JP2012196704A - Gas pressure welding method - Google Patents

Gas pressure welding method Download PDF

Info

Publication number
JP2012196704A
JP2012196704A JP2011063653A JP2011063653A JP2012196704A JP 2012196704 A JP2012196704 A JP 2012196704A JP 2011063653 A JP2011063653 A JP 2011063653A JP 2011063653 A JP2011063653 A JP 2011063653A JP 2012196704 A JP2012196704 A JP 2012196704A
Authority
JP
Japan
Prior art keywords
gas
pressure welding
welding method
rail
gas pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011063653A
Other languages
Japanese (ja)
Inventor
Ryuichi Yamamoto
隆一 山本
Mitsumasa Tatsumi
光正 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2011063653A priority Critical patent/JP2012196704A/en
Publication of JP2012196704A publication Critical patent/JP2012196704A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas pressure welding method in which the oxide that causes the generation of defects of cracks, wounds or the like is decreased enough.SOLUTION: In the gas pressure welding method, at first, recessed parts 5 are each formed at end faces 2, 2 of two railway rails 1, 1 (step 101). Next, the two railway rails 1, 1 are butted by those end faces 2, 2 (step 102). Thus, the end faces 2, 2 of the railway rails 1, 1 are mutually touched at the centers 3, 3, and are mutually spaced at the peripheral edges 4, 4, and a gap 11 in which the recessed parts 5, 5 are combined is formed in a groove shape between the peripheral edges 4, 4. Next, those butting parts are heated by the combustion flame consisting of oxygen gas and acetylene gas while making the pressurizing force of a material axial compression direction act on the railway rails 1, 1. In the heating, the combustion flame is blown into the gap 11 between the end faces 2, 2 (step 103).

Description

本発明は、レールや鉄筋といった構造用鋼材、特に鉄道用レールを接合する際に適用されるガス圧接方法に関する。   The present invention relates to a gas pressure welding method applied when joining structural steel materials such as rails and reinforcing bars, in particular railroad rails.

レールを敷設するにあたり、昨今では、騒音の軽減や乗り心地の改善を図るべく、定尺レールを溶接して数百mの長さにしたロングレールが数多く採用されており、レール同士の接合には、ガス圧接、テルミット溶接、フラッシュ溶接といった溶接技術が採用されている。   In laying rails, many long rails that are several hundred meters long have been used to weld noise to reduce noise and improve riding comfort. Uses welding techniques such as gas pressure welding, thermite welding, and flash welding.

これらのうち、ガス圧接は、接合対象となる2本のレールを研削済の端面で突き合わせ、かかる状態で材軸圧縮方向に加圧力を作用させつつ、突き合わせ箇所を酸素アセチレン炎で加熱軟化させるものであって、接合対象面を溶融させずに機械的圧力を加えることで接合する、いわゆる固相接合法に分類されており、母材に近い強度でレール同士を接合することができることから、レールの溶接技術として広く普及している。   Among these, gas pressure welding is a method in which two rails to be joined are butted at a ground end face, and in this state, a pressure is applied in the compression direction of the material shaft, and the butted portion is heated and softened with an oxygen acetylene flame. However, it is classified as a so-called solid-phase joining method that joins by applying mechanical pressure without melting the surfaces to be joined, and the rails can be joined with strength close to the base material. It is widely used as a welding technique.

一方、ガス圧接においては、レール端面に酸化物が過剰に残存すると、金属結合が阻害されて接合箇所の強度が低下するとともに、圧接部の膨らみを熱間押抜きでせん断除去する際、せん断に伴う塑性変形によって酸化物の残存箇所に割れ、きず等の欠陥を生じる。   On the other hand, in gas pressure welding, if excessive oxide remains on the end surface of the rail, the metal bond is hindered and the strength of the joint is lowered, and when the bulge of the pressure welding portion is sheared away by hot punching, shearing occurs. The accompanying plastic deformation causes defects such as cracks and flaws in the remaining portions of the oxide.

かかる背景下、ガス圧接を行うための酸素アセチレン炎として、アセチレンガス量を酸素ガス量よりも多くした燃焼炎が用いられている。   Under such a background, a combustion flame in which the amount of acetylene gas is larger than the amount of oxygen gas is used as an oxygen acetylene flame for performing gas pressure welding.

特開2005−238250号公報JP 2005-238250 A 特開2001−152290号公報JP 2001-152290 A 特開平7−227684号公報JP-A-7-227684

かかる燃焼炎を用いたガス圧接においては、燃焼時に酸素と反応しないアセチレンが余剰分として燃焼炎に存在し、このアセチレンに含まれる炭素が酸化物を還元するため、レールの接合箇所近傍に酸化物が発生したとしても、該酸化物は、アセチレンの炭素によって分解除去されることとなり、割れ等の欠陥が生じるのを回避することが可能となる。   In gas pressure welding using such a combustion flame, acetylene that does not react with oxygen during combustion is present in the combustion flame as a surplus, and the carbon contained in this acetylene reduces the oxide, so that an oxide is present in the vicinity of the rail junction. Even if this occurs, the oxide is decomposed and removed by the carbon of acetylene, and it is possible to avoid the occurrence of defects such as cracks.

