JP2009149838A - Formed product of chemical thermal storage medium, and method for producing the same - Google Patents

Formed product of chemical thermal storage medium, and method for producing the same Download PDF

Info

Publication number
JP2009149838A
JP2009149838A JP2008109168A JP2008109168A JP2009149838A JP 2009149838 A JP2009149838 A JP 2009149838A JP 2008109168 A JP2008109168 A JP 2008109168A JP 2008109168 A JP2008109168 A JP 2008109168A JP 2009149838 A JP2009149838 A JP 2009149838A
Authority
JP
Japan
Prior art keywords
heat storage
chemical heat
storage material
molded body
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008109168A
Other languages
Japanese (ja)
Other versions
JP5300307B2 (en
Inventor
Takashi Shimazu
孝 志満津
Yoshiaki Fukushima
喜章 福嶋
Hiroyuki Mitsui
宏之 三井
Hideo Sofugawa
英夫 曽布川
Hiroaki Wakayama
博昭 若山
Hiroyuki Itahara
弘幸 板原
Kaoru Hashimoto
薫 橋本
Takatsune Fujimura
崇恒 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omi Kogyo Co Ltd
Toyota Central R&D Labs Inc
Omi Mining Co Ltd
Original Assignee
Omi Kogyo Co Ltd
Toyota Central R&D Labs Inc
Omi Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omi Kogyo Co Ltd, Toyota Central R&D Labs Inc, Omi Mining Co Ltd filed Critical Omi Kogyo Co Ltd
Priority to JP2008109168A priority Critical patent/JP5300307B2/en
Publication of JP2009149838A publication Critical patent/JP2009149838A/en
Application granted granted Critical
Publication of JP5300307B2 publication Critical patent/JP5300307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a formed product of a chemical thermal storage medium capable of making reactivity compatible with heat transfer properties for thermal storage and heat release, and to provide a method for producing the formed product of the chemical thermal storage medium. <P>SOLUTION: A chemical thermal storage reaction part 10 is a porous structure obtained by forming powdery chemical thermal storage medium particles 12 into a prescribed shape, and has flow channels 15 in the interior thereof. The flow channels 15 are, e.g. discharge routes for a reaction product produced according to a thermal storage reaction of the powdery chemical thermal storage medium particles 12, and further feed routes for reactants required for a heat release reaction of the powdery chemical thermal storage medium particles 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、化学蓄熱材を成形した化学蓄熱材成形体、及びその製造方法に関する。   The present invention relates to a chemical heat storage material molded body obtained by molding a chemical heat storage material, and a method for manufacturing the same.

粒径0.3mm〜4mmの範囲の結晶性の石灰石を850℃〜1100℃の範囲で所定時間加熱した後に、該石灰石を500℃〜600℃の範囲で所定時間加熱することで、表面から内部に向かう多数の気孔が形成された生石灰を得る技術が知られている(例えば、特許文献1参照)。また、内部空間の10〜60容量%の割合で粉体化学蓄熱材を収容したカプセルを、反応器又は反応塔に充填する技術が知られている(例えば、特許文献2、特許文献3参照)。さらに、溢汪管を具備した複数の蒸発皿を有する蒸発器と、冷媒液管流器と、凝縮器と、吸着剤容器と、これらを連通する連通管とを有する化学蓄熱型冷凍装置が知られている(例えば、特許文献4参照)。
特開平1−225686号公報 特公平6−80395号公報 特公平6−80394号公報 特開平7−332788号公報
After heating the crystalline limestone having a particle size of 0.3 mm to 4 mm within a range of 850 ° C. to 1100 ° C. for a predetermined time, the limestone is heated within a range of 500 ° C. to 600 ° C. for a predetermined time, so that There is known a technique for obtaining quicklime in which a large number of pores toward the surface are formed (see, for example, Patent Document 1). Moreover, the technique which fills the reactor or reaction tower with the capsule which accommodated the powder chemical thermal storage material in the ratio of 10-60 volume% of internal space is known (for example, refer patent document 2, patent document 3). . Further, there is known a chemical heat storage type refrigeration apparatus having an evaporator having a plurality of evaporating dishes provided with overflow pipes, a refrigerant liquid pipe flower, a condenser, an adsorbent container, and a communication pipe communicating these. (For example, see Patent Document 4).
JP-A-1-225686 Japanese Patent Publication No. 6-80395 Japanese Patent Publication No. 6-80394 JP-A-7-332788

しかしながら、特許文献1に記載のように、それ自体に気孔が形成された生石灰を粉体のまま化学蓄熱材として用いた場合、作動中、水和反応と脱水反応とが繰り返される。このため、この化学蓄熱材の粉体は、体積膨張、収縮の繰り返しによって他の粉体と擦れ合い、微粉化してしまい、蓄熱システムとしての反応性が低下する問題があった。また、特許文献2、3の構成では、カプセルの採用による熱伝導抵抗の増加や伝熱経路の複雑化によって、化学蓄熱材の発熱反応による熱を効率良く取り出すことができず、さらに蓄熱反応における熱を効率良く供給することができない問題があった。一方、特許文献4の構成は、複数の蒸発皿を用いることで蒸発器での冷媒の蒸発面積を確保することができるものの、熱交換面積が少なく、伝熱律束を起こす原因となる。   However, as described in Patent Document 1, when quick lime having pores formed therein is used as a chemical heat storage material in a powder form, the hydration reaction and the dehydration reaction are repeated during operation. For this reason, the powder of the chemical heat storage material rubs against other powders by repeated volume expansion and contraction, and is pulverized, resulting in a problem that the reactivity as the heat storage system is lowered. In addition, in the configurations of Patent Documents 2 and 3, due to the increase in heat conduction resistance due to the adoption of the capsule and the complexity of the heat transfer path, heat due to the exothermic reaction of the chemical heat storage material cannot be taken out efficiently, and further in the heat storage reaction There was a problem that heat could not be supplied efficiently. On the other hand, although the structure of patent document 4 can ensure the evaporation area of the refrigerant | coolant in an evaporator by using a some evaporating dish, there are few heat exchange areas and it causes a heat-transfer regulation.

本発明は、上記事実を考慮して、蓄熱、放熱のための反応性と伝熱性とを両立することができる化学蓄熱材成形体、及び該化学蓄熱材成形体の製造方法を得ることが目的である。   In view of the above facts, the present invention aims to obtain a chemical heat storage material molded body capable of achieving both heat storage and heat dissipation reactivity and heat transfer, and a method for producing the chemical heat storage material molded body. It is.

請求項1記載の発明に係る化学蓄熱材成形体は、粉体の化学蓄熱材を成形して成り、内部に反応物を供給し又は反応生成物を排出するための流路が形成されている。   The chemical heat storage material molded body according to the invention of claim 1 is formed by molding a chemical heat storage material in the form of powder, and a flow path for supplying reactants or discharging reaction products therein is formed. .

請求項1記載の化学蓄熱材成形体は、粉体状の化学蓄熱材が成形されることで、全体として、粉体(化学蓄熱材)間に隙間(拡散路)が形成されると共に全体として所定形状を有する多孔質構造体として形成されている。そして、本化学蓄熱材成形体では、蓄熱又は放熱に供される反応物を導入するための、又は蓄熱若しくは放熱により生じた反応生成物を排出するための流路が形成されているので、これら反応物又は反応生成物の流動経路が構造的に確保される。   The molded product of the chemical heat storage material according to claim 1 is formed as a whole by forming a gap (diffusion path) between the powders (chemical heat storage material) by forming the powdered chemical heat storage material. It is formed as a porous structure having a predetermined shape. And in this chemical heat storage material molded object, since the flow path for discharging the reaction product produced by heat storage or heat dissipation for introducing the reactant used for heat storage or heat dissipation is formed, these The flow path of the reactant or reaction product is structurally ensured.

これにより、本化学蓄熱材成形体では、流路を通じた反応物の導入、多孔質構造体の細孔を通じた反応物又は反応生成物の拡散(透過)、流路を通じた反応生成物の排出が果たされ、蓄熱、放熱のための反応性が良好である。しかも、この流路は、化学蓄熱材成形体の内部に形成されているので、化学蓄熱材成形体による伝熱性を阻害することはない。   Thereby, in this chemical heat storage material molded body, introduction of the reactant through the channel, diffusion (permeation) of the reactant or reaction product through the pores of the porous structure, discharge of the reaction product through the channel Is achieved, and the reactivity for heat storage and heat dissipation is good. And since this flow path is formed in the inside of a chemical heat storage material molded object, the heat transfer property by a chemical heat storage material molded object is not inhibited.

このように、請求項1記載の化学蓄熱材成形体では、蓄熱、放熱のための反応性と伝熱性とを両立することができる。   Thus, in the chemical heat storage material molded body according to claim 1, both the reactivity for heat storage and heat dissipation and the heat transfer can be achieved.

請求項2記載の発明に係る化学蓄熱材成形体は、請求項1記載の化学蓄熱材成形体において、前記流路の代表寸法は、前記化学蓄熱材の粒径よりも大である。   The chemical heat storage material molded body according to the invention described in claim 2 is the chemical heat storage material molded body according to claim 1, wherein the representative dimension of the flow path is larger than the particle diameter of the chemical heat storage material.

請求項2記載の化学蓄熱材成形体では、反応物等を拡散により運搬する化学蓄熱材間の細孔に対し、十分に流路断面の大きい流路により反応物、反応生成物が運搬されるので、良好な反応性を確保することができる。   In the chemical heat storage material molded body according to claim 2, the reactant and reaction product are transported by a flow path having a sufficiently large cross section for the pores between the chemical heat storage materials for transporting the reactants and the like by diffusion. Therefore, good reactivity can be ensured.

請求項3記載の発明に係る化学蓄熱材成形体は、請求項1又は請求項2記載の化学蓄熱材成形体において、前記流路が複数形成されている。   The chemical heat storage material molded body according to the invention described in claim 3 is the chemical heat storage material molded body according to claim 1 or 2, wherein a plurality of the flow paths are formed.

請求項3記載の化学蓄熱材成形体では、流路が複数形成されることで、成形体各部への拡散経路が増し、該化学蓄熱材成形体の寸法形状の選択自由度が増す。   In the chemical heat storage material molded body according to claim 3, by forming a plurality of flow paths, the diffusion path to each part of the molded body increases, and the degree of freedom in selecting the dimensional shape of the chemical heat storage material molded body increases.

請求項4記載の発明に係る化学蓄熱材成形体は、請求項1〜請求項3の何れか1項記載の化学蓄熱材成形体において、前記流路と成形体表面との間の厚みが4mm以下とされている。   The chemical heat storage material molded body according to the invention described in claim 4 is the chemical heat storage material molded body according to any one of claims 1 to 3, wherein the thickness between the flow path and the surface of the molded body is 4 mm. It is as follows.

請求項4記載の化学蓄熱材成形体では、流路と成形体表面との間の厚みが4mm以下であるため、例えば、流路に対する成形体の表面側に反応物を良好に拡散させることができる。   In the chemical heat storage material molded body according to claim 4, since the thickness between the flow path and the surface of the molded body is 4 mm or less, for example, the reactant can be favorably diffused on the surface side of the molded body with respect to the flow path. it can.

請求項5記載の発明に係る化学蓄熱材成形体は、請求項1〜請求項4の何れか1項記載の化学蓄熱材成形体において、前記流路と成形体表面との間の厚みが2mm以下とされている。   The chemical heat storage material molded body according to the invention described in claim 5 is the chemical heat storage material molded body according to any one of claims 1 to 4, wherein the thickness between the flow path and the molded body surface is 2 mm. It is as follows.

請求項5記載の化学蓄熱材成形体では、流路と成形体表面との間の厚みが2mm以下であるため、例えば、流路に対する成形体の表面側に反応物を一層良好に(十分に)拡散させることができる。   In the chemical heat storage material molded body according to claim 5, the thickness between the flow path and the molded body surface is 2 mm or less. ) Can be diffused.

請求項6記載の発明に係る化学蓄熱材成形体は、請求項1〜請求項5の何れか1項記載の化学蓄熱材成形体において、前記流路が並列して複数形成されており、前記流路間の成形体厚みが8mm以下とされている。   The chemical heat storage material molded body according to the invention described in claim 6 is the chemical heat storage material molded body according to any one of claims 1 to 5, wherein a plurality of the flow paths are formed in parallel. The thickness of the molded body between the flow paths is 8 mm or less.

請求項6記載の化学蓄熱材成形体では、並列流路間の間隔が8mm以下であるため、換言すれば、流路から成形体の厚み方向中央部までの拡散距離が4mm以下であるため、例えば、成形体における流路間の部分に反応物を良好に拡散させることができる。   In the chemical heat storage material molded body according to claim 6, since the interval between the parallel flow paths is 8 mm or less, in other words, because the diffusion distance from the flow path to the central portion in the thickness direction of the molded body is 4 mm or less, For example, the reactant can be favorably diffused in a portion between the flow paths in the molded body.

請求項7記載の発明に係る化学蓄熱材成形体は、請求項1〜請求項6の何れか1項記載の化学蓄熱材成形体において、前記流路が並列して複数形成されており、前記流路間の成形体厚みが4mm以下とされている。   The chemical heat storage material molded body according to the invention described in claim 7 is the chemical heat storage material molded body according to any one of claims 1 to 6, wherein a plurality of the flow paths are formed in parallel. The molded body thickness between the flow paths is 4 mm or less.

請求項7記載の化学蓄熱材成形体では、並列流路間の間隔が4mm以下であるため、換言すれば、流路から成形体の厚み方向中央部までの拡散距離が2mm以下であるため、例えば、成形体における流路間の部分に反応物を一層良好に(十分に)拡散させることができる。   In the chemical heat storage material molded body according to claim 7, since the interval between the parallel flow paths is 4 mm or less, in other words, the diffusion distance from the flow path to the central portion in the thickness direction of the molded body is 2 mm or less, For example, the reactant can be diffused more satisfactorily (sufficiently) to the portion between the flow paths in the molded body.

請求項8記載の発明に係る化学蓄熱材成形体は、請求項1〜請求項7の何れか1項記載の化学蓄熱材成形体において、前記化学蓄熱材は、粘土鉱物に分散保持されて成形されている。   The chemical heat storage material molded body according to claim 8 is the chemical heat storage material molded body according to any one of claims 1 to 7, wherein the chemical heat storage material is molded by being held dispersed in clay minerals. Has been.

請求項8記載の化学蓄熱材成形体では、多孔質の粘土鉱物の骨格中に化学蓄熱材が分散保持されるので、上記した多孔質構造体としての強度が高く、該多孔質構造体としての構造が安定して維持され易い。   In the chemical heat storage material molded body according to claim 8, since the chemical heat storage material is dispersed and held in the skeleton of the porous clay mineral, the strength as the porous structure is high, and the porous structure The structure is easily maintained stably.

請求項9記載の発明に係る化学蓄熱材成形体は、請求項8記載の化学蓄熱材成形体において、前記粘土鉱物として、層リボン構造を有する粘土鉱物が用いられている。   The chemical heat storage material molded body according to the invention described in claim 9 is the chemical heat storage material molded body according to claim 8, wherein a clay mineral having a layer ribbon structure is used as the clay mineral.

