), magnesium hydroxide (Mg (OH) 2 ), barium hydroxide (Ba (OH) 2 ), and hydrates thereof (Ba (OH)). Inorganic hydroxides of alkaline earth metals such as 2 · H 2 O), inorganic hydroxides of alkali metals such as lithium hydroxide monohydrate (LiOH · H 2 O), aluminum oxide trihydrate ( Examples thereof include inorganic oxide hydrates such as Al 2 O 3 .3H 2 O) and layered double hydroxides such as MgAl (OH) 2 OH.
Among them, a hydration reactive heat storage material that absorbs heat with a dehydration reaction and dissipates heat with a hydration reaction is preferable, and calcium hydroxide (Ca (OH) 2 ) is particularly preferable.
Moreover, the marketed product may be used for a chemical heat storage material, and Ibuki lime NEO-1 (Ca (OH) 2 ) etc. by Omi Mining Co., Ltd. can be used as an example of a commercial product.

粉状の化学蓄熱材の平均粒径としては、平均一次粒子径で50μm以下が好ましい。混合物内に存在している化学蓄熱材の平均一次粒子径が50μm以下であると、粘土鉱物との反応が起きやすく反応生成物が得られやすいため、より強固な多孔構造が得られる。中でも、平均一次粒子径は、30μm以下がより好ましく、10μm以下が更に好ましい。また、平均一次粒子径の下限は、0.1μmが望ましい。
なお、平均一次粒子径は、レーザー回折・散乱粒度分布計SALD−2000A〔(株)島津製作所製〕を用いて、レーザー回折散乱法により測定される値である。
The average particle size of the powdery chemical heat storage material is preferably 50 μm or less in terms of the average primary particle size. When the average primary particle diameter of the chemical heat storage material present in the mixture is 50 μm or less, a reaction with the clay mineral is likely to occur and a reaction product is easily obtained, so that a stronger porous structure is obtained. Among these, the average primary particle diameter is more preferably 30 μm or less, and further preferably 10 μm or less. Further, the lower limit of the average primary particle size is desirably 0.1 μm.
The average primary particle size is a value measured by a laser diffraction / scattering method using a laser diffraction / scattering particle size distribution analyzer SALD-2000A (manufactured by Shimadzu Corporation).

ここで、水酸化カルシウム(Ca(OH))を例に蓄熱と放熱について説明する。
化学蓄熱材であるCa(OH)は、脱水に伴なって蓄熱(吸熱)し、水和(水酸化カルシウムへの復原)に伴なって放熱(発熱)する構成となる。すなわち、Ca(OH)は、以下に示す反応により蓄熱、放熱を可逆的に繰り返することができる。
Ca(OH) ⇔ CaO + H
またこれに、蓄熱量、発熱量Qを併せて示すと、以下のようになる。
Ca(OH) + Q → CaO + H
CaO + HO → Ca(OH) + Q
Here, heat storage and heat dissipation will be described using calcium hydroxide (Ca (OH) 2 ) as an example.
Ca (OH) 2 , which is a chemical heat storage material, stores heat (absorbs heat) as it dehydrates, and dissipates heat (generates heat) as it hydrates (restores to calcium hydroxide). That is, Ca (OH) 2 can reversibly repeat heat storage and heat dissipation by the reactions shown below.
Ca (OH) 2 Ca CaO + H 2 O
In addition, when the heat storage amount and the heat generation amount Q are also shown, this is as follows.
Ca (OH) 2 + Q → CaO + H 2 O
CaO + H 2 O → Ca (OH) 2 + Q

粉状の化学蓄熱材の粉体間には、後述の粘土鉱物が介在しており、これにより粘土鉱物が多孔の骨格構造をなし、その中に化学蓄熱材の粉体が分散保持された構造が形成されている。構造中、化学蓄熱材の粉体は分散状態で保持され、多孔により水蒸気の拡散性に優れているため、多くの粉体において上記反応を起こしやすいようになっている。   Between the powders of the powdery chemical heat storage material, the clay mineral described later is interposed, and the clay mineral has a porous skeletal structure, in which the powder of the chemical heat storage material is dispersed and held Is formed. In the structure, the powder of the chemical heat storage material is held in a dispersed state and is excellent in water vapor diffusibility due to the porosity, so that the above reaction is likely to occur in many powders.

化学蓄熱材の混合物(又はその成形体)中における含有量としては、体積比率では、混合物(又はその成形体)全体積に対して20〜85体積%が好ましく、60〜80体積%がより好ましい。また、質量比率では、混合物(又はその成形体)全質量に対して60〜90質量%が好ましく、70〜90質量%がより好ましい。化学蓄熱材の含有量は、20体積%以上又は60質量%以上であると、吸発熱量を高く保つことができ、85体積%以下又は90質量%以下であると、構造強度のより高い構造物が得られる。   As content in the mixture (or its molded object) of a chemical heat storage material, 20-85 volume% is preferable with respect to the mixture (or its molded object) whole volume in a volume ratio, and 60-80 volume% is more preferable. . Moreover, in mass ratio, 60-90 mass% is preferable with respect to a mixture (or its molded object) total mass, and 70-90 mass% is more preferable. When the content of the chemical heat storage material is 20% by volume or more or 60% by mass or more, the heat absorption and heat generation amount can be kept high, and when it is 85% by volume or less or 90% by mass or less, the structure having higher structural strength. Things are obtained.

(粘土鉱物)
本発明における混合物(又はその成形体)は、層リボン構造を有する粘土鉱物の少なくとも1種を含有する。層リボン構造を有する粘土鉱物は、輝石に似た単鎖が複数本結合して四面体リボンを形成している粘土鉱物(層状珪酸塩鉱物)であり、化学蓄熱材に粘度を与え、多孔構造を形成すると共に、構造物の構造強度を高く保つことができる。また、水蒸気の拡散性も付与できる。
(Clay mineral)
The mixture (or a molded product thereof) in the present invention contains at least one clay mineral having a layered ribbon structure. Clay minerals with a layered ribbon structure are clay minerals (layered silicate minerals) in which a plurality of single chains resembling pyroxene are combined to form a tetrahedral ribbon, giving viscosity to chemical heat storage materials and having a porous structure And the structural strength of the structure can be kept high. Moreover, the diffusibility of water vapor | steam can also be provided.