しかしながら、本出願人が上述した燃焼炎でガス圧接されたレールの接合箇所近傍を磁粉探傷試験で調べたところ、接合箇所近傍に欠陥(きず)の発生がわずかに確認され、余剰アセチレンの炭素による酸化物の還元作用だけでは、接合箇所近傍に残存する酸化物の量を完全に抑制することが難しいことがわかった。   However, when the present applicant examined the vicinity of the joint portion of the rail gas-welded with the above-mentioned combustion flame by the magnetic particle flaw detection test, the occurrence of defects (scratches) in the vicinity of the joint portion was slightly confirmed, and the excess acetylene was caused by carbon. It has been found that it is difficult to completely suppress the amount of oxide remaining in the vicinity of the junction by only the reducing action of the oxide.

そのため、圧接作業における作業員の熟練度が低い場合、接合箇所近傍に残存する酸化物の量を十分に低下させることができない懸念があり、酸化物の除去をより確実に行うことが可能な技術の開発が急務となっていた。   Therefore, when the skill level of the worker in the pressure welding operation is low, there is a concern that the amount of oxide remaining in the vicinity of the joint cannot be sufficiently reduced, and the technology capable of more reliably removing the oxide. The development of was urgent.

本発明は、上述した事情を考慮してなされたもので、割れ、きず等の欠陥が発生する原因となる酸化物を十分に低下させることが可能なガス圧接方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object thereof is to provide a gas pressure welding method capable of sufficiently reducing oxides that cause defects such as cracks and scratches. .

上記目的を達成するため、本発明に係るガス圧接方法は請求項1に記載したように、2本の構造用鋼材をそれらの端面で突き合わせ、該構造用鋼材に材軸圧縮方向の加圧力を作用させながらそれらの突き合わせ箇所を酸素ガス及びアセチレンガスからなる燃焼炎で加熱することによって前記2本の構造用鋼材を互いに接合するガス圧接方法において、
前記構造用鋼材がそれらの端面で突き合わされたとき、該各端面が中央で当接され周縁で離間するように、前記構造用鋼材のうち、少なくともいずれか一方の構造用鋼材の端面に凹部を設け、
前記燃焼炎を、該燃焼炎による突き合わせ箇所の加熱変形が開始する前においては加熱変形開始後よりもアセチレンガス量が大きくなるようにかつ酸素ガス量よりも多くなるように調整し、前記加圧力を加熱変形開始前においては加熱変形開始後よりも小さく設定し、
加熱工程においては、前記凹部によって形成される前記各端面間の間隙に前記燃焼炎を吹き込むものである。
In order to achieve the above object, the gas pressure welding method according to the present invention, as described in claim 1, butts two structural steel materials at their end faces, and applies pressure in the axial direction to the structural steel material. In the gas pressure welding method in which the two structural steel materials are joined to each other by heating the butted portions with a combustion flame made of oxygen gas and acetylene gas while acting,
When the structural steel materials are abutted at their end faces, a concave portion is formed on the end face of at least one of the structural steel materials so that the end faces are in contact with each other at the center and separated from each other at the peripheral edge. Provided,
The combustion flame is adjusted so that the amount of acetylene gas is larger and the amount of oxygen gas is larger than the amount of oxygen gas before the heat deformation of the butt portion due to the combustion flame is started, and the pressure is increased. Is set smaller before heating deformation start than after heating deformation start,
In the heating step, the combustion flame is blown into the gaps between the end faces formed by the recesses.

また、本発明に係るガス圧接方法は、前記各構造用鋼材の端面を周縁が中央よりもテーパ状に後退するように形成して前記凹部としたものである。   In the gas pressure welding method according to the present invention, the end surface of each structural steel material is formed so that the peripheral edge recedes in a taper shape from the center to form the concave portion.

また、本発明に係るガス圧接方法は、前記構造用鋼材を鉄道用レールとしたものである。   In the gas pressure welding method according to the present invention, the structural steel material is a rail for rail.

また、本発明に係るガス圧接方法は、前記鉄道用レールをベイナイトレールとするとともに、前記間隙の離間寸法Wが端面縁部で1〜5mm、前記間隙の端面縁部からの深さDが5〜15mmとなるように前記凹部を構成したものである。   In the gas pressure welding method according to the present invention, the rail for rail is a bainite rail, the gap dimension W of the gap is 1 to 5 mm at the end face edge, and the depth D from the end face edge of the gap is 5 The said recessed part is comprised so that it may be set to -15mm.

また、本発明に係るガス圧接方法は、前記鉄道用レールをベイナイトレールとするとともに、前記加圧力を加熱変形開始前で15〜20MPa、加熱変形開始後で22〜25MPaとしたものである。   In the gas pressure welding method according to the present invention, the rail for rail is a bainite rail, and the applied pressure is set to 15 to 20 MPa before the start of heat deformation and 22 to 25 MPa after the start of heat deformation.

また、本発明に係るガス圧接方法は、前記鉄道用レールをベイナイトレールとするとともに、前記燃焼炎におけるアセチレンガス量を加熱変形開始前で酸素ガス量の1.1〜1.3倍、加熱変形開始後で1.0〜1.05倍としたものである。   Further, the gas pressure welding method according to the present invention is such that the rail for railroad is a bainite rail, and the amount of acetylene gas in the combustion flame is 1.1 to 1.3 times the amount of oxygen gas before the heat deformation starts. 1.0 to 1.05 times after the start.