請求項9記載の化学蓄熱材成形体では、粘土鉱物が多孔質で比表面積が大きい層リボン構造の繊維状形態を有するため、その繊維質、可塑性によって、粉体の化学蓄熱材を良好に組織化、構造化させることができる。   In the chemical heat storage material molded body according to claim 9, since the clay mineral is porous and has a fibrous form of a layer ribbon structure having a large specific surface area, the chemical structure of the powder chemical heat storage material is well organized by its fiber and plasticity. And can be structured.

請求項10記載の発明に係る化学蓄熱材成形体は、請求項8記載の化学蓄熱材成形体において、前記粘土鉱物として、層リボン構造を有する粘土鉱物及び板状組織を持つベントナイトが用いられている。   The chemical heat storage material molded body according to the invention described in claim 10 is the chemical heat storage material molded body according to claim 8, wherein the clay mineral includes a clay mineral having a layer ribbon structure and bentonite having a plate-like structure. Yes.

請求項10記載の化学蓄熱材成形体では、粘土鉱物が多孔質で比表面積が大きい層リボン構造の繊維状形態を含むため、その繊維質、可塑性によって、粉体の化学蓄熱材を良好に組織化、構造化させることができる。しかも、粘土鉱物として板状構造を持つベントナイトを含むため、焼成に伴う成形体の面内方向の収縮が抑制される。すなわち、ベントナイトは、焼成前の成形に伴って成形体の壁面に沿って配向する性質(板状結晶の自己組織化による性質)を有し、この性質によって板状構造のベントナイトが成形体壁面に沿って配向されることで、成形体の収縮が抑制される。これにより、化学蓄熱材成形体の寸法精度を確保し易い。   In the chemical heat storage material molded body according to claim 10, since the clay mineral includes a fibrous form of a layer ribbon structure having a porous and large specific surface area, a fine chemical heat storage material is well organized by its fiber and plasticity. And can be structured. In addition, since bentonite having a plate-like structure is included as a clay mineral, shrinkage in the in-plane direction of the molded body accompanying firing is suppressed. That is, bentonite has the property of being oriented along the wall surface of the molded body (the property due to self-organization of the plate-like crystals) in accordance with the molding before firing. By being oriented along, shrinkage of the molded body is suppressed. Thereby, it is easy to ensure the dimensional accuracy of the chemical heat storage material molded body.

請求項11記載の発明に係る化学蓄熱材成形体は、請求項9又は請求項10記載の化学蓄熱材成形体において、前記層リボン構造を有する粘土鉱物として、セピオライト、パリゴルスカイト又はカオリナイトが用いられている。   The chemical heat storage material molded body according to claim 11 is the chemical heat storage material molded body according to claim 9 or claim 10, wherein sepiolite, palygorskite or kaolinite is used as the clay mineral having the layer ribbon structure. ing.

請求項11記載の化学蓄熱材成形体では、粘土鉱物の少なくとも一部が層リボン構造を有するセピオライト、パリゴルスカイト(アタパルジャイト)又はカオリナイトであるため、その繊維質、可塑性によって、粉体の化学蓄熱材を良好に組織化、構造化させることができる。   In the chemical heat storage material molded body according to claim 11, since at least a part of the clay mineral is sepiolite, palygorskite (attapulgite) or kaolinite having a layer ribbon structure, the chemical heat storage material in powder form due to its fiber and plasticity. Can be well organized and structured.

請求項12記載の発明に係る化学蓄熱材成形体は、請求項8記載の化学蓄熱材成形体において、前記粘土鉱物として、ベントナイトが用いられている。   The chemical heat storage material molded body according to the invention described in claim 12 is the chemical heat storage material molded body according to claim 8, wherein bentonite is used as the clay mineral.

請求項12記載の化学蓄熱材成形体では、接着力の強い粘土鉱物であるベントナイトを用いるため、この接着力によって、粉体の化学蓄熱材を良好に組織化、構造化させることができる。   Since the bentonite which is a clay mineral with strong adhesive force is used in the chemical heat storage material molded body according to claim 12, the chemical heat storage material in powder form can be well organized and structured by this adhesive force.

請求項13記載の発明に係る化学蓄熱材成形体は、請求項8〜請求項12の何れか1項記載の化学蓄熱材成形体において、前記粘土鉱物は、前記化学蓄熱材の粒子径よりも細い繊維状を成している。   The chemical heat storage material molded body according to claim 13 is the chemical heat storage material molded body according to any one of claims 8 to 12, wherein the clay mineral is larger than the particle diameter of the chemical heat storage material. Made of fine fibers.

請求項13記載の化学蓄熱材成形体では、粘土鉱物が微細な繊維径を有する繊維状を成すため、少量の粘土鉱物を用いて粉体の化学蓄熱材の組織化、構造化を果たすことが可能である。これにより、化学蓄熱材成形体における質量当たり、体積当たりの化学蓄熱材の占有量が大きくすることができる。   In the chemical heat storage material molded body according to claim 13, since the clay mineral forms a fiber having a fine fiber diameter, the organization and structure of the powder chemical heat storage material can be achieved using a small amount of clay mineral. Is possible. Thereby, the occupation amount of the chemical heat storage material per mass per mass in the chemical heat storage material molded body can be increased.

請求項14記載の発明に係る化学蓄熱材成形体は、請求項1〜請求項13の何れか1項記載の化学蓄熱材成形体において、前記化学蓄熱材は、微細なクラックを有する。   The chemical heat storage material molded body according to claim 14 is the chemical heat storage material molded body according to any one of claims 1 to 13, wherein the chemical heat storage material has fine cracks.

請求項14記載の化学蓄熱材成形体では、微細なクラックを有する化学蓄熱材の比表面積が大きいので、蓄熱、放熱反応における反応速度向上を示す。これにより、蓄熱、放熱の効率を向上することができる。   In the chemical heat storage material molded body according to claim 14, since the specific surface area of the chemical heat storage material having fine cracks is large, the reaction rate improvement in the heat storage and heat dissipation reaction is shown. Thereby, the efficiency of heat storage and heat dissipation can be improved.

請求項15記載の発明に係る化学蓄熱材成形体は、請求項1〜請求項14の何れか1項記載の化学蓄熱材成形体において、前記化学蓄熱材として、脱水反応に伴い吸熱し、水和反応に伴い放熱する水和反応系化学蓄熱材が用いられている。   The chemical heat storage material molded body according to the invention described in claim 15 is the chemical heat storage material molded body according to any one of claims 1 to 14, wherein the chemical heat storage material molded body absorbs heat in accordance with a dehydration reaction, Hydration reaction type chemical heat storage materials that dissipate heat during the sum reaction are used.

請求項15記載の化学蓄熱材成形体では、水和反応、脱水(逆水和)反応に伴い化学蓄熱材が体積膨張、収縮を繰り返すが、粘土鉱物を用いた構造における化学蓄熱材の組織化や隙間の形成によって、該化学蓄熱材の微粉化が効果的に抑制又は防止される。   In the chemical heat storage material molded body according to claim 15, the chemical heat storage material repeats volume expansion and contraction in accordance with a hydration reaction and a dehydration (reverse hydration) reaction. By forming the gap, the pulverization of the chemical heat storage material is effectively suppressed or prevented.

請求項16記載の発明に係る化学蓄熱材成形体は、請求項1〜請求項15の何れか1項記載の化学蓄熱材成形体において、脱水反応に伴い酸化され、水和反応に伴い水酸化される水和反応系化学蓄熱材が用いられている。   The chemical heat storage material molded body according to the invention described in claim 16 is oxidized according to the dehydration reaction in the chemical heat storage material molded body according to any one of claims 1 to 15, and is hydroxylated along with the hydration reaction. Hydration reaction type chemical heat storage material is used.

請求項16記載の化学蓄熱材成形体では、水和反応、脱水(逆水和)反応に伴い水和反応系化学蓄熱材が体積膨張、収縮を繰り返すが、粘土鉱物を用いた構造における化学蓄熱材の組織化や隙間の形成によって、該化学蓄熱材の微粉化が効果的に抑制又は防止される。   In the chemical heat storage material molded body according to claim 16, the hydration reaction type chemical heat storage material repeats volume expansion and contraction with a hydration reaction and a dehydration (reverse hydration) reaction, but the chemical heat storage material in a structure using clay minerals As a result of the organization and the formation of gaps, the pulverization of the chemical heat storage material is effectively suppressed or prevented.

請求項17記載の発明に係る化学蓄熱材成形体は、請求項16記載の化学蓄熱材成形体において、前記水和反応系化学蓄熱材は、無機化合物である。   The chemical heat storage material molded body according to claim 17 is the chemical heat storage material molded body according to claim 16, wherein the hydration reaction type chemical heat storage material is an inorganic compound.

請求項17記載の化学蓄熱材成形体では、化学蓄熱材として無機化合物を用いるので、蓄熱、放熱反応(水和、脱水)に対する材料安定性が高い。このため、長期に亘り安定した蓄熱効果を得ることができる。   In the chemical heat storage material molded body according to claim 17, since an inorganic compound is used as the chemical heat storage material, the material stability against heat storage and heat radiation reaction (hydration, dehydration) is high. For this reason, a stable heat storage effect can be obtained over a long period of time.

請求項18記載の発明に係る化学蓄熱材成形体は、請求項17記載の化学蓄熱材成形体において、前記無機化合物は、アルカリ土類金属化合物である。   The chemical heat storage material molded body according to claim 18 is the chemical heat storage material molded body according to claim 17, wherein the inorganic compound is an alkaline earth metal compound.

請求項18記載の化学蓄熱材成形体では、アルカリ土類金属化合物(水酸化物)を用いるため、換言すれば、環境負荷の小さい材料を用いるため、製造、使用、リサイクルを含めた安全性の確保が容易になる。また、粘土鉱物としてセピオライトを用いる構成では、水酸化物のアルカリ性が粘土鉱物(特に、上記した)との反応によるガラス化を助けるため、多孔質構造体の強度向上に寄与する。   In the chemical heat storage material molded body according to claim 18, since an alkaline earth metal compound (hydroxide) is used, in other words, a material having a small environmental load is used, and therefore, safety including manufacturing, use, and recycling is ensured. Securement becomes easy. Further, in the configuration using sepiolite as the clay mineral, the alkalinity of the hydroxide helps vitrification by reaction with the clay mineral (especially described above), which contributes to improving the strength of the porous structure.

請求項19記載の発明に係る化学蓄熱材成形体は、請求項16〜請求項18の何れか1項記載の化学蓄熱材成形体において、前記粉体の水和反応系化学蓄熱材と、前記粘土鉱物としてのセピオライトとを混練して所定の形状に成形したものを、400℃〜500℃の温度で焼成して成る。   The chemical heat storage material molded body according to claim 19 is the chemical heat storage material molded body according to any one of claims 16 to 18, wherein the powder hydration reaction system chemical heat storage material, What knead | mixed and shape | molded the sepiolite as a clay mineral in a predetermined shape and baked at the temperature of 400 to 500 degreeC.

請求項19記載の化学蓄熱材成形体は、水和反応系化学蓄熱材とセピオライトとが混練されている成形体を焼成することで、セピオライトが焼結されて、多孔質構造体として構成されている。無機化合物である水和反応系化学蓄熱材は、350℃〜500℃の温度で焼成されることで、マイクロクラックが生じ、比表面積が大きくなる。この大きな比表面積は、蓄熱、放熱反応における反応速度向上に寄与するので、本化学蓄熱材成形体では、蓄熱、放熱の効率を向上することができる。   The chemical heat storage material molded body according to claim 19 is configured as a porous structure in which sepiolite is sintered by firing a molded body in which the hydration reaction type chemical heat storage material and sepiolite are kneaded. Yes. The hydration reaction type chemical heat storage material, which is an inorganic compound, is fired at a temperature of 350 ° C. to 500 ° C., thereby generating microcracks and increasing the specific surface area. Since this large specific surface area contributes to improving the reaction rate in heat storage and heat dissipation reactions, the chemical heat storage material molded body can improve the efficiency of heat storage and heat dissipation.

また、セピオライトの焼結温度が350℃〜400℃であるため、セピオライトの焼結と化学蓄熱材へのマイクロクラック生成とが同時に進行する。換言すれば、セピオライトの焼結と化学蓄熱材へのマイクロクラック生成とが、互いに悪影響を与えることがない。そして、セピオライトに分散保持された化学蓄熱材は、マイクロクラックにより微粉化することが抑制される。   Moreover, since the sintering temperature of sepiolite is 350 ° C. to 400 ° C., the sintering of sepiolite and the generation of microcracks in the chemical heat storage material proceed simultaneously. In other words, the sintering of sepiolite and the generation of microcracks in the chemical heat storage material do not adversely affect each other. The chemical heat storage material dispersed and held in sepiolite is suppressed from being pulverized by microcracks.

請求項20記載の発明に係る化学蓄熱材成形体の製造方法は、粉体の化学蓄熱材を用いて高粘度の混練物を得る混練工程と、前記混練物を内部に流路が形成されるように成形する成形工程と、前記成形工程で成形された前記混練物の成形体を焼成する焼成工程と、を含む。   The method for producing a chemical heat storage material molded body according to the invention of claim 20 includes a kneading step of obtaining a high-viscosity kneaded material using a powdered chemical heat storage material, and a flow path formed inside the kneaded material. And a firing step of firing the molded body of the kneaded product molded in the molding step.

請求項20記載の化学蓄熱材成形体の製造方法では、混練工程で少なくとも化学蓄熱材を含む混練物を生成し、その後、成形工程に移行する。成形工程では、化学蓄熱材を含む混練物を流路を有する所定の形状に成形し、その後、焼成工程に移行する。焼成工程では、成形工程で成形された混練物を加熱により焼成する。これにより、粉体(化学蓄熱材)間に細孔が形成されると共に全体として流路を有する所定形状(中空形状)を有する化学蓄熱材成形体が形成される。   In the manufacturing method of the chemical heat storage material molded body according to claim 20, a kneaded material including at least the chemical heat storage material is generated in the kneading step, and then the process proceeds to the molding step. In the forming step, the kneaded material containing the chemical heat storage material is formed into a predetermined shape having a flow path, and then the process proceeds to the firing step. In the firing step, the kneaded product molded in the molding step is fired by heating. Thereby, while forming a pore between powder (chemical heat storage material), the chemical heat storage material molded object which has a predetermined shape (hollow shape) which has a channel as a whole is formed.