粘土鉱物としては、例えば、セピオライト〔MgSi1230(OH)・(OH・8HOで表される含水マグネシウム珪酸塩〕、アタパルジャイト〔パリゴルスカイト;=(Mg・AL)Si10(OH)・4HOで表されるパリゴルスカイト構造を有する含水珪酸マグネシウム、線径5μm以下〕、カオリナイト〔カオリン;=Al(Si)(OH)で表されるアルミニウム珪酸塩、線径1μm以下〕などが挙げられ、これらの1種又は2種以上を組み合わせて用いることができる。
また、粘土鉱物は上市された市販品を用いてもよく、市販品の例として、近江鉱業(株)製のトルコ産セピオライトなどを使用できる。
Examples of the clay mineral include sepiolite [hydrated magnesium silicate represented by Mg 8 Si 12 O 30 (OH) 4. (OH 2 ) 4 .8H 2 O], attapulgite [palygorskite; = (Mg · AL) 2 Hydrous magnesium silicate having a palygorskite structure represented by Si 4 O 10 (OH) · 4H 2 O, wire diameter of 5 μm or less, kaolinite [kaolin; = Al 2 (Si 2 O 5 ) (OH) 4 Aluminum silicate, wire diameter of 1 μm or less], and the like, and one or more of these can be used in combination.
As the clay mineral, a commercially available product may be used. As an example of a commercially available product, Turkish sepiolite manufactured by Omi Mining Co., Ltd. can be used.

層リボン構造を有する粘土鉱物は、これに属しない下記ベントナイトと比較し、シンタリング(凝集化)が少ない利点がある。特にセピオライトは、化学蓄熱材の脱水温度に近い温度で焼結され、該温度ではシンタリングによる比表面積の減少が少ない利点がある。
粘土鉱物は、このような利点を考慮して用途等に応じて適宜選択すればよい。
A clay mineral having a layered ribbon structure has an advantage of less sintering (aggregation) compared to the following bentonite which does not belong to this. In particular, sepiolite is sintered at a temperature close to the dehydration temperature of the chemical heat storage material, and there is an advantage that the specific surface area is less reduced by sintering at that temperature.
The clay mineral may be appropriately selected according to the application and the like in consideration of such advantages.

本発明においては、層リボン構造を有する粘土鉱物に加え、層リボン構造を有する粘土鉱物に属しないベントナイトを含んでもよい。粘土鉱物とベントナイトとを混合してもよい。ベントナイトは、層リボン構造を有する粘土鉱物と比較し、接着力が強い粘土鉱物であり、単体で(粘土鉱物と混合されない状態で)強固な多孔質構造を得ることができる。また、例えば金属壁への接合強度を向上することに寄与し、ベントナイトを用いた組成でも化学蓄熱材の粉体間に細孔が形成された多孔質構造が得られる。
本発明においては、層リボン構造の粘土鉱物とベントナイトとを混合した粘土鉱物を粉状の化学蓄熱材と混合する構成であってもよい。この場合、ベントナイトの比率は、層リボン構造を有する粘土鉱物に対して2〜20質量%とするのが好ましい。
In the present invention, bentonite which does not belong to the clay mineral having the layer ribbon structure may be included in addition to the clay mineral having the layer ribbon structure. A clay mineral and bentonite may be mixed. Bentonite is a clay mineral having a stronger adhesive force than a clay mineral having a layered ribbon structure, and can obtain a strong porous structure alone (in a state where it is not mixed with the clay mineral). Further, for example, it contributes to improving the bonding strength to the metal wall, and a porous structure in which pores are formed between the powders of the chemical heat storage material can be obtained even with a composition using bentonite.
In this invention, the structure which mixes the clay mineral which mixed the clay mineral and bentonite of a layer ribbon structure with a powdery chemical heat storage material may be sufficient. In this case, the ratio of bentonite is preferably 2 to 20% by mass with respect to the clay mineral having a layer ribbon structure.

粘土鉱物の混合物(又はその成形体)中における含有量としては、混合物(又はその成形体)全質量に対して、10〜40質量%の範囲が好ましく、25〜35質量%の範囲がより好ましい。粘土鉱物の含有量は、10質量以上であると、より高い構造強度が得られやすく、40質量%以下であると、より高い吸発熱量が得られやすい。   The content of the clay mineral in the mixture (or molded product thereof) is preferably 10 to 40% by mass, more preferably 25 to 35% by mass, based on the total mass of the mixture (or molded product thereof). . When the content of the clay mineral is 10 mass or more, higher structural strength is easily obtained, and when it is 40 mass% or less, a higher endothermic heat generation amount is easily obtained.

(他の成分)
混合時には、化学蓄熱材又は粘土鉱物とともに、有機バインダーやエタノール等の添加剤などの他の成分を混入してもよい。有機バインダーは、蓄熱材構造物を成形する際の成形性の付与(結着成分)や、結晶制御、多孔化など種々の目的で混入される。
(Other ingredients)
At the time of mixing, other components such as an organic binder and additives such as ethanol may be mixed together with the chemical heat storage material or the clay mineral. The organic binder is mixed for various purposes such as imparting moldability (binding component) when forming the heat storage material structure, crystal control, and porosity.

前記有機バインダーとしては、例えば、ポリビニルアルコール(PVA)、カルボキシメチルセルロース等のセルロース系樹脂、水性ウレタン等のウレタン樹脂、デンプン、フノリなどの樹脂成分や、ジエチレングリコール(DEG)、エタノール、D−ソルビトール、トリエタノールアミン、ジエチルアミンなどの溶剤成分、等を好適に用いることができる。   Examples of the organic binder include cellulose resins such as polyvinyl alcohol (PVA) and carboxymethyl cellulose; urethane resins such as aqueous urethane; resin components such as starch and funori; diethylene glycol (DEG), ethanol, D-sorbitol, tri Solvent components such as ethanolamine and diethylamine can be preferably used.

また、混合物(又はその成形体)には、使用する化学蓄熱材と粘土鉱物とから直接生成される反応生成物ではない、即ち例えば金属組成の異なる等のシリケートを更に含ませて構成してもよい。   Further, the mixture (or a molded body thereof) may not be a reaction product directly generated from the chemical heat storage material to be used and the clay mineral, that is, may further include, for example, a silicate having a different metal composition. Good.

混合物に成形処理を施す場合、その成形方法については特に制限はなく、従来公知の成形方法を目的等に応じて選択すればよい。成形方法の例として、プレス板等を用いたプレス成形や、金型等の型を用いて成形加工する方法などを適用することができる。   When the mixture is subjected to a molding treatment, the molding method is not particularly limited, and a conventionally known molding method may be selected according to the purpose or the like. As an example of the forming method, press forming using a press plate or the like, a method of forming using a mold such as a mold, or the like can be applied.