ガス圧接を行うにあたり、突き合わせ箇所に形成された酸化物を構造用鋼材内の炭素やアセチレンの炭素による還元作用で分解除去し得ることは従来から知られていたが、その一方で、アセチレンガス量が酸素ガス量よりも多い燃焼炎を用いても接合箇所近傍に酸化物が残存し、結果として割れ等の欠陥を十分に抑制することが難しかったことは上述した通りである。   In performing gas pressure welding, it has been conventionally known that the oxide formed at the butt portion can be decomposed and removed by the reduction action of carbon in the structural steel material or carbon of acetylene, but on the other hand, the amount of acetylene gas As described above, the oxide remains in the vicinity of the joint even when a combustion flame having a larger amount of oxygen gas than that is used, and as a result, it has been difficult to sufficiently suppress defects such as cracks.

これは、突き合わせ箇所近傍への炭素供給が十分ではなく、また、供給された炭素による酸化物の分解反応が十分な程度に進行していないことが原因であると思われるところ、本出願人は、いかにすれば十分な濃度で炭素を供給し、なおかつ十分な程度まで酸化物の分解反応を進行させることができるかという点に着眼して研究開発を行った結果、上述した構成によって、突き合わせ箇所近傍における酸化物の残存量を大幅に低下させることができるというあらたな知見を得たものである。   This is because the carbon supply to the vicinity of the butt is not sufficient, and it seems that the decomposition reaction of the oxide by the supplied carbon has not progressed to a sufficient extent. As a result of research and development focusing on how carbon can be supplied at a sufficient concentration and the decomposition reaction of the oxide can proceed to a sufficient extent, This is a new finding that the residual amount of oxide in the vicinity can be greatly reduced.

すなわち、本発明に係るガス圧接方法においては、構造用鋼材がそれらの端面で突き合わされたとき、該各端面が中央で当接され周囲で離間するように、構造用鋼材のうち、少なくともいずれか一方の構造用鋼材の端面に凹部を設けるとともに、燃焼炎による突き合わせ箇所の加熱変形が開始する前においては、加熱変形開始後よりもアセチレンガス量が大きくなるようにかつ酸素ガス量よりも多くなるように該燃焼炎を調整し、加熱工程においては、上述した凹部によって形成される各端面間の間隙に燃焼炎を吹き込む。   That is, in the gas pressure welding method according to the present invention, when the structural steel materials are abutted at their end surfaces, at least one of the structural steel materials so that the respective end surfaces abut on the center and are separated from each other at the center. A concave portion is provided on the end surface of one structural steel material, and before the heat deformation of the butt portion by the combustion flame starts, the amount of acetylene gas becomes larger than after the heat deformation starts and becomes larger than the amount of oxygen gas. The combustion flame is adjusted as described above, and in the heating step, the combustion flame is blown into the gaps between the end faces formed by the recesses described above.

このようにすると、加熱変形開始前においては、燃焼炎が間隙内に広く行き渡り、該燃焼炎に含まれる余剰アセチレンの炭素は、高い濃度で突き合わせ箇所近傍に供給される。   In this way, before the start of heat deformation, the combustion flame spreads widely in the gap, and surplus acetylene carbon contained in the combustion flame is supplied in the vicinity of the butt portion at a high concentration.

また、燃焼炎で加熱する際、構造用鋼材に作用させる材軸圧縮方向の加圧力を、加熱変形開始前においては加熱変形開始後よりも小さく設定する。   In addition, when heating with the combustion flame, the pressure in the material axis compression direction applied to the structural steel material is set to be smaller before the start of heating deformation than after the start of heating deformation.

このようにすると、構造用鋼材に作用させる加圧力が小さいがゆえに、突き合わせ箇所近傍における加熱変形の開始が遅くなり、その分、加熱時間が長くなって突き合わせ箇所近傍の温度が上昇する。   In this case, since the pressure applied to the structural steel material is small, the start of heat deformation in the vicinity of the butt location is delayed, and accordingly, the heating time becomes longer and the temperature in the vicinity of the butt location increases.

そのため、加熱工程において突き合わせ箇所近傍に酸化物を生じたとしても、かかる酸化物は、間隙を介した高い濃度での炭素供給と、温度上昇による反応促進との相乗作用により、確実かつ短時間に還元され、すみやかに分解除去される。   Therefore, even if an oxide is generated in the vicinity of the butt portion in the heating process, such an oxide is reliably and in a short time due to a synergistic effect of carbon supply at a high concentration through the gap and acceleration of the reaction due to temperature increase. Reduced and promptly decomposed and removed.

また、加熱変形開始前における構造用鋼材への加圧力を小さくすることにより、構造用鋼材が各端面で相互に密着するタイミングを遅らせることが可能となり、突き合わせ箇所近傍において酸化物を分解除去するための時間を十分に確保することができる。   In addition, by reducing the pressure applied to the structural steel material before the start of heat deformation, it becomes possible to delay the timing at which the structural steel materials adhere to each other at each end face, so that the oxide is decomposed and removed in the vicinity of the butted portion This time can be secured sufficiently.

一方、加熱変形開始後においては、加熱変形開始前よりも加圧力を大きくすることで、突き合わせ箇所近傍の加熱変形を促進させる。   On the other hand, after the start of the heat deformation, the heat deformation in the vicinity of the abutting portion is promoted by increasing the pressure force before the start of the heat deformation.

このようにすると、加熱変形の速度が早くなった分、加熱変形開始後の加熱時間が短くなり、過度な温度上昇による突き合わせ箇所の表面溶融を回避することができる。   In this way, the heating time after the start of the heat deformation is shortened by the amount that the speed of the heat deformation is increased, and it is possible to avoid the surface melting of the butted portion due to an excessive temperature rise.