このように製造された化学蓄熱材成形体は、粉体(化学蓄熱材)間に反応物等を拡散させ得る隙間(流路)が形成されると共に、内部に蓄熱又は放熱に供される反応物を導入するための、又は蓄熱若しくは放熱により生じた反応生成物を排出するための流路が形成されている。このため、反応物等の拡散経路とは別に、上記の反応物又は反応生成物の流動経路が構造的に確保される。これにより、本化学蓄熱材成形体では、流路を通じた反応物の導入、多孔質構造体の細孔を通じた拡散(透過)、放出、流路を通じた反応生成物の排出が果たされ、蓄熱、放熱のための反応性が良好である。しかも、この流路は、化学蓄熱材成形体の内部に形成されているので、化学蓄熱材成形体による伝熱性を阻害することはない。   In the thus produced chemical heat storage material molded body, a gap (flow path) capable of diffusing reactants and the like is formed between the powders (chemical heat storage material), and a reaction provided for heat storage or heat dissipation inside. A flow path for introducing an object or discharging a reaction product generated by heat storage or heat dissipation is formed. For this reason, the flow path of the reactant or reaction product is structurally secured separately from the diffusion path of the reactant and the like. Thereby, in this chemical heat storage material molded body, introduction of the reactant through the channel, diffusion (permeation) through the pores of the porous structure, release, discharge of the reaction product through the channel, were achieved, Reactivity for heat storage and heat dissipation is good. And since this flow path is formed in the inside of a chemical heat storage material molded object, the heat transfer property by a chemical heat storage material molded object is not inhibited.

このように、請求項20記載の化学蓄熱材成形体の製造方法では、蓄熱、放熱のための反応性と伝熱性とを両立することができる化学蓄熱材成形体を得ることができる。   Thus, in the manufacturing method of the chemical heat storage material molded body according to claim 20, it is possible to obtain a chemical heat storage material molded body capable of achieving both heat storage and heat release reactivity and heat transfer.

請求項21記載の発明に係る化学蓄熱材成形体の製造方法は、請求項20記載の化学蓄熱材成形体の製造方法において、前記成形工程は、前記混練物の押し出し成形により行う。   According to a twenty-first aspect of the present invention, there is provided a method for producing a chemical heat storage material molded body, wherein the molding step is performed by extruding the kneaded product.

請求項21記載の化学蓄熱材成形体の製造方法では、混練工程を経ることで、成形工程で高粘度の混練物を押し出し成形により成形することができる。すなわち、簡単な製法で、上記化学蓄熱材成形体を得ることができる。   In the method for producing a chemical heat storage material molded body according to claim 21, a high-viscosity kneaded product can be molded by extrusion molding in the molding process through the kneading process. That is, the said chemical heat storage material molded object can be obtained with a simple manufacturing method.

請求項22記載の発明に係る化学蓄熱材成形体の製造方法は、請求項20又は請求項21記載の化学蓄熱材成形体の製造方法において、前記混練工程で、前記化学蓄熱材に所定の割合で粘土鉱物を混練した混練物を得る。   A method for producing a chemical heat storage material molded body according to an invention according to claim 22 is the method for producing a chemical heat storage material molded body according to claim 20 or claim 21, wherein the chemical heat storage material has a predetermined ratio in the kneading step. A kneaded material kneaded with clay mineral is obtained.

請求項22記載の化学蓄熱材成形体の製造方法では、混練工程において、粉体の化学蓄熱材に所定の割合で粘土鉱物を混練するため、多孔質の粘土鉱物の骨格中に化学蓄熱材を分散保持させることができる。このため、本化学蓄熱材成形体の製造方法で製造された化学蓄熱材成形体は、上記した多孔体としての強度が高く、該多孔体としての構造が安定して維持され易い。   In the manufacturing method of the chemical heat storage material molded body according to claim 22, in the kneading step, the clay mineral is kneaded at a predetermined ratio to the powder chemical heat storage material, so that the chemical heat storage material is contained in the skeleton of the porous clay mineral. It can be dispersedly held. For this reason, the chemical heat storage material molded body manufactured by the method for manufacturing the chemical heat storage material molded body has high strength as the porous body described above, and the structure as the porous body is easily maintained stably.

請求項23記載の発明に係る化学蓄熱材成形体の製造方法は、請求項22記載の化学蓄熱材成形体の製造方法において、前記粘土鉱物として、層リボン構造を有する粘土鉱物を用いる。   According to a twenty-third aspect of the present invention, there is provided a method for producing a chemical heat storage material molded body, wherein the clay mineral having a layered ribbon structure is used as the clay mineral.

請求項23記載の化学蓄熱材成形体の製造方法では、粘土鉱物が多孔質で比表面積が大きい繊維状形態を成すため、その繊維質、可塑性を利用して、粉体の化学蓄熱材を良好に組織化、構造化することができる。   In the method for producing a chemical heat storage material molded body according to claim 23, since the clay mineral forms a fibrous form having a large porous surface area and a large specific surface area, a good chemical heat storage material is obtained by utilizing the fiber and plasticity. Can be organized and structured.

請求項24記載の発明に係る化学蓄熱材成形体の製造方法は、請求項22記載の化学蓄熱材成形体において、前記粘土鉱物として、層リボン構造を有する粘土鉱物及び板状組織を持つベントナイトが用いられている。   The method for producing a chemical heat storage material molded body according to the invention described in claim 24 is the chemical heat storage material molded body according to claim 22, wherein the clay mineral includes a clay mineral having a layered ribbon structure and a bentonite having a plate-like structure. It is used.

請求項24記載の化学蓄熱材成形体の製造方法では、粘土鉱物の一部が多孔質で比表面積が大きい繊維状形態を成すため、その繊維質、可塑性を利用して、粉体の化学蓄熱材を良好に組織化、構造化することができる。また、粘土鉱物が板状構造を持つベントナイトを含むため、化学蓄熱材成形体の焼成に伴う該成形体の面内方向の収縮が抑制される。すなわち、ベントナイトは、焼成前の成形に伴って成形体の壁面に沿って配向する性質を有するので、この性質によって板状構造のベントナイトが成形体壁面に沿って配向されることで、化学蓄熱材成形体の収縮が抑制される。これにより、化学蓄熱材成形体の寸法精度を確保し易い。   In the manufacturing method of the chemical heat storage material molded body according to claim 24, since a part of the clay mineral is porous and has a fibrous form with a large specific surface area, the chemical heat storage of the powder is made using the fiber and plasticity. The material can be well organized and structured. Moreover, since the clay mineral contains bentonite having a plate-like structure, shrinkage in the in-plane direction of the molded body accompanying firing of the chemical heat storage material molded body is suppressed. That is, bentonite has the property of being oriented along the wall surface of the molded body along with the molding before firing, so that the bentonite having a plate-like structure is oriented along the wall surface of the molded body due to this property. Shrinkage of the molded body is suppressed. Thereby, it is easy to ensure the dimensional accuracy of the chemical heat storage material molded body.

請求項25記載の発明に係る化学蓄熱材成形体の製造方法は、請求項23又は請求項24記載の化学蓄熱材成形体の製造方法において、前記層リボン構造を有する粘土鉱物として、セピオライト、パリゴルスカイト又はカオリナイトを用いる。   The method for manufacturing a chemical heat storage material molded body according to the invention described in claim 25 is the chemical heat storage material molded body manufacturing method according to claim 23 or claim 24, wherein the clay mineral having the layer ribbon structure is sepiolite, palygorskite. Alternatively, kaolinite is used.

請求項25記載の化学蓄熱材成形体の製造方法では、粘土鉱物の少なくとも一部として層リボン構造を有するセピオライト、パリゴルスカイト(アタパルジャイト)又はカオリナイトを用いるため、その繊維質、可塑性を利用して、粉体の化学蓄熱材を良好に組織化、構造化することができる。   In the method for producing a chemical heat storage material molded body according to claim 25, because sepiolite, palygorskite (attapulgite) or kaolinite having a layered ribbon structure is used as at least a part of the clay mineral, the fiber, plasticity is used, The powder chemical heat storage material can be well organized and structured.

請求項26記載の発明に係る化学蓄熱材成形体の製造方法は、請求項22記載の化学蓄熱材成形体の製造方法において、前記粘土鉱物として、ベントナイトを用いる。   A chemical heat storage material molded body according to a twenty-sixth aspect of the present invention uses the bentonite as the clay mineral in the chemical heat storage material molded body of the twenty-second aspect.

請求項26記載の化学蓄熱材成形体の製造方法では、接着力の強い粘土鉱物であるベントナイトを用いるため、この接着力によって、粉体の化学蓄熱材を良好に組織化、構造化することができる。   In the manufacturing method of the chemical heat storage material molded body according to claim 26, since bentonite which is a clay mineral having strong adhesive force is used, the chemical heat storage material of powder can be well organized and structured by this adhesive force. it can.

請求項27記載の発明に係る化学蓄熱材成形体の製造方法は、請求項22〜請求項26の何れか1項記載の化学蓄熱材成形体の製造方法において、前記混練工程では、前記化学蓄熱材の粒子径よりも細い繊維状を成す前記粘土鉱物を用いる。   A method for producing a chemical heat storage material molded body according to an invention described in claim 27 is the method for producing a chemical heat storage material molded body according to any one of claims 22 to 26, wherein the chemical heat storage material in the kneading step. The clay mineral having a fiber shape smaller than the particle diameter of the material is used.

請求項27記載の化学蓄熱材成形体の製造方法では、粘土鉱物が微細な繊維径を有する繊維状を成すため、少量の粘土鉱物を混練工程で混練することにより粉体の化学蓄熱材の組織化、構造化を果たすことができる。これにより、質量当たり、体積当たりの化学蓄熱材の占有量が大きい化学蓄熱材成形体を得ることが可能になる。   In the manufacturing method of the chemical heat storage material molded body according to claim 27, since the clay mineral forms a fiber having a fine fiber diameter, a small amount of the clay mineral is kneaded in the kneading step to form a powder chemical heat storage material structure. And can be structured. Thereby, it becomes possible to obtain a chemical heat storage material molded body having a large occupation amount of the chemical heat storage material per mass and per volume.

請求項28記載の発明に係る化学蓄熱材成形体の製造方法は、請求項22〜請求項27の何れか1項記載の化学蓄熱材成形体の製造方法において、前記化学蓄熱材として、脱水反応に伴い吸熱し、水和反応に伴い放熱する水和反応系化学蓄熱材が用いられており、前記混練工程では、水和状態の前記化学蓄熱材を前記粘土鉱物と混練する。   The method for producing a chemical heat storage material molded body according to the invention described in claim 28 is the chemical heat storage material molded body production method according to any one of claims 22 to 27, wherein the chemical heat storage material is a dehydration reaction. In this kneading step, the hydrated chemical heat storage material is kneaded with the clay mineral.

請求項28記載の化学蓄熱材成形体の製造方法では、混練工程において、水和状態の化学蓄熱材を粘土鉱物と混練するため、脱水状態の化学蓄熱材を用いる場合に懸念される水との反応が生じることがない。このため、混練工程において、該混練の際のバインダとして水を用いることができる。   In the method for producing a chemical heat storage material molded body according to claim 28, in the kneading step, the hydrated chemical heat storage material is kneaded with the clay mineral. There is no reaction. For this reason, in the kneading step, water can be used as a binder during the kneading.

請求項29記載の発明に係る化学蓄熱材成形体の製造方法は、請求項22〜請求項28の何れか1項記載の化学蓄熱材成形体の製造方法において、前記化学蓄熱材として、脱水反応に伴い酸化され、水和反応に伴い水酸化される水和反応系化学蓄熱材が用いられており、前記混練工程では、水酸化物の状態である前記化学蓄熱材を前記粘土鉱物と混練する。   A method for producing a chemical heat storage material molded body according to an invention described in claim 29 is the method for producing a chemical heat storage material molded body according to any one of claims 22 to 28, wherein a dehydration reaction is performed as the chemical heat storage material. A hydration reaction type chemical heat storage material that is oxidized along with hydration reaction is used, and in the kneading step, the chemical heat storage material in a hydroxide state is kneaded with the clay mineral. .

請求項29記載の化学蓄熱材成形体の製造方法では、混練工程において、水酸化物の状態の化学蓄熱材を粘土鉱物と混練するため、脱水状態の化学蓄熱材を用いる場合に懸念される水との反応が生じることがない。このため、混練工程において、該混練の際のバインダとして水を用いることができる。   In the method for producing a chemical heat storage material molded body according to claim 29, water that is a concern when a dehydrated chemical heat storage material is used to knead the chemical heat storage material in a hydroxide state with clay mineral in the kneading step. Reaction with does not occur. For this reason, in the kneading step, water can be used as a binder during the kneading.

請求項30記載の発明に係る化学蓄熱材成形体の製造方法は、請求項29記載の化学蓄熱材成形体の製造方法において、前記水和反応系化学蓄熱材は、無機化合物である。   A chemical heat storage material molded body according to a thirty-third aspect of the present invention is the chemical heat storage material molded body manufacturing method according to the twenty-ninth aspect, wherein the hydration reaction type chemical heat storage material is an inorganic compound.

請求項30記載の化学蓄熱材成形体の製造方法では、化学蓄熱材として無機化合物を用いるので、製造された化学蓄熱材成形体は、蓄熱、放熱反応(水和、脱水)に対する材料安定性が高い。このため、長期に亘り安定した蓄熱効果を得ることができる。   In the method for manufacturing a chemical heat storage material molded body according to claim 30, since an inorganic compound is used as the chemical heat storage material, the manufactured chemical heat storage material molded body has material stability against heat storage and heat release reaction (hydration, dehydration). high. For this reason, a stable heat storage effect can be obtained over a long period of time.

請求項31記載の発明に係る化学蓄熱材成形体の製造方法は、請求項30記載の化学蓄熱材成形体の製造方法において、前記無機化合物は、アルカリ土類金属化合物である。   A chemical heat storage material molded body according to a thirty-first aspect of the invention is the chemical heat storage material molded body manufacturing method according to the thirty-third aspect, wherein the inorganic compound is an alkaline earth metal compound.

請求項31記載の化学蓄熱材成形体の製造方法では、アルカリ土類金属化合物(水酸化物)を用いるため、製造時の安全性の確保が容易になる。また、製品(化学蓄熱材成形体)の使用時、リサイクル時を含め、安全性の確保が容易になる。また、粘土鉱物としてセピオライトを用いる構成では、水酸化物のアルカリ性が粘土鉱物(特に、上記した)との反応によるガラス化を助けるため、多孔質構造体の強度向上に寄与する。   In the method for producing a chemical heat storage material molded body according to claim 31, since an alkaline earth metal compound (hydroxide) is used, it is easy to ensure safety during production. In addition, it is easy to ensure safety, including when the product (chemical heat storage material molded body) is used and recycled. Further, in the configuration using sepiolite as the clay mineral, the alkalinity of the hydroxide helps vitrification by reaction with the clay mineral (especially described above), which contributes to improving the strength of the porous structure.

請求項32記載の発明に係る化学蓄熱材成形体の製造方法は、請求項29〜請求項31の何れか1項記載の化学蓄熱材成形体の製造方法において、前記焼成工程では、前記水和系化学蓄熱材が脱水状態とされる温度で前記混練物を焼成する。   The method for manufacturing a chemical heat storage material molded body according to the invention described in claim 32 is the method for manufacturing a chemical heat storage material molded body according to any one of claims 29 to 31, wherein the hydration is performed in the firing step. The kneaded product is fired at a temperature at which the system chemical heat storage material is dehydrated.

請求項32記載の化学蓄熱材成形体の製造方法では、焼成工程での焼成後に水和系化学蓄熱材が脱水されているので、該化学蓄熱材の比表面積の調整が容易になる。   In the method for producing a chemical heat storage material molded body according to claim 32, since the hydrated chemical heat storage material is dehydrated after firing in the firing step, the specific surface area of the chemical heat storage material can be easily adjusted.