−焼成工程−
本発明における焼成工程は、前記混合工程で得られた混合物(又はその成形体)を、化学蓄熱材及び粘土鉱物の反応生成物であってアルカリ土類金属の少なくとも一種を含むシリケートが、焼成後に蓄熱・放熱反応させた際の水和量及び脱水量の少なくとも一方(質量基準)の変化幅が大きくなる比率で形成されるように、焼成温度及び焼成時間の少なくとも一方を制御して焼成する。具体的には、焼成温度を600℃以上800℃未満の温度領域で制御し、焼成時間を、焼成後に蓄熱・放熱反応させた際の水和量及び脱水量の少なくとも一方(質量基準)が前記混合される化学蓄熱材の脱水反応による総脱水量の60質量%以上の範囲になるように制御し、前記混合工程で得られた混合物を焼成して、前記シリケートが形成される。
-Baking process-
In the firing step of the present invention, the mixture (or a molded product thereof) obtained in the mixing step is a reaction product of a chemical heat storage material and a clay mineral, and a silicate containing at least one alkaline earth metal is fired. Baking is performed by controlling at least one of the baking temperature and the baking time so that at least one of the hydration amount and the dehydration amount (mass basis) when the heat storage and heat release reaction is performed is increased. Specifically, the firing temperature is controlled in a temperature range of 600 ° C. or more and less than 800 ° C., and at least one of the hydration amount and the dehydration amount (mass basis) when the firing time is subjected to heat storage / heat dissipation reaction after firing is the above-mentioned The silicate is formed by controlling the chemical heat storage material to be mixed so as to be in a range of 60% by mass or more of the total dehydration amount by the dehydration reaction, and firing the mixture obtained in the mixing step.

例えば、化学蓄熱材として水酸化カルシウムを、粘土鉱物としてセピオライトを用いた場合、水酸化カルシウムの脱水反応(Ca(OH)2→CaO+H2O)で生じたCaOとセピオライトとが1:1程度(質量比)で反応し、シリケートとしてメルビナイト(3CaO・MgO・2SiO)が生成する。このとき、焼成過程でのメルビナイトの生成割合が、焼成後に蓄熱・放熱反応させた際の水和量及び/又は脱水量の変化幅が大きくなる比率となるように、所定の焼成温度を維持する時間(焼成時間)又は焼成温度が制御される。
水和・脱水量の変化幅が大きくなる比率としては、焼成後の構造物中のシリケート(例えばメルビナイト)の化学蓄熱材に対する質量比率が、1〜15質量%の範囲である場合が好ましい。この質量比率は、1質量%以上であると、構造物強度が蓄熱・放熱反応時に反りや割れ等が生じない程度に維持され、15質量%以下であると、蓄熱・放熱性(水和・脱水反応)に優れる。
For example, when calcium hydroxide is used as a chemical heat storage material and sepiolite is used as a clay mineral, CaO and sepiolite produced by the dehydration reaction of calcium hydroxide (Ca (OH) 2 → CaO + H 2 O) are 1: 1. It reacts at a degree (mass ratio) to produce melvinite (3CaO · MgO · 2SiO 2 ) as a silicate. At this time, the predetermined firing temperature is maintained so that the rate of melvinite generation in the firing process is such that the amount of change in the amount of hydration and / or dehydration when subjected to heat storage and heat dissipation after firing is increased. Time (baking time) or baking temperature is controlled.
As a ratio at which the change width of the amount of hydration / dehydration becomes large, it is preferable that the mass ratio of the silicate (for example, merbinite) in the fired structure to the chemical heat storage material is in the range of 1 to 15% by mass. When the mass ratio is 1% by mass or more, the structure strength is maintained to such an extent that warpage or cracking does not occur during the heat storage / radiation reaction, and when the mass ratio is 15% by mass or less, Excellent dehydration reaction.

焼成温度としては、構造物強度の点で600℃以上が好ましく、600℃以上800℃未満の温度領域で制御されるのが好ましい。なお、この温度領域は、焼成を行なう雰囲気の温度範囲をさし、雰囲気温度を計測して該雰囲気温度の調節により調整される。   The firing temperature is preferably 600 ° C. or higher in terms of structure strength, and is preferably controlled in a temperature range of 600 ° C. or higher and lower than 800 ° C. This temperature range refers to the temperature range of the atmosphere in which firing is performed, and is adjusted by measuring the ambient temperature and adjusting the ambient temperature.

600℃以上の高温域で焼成することで、構造物強度を高めることが可能であると同時に、逆に蓄熱・放熱反応性は低下しやすいが、本発明では焼成時間及び/又は焼成温度を制御することにより、このような温度領域での反応性の向上効果、すなわち焼成で低下しやすい蓄熱・放熱反応効率の向上効果が大きい。そのため、反りや割れ等が生じない強度を持ちながら蓄熱・放熱性も高い。また、焼成温度が800℃未満であると、シンタリングによる結晶粒の粗大化が抑えられ、反応生成物の生成性が保てるため、構造物強度の向上効果がより期待できる。   By firing at a high temperature range of 600 ° C. or higher, it is possible to increase the strength of the structure, and at the same time, the heat storage / heat dissipation reactivity tends to decrease, but in the present invention, the firing time and / or firing temperature is controlled. By doing so, the effect of improving the reactivity in such a temperature region, that is, the effect of improving the heat storage / heat radiation reaction efficiency, which tends to be reduced by firing, is great. Therefore, heat storage and heat dissipation are also high while having strength that does not cause warping or cracking. Further, when the firing temperature is less than 800 ° C., the coarsening of crystal grains due to sintering is suppressed, and the productivity of the reaction product can be maintained, so that the effect of improving the structure strength can be further expected.

上記の中でも、焼成温度は、700℃以上800℃未満の温度領域が好ましい。焼成温度が700℃以上であると、化学蓄熱材由来の分解物(例えば水酸化カルシウムの場合、Ca(OH)2 → CaO + H2Oの脱水反応で生じるCaO)と粘土鉱物との反応も進みやすく、構造物の構造強度の向上が一層期待できる。 Among the above, the firing temperature is preferably in the temperature range of 700 ° C. or higher and lower than 800 ° C. When the calcination temperature is 700 ° C or higher, the reaction between the decomposition product derived from the chemical heat storage material (for example, CaO generated by the dehydration reaction of Ca (OH) 2 → CaO + H 2 O in the case of calcium hydroxide) and clay minerals It is easy to proceed and further improvement in the structural strength of the structure can be expected.

また、焼成時間は、焼成温度、スケール、化学蓄熱材や粘土鉱物の種類、混合比率などの諸条件に応じて適宜選択することができる。焼成時間としては、前記温度範囲において、焼成後に蓄熱・放熱反応させた際の水和量及び/又は脱水量(質量基準)が、化学蓄熱材の脱水反応を完全に行なわせた際の総脱水量に対して60質量%以上の範囲で制御される態様が好ましい。焼成を、水和・脱水量が総脱水量の60質量%に達する時点で止めることで、反りや割れ等に耐える強度を保つが、化学蓄熱材の存在量を減り過ぎない程度に抑え、蓄熱・放熱性を高めることができる。
中でも特に、上記と同様の理由から、焼成時間は前記温度範囲において、化学蓄熱材の水和・脱水量が前記総脱水量の80質量%以上の範囲で制御されるのが好ましい。
The firing time can be appropriately selected according to various conditions such as firing temperature, scale, type of chemical heat storage material and clay mineral, and mixing ratio. As the firing time, in the above temperature range, the amount of hydration and / or dehydration (mass basis) when the heat storage and heat release reaction is performed after firing is the total dehydration when the dehydration reaction of the chemical heat storage material is completely performed. The aspect controlled in the range of 60 mass% or more with respect to quantity is preferable. By stopping the firing when the amount of hydration / dehydration reaches 60% by mass of the total dehydration amount, the strength to withstand warping and cracking is maintained, but the amount of chemical heat storage material is suppressed to an extent that it does not decrease too much.・ The heat dissipation can be improved.
In particular, for the same reason as described above, the firing time is preferably controlled in the temperature range so that the amount of hydration / dehydration of the chemical heat storage material is 80% by mass or more of the total amount of dehydration.