構造用鋼材の端面に設ける凹部は、必ずしも端面の全周にわたって設ける必要はなく、一部に限って設けるようにしてもかまわない。   The concave portion provided on the end surface of the structural steel material does not necessarily have to be provided over the entire circumference of the end surface, and may be provided only in part.

また、かかる凹部は、2本の構造用鋼材を突き合わせたときに、該凹部によって構造用鋼材の各端面の間に間隙が形成される限り、その構成は任意であって、いずれかの構造用鋼材にのみ設けるようにしてもかまわない。   Further, such a recess has any configuration as long as a gap is formed between each end surface of the structural steel material when the two structural steel materials are brought into contact with each other. It may be provided only on steel.

構造用鋼材の端面に設ける凹部の具体例としては例えば、各構造用鋼材の端面を周縁が中央よりもテーパ状に後退するように形成し、これを凹部とすることができる。   As a specific example of the concave portion provided on the end surface of the structural steel material, for example, the end surface of each structural steel material can be formed so that the peripheral edge recedes in a taper shape from the center, and this can be used as the concave portion.

構造用鋼材にはレール及び鉄筋が含まれるが、かかる構造用鋼材を特に鉄道用レールとした場合においては、ガス圧接に携わる作業員の習熟度とは関係なく、より安全性の高い軌道を構築することが可能となる。   Although structural steel materials include rails and reinforcing bars, especially when these structural steel materials are railroad rails, a safer track is constructed regardless of the level of proficiency of workers engaged in gas pressure welding. It becomes possible to do.

各構造用鋼材の端面を周縁が中央よりもテーパ状に後退するように形成し、これを凹部とする場合、該凹部で形成される間隙の離間寸法や深さは任意であって、対象となる構造用鋼材の鋼種や断面形状に応じて適宜定めればよいが、鉄道用レールがベイナイトレールであれば、凹部によって形成される各端面間の間隙の離間寸法Wが端面縁部で1〜5mm、間隙の端面縁部からの深さDが5〜15mmとなるように、凹部を構成すればよい。   When the end surface of each structural steel material is formed so that the peripheral edge recedes in a taper shape from the center, and this is used as a recess, the separation size and depth of the gap formed by the recess are arbitrary, and What is necessary is just to determine suitably according to the steel grade and cross-sectional shape of the structural steel material which becomes, If the rail for railroads is a bainite rail, the separation dimension W of the gap between each end surface formed by the concave portion is 1 to 1 at the end surface edge. What is necessary is just to comprise a recessed part so that 5 mm and the depth D from the edge surface edge part of a space | gap may be 5-15 mm.

間隙の離間寸法や深さを上述の範囲としたのは、間隙の離間寸法Wが5mmを上回り、あるいは間隙の深さDが15mmを上回ると、凹部が過大となり、該凹部が設けられた端面においてベイナイトレールの圧縮変形度が不足するからであり、間隙の離間寸法Wが1mmを下回り、あるいは間隙の深さDが5mmを下回ると、燃焼炎を吹き込むための空間が過小となり、十分な濃度で突き合わせ箇所に炭素を供給することが困難となるからである。   The clearance dimension and depth of the gap are set in the above-mentioned range because when the gap separation dimension W exceeds 5 mm or when the gap depth D exceeds 15 mm, the concave portion becomes excessive, and the end surface provided with the concave portion is provided. In this case, the degree of compressive deformation of the bainite rail is insufficient, and if the gap separation dimension W is less than 1 mm or the gap depth D is less than 5 mm, the space for injecting the combustion flame becomes too small, and the sufficient concentration. This is because it becomes difficult to supply carbon to the butted portion.

加熱変形開始後に対する加熱変形開始前の加圧力の低減量は、該工程の加熱時間が長くなることで突き合わせ箇所の温度が上昇するとともに、該温度上昇によって炭素による酸化物の分解反応が促進される限り、どの程度の大きさに設定するかは任意であって、対象となる構造用鋼材の鋼種や断面形状に応じて適宜定めればよいが、鉄道用レールがベイナイトレールであれば、かかる加圧力を、加熱変形開始前で15〜20MPa、加熱変形開始後で22〜25MPaとすればよい。   The amount of pressure reduction before the start of heat deformation relative to the start of heat deformation increases the temperature at the butt portion as the heating time of the process becomes longer, and the temperature increase promotes the decomposition reaction of oxides by carbon. As long as it is set, the size is arbitrary and may be determined as appropriate according to the steel type and cross-sectional shape of the target structural steel material. The applied pressure may be 15 to 20 MPa before the start of heat deformation and 22 to 25 MPa after the start of heat deformation.

加熱変形開始前における加圧力を15〜20MPaとしたのは、15MPa未満だと加熱変形の開始が遅すぎて過剰な温度上昇を招く懸念があり、20MPaを上回ると、加熱変形の開始が早すぎて酸化物の分解反応を促進させるのに適した温度に到達しないためである。   The reason why the pressure applied before the start of the heat deformation is 15 to 20 MPa is that if it is less than 15 MPa, the start of the heat deformation is too late and may cause an excessive temperature rise, and if it exceeds 20 MPa, the start of the heat deformation is too early. This is because the temperature suitable for promoting the decomposition reaction of the oxide is not reached.