請求項33記載の発明に係る化学蓄熱材成形体の製造方法は、請求項32記載の化学蓄熱材成形体の製造方法において、前記焼成工程では、前記化学蓄熱材に微細なクラックが形成される温度で焼成する。   A chemical heat storage material molded body according to a thirty-third aspect of the present invention is the chemical heat storage material molded body manufacturing method according to the thirty-second aspect, wherein fine cracks are formed in the chemical heat storage material in the firing step. Bake at temperature.

請求項33記載の化学蓄熱材成形体の製造方法では、焼成工程での焼成によって粘土鉱物が化学蓄熱材と共に構造化される(焼結状態が確保される)のに伴って、脱水状態の化学蓄熱材に微細なクラックが形成される。これにより、多孔質構造体として形成される化学蓄熱材成形体における化学蓄熱材の比表面積を大きくすることができ、蓄熱、放熱反応率の向上に寄与する。なお、粘土鉱物の焼成温度と、水和反応系化学蓄熱材の脱水温度とが近いことが好ましく、このような組み合わせとして、例えばアルカリ土類金属化合物(脱水温度400℃〜450℃)とセピオライト(焼成温度350℃以上)との組み合わせを挙げることができる。   The method for producing a chemical heat storage material molded body according to claim 33, wherein the clay mineral is structured together with the chemical heat storage material by the firing in the firing step (a sintered state is ensured), and the dehydrated state of the chemistry. Fine cracks are formed in the heat storage material. Thereby, the specific surface area of the chemical heat storage material in the chemical heat storage material molded body formed as a porous structure can be increased, which contributes to improvement of heat storage and heat dissipation reaction rate. In addition, it is preferable that the firing temperature of the clay mineral is close to the dehydration temperature of the hydration reaction type chemical heat storage material. As such a combination, for example, an alkaline earth metal compound (dehydration temperature of 400 ° C. to 450 ° C.) and sepiolite ( And a combination with a firing temperature of 350 ° C. or higher.

以上説明したように本発明に係る化学蓄熱材成形体は、粉体の化学蓄熱材間に隙間が形成されるという優れた効果を有する。   As described above, the chemical heat storage material molded body according to the present invention has an excellent effect that a gap is formed between the powdered chemical heat storage materials.

本発明の第1の実施形態に係る化学蓄熱材成形体としての化学蓄熱反応部10、及びその製造方法について、図1〜図3に基づいて説明する。   The chemical heat storage reaction part 10 as a chemical heat storage material molded body according to the first embodiment of the present invention and a manufacturing method thereof will be described with reference to FIGS.

図2には、化学蓄熱反応部10の模式的な断面図が示されている。この図に示される如く、化学蓄熱反応部10は、多数の粉体化学蓄熱材12が組織化、構造化されたものであって、該多数の粉体化学蓄熱材12間には細孔14が形成されている。したがって、この実施形態に係る化学蓄熱反応部10は、多孔質構造体(多孔体)として把握され、かつ細孔14の内面に粉体化学蓄熱材12が露出して構成されているものとして把握されるものである。   FIG. 2 shows a schematic cross-sectional view of the chemical heat storage reaction unit 10. As shown in this figure, the chemical heat storage reaction section 10 is a structure in which a large number of powder chemical heat storage materials 12 are organized and structured. Is formed. Therefore, the chemical heat storage reaction unit 10 according to this embodiment is understood as a porous structure (porous body) and is configured such that the powder chemical heat storage material 12 is exposed on the inner surface of the pores 14. It is what is done.

この化学蓄熱反応部10は、多数の粉体化学蓄熱材12に絡まるように粘土鉱物であるセピオライト16が多数の粉体化学蓄熱材12間に介在している。換言すれば、化学蓄熱反応部10は、多孔質を成すセピオライト16の骨格中に多数の粉体化学蓄熱材12が分散保持された構造として把握される。これにより、化学蓄熱反応部10では、多数の粉体化学蓄熱材12間に細孔14が形成された多孔質構造体としての構造がセピオライト16によって保持(補強)されるようになっている。   In this chemical heat storage reaction section 10, sepiolite 16, which is a clay mineral, is interposed between a large number of powder chemical heat storage materials 12 so as to be entangled with a large number of powder chemical heat storage materials 12. In other words, the chemical heat storage reaction unit 10 is grasped as a structure in which a large number of powder chemical heat storage materials 12 are dispersed and held in the skeleton of the sepiolite 16 that is porous. Thereby, in the chemical heat storage reaction part 10, a structure as a porous structure in which pores 14 are formed between a large number of powder chemical heat storage materials 12 is held (reinforced) by the sepiolite 16.

この実施形態では、粉体化学蓄熱材12は、水酸化カルシウム(Ca(OH))とされており、脱水に伴って蓄熱(吸熱)し、水和(水酸化カルシウムへの復原)に伴って放熱(発熱)する構成とされている。すなわち、多数の粉体化学蓄熱材12は、以下に示す反応で蓄熱、放熱を可逆的に繰り返し得る構成とされている。 In this embodiment, the powder chemical heat storage material 12 is made of calcium hydroxide (Ca (OH) 2 ), stores heat (absorbs heat) along with dehydration, and accompanies hydration (restoration to calcium hydroxide). Heat dissipation (heat generation). That is, many powder chemical heat storage materials 12 are set as the structure which can reversibly repeat heat storage and heat dissipation by reaction shown below.

Ca(OH) ⇔ CaO + H
この式に蓄熱量、発熱量Qを併せて示すと、
Ca(OH) + Q → CaO + H
CaO + HO → Ca(OH) + Q
となる。
Ca (OH) 2 Ca CaO + H 2 O
When the heat storage amount and the heat generation amount Q are shown together in this equation,
Ca (OH) 2 + Q → CaO + H 2 O
CaO + H 2 O → Ca (OH) 2 + Q
It becomes.

セピオライト16は、層リボン構造の粘土鉱物、より具体的には輝石に似た単鎖が複数本結合して四面体リボンを形成している粘土鉱物の1つとして把握される。セピオライト16は、例えば、MgSi1230(OH)(OH・8HOの化学式で表すことができる含水マグネシウム珪酸塩であり、それ自体が多孔質でありかつ比表面積が大きい繊維状を成している。なお、この実施形態では、上記化学式で表されるものの変種についてもセピオライト16に含まれるものとしている。 Sepiolite 16 is grasped as a clay mineral having a layer ribbon structure, more specifically, one of clay minerals in which a plurality of single chains resembling pyroxene are combined to form a tetrahedral ribbon. Sepiolite 16 is a hydrous magnesium silicate that can be represented by the chemical formula Mg 8 Si 12 O 30 (OH) 4 (OH 2 ) 4 · 8H 2 O, for example, and is itself porous and has a specific surface area. Made of large fibers. In this embodiment, variants of those represented by the above chemical formula are also included in the sepiolite 16.

そして、化学蓄熱反応部10は、図1に示される如く、蓄熱の際に反応生成物としての水蒸気を排出し、放熱の際に反応物としての水蒸気を供給するための流路(パス)15を有する。流路15は、化学蓄熱反応部10の内部を所定方向に貫通して形成されており、細孔14に対し十分に大きな代表寸法を有する。この実施形態では、流路15の開口縁は略矩形状を成しており、その一辺(最も短い辺)の長さLpが細孔14の平均径に対し十分に大とされている。したがって、流路15の代表寸法である長さLpは、粉体化学蓄熱材12の平均粒径に対しても十分に大とされている。なお、この実施形態では、長さLpは数mm、粉体化学蓄熱材12の平均粒子径、細孔14の平均径は、それぞれは数十μmとされている。   Then, as shown in FIG. 1, the chemical heat storage reaction unit 10 discharges water vapor as a reaction product during heat storage and supplies a flow path (path) 15 for supplying water vapor as a reaction during heat dissipation. Have The flow path 15 is formed so as to penetrate the inside of the chemical heat storage reaction unit 10 in a predetermined direction, and has a representative dimension sufficiently large with respect to the pores 14. In this embodiment, the opening edge of the flow path 15 has a substantially rectangular shape, and the length Lp of one side (shortest side) is sufficiently larger than the average diameter of the pores 14. Therefore, the length Lp, which is a representative dimension of the flow path 15, is sufficiently large with respect to the average particle diameter of the powder chemical heat storage material 12. In this embodiment, the length Lp is several mm, the average particle diameter of the powder chemical heat storage material 12, and the average diameter of the pores 14 are each tens of μm.

また、化学蓄熱反応部10は、複数の流路15を有している。この実施形態では、化学蓄熱反応部10は、図1に示される如く、多数の流路15を有するハニカム状(格子状)に形成されている。そして、化学蓄熱反応部10では、その隣り合う流路15間を仕切る区画壁部10Aの厚みtbが8mm以下とされている。この実施形態では、化学蓄熱反応部10における区画壁部10Aの厚みtbは、4mm以下である略1.5mmとされている。さらに、化学蓄熱反応部10では、その外縁10Bと流路15の間の部分を構成する周壁部10Cの厚みtcが4mm以下とされている。この実施形態では、化学蓄熱反応部10における周壁部10Cの厚みtcは、2mm以下である略1.5mmとされている。   Further, the chemical heat storage reaction section 10 has a plurality of flow paths 15. In this embodiment, the chemical heat storage reaction section 10 is formed in a honeycomb shape (lattice shape) having a large number of flow paths 15 as shown in FIG. And in the chemical heat storage reaction part 10, thickness tb of the partition wall part 10A which partitions off between the adjacent flow paths 15 is 8 mm or less. In this embodiment, the thickness tb of the partition wall portion 10A in the chemical heat storage reaction portion 10 is approximately 1.5 mm which is 4 mm or less. Furthermore, in the chemical heat storage reaction part 10, the thickness tc of the peripheral wall part 10C which comprises the part between the outer edge 10B and the flow path 15 is 4 mm or less. In this embodiment, the thickness tc of the peripheral wall portion 10C in the chemical heat storage reaction portion 10 is approximately 1.5 mm which is 2 mm or less.

以上説明した化学蓄熱反応部10は、粉体化学蓄熱材12が水酸化カルシウムの状態で熱が供給されると、該熱を反応熱として粉体化学蓄熱材12が酸化されるようになっている。すなわち、化学蓄熱反応部10では、粉体化学蓄熱材12は、細孔14を通じて又は直接的に流路15から水蒸気を排出しつつ脱水反応により酸化カルシウムとされ、上記反応熱相当の熱を蓄熱する構成とされている。一方、化学蓄熱反応部10は、酸化カルシウムの状態の粉体化学蓄熱材12に対し、流路15から直接的又は細孔14を通じて(拡散により)水蒸気が供給されると、粉体化学蓄熱材12は、水和反応により水酸化されつつ放熱するようになっている。   In the chemical heat storage reaction unit 10 described above, when the powder chemical heat storage material 12 is supplied with calcium hydroxide in the state, the powder chemical heat storage material 12 is oxidized using the heat as reaction heat. Yes. That is, in the chemical heat storage reaction unit 10, the powder chemical heat storage material 12 is converted into calcium oxide by dehydration while discharging water vapor from the flow path 15 through the pores 14 or directly, and stores heat corresponding to the reaction heat. It is supposed to be configured. On the other hand, when the chemical heat storage reaction unit 10 is supplied with water vapor directly or through the pores 14 (by diffusion) from the flow channel 15 to the powder chemical heat storage material 12 in a calcium oxide state, the chemical chemical heat storage material 10 No. 12 releases heat while being hydroxylated by a hydration reaction.

この化学蓄熱反応部10は、例えば、内燃機関の排気管に設けられた触媒コンバータに内蔵され、内燃機関の運転時に排気ガスの排気熱を蓄熱し、内燃機関の低温始動時に水蒸気が供給されることで触媒コンバータを早期に(短時間で)暖機するためのホットプローブ等の用途に用いられる。   The chemical heat storage reaction unit 10 is built in, for example, a catalytic converter provided in an exhaust pipe of an internal combustion engine, stores the exhaust heat of the exhaust gas during operation of the internal combustion engine, and is supplied with water vapor when the internal combustion engine is started at a low temperature. Thus, it is used for applications such as a hot probe for warming up the catalytic converter early (in a short time).

次に、化学蓄熱反応部10の製造方法を説明する。   Next, the manufacturing method of the chemical heat storage reaction part 10 is demonstrated.

図3には、化学蓄熱反応部10の製造方法が模式的に示されている。化学蓄熱反応部10を製造するにあたっては、先ず、図3(A)に示される如く原料である粉体化学蓄熱材12、セピオライト16を用意する。   FIG. 3 schematically shows a method for manufacturing the chemical heat storage reaction unit 10. In manufacturing the chemical heat storage reaction unit 10, first, as shown in FIG. 3A, a powder chemical heat storage material 12 and a sepiolite 16 as raw materials are prepared.

粉体化学蓄熱材12としては、例えば平均粒子径D=10μm(レーザー回析式測定法、島津製作所製SALD−2000Aによる)のものが用いられ、セピオライト16としては、水に懸濁した場合の繊維径が粉体化学蓄熱材12の平均粒子径Dよりも小さい繊維状を成すものが用いられている。具体的には、セピオライト16は、その線径(繊維径)が1μm以下、その長さ(繊維長)が200μm以下のものを用いることが望ましい。この実施形態では、線径が略0.01μmで長さが略数十μmのトルコ産のセピオライトを用いている。なお、トルコ産のセピオライトに代えて、例えば線径が略0.1μmで長さが略100μmのスペイン産のセピオライトを用いることもできる。また、この実施形態では、粉体化学蓄熱材12に対するセピオライト16の混合比は、例えば5〜10質量%程度とされている。   As the powder chemical heat storage material 12, for example, a material having an average particle diameter D = 10 μm (laser diffraction measurement method, by SALD-2000A manufactured by Shimadzu Corporation) is used, and sepiolite 16 is used when suspended in water. A fiber having a fiber diameter smaller than the average particle diameter D of the powder chemical heat storage material 12 is used. Specifically, it is desirable to use the sepiolite 16 having a wire diameter (fiber diameter) of 1 μm or less and a length (fiber length) of 200 μm or less. In this embodiment, Turkish sepiolite having a wire diameter of about 0.01 μm and a length of about several tens of μm is used. Instead of Turkish sepiolite, for example, Spanish sepiolite having a wire diameter of approximately 0.1 μm and a length of approximately 100 μm can be used. Moreover, in this embodiment, the mixing ratio of the sepiolite 16 with respect to the powder chemical heat storage material 12 is about 5-10 mass%, for example.