この脱水量は、既知となっている粘土鉱物の脱水量と各加熱条件(温度、時間)で脱水生成される化学蓄熱材の脱水量(質量)等の基礎データをもとに、焼成時に起きている重量変化から算出することが可能である。   This amount of dehydration occurs during firing based on basic data such as the amount of dehydrated clay minerals and the amount of dehydrated mass (mass) of chemical heat storage materials that are dehydrated under each heating condition (temperature, time). It is possible to calculate from the weight change.

(シリケート)
本発明における化学蓄熱材構造物は、焼成後において、化学蓄熱材と粘土鉱物とから反応生成するシリケートの1種又は2種以上を含有していることが好ましい。化学蓄熱材に粘土鉱物を加えるだけでなく、焼成を600℃以上、更には700℃以上の高温下で行なうことにより、シリケートを存在させることができる。シリケートの存在により、構造物としたときの構造強度が向上する。
(Silicate)
The chemical heat storage material structure in the present invention preferably contains one or more silicates produced by reaction from the chemical heat storage material and the clay mineral after firing. In addition to adding clay minerals to the chemical heat storage material, silicate can be present by firing at a high temperature of 600 ° C. or higher, more preferably 700 ° C. or higher. Due to the presence of silicate, the structural strength of the structure is improved.

本発明におけるシリケートは、化学蓄熱材及び粘土鉱物中に存在するアルカリ土類金属の1種又は2種以上を例えば酸化物の形態で含む複合シリケート化合物であることが好ましい。   The silicate in the present invention is preferably a composite silicate compound containing one or more of the alkaline earth metals present in the chemical heat storage material and the clay mineral, for example, in the form of an oxide.

シリケートとしては、例えば、カルシウムマグネシウムシリケート(メルビナイト;=3CaO・MgO・2SiO)、カルシウムアルミニウムシリケート、リチウムカルシウムシリケート、リチウムマグネシウムシリケート、カルシウムシリケート(CaSiO)、メタケイ酸マグネシウム(MgSiO)、オルトケイ酸マグネシウム(MgSiO)、マグネシウムトリシリケート(MgSi)などを挙げることができる。 Examples of the silicate include calcium magnesium silicate (melvinite; = 3CaO · MgO · 2SiO 2 ), calcium aluminum silicate, lithium calcium silicate, lithium magnesium silicate, calcium silicate (CaSiO 3 ), magnesium metasilicate (MgSiO 3 ), and orthosilicate. Examples thereof include magnesium (Mg 2 SiO 4 ) and magnesium trisilicate (Mg 2 Si 3 O 8 ).

シリケートとしてメルビナイト(3CaO・MgO・2SiO)を含む場合、例えば、化学蓄熱材として水酸化カルシウムを、粘土鉱物としてセピオライトを用い、これらを混合後に(好ましくは600℃以上800℃未満の温度領域で)焼成することにより生成し、上記のように焼成温度及び/又は焼成時間を制御することで、水酸化カルシウム及びセピオライトと共に共存させることができる。混合状態にして焼成された際に生成されて蓄熱材・粘土鉱物間に均一的に存在させ得ることにより、多数の孔ができて網目状(例:多孔質状)に構造化された構造物に、体積変化を吸収し得る弾性変形性を与え、吸発熱反応に耐える構造強度を高めることができる。 When melvinite (3CaO · MgO · 2SiO 2 ) is included as a silicate, for example, calcium hydroxide is used as a chemical heat storage material, sepiolite is used as a clay mineral, and these are mixed (preferably in a temperature range of 600 ° C. or higher and lower than 800 ° C. ) It can be produced by firing and coexist with calcium hydroxide and sepiolite by controlling the firing temperature and / or firing time as described above. A structure that is produced when fired in a mixed state and can exist uniformly between the heat storage material and the clay mineral, so that a large number of pores are formed and structured in a network (eg, porous) Further, it is possible to give elastic deformation that can absorb volume change and to increase the structural strength that can withstand the endothermic reaction.

シリケートの焼成後構造物中における含有量としては、Ca(OH)に対して、5〜30質量%の範囲が好ましい。シリケートの含有量は、5質量以上であると、弾性的変形挙動を示し、蓄熱・放熱反応時の吸発熱に伴なう体積変化の影響を緩和できる構造強度が得られ、30質量%以下であると蓄熱・放熱反応性の点で有利である。 As content in the structure after baking of a silicate, the range of 5-30 mass% is preferable with respect to Ca (OH) 2 . When the content of the silicate is 5 mass or more, it exhibits elastic deformation behavior, and a structural strength that can alleviate the influence of volume change accompanying heat absorption and heat generation during heat storage and heat release reaction is obtained, and it is 30 mass% or less. It is advantageous in terms of heat storage and heat release reactivity.

−脱水工程−
本発明の化学蓄熱材構造物の製造方法は、焼成を行なう焼成工程前において、化学蓄熱材を予め600℃未満の温度領域で脱水反応させる脱水工程を有していることが好ましい。焼成を行なわない温度領域で予め脱水を行なわせることで、化学蓄熱材が小径化し、粘土鉱物とのクリアランスができて粘土鉱物との接触界面を減ずることができる。これより、両者間の反応で生成するシリケート量を抑えることができる。
このようにすると、反りや割れ等を生じない程度の高い強度が維持されると共に、蓄熱・放熱反応性の向上が図れる。
-Dehydration process-
The method for producing a chemical heat storage material structure of the present invention preferably includes a dehydration step in which the chemical heat storage material is subjected to a dehydration reaction in a temperature range of less than 600 ° C. in advance before the firing step of performing the firing. By performing dehydration in advance in a temperature range where firing is not performed, the diameter of the chemical heat storage material can be reduced, clearance from the clay mineral can be achieved, and the contact interface with the clay mineral can be reduced. Thereby, the amount of silicate generated by the reaction between the two can be suppressed.
If it does in this way, while maintaining the high intensity | strength which does not produce a curvature, a crack, etc., the improvement of thermal storage and a thermal radiation reactivity can be aimed at.