また、加熱変形開始後における加圧力を22〜25MPaとしたのは、22MPa未満だと加熱変形速度が遅すぎて過度な温度上昇ひいては突き合わせ箇所の表面溶融を招く懸念があるからであり、25MPaを上回ると、加熱変形速度が早すぎて良好な圧接が行われないからである。   Moreover, the reason why the applied pressure after the start of the heat deformation is set to 22 to 25 MPa is that if it is less than 22 MPa, the heat deformation speed is too slow, and there is a concern that the temperature rises excessively and consequently the surface melts at the butt portion. If it exceeds, the heating deformation speed is too fast and good pressure welding is not performed.

燃焼炎におけるアセチレンガス量は、加熱変形開始前においては、突き合わせ箇所に十分な濃度の炭素が供給されるように、加熱変形開始後においては、過度な温度上昇を招かないように構成される限り、どのような値に設定するかは任意であって、対象となる構造用鋼材の鋼種や断面形状に応じて適宜定めればよいが、鉄道用レールがベイナイトレールであれば、燃焼炎におけるアセチレンガス量を加熱変形開始前で酸素ガス量の1.1〜1.3倍、加熱変形開始後で1.0〜1.05倍とするのがよい。   As long as the acetylene gas amount in the combustion flame is configured so as not to cause an excessive temperature rise after the start of the heat deformation so that a sufficient concentration of carbon is supplied to the abutting location before the start of the heat deformation. The value to be set is arbitrary and may be appropriately determined according to the steel type and cross-sectional shape of the target structural steel material. If the rail for rail is a bainite rail, acetylene in the combustion flame The gas amount is preferably 1.1 to 1.3 times the amount of oxygen gas before the start of heat deformation and 1.0 to 1.05 times after the start of heat deformation.

加熱変形開始前におけるアセチレンガス量を酸素ガス量の1.1〜1.3倍としたのは、1.1倍を下回ると、突き合わせ箇所に十分な濃度の炭素を供給することができないからであり、1.3倍を上回ると、燃焼炎の火炎先端が構造用鋼材の表面に接近して過度な温度上昇ひいては突き合わせ箇所の表面溶融を招く懸念があるからである。   The reason why the amount of acetylene gas before the start of heat deformation is 1.1 to 1.3 times the amount of oxygen gas is that if the amount is less than 1.1 times, sufficient concentration of carbon cannot be supplied to the butted portion. If it exceeds 1.3 times, the flame tip of the combustion flame approaches the surface of the structural steel material and there is a concern that the temperature rises excessively and consequently the surface of the butted portion is melted.

また、加熱変形開始後におけるアセチレンガス量を酸素ガス量の1.0〜1.05倍としたのは、1.0を下回ると、逆火現象が生じるからであり、1.05倍を上回ると、ガス圧接作業終盤過程において顕著な表面溶融を招く懸念があるからである。   The reason why the amount of acetylene gas after the start of heat deformation is set to 1.0 to 1.05 times the amount of oxygen gas is that when less than 1.0, a flashback phenomenon occurs, exceeding 1.05 times. This is because there is a concern of causing significant surface melting in the final stage of the gas pressure welding operation.

本実施形態に係るガス圧接方法の実施手順を示したフローチャート。The flowchart which showed the implementation procedure of the gas pressure welding method which concerns on this embodiment. 接合対象であるレール1,1を示した図であり、(a)は全体側面図、(b)はA−A線方向から見た矢視図、(c)はB−B線方向から見た矢視図。It is the figure which showed the rails 1 and 1 which are joining objects, (a) is a whole side view, (b) is an arrow view seen from the AA line direction, (c) is seen from the BB line direction. Arrow view. レール1,1を端面2,2で突き合わせた状態を示した図であり、(a)は側面図、(b)は詳細図。It is the figure which showed the state which matched the rails 1 and 1 by the end surfaces 2 and 2, (a) is a side view, (b) is a detailed figure.

以下、本発明に係るガス圧接方法の実施の形態について、添付図面を参照して説明する。   Embodiments of a gas pressure welding method according to the present invention will be described below with reference to the accompanying drawings.

図1は、本実施形態に係るガス圧接方法の実施手順を示したフローチャートである。同図に示すように、本実施形態に係るガス圧接方法においては、まず図2に示すように、互いに接合される構造用鋼材としての2本の鉄道用レール1,1の端面2,2にそれぞれ凹部5を形成する(ステップ101)。   FIG. 1 is a flowchart showing an implementation procedure of the gas pressure welding method according to the present embodiment. As shown in the figure, in the gas pressure welding method according to this embodiment, first, as shown in FIG. 2, the end surfaces 2 and 2 of the two rails 1 and 1 as the structural steel materials to be joined to each other are formed. Recesses 5 are respectively formed (step 101).

凹部5は、鉄道用レール1の端面2を、周縁4がその内側に拡がる中央3よりもテーパ状に後退するように形成してなり、凹部5を形成するにあたっては、例えば研削作業を行う際、中央3を平滑に仕上げつつ、周縁4をテーパ加工するようにすればよい。   The recess 5 is formed so that the end surface 2 of the rail 1 for railroads recedes in a taper shape from the center 3 where the peripheral edge 4 extends inward, and when forming the recess 5, for example, when performing a grinding operation The peripheral edge 4 may be tapered while finishing the center 3 smoothly.