次いで、混合工程に移行する。混合工程では、図3(B)に示される如く、それぞれ乾粉状態の粉体化学蓄熱材12とセピオライト16とを、混合容器18に容れて均一に混合する。次いで、混練工程に移行する。混練工程では、図3(C)に示される如く、粉体化学蓄熱材12とセピオライト16との混合物を混練機19に入れ、バインダとしての水を徐々に加えながら練り込み(混練し)増粘化させる。これにより、粉体化学蓄熱材12とセピオライト16との混練物Mが生成される。この混練物Mは、全体として粘土状態を示す。また、この実施形態では、滑剤、バインダとして有機系バインダ(例えば、CMC(カルボキシルメチルセルロール)等)を混合、混練する。この有機系バインダは、後述する400℃以上での焼成工程において消失し、成形品中には残留しない。この有機系バインダは、のりの働きを示し、構造体成形時における精度、密度の向上に効果を示す。   Next, the process proceeds to the mixing step. In the mixing step, as shown in FIG. 3B, the powder chemical heat storage material 12 and sepiolite 16 in a dry powder state are respectively mixed in the mixing container 18 and uniformly mixed. Next, the process proceeds to the kneading step. In the kneading step, as shown in FIG. 3C, the mixture of the powder chemical heat storage material 12 and the sepiolite 16 is put into a kneading machine 19, and kneading (kneading) thickening while gradually adding water as a binder. Make it. Thereby, the kneaded material M of the powder chemical heat storage material 12 and the sepiolite 16 is produced | generated. This kneaded material M shows a clay state as a whole. In this embodiment, an organic binder (for example, CMC (carboxyl methylcellulose)) is mixed and kneaded as a lubricant and a binder. This organic binder disappears in a baking step at 400 ° C. or higher, which will be described later, and does not remain in the molded product. This organic binder exhibits a glue function and is effective in improving accuracy and density at the time of forming a structure.

次いで、図3(D)に示される成形工程に移行する。成形工程では、上記の通り混練工程で増粘化された混練物Mを押し出し型20に移し、押し出し成形する。これにより、混練物Mは、押し出し型20の形状に応じた所定形状に形成される。この実施形態では、多数の流路15を有するハニカム状のハニカム成形体Fhとして形成されている。   Next, the process proceeds to the molding step shown in FIG. In the molding step, the kneaded material M thickened in the kneading step as described above is transferred to the extrusion mold 20 and extruded. Thereby, the kneaded material M is formed in a predetermined shape according to the shape of the extrusion die 20. In this embodiment, the honeycomb formed body Fh having a large number of flow paths 15 is formed.

次いで、図3(E)に示される如く、焼成工程に移行する。焼成工程では、ハニカム成形体Fhを焼成炉22に容れ、所定の温度で所定の時間だけハニカム成形体Fhを焼成する。これにより、上記したハニカム状の化学蓄熱反応部10が形成される。すなわち、化学蓄熱反応部10の製造が完了する。この焼成工程での焼成温度は、350℃〜500℃の範囲内とされている。   Next, as shown in FIG. 3E, the process proceeds to the firing step. In the firing step, the honeycomb formed body Fh is placed in the firing furnace 22, and the honeycomb formed body Fh is fired at a predetermined temperature for a predetermined time. Thereby, the above-described honeycomb-shaped chemical heat storage reaction section 10 is formed. That is, the production of the chemical heat storage reaction unit 10 is completed. The firing temperature in this firing step is in the range of 350 ° C to 500 ° C.

この焼成温度は、粉体化学蓄熱材12すなわち水酸化カルシウムの脱水温度(脱水温度は、雰囲気水蒸気圧力により異なるが、略400℃〜450℃)以上であるため、粉体化学蓄熱材12は、製造直後には、酸化カルシウムの状態で化学蓄熱反応部10を構成している。すなわち、化学蓄熱反応部10は、製造時点で、水分(水蒸気)の供給により放熱可能な蓄熱状態とされている。   Since this firing temperature is equal to or higher than the dehydration temperature of the powder chemical heat storage material 12, that is, calcium hydroxide (the dehydration temperature varies depending on the atmospheric water vapor pressure, approximately 400 ° C. to 450 ° C.), Immediately after production, the chemical heat storage reaction section 10 is configured in the form of calcium oxide. That is, the chemical heat storage reaction unit 10 is in a heat storage state in which heat can be released by supplying moisture (water vapor) at the time of manufacture.

また、焼成工程における400℃〜500℃の範囲の焼成温度は、粉体化学蓄熱材12にマイクロクラックが形成される温度であり、これにより、化学蓄熱反応部10を構成する多数の粉体化学蓄熱材12は、それぞれ図2に示される如く、マイクロクラックを有する。これにより、粉体化学蓄熱材12は、焼成工程を経ることで比表面積が増大されている。   Moreover, the firing temperature in the range of 400 ° C. to 500 ° C. in the firing step is a temperature at which microcracks are formed in the powder chemical heat storage material 12, and thereby a large number of powder chemistry constituting the chemical heat storage reaction unit 10. Each of the heat storage materials 12 has microcracks as shown in FIG. Thereby, the specific surface area of the powder chemical heat storage material 12 is increased by passing through a baking process.

ここで、化学蓄熱反応部10では、内部に流路15が形成されているので、蓄熱時に生成される水蒸気の排出経路、放熱時に要求される水蒸気の供給経路が確保される。すなわち、化学蓄熱反応部10では、多数の粉体化学蓄熱材12間に細孔14が形成されている多孔質構造体の内部に細孔14よりも大きな流路15が形成されているので、全体として粉体化学蓄熱材12の充填度の高い多孔質構造体を形成しながら、流路15を通じて水蒸気の速やかな排出、供給が可能とされている。   Here, in the chemical heat storage reaction part 10, since the flow path 15 is formed inside, the discharge path | route of the water vapor | steam produced | generated at the time of heat storage, and the supply path | route of the water vapor | steam required at the time of heat radiation are ensured. That is, in the chemical heat storage reaction part 10, a flow path 15 larger than the pores 14 is formed inside the porous structure in which the pores 14 are formed between a large number of powder chemical heat storage materials 12. It is possible to quickly discharge and supply water vapor through the flow path 15 while forming a porous structure having a high degree of filling of the powder chemical heat storage material 12 as a whole.

このため、化学蓄熱反応部10では、粉体化学蓄熱材12の高充填度(高密度)による単位体積、質量当たりの蓄熱容量の確保(向上)と、放熱、蓄熱反応に要求される排出水蒸気、供給水蒸気の移動速度の確保との両立が図られる。例えば、単に粉体化学蓄熱材を充填した化学蓄熱反応部では、該粉体化学蓄熱材の充填度を高くすることができるものの十分な水蒸気の排出及び供給がなされず、粉体化学蓄熱材の充填度に基づく蓄熱容量に対する実効の蓄熱量が小さくなってしまう。一方、反応に十分な水蒸気の移動を確保することができるサイズの細孔を多数の粉体化学蓄熱材間に略均等に設ける構成では、充填度すなわち蓄熱容量が低下してしまい全体としての蓄熱量が小さくなる。これに対して化学蓄熱反応部10では、上記の如く多孔質構造体の内部に流路15が形成されているので、粉体化学蓄熱材12の充填度と水蒸気移動速度とのトレードオフが解消され、高充填度の粉体化学蓄熱材12の利用率を高めることが実現される。   For this reason, in the chemical heat storage reaction part 10, the discharge | emission water vapor | steam requested | required for unit volume and heat storage capacity per mass by the high filling degree (high density) of the powder chemical heat storage material 12, and heat dissipation and heat storage reaction are requested | required. In addition, the coexistence with securing the moving speed of the supplied water vapor can be achieved. For example, in a chemical heat storage reaction part simply filled with a powder chemical heat storage material, the filling degree of the powder chemical heat storage material can be increased, but sufficient discharge and supply of water vapor is not performed. The effective heat storage amount with respect to the heat storage capacity based on the filling degree is reduced. On the other hand, in a configuration in which pores of a size that can ensure sufficient movement of water vapor for the reaction are provided approximately evenly among a large number of powder chemical heat storage materials, the degree of filling, that is, the heat storage capacity decreases, and the heat storage as a whole The amount becomes smaller. On the other hand, in the chemical heat storage reaction part 10, since the flow path 15 is formed inside the porous structure as described above, the trade-off between the filling degree of the powder chemical heat storage material 12 and the water vapor moving speed is eliminated. Thus, the utilization factor of the powder chemical heat storage material 12 having a high filling degree is increased.

さらに、化学蓄熱反応部10では、化学蓄熱反応部10における区画壁部10Aの厚みtbが8mm以下であるため、細孔14を通じた拡散による水蒸気の排出、供給が反応の律束(以下、拡散律束という)になることがない。すなわち、化学蓄熱反応部10では、流路15の流路壁面から区画壁部10Aの厚み方向中間部までの距離が4mm以下であり、水蒸気の拡散距離が短いので、拡散律束に起因する蓄熱、放熱反応速度の低下が抑制される。特に、化学蓄熱反応部10では、区画壁部10Aの厚みtbが4mm以下、すなわち流路15の流路壁面から区画壁部10Aの厚み方向中間部までの距離が2mm以下であるため、水蒸気の拡散距離が一層短かく、拡散律束に起因する蓄熱、放熱反応速度の低下はほぼ無視することができる。   Furthermore, in the chemical heat storage reaction section 10, since the thickness tb of the partition wall portion 10A in the chemical heat storage reaction section 10 is 8 mm or less, the discharge and supply of water vapor by diffusion through the pores 14 is a reaction regulation (hereinafter referred to as diffusion). It is not called a rule. That is, in the chemical heat storage reaction section 10, the distance from the flow path wall surface of the flow path 15 to the middle portion in the thickness direction of the partition wall section 10A is 4 mm or less, and the diffusion distance of water vapor is short. , A decrease in the heat dissipation reaction rate is suppressed. In particular, in the chemical heat storage reaction section 10, the thickness tb of the partition wall 10A is 4 mm or less, that is, the distance from the flow path wall surface of the flow path 15 to the middle portion in the thickness direction of the partition wall 10A is 2 mm or less. The diffusion distance is shorter, and the decrease in heat storage and heat dissipation reaction rate due to the diffusion rule can be almost ignored.

同様に、化学蓄熱反応部10では、その周壁部10Cの厚みtcが4mm以下であるため、水蒸気の拡散距離が短く、拡散律束に起因する蓄熱、放熱反応速度の低下が抑制される。特に、化学蓄熱反応部10では、周壁部10Cの厚みtcが2mm以下であるため、水蒸気の拡散距離が一層短かく、拡散律束に起因する蓄熱、放熱反応速度の低下はほぼ無視することができる。   Similarly, in the chemical heat storage reaction part 10, since the thickness tc of the peripheral wall part 10C is 4 mm or less, the diffusion distance of water vapor is short, and the decrease in heat storage and heat dissipation reaction rate due to diffusion regulation is suppressed. In particular, in the chemical heat storage reaction part 10, since the thickness tc of the peripheral wall part 10C is 2 mm or less, the diffusion distance of water vapor is shorter, and the decrease in the heat storage and heat dissipation reaction rate due to the diffusion law can be almost ignored. it can.

以上により、化学蓄熱反応部10では、ほぼ全ての粉体化学蓄熱材12を蓄熱、放熱に利用することができ(利用率が略100%となり)、上記の如く単位体積、単位質量当たりの蓄熱容量が大きい構成において、粉体化学蓄熱材12による蓄熱、放熱を効率良く行うことができる。すなわち、化学蓄熱反応部10では、実効的な蓄熱容量が増大される。   As described above, in the chemical heat storage reaction section 10, almost all the powder chemical heat storage material 12 can be used for heat storage and heat dissipation (utilization rate is about 100%), and as described above, heat storage per unit volume and unit mass. In a configuration with a large capacity, heat storage and heat dissipation by the powder chemical heat storage material 12 can be performed efficiently. That is, the effective heat storage capacity is increased in the chemical heat storage reaction unit 10.

さらに、化学蓄熱反応部10では、流路15が複数設けられているため、区画壁部10Aの厚みtb、周壁部10Cの厚みtcを確保しながら、化学蓄熱反応部10の寸法形状を任意の寸法形状とすることが可能である。すなわち、化学蓄熱反応部10は、その寸法形状の設定(選択)自由度が高い。   Furthermore, since the chemical heat storage reaction section 10 is provided with a plurality of flow paths 15, the dimensional shape of the chemical heat storage reaction section 10 can be arbitrarily set while ensuring the thickness tb of the partition wall section 10A and the thickness tc of the peripheral wall section 10C. Dimensional shape can be used. That is, the chemical heat storage reaction unit 10 has a high degree of freedom in setting (selecting) its dimensional shape.

また、化学蓄熱反応部10の製造方法では、多孔質でかつ比表面積が大きいセピオライト16を混練工程で所定の割合で粉体化学蓄熱材12に混練するため、該セピオライト16の揺変性(チキソトロピ)によって、該セピオライト16を粉体化学蓄熱材12及び水と共に撹拌することで増粘効果を呈する。これにより、粉体化学蓄熱材12をベースとした混練物Mを用いてハニカム成形体Fhをより高精度、高密度(粉体化学蓄熱材12の高充填度)で成形することができる。   Further, in the method for producing the chemical heat storage reaction section 10, since the sepiolite 16 having a large porous surface area is kneaded into the powder chemical heat storage material 12 at a predetermined ratio in the kneading step, the thixotropy of the sepiolite 16 is performed. Thus, the sepiolite 16 is stirred together with the powder chemical heat storage material 12 and water to exhibit a thickening effect. Thereby, the honeycomb formed body Fh can be formed with higher accuracy and high density (high filling degree of the powder chemical heat storage material 12) using the kneaded material M based on the powder chemical heat storage material 12.

そして、セピオライト16の繊維質(結晶化後の多孔質)を利用した粉体化学蓄熱材12の組織化、セピオライト16の可塑性を利用した多数の粉体化学蓄熱材12の構造化が果たされる。すなわち、粉体化学蓄熱材12に所定割合でセピオライト16を混練することで、多数の粉体化学蓄熱材12間に、蓄熱、放熱に伴う水蒸気を放出又は導入するための細孔14を形成しつつ、多数の粉体化学蓄熱材12を1つの構造体である化学蓄熱反応部10とし、かつ化学蓄熱反応部10であることを維持することが実現された。   Then, organization of the powder chemical heat storage material 12 using the fiber of the sepiolite 16 (porous after crystallization) and structuring of the many powder chemical heat storage materials 12 using the plasticity of the sepiolite 16 are achieved. That is, by mixing the sepiolite 16 with the powder chemical heat storage material 12 at a predetermined ratio, pores 14 for releasing or introducing water vapor accompanying heat storage and heat dissipation are formed between the many powder chemical heat storage materials 12. On the other hand, it was realized that a large number of powder chemical heat storage materials 12 were made into the chemical heat storage reaction section 10 as one structure and maintained as the chemical heat storage reaction section 10.

また、以上のように製造された化学蓄熱反応部10は、多数の粉体化学蓄熱材12が互いの間に細孔14が形成されるように組織化、構造化されているので、粉体化学蓄熱材12の水和、脱水反応に伴う体積膨張、収縮が他の粉体化学蓄熱材12に干渉することが防止又は著しく抑制される。このため、粉体化学蓄熱材12の体積膨張、収縮に起因する微粉化が防止され、換言すれば、粉体化学蓄熱材12に対する水蒸気の放出、導入が滞ることがなくなり、蓄熱、放熱の反応性の低下が防止又は著しく抑制される。   Further, the chemical heat storage reaction section 10 manufactured as described above is organized and structured so that a large number of powder chemical heat storage materials 12 are formed with pores 14 between them. It is prevented or remarkably suppressed that the volume expansion and shrinkage accompanying the hydration and dehydration reactions of the chemical heat storage material 12 interfere with other powder chemical heat storage materials 12. For this reason, pulverization resulting from the volume expansion and contraction of the powder chemical heat storage material 12 is prevented. In other words, the release and introduction of water vapor into the powder chemical heat storage material 12 is not delayed, and the reaction of heat storage and heat dissipation. Deterioration is prevented or markedly suppressed.