脱水は、雰囲気温度を加熱することにより行なうことができる。
脱水工程での脱水温度は、600℃未満の温度領域とする。600℃未満であることは、焼結を行なう温度ではないことを示し、焼結に先立ち化学蓄熱材を脱水反応させることができる。この場合、Ca(OH)の脱水温度が350℃〜500℃であるため、脱水工程を含める場合にも例えばCa(OH)は好適である。
Dehydration can be performed by heating the ambient temperature.
The dehydration temperature in the dehydration step is set to a temperature range of less than 600 ° C. When the temperature is lower than 600 ° C., it indicates that the temperature is not the temperature for sintering, and the chemical heat storage material can be dehydrated prior to sintering. In this case, since the dehydration temperature of Ca (OH) 2 is 350 ° C. to 500 ° C., for example, Ca (OH) 2 is suitable when including the dehydration step.

脱水は、混合工程で得られた混合物の乾燥質量に対する化学蓄熱材の脱水量の比率が、脱水前の化学蓄熱材を脱水反応させて生成される総脱水量の50質量%以内である範囲で、行なわれるのが好ましい。脱水工程での混合物質量に対する脱水量の比率を総脱水量の50質量%以内に止めることで、シリケートの生成性がある程度抑えられる。これにより、焼成時に化学蓄熱材の存在量を減り過ぎない程度に保ち、反りや割れ等に耐える強度が得ながら優れた蓄熱・放熱性を保持することが可能になる。
中でも、上記同様の理由から、総脱水量の20質量%以内の範囲に留めて脱水する態様がより好ましい。
なお、蓄熱・放熱性の点で、下限値は1質量%であるのが望ましい。更に好ましくは、総脱水量の1質量%以上20質量%以下の範囲である。
Dehydration is a range in which the ratio of the amount of dehydration of the chemical heat storage material to the dry mass of the mixture obtained in the mixing step is within 50% by mass of the total amount of dehydration generated by the dehydration reaction of the chemical heat storage material before dehydration. Preferably. By stopping the ratio of the amount of dehydration to the amount of mixed substances in the dehydration step within 50% by mass of the total amount of dehydration, the silicate formation can be suppressed to some extent. As a result, it is possible to maintain the excellent heat storage and heat dissipation properties while maintaining the strength to withstand warpage and cracking while maintaining the amount of the chemical heat storage material not reduced excessively during firing.
Among these, for the same reason as described above, an embodiment in which dehydration is performed while keeping the amount within 20% by mass of the total dehydration amount is more preferable.
The lower limit is preferably 1% by mass in terms of heat storage and heat dissipation. More preferably, it is the range of 1 mass% or more and 20 mass% or less of the total dehydration amount.

なお、この脱水量は上記と同様に、既知となっている粘土鉱物の脱水量と各加熱条件(温度、時間)で脱水生成される化学蓄熱材の脱水量(質量)等の基礎データをもとに、焼成時に起きている重量変化から算出することが可能である。   As with the above, this dehydration amount is based on the basic data such as the known dehydration amount of clay minerals and the dehydration amount (mass) of the chemical heat storage material that is dehydrated under each heating condition (temperature, time). In addition, it is possible to calculate from the weight change occurring during firing.

また、脱水は、脱水前の化学蓄熱材の体積の減少率が20%以内である範囲で行なうことが好ましい。脱水により化学蓄熱材の体積が減少するが、その減少率を20%以内に留めて行なうようにすると、粘土鉱物との反応性を維持するが、粘土鉱物との接触界面が減ることで両者間の反応で生成するシリケート量が適度に抑えられる。これにより、吸発熱時の反りや割れ等を回避できる構造物強度を維持するが、蓄熱・放熱反応性の向上もより好適に行なうことが可能である。   Moreover, it is preferable to perform dehydration in a range in which the volume reduction rate of the chemical heat storage material before dehydration is within 20%. The volume of the chemical heat storage material is reduced by dehydration, but if the reduction rate is kept within 20%, the reactivity with the clay mineral will be maintained, but the contact interface with the clay mineral will be reduced. The amount of silicate produced by this reaction is moderately suppressed. This maintains the strength of the structure that can avoid warping, cracking, and the like during heat absorption and heat generation, but it is also possible to improve heat storage and heat dissipation reactivity more suitably.

中でも、上記同様の理由から、化学蓄熱材の体積減少率を10%以内の範囲に留めて脱水する態様がより好ましい。更に好ましくは、体積減少率は1%以上10%以下の範囲である。   Among these, for the same reason as described above, it is more preferable to dehydrate the chemical heat storage material while keeping the volume reduction rate within a range of 10% or less. More preferably, the volume reduction rate is in the range of 1% to 10%.

化学蓄熱材の体積減少率は、脱水後の減少質量を脱水前の全質量で除算(脱水後の減少質量/脱水前の全質量)することにより求められる値である。   The volume reduction rate of the chemical heat storage material is a value obtained by dividing the reduced mass after dehydration by the total mass before dehydration (reduced mass after dehydration / total mass before dehydration).

本発明においては、特に、化学蓄熱材としてアルカリ土類金属の水酸化物(特に水酸化カルシウム)を、粘土鉱物としてセピオライトを用い、あらかじめ350℃〜500℃の温度領域で脱水処理を、前記脱水量の比率が前記総脱水量の20質量%以内となる範囲又は下記体積減少率が1%以上10%以下となる範囲を満たすように施した後、700℃以上800℃未満の温度領域で焼成処理する態様が特に好ましい。   In the present invention, in particular, alkaline earth metal hydroxide (especially calcium hydroxide) is used as the chemical heat storage material, sepiolite is used as the clay mineral, and the dehydration treatment is performed in the temperature range of 350 ° C. to 500 ° C. in advance. After applying so as to satisfy the range in which the ratio of the amount is within 20% by mass of the total dehydrated amount or the range in which the following volume reduction rate is 1% or more and 10% or less, firing is performed at a temperature range of 700 ° C. or more and less than 800 ° C. The mode of treatment is particularly preferred.

以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof.

(実施例1)
熱重量法を利用したミクロ熱重量測定装置TGA−50((株)島津製作所製)を用い、以下に示す手順にしたがって、図1に示されるように脱水、焼成等の処理を行ない、蓄熱材構造物を作製した。なお、図1は、測定装置TGA−50により得られるグラフである。
Example 1
Using a micro thermogravimetric measuring device TGA-50 (manufactured by Shimadzu Corporation) using a thermogravimetric method, treatment such as dehydration and firing is performed as shown in FIG. A structure was produced. In addition, FIG. 1 is a graph obtained by the measuring apparatus TGA-50.

−1.混合−
化学蓄熱材として、水酸化カルシウム(Ca(OH))の白色粉末(JIS R9001 等級:特号)を用意し、粘土鉱物として、近江鉱業(株)製のミラクレー(登録商標)Pシリーズ トルコ産セピオライト粉末P−300(MgSi1230(OH)(OH・8HO;繊維状)を用意した。これらを、セピオライト濃度が混合後の全質量に対して10質量%になるように混合し、混合粉を得た。
-1. Mixing
Calcium hydroxide (Ca (OH) 2 ) white powder (JIS R9001 grade: special name) is prepared as a chemical heat storage material, and Mira clay (registered trademark) P series manufactured by Omi Mining Co., Ltd. sepiolite P-300 (MgSi 12 O 30 (OH) 4 (OH 2) 4 · 8H 2 O; fibrous) was prepared. These were mixed so that the sepiolite concentration was 10% by mass with respect to the total mass after mixing to obtain a mixed powder.