次に、図3に示すように、2本の鉄道用レール1,1をそれらの端面2,2で突き合わせる(ステップ102)。   Next, as shown in FIG. 3, the two rails for rails 1, 1 are butted at their end surfaces 2, 2 (step 102).

このようにすると、鉄道用レール1,1の端面2,2は、その中央3,3において互いに当接されるとともに、周縁4,4において互いに離間し、周縁4,4の間には、凹部5,5が一体となった間隙11が溝状に形成される。   In this way, the end surfaces 2 and 2 of the rails 1 and 1 are brought into contact with each other at the centers 3 and 3 and are separated from each other at the peripheral edges 4 and 4. A gap 11 in which 5 and 5 are integrated is formed in a groove shape.

間隙11は、鉄道用レール1,1がベイナイトレールである場合、離間寸法Wが端面縁部で1〜5mm、端面縁部からの深さDが5〜15mmとなるのが望ましく、間隙11がかかる寸法となるように、凹部5,5をそれぞれ形成しておく。   When the rails 1 and 1 for railway are bainite rails, the clearance 11 is preferably 1 to 5 mm at the end edge and a depth D from 5 to 15 mm from the end edge. The recesses 5 and 5 are formed so as to have such dimensions.

次に、鉄道用レール1,1に材軸圧縮方向の加圧力を作用させながら、それらの突き合わせ箇所を酸素ガス及びアセチレンガスからなる燃焼炎で加熱する。加熱の際には、凹部5,5によって形成されている端面2,2間の間隙11に燃焼炎を吹き込む(ステップ103)。   Next, while applying a pressing force in the material axis compression direction to the rails 1 and 1 for railroads, those butt portions are heated with a combustion flame composed of oxygen gas and acetylene gas. During heating, a combustion flame is blown into the gap 11 between the end surfaces 2 and 2 formed by the recesses 5 and 5 (step 103).

ここで、燃焼炎は、該燃焼炎による突き合わせ箇所の加熱変形が開始する前においては加熱変形開始後よりもアセチレンガス量が大きくなるようにかつ酸素ガス量よりも多くなるように調整し、鉄道用レール1がベイナイトレールであれば、燃焼炎におけるアセチレンガス量を加熱変形開始前で酸素ガス量の1.1〜1.3倍とするのがよい。   Here, the combustion flame is adjusted so that the amount of acetylene gas is larger and the amount of oxygen gas is larger than the amount of oxygen gas before the start of the heat deformation of the butted portion by the combustion flame, If the rail 1 is a bainite rail, the amount of acetylene gas in the combustion flame is preferably 1.1 to 1.3 times the amount of oxygen gas before the start of heat deformation.

また、鉄道用レール1,1に作用させる材軸圧縮方向の加圧力は、加熱変形開始前においては加熱変形開始後よりも小さくなるように設定し、鉄道用レール1がベイナイトレールであれば、加熱変形開始前で15〜20MPaとするのがよい。   Further, the pressing force in the material axis compression direction to be applied to the rails 1 and 1 is set to be smaller than after the start of the heat deformation before the start of the heat deformation, and if the rail 1 for the rail is a bainite rail, It is good to set it as 15-20 Mpa before a heat deformation start.

このように条件を定めた上、燃焼炎を間隙11に吹き込むと、加熱変形開始前においては、燃焼炎が間隙11内に広く行き渡り、該燃焼炎に含まれる余剰アセチレンの炭素は、高い濃度で突き合わせ箇所近傍に供給されるとともに、加圧力が小さいため、突き合わせ箇所近傍における加熱変形の開始が遅くなり、その分、加熱時間が長くなって突き合わせ箇所近傍の温度が上昇する。   When the combustion flame is blown into the gap 11 with the conditions set in this manner, the combustion flame spreads widely in the gap 11 before the start of heat deformation, and the excess acetylene carbon contained in the combustion flame has a high concentration. Since it is supplied to the vicinity of the butt location and the applied pressure is small, the start of heating deformation in the vicinity of the butt location is delayed, and accordingly, the heating time becomes longer and the temperature near the butt location increases.

一方、加熱変形開始後においては、加圧力を大きくするとともに、アセチレンガス量を少なくし、鉄道用レール1がベイナイトレールであれば、加圧力を22〜25MPa、燃焼炎におけるアセチレンガス量を酸素ガス量の1.0〜1.05倍とするのがよい。   On the other hand, after starting the heat deformation, the pressure is increased and the amount of acetylene gas is reduced. If the rail 1 for rail is a bainite rail, the pressure is 22 to 25 MPa, and the amount of acetylene gas in the combustion flame is oxygen gas. The amount is preferably 1.0 to 1.05 times the amount.

このようにすると、加熱変形開始前よりも加圧力が大きくなるため、突き合わせ箇所近傍の加熱変形が促進され、加熱変形の速度が早くなった分、加熱時間が短くなって、過度な温度上昇による突き合わせ箇所の表面溶融が未然に回避される。   In this way, the applied pressure becomes larger than before the start of the heat deformation, so that the heat deformation near the butt location is promoted, the speed of the heat deformation is increased, the heating time is shortened, and the excessive temperature rise The surface melting of the butt portion is avoided in advance.