さらに、化学蓄熱反応部10では、比表面積が大きく多孔質であるセピオライト16の吸着性によって、余剰の水蒸気がセピオライト16(の微孔)に吸着される。これにより、例えば、化学蓄熱反応部10が適用された蓄熱システムが停止されている低温状態の場合(粉体化学蓄熱材12が酸化カルシウムである場合)に該粉体化学蓄熱材12が吸水して化学蓄熱反応部10内が液水化し潮解によりシンタリングされることが防止又は抑制される。   Furthermore, in the chemical heat storage reaction unit 10, surplus water vapor is adsorbed to the sepiolite 16 (micropores) by the adsorptivity of the sepiolite 16 having a large specific surface area and being porous. Thereby, for example, when the heat storage system to which the chemical heat storage reaction unit 10 is applied is in a low temperature state (when the powder chemical heat storage material 12 is calcium oxide), the powder chemical heat storage material 12 absorbs water. Thus, the chemical heat storage reaction part 10 is prevented or suppressed from being liquefied and sintered by deliquescence.

またここで、化学蓄熱反応部10の製造方法では、水に懸濁した状態で粉体化学蓄熱材12の平均粒子径Dよりも繊維径が微細な繊維状を成すセピオライト16を用いるため、少量のセピオライト16で粉体化学蓄熱材12間に細孔14が形成された多孔質構造体を補強した化学蓄熱反応部10を得ることができる。したがって、化学蓄熱反応部10は、単位質量、単位体積当たりに占める粉体化学蓄熱材12の量を多くすることができる。すなわち、蓄熱容量の大きい化学蓄熱反応部10を得ることができる。しかも、化学蓄熱反応部10では、粉体化学蓄熱材12自体が化学蓄熱反応部10の主要構造を成しているので、伝熱経路が単純で蓄熱効率、蓄熱した熱の利用効率が高い。   Here, in the manufacturing method of the chemical heat storage reaction section 10, since sepiolite 16 having a fiber diameter finer than the average particle diameter D of the powder chemical heat storage material 12 in a state suspended in water is used, a small amount is used. The chemical heat storage reaction part 10 which reinforce | strengthened the porous structure in which the pore 14 was formed between the powder chemical heat storage materials 12 with the said sepiolite 16 can be obtained. Therefore, the chemical heat storage reaction unit 10 can increase the amount of the powder chemical heat storage material 12 per unit mass and unit volume. That is, the chemical heat storage reaction part 10 with a large heat storage capacity can be obtained. In addition, in the chemical heat storage reaction unit 10, the powder chemical heat storage material 12 itself forms the main structure of the chemical heat storage reaction unit 10, so that the heat transfer path is simple and the heat storage efficiency and the utilization efficiency of the stored heat are high.

さらに、化学蓄熱反応部10では、粉体化学蓄熱材12として無機化合物である水酸化カルシウムを用いているため、蓄熱、放熱反応(水和、脱水)に対する材料安定性が高い。特に、水酸化カルシウムは、水酸化マグネシウム等に対しても可逆性が高い(ほぼ100%の水和、脱水反応率を有する)ため、長期間に亘り安定した蓄熱効果を得ることができる。また、水酸化カルシウムは、水酸化マグネシウム等に対して不純物に対する感度が低いので、この点でも長期安定運低に寄与する。また特に、粉体化学蓄熱材12としてアルカリ土類金属化合物である水酸化カルシウムを用いているため、換言すれば、環境負荷の小さい材料を用いるため、化学蓄熱反応部10の製造、使用、リサイクルを含めた安全性の確保が容易になる。   Furthermore, since the chemical heat storage reaction unit 10 uses calcium hydroxide, which is an inorganic compound, as the powder chemical heat storage material 12, the material stability against heat storage and heat dissipation reactions (hydration and dehydration) is high. In particular, since calcium hydroxide is highly reversible with respect to magnesium hydroxide and the like (having almost 100% hydration and dehydration rate), a stable heat storage effect can be obtained over a long period of time. Further, since calcium hydroxide has low sensitivity to impurities with respect to magnesium hydroxide and the like, this also contributes to long-term stable operation. In particular, since calcium hydroxide, which is an alkaline earth metal compound, is used as the powder chemical heat storage material 12, in other words, a material with a small environmental load is used, so that the chemical heat storage reaction section 10 is manufactured, used, and recycled. It is easy to ensure safety including

さらにここで、化学蓄熱反応部10の製造方法では、水酸化物である水酸化カルシウムの粉体を用いるため、混練工程で粉体化学蓄熱材12とセピオライト16とを混練、増粘させるためのバインダとして水を用いることができる。これにより、簡単かつ安価な方法で化学蓄熱反応部10を得ることができる。例えば、酸化カルシウムを出発物質とした場合には、該酸化カルシウムは水に反応するために水(水を含む液体)をバインダとして用いることができない。また例えば、炭酸カルシウムを出発原料として粉体化学蓄熱材12(水酸化カルシウム)を得る場合には、脱炭酸工程で950℃〜1000℃程度の高温焼成が要求される。   Furthermore, in the manufacturing method of the chemical heat storage reaction section 10, since powder of calcium hydroxide as a hydroxide is used, the powder chemical heat storage material 12 and the sepiolite 16 are kneaded and thickened in the kneading step. Water can be used as the binder. Thereby, the chemical heat storage reaction part 10 can be obtained by a simple and inexpensive method. For example, when calcium oxide is used as a starting material, water (a liquid containing water) cannot be used as a binder because the calcium oxide reacts with water. For example, when obtaining the powder chemical heat storage material 12 (calcium hydroxide) using calcium carbonate as a starting material, high-temperature firing at about 950 ° C. to 1000 ° C. is required in the decarbonation step.

これに対して化学蓄熱反応部10の製造方法では、上記の通り水酸化カルシウムを出発原料としているため、水をバインダとしてセピオライト16と混練することで増粘効果が得られ、成形性が向上する。また、焼成温度を低くすることができるため、使用材料、工程(製造装置の材料等を含む)の自由度が増す。さらに、化学蓄熱材複合物成形体10では、アルカリ性の水酸化カルシウムをセピオライトに混練するため、セピオライトはアルカリと僅かに反応にしてガラス質へと変化する。このため、ガラス化したセピオライト16と粉体化学蓄熱材12との混練物Mを焼結して成る焼結構造体である化学蓄熱材複合物成形体10は、その強度が向上される。   On the other hand, in the manufacturing method of the chemical heat storage reaction part 10, since calcium hydroxide is used as a starting material as described above, a thickening effect is obtained by kneading with sepiolite 16 using water as a binder, and moldability is improved. . In addition, since the firing temperature can be lowered, the degree of freedom of materials used and processes (including materials for manufacturing equipment) is increased. Furthermore, in the chemical heat storage material composite molded article 10, since alkaline calcium hydroxide is kneaded into sepiolite, sepiolite reacts slightly with alkali and changes to glassy. For this reason, the strength of the chemical heat storage material composite formed body 10 which is a sintered structure formed by sintering the kneaded material M of the vitrified sepiolite 16 and the powder chemical heat storage material 12 is improved.

一方、化学蓄熱反応部10の製造方法では、焼成温度として400℃〜500℃を採用しているので、粉体化学蓄熱材12、セピオライト16の構造化(固定化)を図りつつ、粉体化学蓄熱材12の脱水反応を進行させることができる。そして、400℃〜500℃の焼成温度によって、粉体化学蓄熱材12にマイクロクラックが形成されるので、化学蓄熱反応部10の製造方法では、粉体化学蓄熱材12の組織化、構造化と比表面積の増大とを同時に果たすことができる。   On the other hand, in the manufacturing method of the chemical heat storage reaction unit 10, 400 ° C. to 500 ° C. is employed as the firing temperature, so that the powder chemical heat storage material 12 and the sepiolite 16 are structured (immobilized), and the powder chemistry The dehydration reaction of the heat storage material 12 can be advanced. And since the micro crack is formed in the powder chemical heat storage material 12 by the calcination temperature of 400 degreeC-500 degreeC, in the manufacturing method of the chemical heat storage reaction part 10, organization and structure of the powder chemical heat storage material 12 and The specific surface area can be increased at the same time.

なお、酸化カルシウムとなった粉体化学蓄熱材12にマイクロクラックを生じさせる焼成温度としては、450℃程度が最も好ましい。焼成温度が400℃以下では、マイクロクラックの生成が少なく、500℃以上では、粉体化学蓄熱材12の割れの確率が高くなること及びシンタリングにより粉体化学蓄熱材12の比表面積が減少することが確かめられている。なお、この温度範囲は、酸化カルシウムに比べやや低温化するものの、例えば酸化マグネシウム(水酸化マグネシウムが脱水されたもの)についても、マイクロクラックを生じさせる焼成温度として用いることができる。なお、水酸化マグネシウムの脱水温度は、雰囲気水蒸気圧力により異なるが、水酸化カルシウムの脱水温度よりも若干低い略350℃〜400℃)である。   In addition, as a baking temperature which produces the micro crack in the powder chemical thermal storage material 12 used as calcium oxide, about 450 degreeC is the most preferable. When the firing temperature is 400 ° C. or less, the generation of microcracks is small, and when the firing temperature is 500 ° C. or more, the probability of cracking of the powder chemical heat storage material 12 increases and the specific surface area of the powder chemical heat storage material 12 decreases due to sintering. It has been confirmed. Although this temperature range is slightly lower than that of calcium oxide, for example, magnesium oxide (dehydrated magnesium hydroxide) can also be used as a firing temperature for generating microcracks. In addition, although the dehydration temperature of magnesium hydroxide changes with atmospheric water vapor pressures, it is a little lower than the dehydration temperature of calcium hydroxide (about 350 to 400 degreeC).

次に、本発明の他の実施形態を説明する。   Next, another embodiment of the present invention will be described.

図4には、本発明の第2の実施形態に係る化学蓄熱材成形体としての化学蓄熱反応部30が模式的な正面図にて示されている。この図に示される如く、化学蓄熱反応部30は、正面視で扁平状に形成されており、該扁平方向の中央部に単一の流路32を有して構成されている点で、多数の流路15を有するハニカム状に形成された化学蓄熱反応部10とは異なる。   FIG. 4 is a schematic front view showing a chemical heat storage reaction part 30 as a chemical heat storage material molded body according to the second embodiment of the present invention. As shown in this figure, the chemical heat storage reaction part 30 is formed in a flat shape when viewed from the front, and has a single flow path 32 at the center in the flat direction. This is different from the chemical heat storage reaction section 10 formed in a honeycomb shape having the flow path 15.

すなわち、化学蓄熱反応部30は、流路32を囲む多孔質構造体である周壁部にて全体が構成されているものと把握することができる。流路32は、化学蓄熱反応部30と同じ方向に扁平とされ、周方向の各部において厚みtcが略一定となる構成とされている。化学蓄熱反応部30は、流路15の流路壁面から化学蓄熱反応部30の外縁30Aまでの厚みは、4mm以下とされている。   That is, it can be understood that the chemical heat storage reaction part 30 is entirely constituted by the peripheral wall part that is a porous structure surrounding the flow path 32. The flow path 32 is made flat in the same direction as the chemical heat storage reaction part 30, and the thickness tc is substantially constant in each part in the circumferential direction. In the chemical heat storage reaction part 30, the thickness from the flow path wall surface of the flow path 15 to the outer edge 30A of the chemical heat storage reaction part 30 is 4 mm or less.

この実施形態では、化学蓄熱反応部30の扁平方向の厚みをta、流路15の扁平方向の流路幅である短辺の長さをL、化学蓄熱反応部30の扁平方向との直交方向に沿った幅をWとすると、tc≒2〜3mm、L≒1〜2mm、ta≒5〜8mm、W≒20mmとされている。   In this embodiment, the thickness of the chemical heat storage reaction unit 30 in the flat direction is ta, the length of the short side that is the channel width in the flat direction of the flow channel 15 is L, and the direction orthogonal to the flat direction of the chemical heat storage reaction unit 30 Assuming that the width along W is W, tc≈2 to 3 mm, L≈1 to 2 mm, ta≈5 to 8 mm, and W≈20 mm.

この化学蓄熱反応部30は、例えば上記したホットプローブを単体又は複数で構成し、触媒コンバータ内に分散して配置されるようになっている。化学蓄熱反応部30の他の構成、及び製造方法は、押し出し型20の形状を除き、化学蓄熱反応部10の対応する構成、製造方法と共通している。   The chemical heat storage reaction unit 30 is configured by, for example, a single or a plurality of the above-described hot probes, and is distributed in the catalytic converter. Other configurations and manufacturing methods of the chemical heat storage reaction unit 30 are the same as the corresponding configurations and manufacturing methods of the chemical heat storage reaction unit 10 except for the shape of the extrusion mold 20.

したがって、第2の実施形態に係る化学蓄熱反応部30、及び該化学蓄熱反応部30の製造方法によっても、第1の実施形態に係る化学蓄熱反応部10、化学蓄熱反応部10の製造方法と同様の作用によって同様の効果を得ることができる。   Therefore, the chemical heat storage reaction unit 30 according to the second embodiment and the method for manufacturing the chemical heat storage reaction unit 30 also include the chemical heat storage reaction unit 10 and the method for manufacturing the chemical heat storage reaction unit 10 according to the first embodiment. Similar effects can be obtained by similar actions.

次に、本発明の第3の実施形態に係る化学蓄熱反応部40、及びその製造方法について、図7に基づいて説明する。化学蓄熱反応部40は、その組成及び製造方法が化学蓄熱反応部10とは異なるものの、化学蓄熱材成形体としての形状は化学蓄熱反応部10、30と同様であるため、該化学蓄熱材成形体としての構造の図示(図1、図4〜図6に相当する図)は省略する。   Next, the chemical heat storage reaction unit 40 and the manufacturing method thereof according to the third embodiment of the present invention will be described with reference to FIG. Although the chemical heat storage reaction part 40 is different in composition and manufacturing method from the chemical heat storage reaction part 10, the shape as the chemical heat storage material molded body is the same as that of the chemical heat storage reaction parts 10, 30. The illustration of the structure as a body (the figures corresponding to FIGS. 1 and 4 to 6) is omitted.

図7に示される如く、化学蓄熱反応部40は、層リボン構造を有する粘土鉱物であるセピオライト16と共に板状組織を有する粘土鉱物であるベントナイト42が混合されている点で、第1の実施形態に係る化学蓄熱反応部10、30とは異なる。以下、具体的に説明する。   As shown in FIG. 7, the chemical heat storage reaction part 40 is the first embodiment in that bentonite 42, which is a clay mineral having a plate-like structure, is mixed with sepiolite 16, which is a clay mineral having a layered ribbon structure. It differs from the chemical heat storage reaction parts 10 and 30 which concern on. This will be specifically described below.