−2.吸着水の除去−
次いで、得られた混合粉を大気雰囲気の室内に入れ、図1中の(a)に示されるように、300℃で10分間の加熱を行なうことにより、吸着水の除去処理を施した。このとき、図2中の点pでの質量が除去処理後の混合粉の乾燥質量であり、この乾燥質量[mg]を計測した。
なお、図2では、加熱を開始する前の混合粉の質量を0(ゼロ)として規格化し、その後の質量変化[mg]を示してある。
-2. Removal of adsorbed water
Next, the obtained mixed powder was placed in an air atmosphere chamber, and as shown in (a) in FIG. 1, the adsorbed water was removed by heating at 300 ° C. for 10 minutes. At this time, the mass at point p in FIG. 2 is the dry mass of the mixed powder after the removal treatment, and this dry mass [mg] was measured.
In addition, in FIG. 2, the mass of the mixed powder before starting a heating is normalized as 0 (zero), and the mass change [mg] after that is shown.

−3.脱水−
次いで、図1中の(b)のように、除去処理後の混合粉に対して500℃で15分間、加熱処理を行なう時間帯を設け、混合粉中のCa(OH)に脱水処理を施した。
脱水反応:Ca(OH) → CaO + H
-3. Dehydration
Next, as shown in FIG. 1 (b), a time zone for heat treatment at 500 ° C. for 15 minutes is provided for the mixed powder after removal treatment, and the Ca (OH) 2 in the mixed powder is dehydrated. gave.
Dehydration reaction: Ca (OH) 2 → CaO + H 2 O

このとき、図2に示されるように顕著な質量変化がみられた。この質量変化は、Ca(OH)の脱水反応に起因する変化であり、脱水後の質量は点rまで減少した。その質量変化量q(mg;点pから点rまでの変化量)を計測し、脱水時の質量変化割合[%]を下記式(1)により算出したところ、混合粉中のCa(OH)全量から脱水生成する総脱水量[mg]の20%以下であった。
質量変化割合 = 質量変化量q[mg]/{吸着水除去した脱水前の混合粉の質量[mg]}×100 …(1)
At this time, a remarkable mass change was observed as shown in FIG. This mass change was caused by the dehydration reaction of Ca (OH) 2 , and the mass after dehydration decreased to point r. The mass change amount q (mg; the change amount from the point p to the point r) was measured, and the mass change rate [%] at the time of dehydration was calculated by the following formula (1). Ca (OH) in the mixed powder It was 20% or less of the total dehydrated amount [mg] produced from the total amount of 2 dehydrated.
Mass change ratio = Mass change q [mg] / {Mass of mixed powder before dehydration after removing adsorbed water [mg]} × 100 (1)

また、このときのCa(OH)粉の体積減少率[%]を下記式(2)から求めたところ、15%であった。
体積減少率 = 脱水後のCa(OH)2の体積/脱水前のCa(OH)2の体積×100 …(2)
Moreover, when the volume reduction rate [%] of the Ca (OH) 2 powder at this time was determined from the following formula (2), it was 15%.
Volume reduction rate = volume of Ca (OH) 2 after dehydration / volume of Ca (OH) 2 before dehydration × 100 (2)

−4.焼成−
次いで、この混合粉を大気雰囲気下、図1中の(c)のように、50℃/分の昇温速度にて加熱して750℃で1分間保持、焼成し、その後強制冷却した。このとき、降温速度は30℃/分であった。この焼成により、図2に示すように質量は点sまで減少し、この点で脱水は完了した状態となった。
-4. Firing-
Next, this mixed powder was heated at a heating rate of 50 ° C./min, held at 750 ° C. for 1 minute, and fired in an air atmosphere as shown in FIG. At this time, the temperature lowering rate was 30 ° C./min. By this firing, the mass decreased to point s as shown in FIG. 2, and dehydration was completed at this point.

このときの質量変化量(mg;点rから点sまでの変化量)を計測し、焼成時の質量変化割合[%]を下記式(3)により概算した。その結果、60%以上の値を示した。
質量変化割合 = 質量変化量t[mg]/{混合粉中のCa(OH)2全量から脱水生成する総脱水量[mg]}×100 …(3)
The mass change amount (mg; change amount from the point r to the point s) at this time was measured, and the mass change rate [%] at the time of firing was estimated by the following formula (3). As a result, a value of 60% or more was shown.
Mass change ratio = mass change amount t [mg] / {total dehydration amount [mg]} × 100 (3) generated by dehydration from the total amount of Ca (OH) 2 in the mixed powder

なお、焼成は、大気雰囲気下で行なうことにより、粘土鉱物中の有機物等を完全に燃焼(HO及びCOの生成、Ca(OH)存在下では更に生成されたCaCOをHO及びCOに分解)させた。これより、Caの炭酸化による化学蓄熱材と粘土鉱物との反応阻害を防止するようにした。
以上のようにして、本発明の化学蓄熱材構造体を得た。
The firing is performed in an air atmosphere to completely burn the organic matter in the clay mineral (generation of H 2 O and CO 2 , and in the presence of Ca (OH) 2 , further generated CaCO 3 is converted to H 2. Decomposed to O and CO 2 ). As a result, reaction inhibition between the chemical heat storage material and the clay mineral due to the carbonation of Ca was prevented.
As described above, the chemical heat storage material structure of the present invention was obtained.

−5.評価−
引き続いて、得られた化学蓄熱材構造体を200℃で維持して水和反応させた。このとき、質量が図2に示すように点sから上昇した。そして、雰囲気温度を加熱して500℃で15分間保持(脱水)した後、再び降温して200℃で保持(水和)する操作を、2サイクル繰り返し行なった(図1の時間帯(d))。
-5. Evaluation-
Subsequently, the obtained chemical heat storage material structure was maintained at 200 ° C. to cause a hydration reaction. At this time, the mass increased from the point s as shown in FIG. Then, after the atmospheric temperature was heated and held (dehydrated) at 500 ° C. for 15 minutes, the operation of lowering the temperature again and holding (hydrated) at 200 ° C. was repeated two times (time zone (d) in FIG. 1). ).

その結果、図2に示されるように、焼成後に水和して質量が上昇した後は、脱水処理することにより再び点s付近まで質量が減少した。このとき、化学蓄熱材構造物による水和・脱水反応は、図2に示されるように質量変化tを伴なって進行しており、後述の比較例1の蓄熱材構造体に比べ、蓄熱・放熱性を飛躍的に向上させることができた。   As a result, as shown in FIG. 2, after hydration after firing and the mass increased, the mass decreased again to near the point s by dehydration. At this time, the hydration / dehydration reaction by the chemical heat storage material structure proceeds with a mass change t as shown in FIG. 2, and compared with the heat storage material structure of Comparative Example 1 described later, It was possible to dramatically improve heat dissipation.