以上説明したように、本実施形態に係るガス圧接方法によれば、加熱変形開始前において、燃焼炎に含まれる余剰アセチレンの炭素が突き合わせ箇所近傍に高い濃度で供給されるとともに、加熱時間が長くなって突き合わせ箇所近傍の温度が上昇する。   As described above, according to the gas pressure welding method according to the present embodiment, the excess acetylene carbon contained in the combustion flame is supplied at a high concentration in the vicinity of the butted portion before the heating deformation starts, and the heating time is long. Thus, the temperature in the vicinity of the butt increases.

そのため、加熱工程において突き合わせ箇所近傍に酸化物を生じたとしても、かかる酸化物を、間隙11を介した高い濃度での炭素供給と、温度上昇による反応促進との相乗作用により、確実かつ短時間に還元し、すみやかに分解除去することが可能となり、かくしてガス圧接の接合箇所に割れ等の欠陥が生じるのを確実に防止することができる。   Therefore, even if an oxide is generated in the vicinity of the butt portion in the heating process, the oxide is reliably and for a short time due to the synergistic effect of the carbon supply at a high concentration through the gap 11 and the promotion of the reaction due to the temperature rise. Thus, it is possible to quickly decompose and remove, and thus it is possible to reliably prevent the occurrence of defects such as cracks at the gas pressure welded joint.

また、加熱変形開始前における鉄道用レール1,1への加圧力を小さくすることによって、鉄道用レール1,1が端面2,2で相互に密着するタイミングが遅くなるため、突き合わせ箇所近傍において酸化物を分解除去するための時間を十分に確保することが可能となる。   Further, by reducing the pressure applied to the rails 1 and 1 before the start of heat deformation, the timing at which the rails 1 and 1 are brought into close contact with each other at the end surfaces 2 and 2 is delayed. It is possible to secure a sufficient time for decomposing and removing the object.

また、本実施形態に係るガス圧接方法によれば、加熱変形開始後に加圧力を高くするようにしたので、突き合わせ箇所近傍の加熱変形が促進され、加熱変形の速度が早くなった分、加熱時間が短くなり、アセチレンガス量を小さくしたことと相俟って、過度な温度上昇による突き合わせ箇所の表面溶融を未然に回避することが可能となる。   In addition, according to the gas pressure welding method according to the present embodiment, since the applied pressure is increased after the start of the heat deformation, the heat deformation in the vicinity of the butt portion is promoted, and the heating deformation speed is increased, so that the heating time is increased. In combination with the reduction in the amount of acetylene gas, it becomes possible to avoid the surface melting of the butt portion due to an excessive temperature rise.

次に、本発明に係るガス圧接方法の実証試験を行ったので、その概要を以下に説明する。   Next, since the verification test of the gas pressure welding method according to the present invention was conducted, an outline thereof will be described below.

まず、JIS−60kgベイナイトレールのガス圧接試験体を作製し、かかる試験体に対し、極間型磁化器および蛍光磁粉を用いた磁粉探傷試験を行うことによって、きず(欠陥磁粉模様)の発生有無を調査した。   First, a JIS-60kg bainite rail gas pressure test specimen was prepared, and a magnetic particle flaw detection test using an interpolar magnetizer and fluorescent magnetic powder was performed on the test specimen, so that flaws (defect magnetic powder pattern) were generated. investigated.

表1は、ガス圧接試験体の作製条件及び磁粉探傷試験の結果を示したものである。

Figure 2012196704
Table 1 shows the production conditions of the gas pressure contact specimen and the results of the magnetic particle flaw detection test.
Figure 2012196704

同表でわかるように、試験体No.1は、燃焼炎におけるアセチレンガス量及び加圧力を加熱変形開始の前後で変化させず、なおかつ端面に間隙を形成せずに加熱を行った従来のガス圧接試験体である(比較例)。   As can be seen from the table, the test body No. 1 is a conventional gas which is heated without changing the amount of acetylene gas and the applied pressure in the combustion flame before and after the start of heating deformation and without forming a gap on the end face. It is a pressure contact test body (comparative example).

試験の結果、レールの頭部上角から頭側に至る部位において欠陥磁粉模様が確認された。ここで、頭部上角とはレール頭部の上方出隅部、頭側とはレール頭部の側面であり、後述するレール頭部の頭頂はレール頭部の上面、レール頭部のあごはレール頭部の下方出隅部をそれぞれ意味する(図2(b)参照)。   As a result of the test, a defective magnetic powder pattern was confirmed at a portion from the upper corner of the rail to the head side. Here, the upper corner of the head is the upper corner of the rail head, the head side is the side of the rail head, the top of the rail head described later is the upper surface of the rail head, and the chin of the rail head is It means the lower corner of the rail head (see FIG. 2 (b)).

試験体No.2は、燃焼炎において酸素ガス量に対するアセチレンガス量を加熱変形開始前は1.14倍、加熱変形開始後は1.04倍とし、加圧力を加熱変形開始前は16.8MPa、加熱変形開始後は24MPaとし、離間寸法Wが2mm、端面縁部からの深さDが10mmの間隙を端面に設けてガス圧接を行った試験体である。以下、試験体No.2の作製条件を実施例1と呼ぶ。   Specimen No. 2 uses 1.14 times the amount of acetylene gas relative to the amount of oxygen gas in the combustion flame before the start of heat deformation, 1.04 times after the start of heat deformation, and the applied pressure is 16.8 MPa before the start of heat deformation. This is a test body in which gas pressure welding is performed by providing a gap of 24 MPa after the start of heat deformation, a separation dimension W of 2 mm, and a depth D from the end surface edge of 10 mm on the end surface. Hereinafter, the production conditions of the specimen No. 2 are referred to as Example 1.