図7(A)に示される如く、化学蓄熱反応部40を製造するに当たっては、先ず、原料の一部であるベントナイト42、セピオライト16を用意する。ベントナイト42は、異方性を有する板状構造体とされている。そして、図示しない予備混合工程において、ベントナイト42とセピオライト16とを混合する。この実施形態では、ベントナイト42、セピオライト16をそれぞれ50質量%の割合で混合する。次いで、図7(B)に示される如く、原料である粉体化学蓄熱材12、セピオライト16とベントナイト42との混合物を用意すし、混合工程に移行する。   As shown in FIG. 7A, when manufacturing the chemical heat storage reaction section 40, first, bentonite 42 and sepiolite 16 which are a part of raw materials are prepared. The bentonite 42 is a plate-like structure having anisotropy. Then, bentonite 42 and sepiolite 16 are mixed in a preliminary mixing step (not shown). In this embodiment, bentonite 42 and sepiolite 16 are mixed at a ratio of 50% by mass. Next, as shown in FIG. 7B, a mixture of the powder chemical heat storage material 12, sepiolite 16 and bentonite 42 as raw materials is prepared, and the process proceeds to the mixing step.

混合工程では、図C(B)に示される如く、それぞれ乾粉状態の粉体化学蓄熱材12と、セピオライト16とベントナイト42との混合物とを、混合容器18に容れて均一に混合する。この後、化学蓄熱反応部10の製造工程と同様に、混練工程、成形工程、焼成工程(何れも図3参照)を経て、化学蓄熱反応部40が製造される。   In the mixing step, as shown in FIG. C (B), the powder chemical heat storage material 12 in a dry powder state and the mixture of sepiolite 16 and bentonite 42 are placed in the mixing vessel 18 and mixed uniformly. Thereafter, similarly to the manufacturing process of the chemical heat storage reaction section 10, the chemical heat storage reaction section 40 is manufactured through a kneading process, a molding process, and a baking process (all refer to FIG. 3).

ここで、化学蓄熱反応部40の製造方法では、粘土鉱物としてセピオライト16に加えてベントナイト42を粉体化学蓄熱材12に混合するので、成形工程ではベントナイト42が化学蓄熱反応部40の壁面(区画壁部10A、周壁部10C、区画壁部30B等に相当する壁の壁面)に沿って配向される。すなわち、異方性の板状構造を有するベントナイト42の性質によって、該ベントナイト42の長手方向が上記壁面の延在方向に略一致される。すなわち、板状結晶の自己組織化が発生する。   Here, in the manufacturing method of the chemical heat storage reaction part 40, since bentonite 42 is mixed with the powder chemical heat storage material 12 in addition to the sepiolite 16 as a clay mineral, the bentonite 42 becomes a wall surface (compartment) of the chemical heat storage reaction part 40 in the molding process. Oriented along the wall portion 10A, the peripheral wall portion 10C, the partition wall portion 30B and the like. That is, due to the nature of bentonite 42 having an anisotropic plate-like structure, the longitudinal direction of bentonite 42 substantially matches the extending direction of the wall surface. That is, self-organization of the plate crystal occurs.

これにより、化学蓄熱反応部40は、焼成に伴う収縮が抑制され、その寸法精度の確保が容易である。特に、化学蓄熱反応部40を容器内で拘束したまま焼成する場合等には、該化学蓄熱反応部40は収縮に起因して割れ等を生じることが懸念されるが、ベントナイト42を配合することで、収縮自体が抑制されるので、化学蓄熱反応部40の割れが抑制又は防止される。   Thereby, the chemical heat storage reaction part 40 is suppressed from shrinkage due to firing, and it is easy to ensure its dimensional accuracy. In particular, when baking is performed while the chemical heat storage reaction part 40 is restrained in the container, the chemical heat storage reaction part 40 is concerned that the chemical heat storage reaction part 40 may crack due to shrinkage. Therefore, since shrinkage | contraction itself is suppressed, the crack of the chemical heat storage reaction part 40 is suppressed or prevented.

なお、第2の実施形態では、化学蓄熱反応部30が単一の流路32を有する例を示したが、例えば、図5に示される如く、単一の流路32に代えて、扁平方向との直交方向に並列された複数(2つ)の流路34を有する構成としても良く、図6に示される如く、さらに扁平方向及びその直交方向に並列された複数(4つ)の流路36を有する構成としても良い。これらの場合、流路34間又は流路36間に形成された区画壁部30Bの厚みtbは、8mm以下とすることが望ましく、4mm以下とすることがより望ましい。   In addition, in 2nd Embodiment, although the chemical heat storage reaction part 30 showed the example which has the single flow path 32, it replaces with the single flow path 32, for example, as FIG. It is good also as a structure which has the several (two) flow path 34 paralleled in the orthogonal | vertical direction, and as FIG. 6 shows, the multiple (four) flow path paralleled in the flat direction and the orthogonal direction is further shown. 36 may be adopted. In these cases, the thickness tb of the partition wall portion 30B formed between the flow paths 34 or between the flow paths 36 is preferably 8 mm or less, and more preferably 4 mm or less.

また、上記した各実施形態では、化学蓄熱材複合物成形体10の成形にトルコ産又はスペイン産のセピオライトを用いる例を示したが、本発明はこれに限定されず、例えば、中国産のセピオライトを用いることも可能である。但し、化学蓄熱材複合物成形体10の成形に用いるセピオライトとしては、トルコ産が最も好ましく、2番目にスペイン産が好ましく、次いで中国産が好ましい。トルコ産のセピオライトは、不純物が少なく、細かく(線径が細く、長さが短く)、粉体化学蓄熱材12との混練、焼成によって殻構造を形成し易く分散性で有利なためである。なお、不純物は、上記の殻構造を脆くし易く、焼成を阻害する原因になるので、少ないことが好ましい。   Further, in each of the above-described embodiments, an example is shown in which Turkish or Spanish sepiolite is used for molding the chemical heat storage material composite molded body 10, but the present invention is not limited to this, and for example, Chinese sepiolite. It is also possible to use. However, the sepiolite used for molding the chemical heat storage material composite molded body 10 is most preferably from Turkey, secondly from Spain, and then from China. This is because Turkish sepiolite has few impurities, is fine (the wire diameter is thin, and the length is short), is easy to form a shell structure by kneading and baking with the powder chemical heat storage material 12, and is advantageous in terms of dispersibility. In addition, it is preferable that the amount of impurities is small because the shell structure is easily made brittle and causes firing to be hindered.

また、上記した各実施形態では、粘土鉱物として層リボン構造を有する粘土鉱物としてのセピオライトを用いた例を示したが、本発明はこれに限定されず、例えば、層リボン構造を有する粘土鉱物であるパリゴルスカイト(アタパルジャイト)又はカオリナイト(線径5μm以下、又は1μm以下)を用いても良く、層リボン構造を有する粘土鉱物には属しないベントナイトを用いても良い。なお、ベントナイトについて補足すると、ベントナイトは、層リボン構造を有する粘土鉱物と比較して接着力が強い粘土鉱物であり、単体で(セピオライト16と混合されない構成においても)強固な多孔質構造体を得ることができ、また、例えば金属壁への接合強度を向上することに寄与する。このベントナイトを用いた化学蓄熱反応部10においても、多数の粉体化学蓄熱材12間に細孔14が形成された多孔質構造体を成す。一方、層リボン構造を有する粘土鉱物は、ベントナイトと比較してシンタリング(緻密化)が少ないメリットがある。特に、セピオライトは、上記の通り粉体化学蓄熱材12の脱水温度(マイクロクラックが生成される温度)と近い温度で焼結され、該温度ではシンタリングによる比表面積の減少が少ない(マイクロクラックによる比表面積の増加が上回る)メリットがある。化学蓄熱材複合物成形体10の製造に用いる粘土鉱物は、これらのメリットを考慮して用途等に応じて決めれば良い。さらに、セピオライト16以外の層リボン構造の粘土鉱物とベントナイト42とを混合した粘土鉱物を粉体化学蓄熱材12と混合する構成とすることも可能である。   Further, in each of the above-described embodiments, an example is shown in which sepiolite is used as a clay mineral having a layer ribbon structure as the clay mineral, but the present invention is not limited to this, and for example, a clay mineral having a layer ribbon structure is used. A certain palygorskite (attapulgite) or kaolinite (a wire diameter of 5 μm or less, or 1 μm or less) may be used, or bentonite which does not belong to a clay mineral having a layered ribbon structure may be used. In addition, when bentonite is supplemented, bentonite is a clay mineral having a strong adhesive force as compared with a clay mineral having a layered ribbon structure, and a strong porous structure is obtained by itself (even in a configuration not mixed with sepiolite 16). For example, it contributes to improving the bonding strength to the metal wall. The chemical heat storage reaction unit 10 using bentonite also forms a porous structure in which pores 14 are formed between a large number of powder chemical heat storage materials 12. On the other hand, clay minerals having a layered ribbon structure have the advantage of less sintering (densification) compared to bentonite. In particular, sepiolite is sintered at a temperature close to the dehydration temperature (the temperature at which microcracks are generated) of the powder chemical heat storage material 12 as described above, and the specific surface area is less reduced by sintering at that temperature (due to microcracks). The increase in specific surface area is advantageous). What is necessary is just to determine the clay mineral used for manufacture of the chemical heat storage material composite molded object 10 according to a use etc. in consideration of these merit. Further, a clay mineral obtained by mixing a clay mineral having a layer ribbon structure other than sepiolite 16 and bentonite 42 may be mixed with the powder chemical heat storage material 12.

さらに、本発明は、セピオライト16等の粘土鉱物を粉体化学蓄熱材12と混練して焼成する構成、製法には限定されず、例えば、粉体化学蓄熱材12がセピオライト16(に相当する粘土鉱物)を有しない構成としても良い。   Further, the present invention is not limited to a configuration and a manufacturing method in which clay mineral such as sepiolite 16 is kneaded and fired with the powder chemical heat storage material 12. For example, the powder chemical heat storage material 12 is a clay corresponding to sepiolite 16 ( It is good also as a structure which does not have a mineral.

さらに、上記した各実施形態では、粉体化学蓄熱材12として水和系化学蓄熱材である水酸化カルシウム(Ca(OH))を用いた例を示したが、本発明はこれに限定されず、例えば、アルカリ土類金属の無機化合物である水酸化マグネシウム(Mg(OH))を粉体化学蓄熱材12として用いても良い。同様に、アルカリ土類金属の無機化合物であるBa(OH)やBa(OH)・HOを粉体化学蓄熱材12として用いても良く、アルカリ土類金属以外の無機化合物であるLiOH・HO、Al・3HO等を粉体化学蓄熱材12として用いても良い。さらに、水和、脱水反応により発熱、蓄熱する水和形の粉体化学蓄熱材12に代えて、他の反応を利用した粉体化学蓄熱材12を用いても良い。 Further, in each of the embodiments described above, an example in which calcium hydroxide (Ca (OH) 2 ), which is a hydrated chemical heat storage material, is used as the powder chemical heat storage material 12, but the present invention is limited to this. For example, magnesium hydroxide (Mg (OH) 2 ), which is an inorganic compound of an alkaline earth metal, may be used as the powder chemical heat storage material 12. Similarly, Ba (OH) 2 and Ba (OH) 2 .H 2 O, which are inorganic compounds of alkaline earth metals, may be used as the powder chemical heat storage material 12 and are inorganic compounds other than alkaline earth metals. LiOH.H 2 O, Al 2 O 3 .3H 2 O, or the like may be used as the powder chemical heat storage material 12. Furthermore, instead of the hydrated powder chemical heat storage material 12 that generates and stores heat by hydration and dehydration reactions, a powder chemical heat storage material 12 using other reactions may be used.

本発明の第1の実施形態に係る化学蓄熱反応部の外形を模式的に示す正面図である。It is a front view which shows typically the external shape of the chemical thermal storage reaction part which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る化学蓄熱反応部の内部構造を模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the chemical thermal storage reaction part which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る化学蓄熱反応部の製造方法を模式的に示す図であって、(A)は原料を示す図、(B)は各原料及びバインダの混合状態を示す図、(C)は混練工程を示す図、(D)は成形工程を示す図、(E)は焼成工程を示す図である。It is a figure which shows typically the manufacturing method of the chemical thermal storage reaction part which concerns on the 1st Embodiment of this invention, Comprising: (A) is a figure which shows a raw material, (B) is a figure which shows the mixing state of each raw material and a binder. (C) is a figure which shows a kneading | mixing process, (D) is a figure which shows a shaping | molding process, (E) is a figure which shows a baking process. 本発明の第2の実施形態に係る化学蓄熱反応部の外形を模式的に示す正面図である。It is a front view which shows typically the external shape of the chemical thermal storage reaction part which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態の第1変形例に係る化学蓄熱反応部の外形を模式的に示す正面図である。It is a front view which shows typically the external shape of the chemical thermal storage reaction part which concerns on the 1st modification of the 2nd Embodiment of this invention. 本発明の第2の実施形態の第2変形例に係る化学蓄熱反応部の外形を模式的に示す正面図である。It is a front view which shows typically the external shape of the chemical thermal storage reaction part which concerns on the 2nd modification of the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る化学蓄熱反応部の製造方法を模式的に示す図であって、(A)は粘土鉱物原料を示す図、(B)は化学蓄熱材と粘土鉱物原料の混合物を示す図、(C)は混合工程を示す図である。It is a figure which shows typically the manufacturing method of the chemical heat storage reaction part which concerns on the 3rd Embodiment of this invention, Comprising: (A) is a figure which shows a clay mineral raw material, (B) is a chemical heat storage material and a clay mineral raw material. The figure which shows a mixture, (C) is a figure which shows a mixing process.