更に、本発明の化学蓄熱材構造体におけるメルビナイト(シリケート)の生成量及び反応率を、後述する比較例1の蓄熱材構造体と対比して図3〜図4に示す。
図3に示すように、本発明の化学蓄熱材構造体では、比較の蓄熱材構造体に比べてメルビナイトの生成量が抑制されており、メルビナイトの生成を抑制するように作製することによって、図4に示されるように、その反応率を飛躍的に向上させることができた。このとき、構造体中に含まれるCa(OH)量に対するメルビナイトの生成割合は5質量%であった。
また、化学蓄熱材構造物は、メルビナイトを含むことで高い強度を有しており、吸発熱で反りや割れの発生も認められなかった。
Furthermore, the production | generation amount and reaction rate of the melvinite (silicate) in the chemical thermal storage material structure of this invention are shown in FIGS. 3-4 compared with the thermal storage material structure of the comparative example 1 mentioned later.
As shown in FIG. 3, in the chemical heat storage material structure of the present invention, the production amount of melvinite is suppressed as compared to the comparative heat storage material structure, and by producing so as to suppress the production of melvinite, As shown in FIG. 4, the reaction rate could be dramatically improved. At this time, the production | generation ratio of the melvinite with respect to 2 quantity of Ca (OH) contained in a structure was 5 mass%.
Moreover, the chemical heat storage material structure has high strength because it contains melvinite, and no warpage or cracking was observed due to endothermic heat generation.

上記の実施例では、混合粉の成形は行なっていないが、焼成前の例えば脱水工程後に成形する工程を設けてもよい。具体的には、例えば下記のように行なってもよい。
得られた混合粉に、バインダーとしてポリビニルアルコールの2%水溶液を混合粉の50%量添加し、平均粒子径が1mm以下となるように造粒し、乾燥させる。このうち所望量(例:約15%)を秤量し、常温(25℃)下で一軸プレスを行なって成形し、所望サイズの成形体を作製する。この場合、得られた成形体に対して焼成すればよい。
In the above embodiment, the mixed powder is not formed, but a step of forming, for example, after the dehydration step before firing may be provided. Specifically, for example, the following may be performed.
To the obtained mixed powder, a 2% aqueous solution of polyvinyl alcohol as a binder is added in an amount of 50% of the mixed powder, granulated so that the average particle size is 1 mm or less, and dried. Of these, a desired amount (for example, about 15%) is weighed and molded by uniaxial pressing at room temperature (25 ° C.) to produce a molded body having a desired size. In this case, what is necessary is just to bake with respect to the obtained molded object.

(比較例1)
実施例1において、500℃で15分間の脱水及び750℃で1分間の焼成に代え、図1の破線で示すように750℃で60分間の焼成を行なう(化学蓄熱材と粘土鉱物の反応を抑制しない;図3参照)ようにしたこと以外は、実施例1と同様にして、比較の蓄熱材構造体を得た。
その後、実施例1と同様に焼成に引き続き、得られた化学蓄熱材構造体を200℃で維持して水和反応させた。このとき、図2に示すように質量が点s付近から上昇した。そして、雰囲気温度を加熱して500℃で15分間保持(脱水)した後、再び降温して200℃で保持(水和)する操作を、2サイクル繰り返し行なった(図1の時間帯(e))。
(Comparative Example 1)
In Example 1, instead of dehydration at 500 ° C. for 15 minutes and firing at 750 ° C. for 1 minute, firing is performed at 750 ° C. for 60 minutes as shown by the broken line in FIG. 1 (reaction between the chemical heat storage material and the clay mineral is performed). A comparative heat storage material structure was obtained in the same manner as in Example 1 except that it was not suppressed; see FIG.
Thereafter, following the firing as in Example 1, the obtained chemical heat storage material structure was maintained at 200 ° C. to cause a hydration reaction. At this time, the mass increased from around the point s as shown in FIG. Then, after the atmosphere temperature was heated and held (dehydrated) at 500 ° C. for 15 minutes, the operation of lowering the temperature again and holding (hydrated) at 200 ° C. was repeated two times (time zone (e) in FIG. 1). ).

その結果、図2に示されるように、焼成後に水和して質量が上昇した後は、脱水処理することにより再び点s付近まで質量が減少した。このとき、化学蓄熱材構造物による水和・脱水反応は、図2に示されるように質量変化t’を伴なうものであるが、その変化量(水和・脱水量)は実施例1の化学蓄熱材構造体(質量変化t)に比べて著しく少なく、蓄熱・放熱性の点で劣っていた。
また、図4に示されるように、実施例1の化学蓄熱材構造体に比べ、反応率(蓄熱・放熱反応性)に劣るものであった。このとき、構造体中に含まれるCa(OH)量に対するメルビナイトの生成割合は30質量%であった。
As a result, as shown in FIG. 2, after hydration after firing and the mass increased, the mass decreased again to near the point s by dehydration. At this time, the hydration / dehydration reaction by the chemical heat storage material structure is accompanied by a mass change t ′ as shown in FIG. Compared with the chemical heat storage material structure (mass change t), the heat storage and heat dissipation were inferior.
Moreover, as FIG. 4 showed, compared with the chemical heat storage material structure of Example 1, it was inferior to the reaction rate (heat storage / heat dissipation reactivity). At this time, the production | generation ratio of the merbinite with respect to 2 quantity of Ca (OH) contained in a structure was 30 mass%.

Claims (10)

粉状の化学蓄熱材と層リボン構造を有する粘土鉱物とを混合する混合工程と、
焼成温度を600℃以上800℃未満の温度領域で制御し、焼成時間を、焼成後に蓄熱・放熱反応させた際の水和量及び脱水量の少なくとも一方(質量基準)が前記混合される化学蓄熱材の脱水反応による総脱水量の60質量%以上の範囲になるように制御し、前記混合工程で得られた混合物を焼成して、前記化学蓄熱材及び前記粘土鉱物の反応生成物であってアルカリ土類金属の少なくとも一種を含むシリケートが形成される焼成工程と、
を含む化学蓄熱材構造物の製造方法。
A mixing step of mixing a powdery chemical heat storage material and a clay mineral having a layer ribbon structure;
Chemical heat storage in which the firing temperature is controlled in a temperature range of 600 ° C. or more and less than 800 ° C., and at least one of the hydration amount and the dehydration amount (mass basis) when the firing time is subjected to heat storage / heat dissipation reaction after firing is mixed. Controlling so that the total dehydration amount by the dehydration reaction of the material is in the range of 60% by mass or more, firing the mixture obtained in the mixing step, the reaction product of the chemical heat storage material and the clay mineral, a firing step of silicate containing at least one alkaline earth metal are made form,
A method for producing a chemical heat storage material structure comprising:
前記焼成時間は、焼成後に蓄熱・放熱反応させた際の前記水和量及び前記脱水量の少なくとも一方が前記総脱水量の80質量%以上の範囲となるように制御される請求項に記載の化学蓄熱材構造物の製造方法。 The baking time, according to claim 1 controlled so that at least one of the hydrated weight and the amount of dehydration when allowed to heat storage, exothermic reaction after firing is in the range of more than 80 wt% of the total amount of dehydration Manufacturing method for chemical heat storage material. 前記焼成工程前に更に、前記化学蓄熱材を予め600℃未満の温度領域で脱水反応させる脱水工程を含む請求項1又は請求項2に記載の化学蓄熱材構造物の製造方法。 The method for producing a chemical heat storage material structure according to claim 1 or 2, further comprising a dehydration step in which the chemical heat storage material is subjected to a dehydration reaction in a temperature range lower than 600 ° C in advance before the firing step. 前記脱水工程は、前記混合物の乾燥質量に対する化学蓄熱材の脱水量の比率が脱水前の化学蓄熱材を脱水反応させて生成される総脱水量の50質量%以内である範囲で脱水を行なう請求項に記載の化学蓄熱材構造物の製造方法。 In the dehydration step, dehydration is performed in a range where the ratio of the dehydration amount of the chemical heat storage material to the dry mass of the mixture is within 50% by mass of the total dehydration amount generated by the dehydration reaction of the chemical heat storage material before dehydration. Item 4. A method for producing a chemical heat storage material structure according to Item 3 . 前記脱水を、前記総脱水量の20質量%以内の範囲で行なう請求項に記載の化学蓄熱材構造物の製造方法。 The method for producing a chemical heat storage material structure according to claim 4 , wherein the dehydration is performed within a range of 20% by mass or less of the total dehydration amount. 前記脱水工程は、脱水前の化学蓄熱材の体積の減少率が20%以内である範囲で脱水を行なう請求項に記載の化学蓄熱材構造物の製造方法。 The method for producing a chemical heat storage material structure according to claim 3 , wherein the dehydration step performs the dehydration within a range where the volume reduction rate of the chemical heat storage material before the dehydration is within 20%. 前記脱水を、脱水前の化学蓄熱材の体積の減少率が10%以内である範囲で行なう請求項に記載の化学蓄熱材構造物の製造方法。 The method for producing a chemical heat storage material structure according to claim 6 , wherein the dehydration is performed in a range where the volume reduction rate of the chemical heat storage material before dehydration is within 10%. 前記焼成工程において、前記シリケートの前記化学蓄熱材に対する質量比率が、1〜15質量%の範囲である請求項1〜請求項7のいずれか1項に記載の化学蓄熱材構造物の製造方法。In the said baking process, the mass ratio with respect to the said chemical heat storage material of the said silicate is the range of 1-15 mass%, The manufacturing method of the chemical heat storage material structure of any one of Claims 1-7. 前記化学蓄熱材は、アルカリ土類金属の水酸化物である請求項1〜請求項8のいずれか1項に記載の化学蓄熱材構造物の製造方法。   The said chemical heat storage material is a hydroxide of alkaline-earth metal, The manufacturing method of the chemical heat storage material structure of any one of Claims 1-8. 前記アルカリ土類金属がカルシウムである請求項9に記載の化学蓄熱材構造物の製造方法。   The method for producing a chemical heat storage material structure according to claim 9, wherein the alkaline earth metal is calcium.
JP2010083898A 2010-03-31 2010-03-31 Manufacturing method of chemical heat storage material structure Active JP5503377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010083898A JP5503377B2 (en) 2010-03-31 2010-03-31 Manufacturing method of chemical heat storage material structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010083898A JP5503377B2 (en) 2010-03-31 2010-03-31 Manufacturing method of chemical heat storage material structure

Publications (2)

Publication Number Publication Date
JP2011213882A JP2011213882A (en) 2011-10-27
JP5503377B2 true JP5503377B2 (en) 2014-05-28

Family

ID=44943960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010083898A Active JP5503377B2 (en) 2010-03-31 2010-03-31 Manufacturing method of chemical heat storage material structure

Country Status (1)

Country Link
JP (1) JP5503377B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6123183B2 (en) * 2012-07-24 2017-05-10 株式会社デンソー Chemical heat storage material, reactor and heat storage device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051457A (en) * 2002-07-23 2004-02-19 Rikogaku Shinkokai Aluminosilicate amorphous material, its manufacturing method and material to remove heavy metal ion
JP2009256520A (en) * 2008-04-18 2009-11-05 Toyota Central R&D Labs Inc Chemical thermal storage medium composite and method for producing the same

Also Published As

Publication number Publication date
JP2011213882A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP6026504B2 (en) Heat insulating material composition, heat insulating material using the same, and method for manufacturing heat insulating material
JP5785932B2 (en) Chemical heat storage material structure, manufacturing method thereof, and chemical heat storage
US10106464B2 (en) Porous titanate compound particles and method for producing same
JP7414528B2 (en) Methods for producing insulation materials or insulation products for the refractory industry, corresponding insulation materials and products, and uses
TWI731002B (en) Methods for producing refractory composite particles and feeder elements for the foundry industry and such feeder elements
JP5277621B2 (en) Chemical heat storage material molded body and manufacturing method thereof
AU2020101723A4 (en) Foamed ceramics and preparation method thereof
JP5327729B2 (en) Chemical heat storage material and manufacturing method thereof
JP6641277B2 (en) Silica aluminate-containing aggregate for producing amorphous refractory composition, method for producing the same and use thereof
JP5749049B2 (en) Chemical regenerator and manufacturing method thereof
JP5297669B2 (en) Chemical heat storage material composite and its manufacturing method
JP2017505275A5 (en)
JP5300307B2 (en) Chemical heat storage material molded body and manufacturing method thereof
JP5503377B2 (en) Manufacturing method of chemical heat storage material structure
CA2885643C (en) Synthetic microparticles
JP5232510B2 (en) Manufacturing method of chemical heat storage material molded body
Briones et al. Development of stable porous silica-coated Ca (OH) 2/γ-Al2O3 pellets for dehydration/hydration cycles with application in thermochemical heat storage
JP2009256520A (en) Chemical thermal storage medium composite and method for producing the same
JP2009256519A (en) Chemical thermal storage medium composite and method for producing the same
WO2016146518A1 (en) Foam glass granules, their preparation and use
JP5231077B2 (en) Chemical heat storage material composite and its manufacturing method
RU2592909C2 (en) Porous silica-based material and portlandite for filling insulating brick with controlled structure and corresponding production method
JP2011213750A (en) Coated porous inorganic particle containing heat storage substance and heat storage material including the same
JP5303158B2 (en) Chemical heat storage material molded body and manufacturing method thereof
WO2006082919A1 (en) Raw material for desiccant and process for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140314

R150 Certificate of patent or registration of utility model

Ref document number: 5503377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250