符号の説明Explanation of symbols

10 化学蓄熱反応部(化学蓄熱材成形体)
10A 区画壁部(流路間の成形体)
10C 周壁部(流路と成形体表面との間)
12 粉体化学蓄熱材(化学蓄熱材)
14 細孔
15 流路
16 セピオライト(粘土鉱物)
30・40 化学蓄熱反応部(化学蓄熱材成形体)
30B 区画壁部(流路間の成形体)
32・34・36 流路
42 ベントナイト(粘土鉱物)
S 混練物
10 Chemical heat storage reaction part (Chemical heat storage material molding)
10A partition wall (molded body between flow paths)
10C peripheral wall (between the flow path and the molded body surface)
12 Powder chemical heat storage material (chemical heat storage material)
14 pores 15 channels 16 sepiolite (clay mineral)
30.40 Chemical heat storage reaction part (chemical heat storage material molding)
30B partition wall (formed body between flow paths)
32, 34, 36 Channel 42 Bentonite (clay mineral)
S Kneaded material

Claims (33)

粉体の化学蓄熱材を成形して成り、内部に反応物を供給し又は反応生成物を排出するための流路が形成されている化学蓄熱材成形体。   A molded chemical heat storage material, which is formed by molding a chemical heat storage material in powder form, and in which a flow path for supplying a reactant or discharging a reaction product is formed. 前記流路の代表寸法は、前記化学蓄熱材の粒径よりも大である請求項1記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to claim 1, wherein a representative dimension of the flow path is larger than a particle size of the chemical heat storage material. 前記流路が複数形成されている請求項1又は請求項2記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to claim 1 or 2, wherein a plurality of the flow paths are formed. 前記流路と成形体表面との間の厚みが4mm以下とされている請求項1〜請求項3の何れか1項記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to any one of claims 1 to 3, wherein a thickness between the flow path and the surface of the molded body is 4 mm or less. 前記流路と成形体表面との間の厚みが2mm以下とされている請求項1〜請求項4の何れか1項記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to any one of claims 1 to 4, wherein a thickness between the flow path and the molded body surface is 2 mm or less. 前記流路が並列して複数形成されており、
前記流路間の成形体厚みが8mm以下とされている請求項1〜請求項5の何れか1項記載の化学蓄熱材成形体。
A plurality of the flow paths are formed in parallel,
The chemical heat storage material molded body according to any one of claims 1 to 5, wherein a thickness of the molded body between the flow paths is 8 mm or less.
前記流路が並列して複数形成されており、
前記流路間の成形体厚みが4mm以下とされている請求項1〜請求項6の何れか1項記載の化学蓄熱材成形体。
A plurality of the flow paths are formed in parallel,
The chemical heat storage material molded body according to any one of claims 1 to 6, wherein a thickness of the molded body between the flow paths is 4 mm or less.
前記化学蓄熱材は、粘土鉱物に分散保持されて成形されている請求項1〜請求項7の何れか1項記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to any one of claims 1 to 7, wherein the chemical heat storage material is formed by being dispersed and held in a clay mineral. 前記粘土鉱物として、層リボン構造を有する粘土鉱物が用いられている請求項8記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to claim 8, wherein a clay mineral having a layer ribbon structure is used as the clay mineral. 前記粘土鉱物として、層リボン構造を有する粘土鉱物及び板状組織を持つベントナイトが用いられている請求項8記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to claim 8, wherein a clay mineral having a layered ribbon structure and bentonite having a plate-like structure are used as the clay mineral. 前記層リボン構造を有する粘土鉱物として、セピオライト、パリゴルスカイト又はカオリナイトが用いられている請求項9又は請求項10記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to claim 9 or 10, wherein sepiolite, palygorskite, or kaolinite is used as the clay mineral having the layer ribbon structure. 前記粘土鉱物として、ベントナイトが用いられている請求項8記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to claim 8, wherein bentonite is used as the clay mineral. 前記粘土鉱物は、前記化学蓄熱材の粒子径よりも細い繊維状を成している請求項8〜請求項12の何れか1項記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to any one of claims 8 to 12, wherein the clay mineral has a fiber shape smaller than a particle diameter of the chemical heat storage material. 前記化学蓄熱材は、微細なクラックを有する請求項1〜請求項13の何れか1項記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to any one of claims 1 to 13, wherein the chemical heat storage material has fine cracks. 前記化学蓄熱材として、脱水反応に伴い吸熱し、水和反応に伴い放熱する水和反応系化学蓄熱材が用いられている請求項1〜請求項14の何れか1項記載の化学蓄熱材成形体。   The chemical heat storage material molding according to any one of claims 1 to 14, wherein a hydration reaction type chemical heat storage material that absorbs heat with a dehydration reaction and dissipates heat with a hydration reaction is used as the chemical heat storage material. body. 前記化学蓄熱材として、脱水反応に伴い酸化され、水和反応に伴い水酸化される水和反応系化学蓄熱材が用いられている請求項1〜請求項15の何れか1項記載の化学蓄熱材成形体。   The chemical heat storage material according to any one of claims 1 to 15, wherein a hydration reaction type chemical heat storage material that is oxidized with a dehydration reaction and hydroxylated with a hydration reaction is used as the chemical heat storage material. Material molded body. 前記水和反応系化学蓄熱材は、無機化合物である請求項16記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to claim 16, wherein the hydration reaction type chemical heat storage material is an inorganic compound. 前記無機化合物は、アルカリ土類金属化合物である請求項17記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to claim 17, wherein the inorganic compound is an alkaline earth metal compound. 前記粉体の水和反応系化学蓄熱材と、前記粘土鉱物としてのセピオライトとを混練して所定の形状に成形したものを、350℃〜500℃の温度で焼成して成る請求項16〜請求項18の何れか1項記載の化学蓄熱材成形体。   The powder hydration reaction type chemical heat storage material and sepiolite as the clay mineral are kneaded and molded into a predetermined shape and fired at a temperature of 350 ° C to 500 ° C. Item 20. The chemical heat storage material molded article according to any one of Items 18 above. 粉体の化学蓄熱材を用いて高粘度の混練物を得る混練工程と、
前記混練物を内部に流路が形成されるように成形する成形工程と、
前記成形工程で成形された前記混練物の成形体を焼成する焼成工程と、
を含む化学蓄熱材成形体の製造方法。
A kneading step for obtaining a kneaded product having a high viscosity using a powder chemical heat storage material;
A molding step of molding the kneaded product so that a flow path is formed therein;
A firing step of firing the molded body of the kneaded product molded in the molding step;
The manufacturing method of the chemical heat storage material molded object containing this.
前記成形工程は、前記混練物の押し出し成形により行う請求項20記載の化学蓄熱材成形体の製造方法。   The method for producing a chemical heat storage material molded body according to claim 20, wherein the molding step is performed by extrusion molding of the kneaded product. 前記混練工程で、前記化学蓄熱材に所定の割合で粘土鉱物を混練した混練物の混練物を得る請求項20又は請求項21記載の化学蓄熱材成形体の製造方法。   The method for producing a chemical heat storage material molded body according to claim 20 or 21, wherein in the kneading step, a kneaded product of a kneaded material in which a clay mineral is kneaded with the chemical heat storage material at a predetermined ratio is obtained. 前記粘土鉱物として、層リボン構造を有する粘土鉱物を用いる請求項22記載の化学蓄熱材成形体の製造方法。   The method for producing a chemical heat storage material molded body according to claim 22, wherein a clay mineral having a layer ribbon structure is used as the clay mineral. 前記粘土鉱物として、層リボン構造を有する粘土鉱物及び板状組織を持つベントナイトを用いる請求項22記載の化学蓄熱材成形体の製造方法。   The method for producing a chemical heat storage material molded body according to claim 22, wherein a clay mineral having a layered ribbon structure and bentonite having a plate-like structure are used as the clay mineral. 前記層リボン構造を有する粘土鉱物として、セピオライト、パリゴルスカイト又はカオリナイトを用いる請求項23又は請求項24記載の化学蓄熱材成形体の製造方法。   The method for producing a chemical heat storage material molded body according to claim 23 or 24, wherein sepiolite, palygorskite, or kaolinite is used as the clay mineral having the layer ribbon structure. 前記粘土鉱物として、ベントナイトを用いる請求項22記載の化学蓄熱材成形体の製造方法。   The method for producing a chemical heat storage material molded body according to claim 22, wherein bentonite is used as the clay mineral. 前記混練工程では、前記化学蓄熱材の粒子径よりも細い繊維状を成す前記粘土鉱物を用いる請求項22〜請求項26の何れか1項記載の化学蓄熱材成形体の製造方法。   27. The method for producing a chemical heat storage material molded body according to any one of claims 22 to 26, wherein in the kneading step, the clay mineral having a fiber shape smaller than a particle diameter of the chemical heat storage material is used. 前記化学蓄熱材として、脱水反応に伴い吸熱し、水和反応に伴い放熱する水和反応系化学蓄熱材が用いられており、
前記混練工程では、水和状態の前記化学蓄熱材を前記粘土鉱物と混練する請求項22〜請求項27の何れか1項記載の化学蓄熱材成形体の製造方法。
As the chemical heat storage material, a hydration reaction type chemical heat storage material that absorbs heat with a dehydration reaction and dissipates heat with a hydration reaction is used,
28. The method for producing a chemical heat storage material molded body according to any one of claims 22 to 27, wherein in the kneading step, the chemical heat storage material in a hydrated state is kneaded with the clay mineral.
前記化学蓄熱材として、脱水反応に伴い酸化され、水和反応に伴い水酸化される水和反応系化学蓄熱材が用いられており、
前記混練工程では、水酸化物の状態である前記化学蓄熱材を前記粘土鉱物と混練する請求項22〜請求項28の何れか1項記載の化学蓄熱材成形体の製造方法。
As the chemical heat storage material, a hydration reaction type chemical heat storage material that is oxidized with a dehydration reaction and hydroxylated with a hydration reaction is used,
The method for producing a chemical heat storage material molded body according to any one of claims 22 to 28, wherein in the kneading step, the chemical heat storage material in a hydroxide state is kneaded with the clay mineral.
前記水和反応系化学蓄熱材は、無機化合物である請求項29記載の化学蓄熱材成形体の製造方法。   The method for producing a chemical heat storage material molded body according to claim 29, wherein the hydration reaction type chemical heat storage material is an inorganic compound. 前記無機化合物は、アルカリ土類金属化合物である請求項30記載の化学蓄熱材成形体の製造方法。   The method for producing a chemical heat storage material molded body according to claim 30, wherein the inorganic compound is an alkaline earth metal compound. 前記焼成工程では、前記水和系化学蓄熱材が脱水状態とされる温度で前記混練物を焼成する請求項29〜請求項31の何れか1項記載の化学蓄熱材成形体の製造方法。   32. The method for producing a chemical heat storage material molded body according to any one of claims 29 to 31, wherein in the firing step, the kneaded product is fired at a temperature at which the hydrated chemical heat storage material is dehydrated. 前記焼成工程では、前記化学蓄熱材に微細なクラックが形成される温度で焼成する請求項32記載の化学蓄熱材成形体の製造方法。   33. The method for producing a chemical heat storage material molded body according to claim 32, wherein the chemical heat storage material is fired at a temperature at which fine cracks are formed in the chemical heat storage material.
JP2008109168A 2007-11-30 2008-04-18 Chemical heat storage material molded body and manufacturing method thereof Active JP5300307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008109168A JP5300307B2 (en) 2007-11-30 2008-04-18 Chemical heat storage material molded body and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007311776 2007-11-30
JP2007311776 2007-11-30
JP2008109168A JP5300307B2 (en) 2007-11-30 2008-04-18 Chemical heat storage material molded body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009149838A true JP2009149838A (en) 2009-07-09
JP5300307B2 JP5300307B2 (en) 2013-09-25

Family

ID=40919349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109168A Active JP5300307B2 (en) 2007-11-30 2008-04-18 Chemical heat storage material molded body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5300307B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118736A1 (en) 2010-03-25 2011-09-29 株式会社豊田中央研究所 Chemical heat storage material structure, production method therefor, and chemical heat accumulator
JP2011213883A (en) * 2010-03-31 2011-10-27 Toyota Central R&D Labs Inc Manufacturing method for heat storage material structure, and heat storage material structure precursor composition
JP2012255105A (en) * 2011-06-09 2012-12-27 Ngk Insulators Ltd Heat reservoir
JP2013124823A (en) * 2011-12-15 2013-06-24 Ngk Insulators Ltd Thermal storage structure
JP2014181883A (en) * 2013-03-21 2014-09-29 Toyota Central R&D Labs Inc Box, chemical heat storage reactor and chemical heat storage system
US9074827B2 (en) 2007-11-30 2015-07-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger heat-utilization device and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152655U (en) * 1984-03-15 1985-10-11 凸版印刷株式会社 Simple heating material
JPH01314854A (en) * 1988-06-14 1989-12-20 Yoshizawa Sekkai Kogyo Kk Hot plate and heat generation agent utilizing hydration heat of quick lime
JPH04168190A (en) * 1990-11-01 1992-06-16 Powder Tec Kk Exothermic molded body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152655U (en) * 1984-03-15 1985-10-11 凸版印刷株式会社 Simple heating material
JPH01314854A (en) * 1988-06-14 1989-12-20 Yoshizawa Sekkai Kogyo Kk Hot plate and heat generation agent utilizing hydration heat of quick lime
JPH04168190A (en) * 1990-11-01 1992-06-16 Powder Tec Kk Exothermic molded body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074827B2 (en) 2007-11-30 2015-07-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger heat-utilization device and method of manufacturing the same
WO2011118736A1 (en) 2010-03-25 2011-09-29 株式会社豊田中央研究所 Chemical heat storage material structure, production method therefor, and chemical heat accumulator
US9120959B2 (en) 2010-03-25 2015-09-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical thermal energy storage material structure, method of producing the same, and chemical heat accumulator
JP2011213883A (en) * 2010-03-31 2011-10-27 Toyota Central R&D Labs Inc Manufacturing method for heat storage material structure, and heat storage material structure precursor composition
JP2012255105A (en) * 2011-06-09 2012-12-27 Ngk Insulators Ltd Heat reservoir
JP2013124823A (en) * 2011-12-15 2013-06-24 Ngk Insulators Ltd Thermal storage structure
JP2014181883A (en) * 2013-03-21 2014-09-29 Toyota Central R&D Labs Inc Box, chemical heat storage reactor and chemical heat storage system

Also Published As

Publication number Publication date
JP5300307B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP4911002B2 (en) Heat exchange type heat utilization apparatus and manufacturing method thereof
JP5223314B2 (en) Heat storage device
JP5277621B2 (en) Chemical heat storage material molded body and manufacturing method thereof
JP5300307B2 (en) Chemical heat storage material molded body and manufacturing method thereof
JP5785932B2 (en) Chemical heat storage material structure, manufacturing method thereof, and chemical heat storage
JP5547896B2 (en) CHEMICAL HEAT STORAGE REACTOR AND METHOD FOR PRODUCING CHEMICAL HEAT STORAGE MATERIAL WITH FILTER
JP5374683B2 (en) Chemical heat storage material molded body and manufacturing method thereof
JP5297669B2 (en) Chemical heat storage material composite and its manufacturing method
Ma et al. Preparation and properties of novel ceramic composites based on microencapsulated phase change materials (MEPCMs) with high thermal stability
JP5232521B2 (en) Method for producing chemical heat storage material composite
US10371460B2 (en) Heat storage member
JP5327729B2 (en) Chemical heat storage material and manufacturing method thereof
JP5749049B2 (en) Chemical regenerator and manufacturing method thereof
JP5232510B2 (en) Manufacturing method of chemical heat storage material molded body
JP2009256520A (en) Chemical thermal storage medium composite and method for producing the same
JP2009256519A (en) Chemical thermal storage medium composite and method for producing the same
JP5231077B2 (en) Chemical heat storage material composite and its manufacturing method
JP7202560B2 (en) Thermal storage reactor
JP5401782B2 (en) Thermal storage device and manufacturing method thereof
JP5277138B2 (en) Regenerator and method for manufacturing the same
JP5303159B2 (en) Chemical heat storage material composite
JP5303158B2 (en) Chemical heat storage material molded body and manufacturing method thereof
JP5503377B2 (en) Manufacturing method of chemical heat storage material structure
JP5719649B2 (en) Chemical regenerator and manufacturing method thereof
WO2020130066A1 (en) Platy chemical heat-storage object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Ref document number: 5300307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250