間隙の形成箇所は、比較例の結果を踏まえ、レールの頭部を取り囲むように、レール頭部のあごから頭側及び頭頂を経て、反対側の頭側及びあごに至る部位とした。   Based on the results of the comparative example, the gap was formed in a region from the chin of the rail head to the head side and the chin on the opposite side through the head side and the top of the head so as to surround the head of the rail.

試験の結果、欠陥磁粉模様は確認されず、良好にガス圧接されていることがわかった。   As a result of the test, no defective magnetic powder pattern was confirmed, and it was found that the gas pressure contact was good.

次に、試験体No.2の作製条件(実施例1)から、
(a)間隙の形成
(b)加熱変形開始前におけるアセチレンガス量の増加
(c)加熱変形開始前における加圧力の低減
の3つをひとつずつ除外して作製した試験体を作製し、それぞれ試験体No.3,試験体No.4,試験体No.5とした。すなわち、試験体No.3は、間隙を形成しない点を除き、作製条件を実施例1に一致させて作製したもの(実施例2)、試験体No.4は、加熱変形開始前においてアセチレンガス量を増加させない点を除き、作製条件を実施例1に一致させて作製したもの(実施例3)、試験体No.5は、加熱変形開始前において加圧力を低減させない点を除き、作製条件を実施例1に一致させて作製したもの(実施例4)である。
Next, from the preparation conditions of the test body No. 2 (Example 1),
(a) Formation of gap
(b) Increase in the amount of acetylene gas before the start of heat deformation
(c) Test specimens prepared by excluding the three steps of reducing the applied pressure before the start of heating deformation one by one were prepared as specimen No. 3, specimen No. 4, and specimen No. 5, respectively. That is, specimen No. 3 was produced by making the production conditions identical to Example 1 except that no gap was formed (Example 2), and specimen No. 4 was made of acetylene gas before the start of heat deformation. Except that the amount was not increased, the production conditions were the same as in Example 1 (Example 3), and specimen No. 5 was produced under the conditions except that the pressure was not reduced before the start of heat deformation. Is made in accordance with Example 1 (Example 4).

これらを試験した結果、試験体No.3では、頭部上角から頭側に至る部位(両側)で欠陥磁粉模様が確認され、試験体No.4では、頭部上角(両側)と頭部あご(一方)で欠陥磁粉模様が確認され、試験体No.5では頭側(一方)に欠陥磁粉模様が確認された。   As a result of testing these, in specimen No. 3, a defective magnetic powder pattern was confirmed in the part (both sides) from the upper corner of the head to the head side, and in specimen No. 4, the upper corner of the head (both sides) and the head. A defective magnetic powder pattern was confirmed on the partial chin (one side), and a defective magnetic powder pattern was confirmed on the head side (one side) in specimen No. 5.

これらはそれぞれ、間隙を形成しなかったことで炭素供給が不十分となり、アセチレンガス量を増加させなかったために炭素濃度が低くなり、加圧力を低減させなかったために十分な温度に到達しなかったことが原因と思われる。   In each of these, the carbon supply became insufficient because no gap was formed, the carbon concentration decreased because the amount of acetylene gas was not increased, and the sufficient pressure was not reached because the applied pressure was not reduced. This seems to be the cause.

次に、間隙の深さDを除き、作製条件を実施例1に一致させて試験体No.6を作製したところ(実施例5)、頭側(両側)に欠陥磁粉模様が確認された。   Next, when the specimen No. 6 was produced by making the production conditions the same as in Example 1 except for the gap depth D (Example 5), a defect magnetic powder pattern was confirmed on the head side (both sides).

これは、間隙が浅かったことで炭素供給がなお不十分であったことが原因であると思われる。   This may be due to the lack of carbon supply due to the shallow gap.

次に、加熱変形開始前の酸素ガス量に対するアセチレンガス量を大きくした点を除き、作製条件を実施例1に一致させ(実施例6)、試験体No.7の作製を試みたが、表層に過剰溶融が生じたため、作製作業を中止した。   Next, except that the amount of acetylene gas with respect to the amount of oxygen gas before the start of heat deformation was increased, the production conditions were made to match those of Example 1 (Example 6), and an attempt was made to produce specimen No. 7. Since overmelting occurred, the production operation was stopped.

1 鉄道用レール(構造用鋼材)
2 端面
3 端面の中央
4 端面の周縁
5 凹部
11 間隙
1 Railway rails (steel for construction)
2 End face 3 Center of end face 4 Edge edge 5 Recess 11 Gap

Claims (6)

2本の構造用鋼材をそれらの端面で突き合わせ、該構造用鋼材に材軸圧縮方向の加圧力を作用させながらそれらの突き合わせ箇所を酸素ガス及びアセチレンガスからなる燃焼炎で加熱することによって前記2本の構造用鋼材を互いに接合するガス圧接方法において、
前記構造用鋼材がそれらの端面で突き合わされたとき、該各端面が中央で当接され周縁で離間するように、前記構造用鋼材のうち、少なくともいずれか一方の構造用鋼材の端面に凹部を設け、
前記燃焼炎を、該燃焼炎による突き合わせ箇所の加熱変形が開始する前においては加熱変形開始後よりもアセチレンガス量が大きくなるようにかつ酸素ガス量よりも多くなるように調整し、前記加圧力を加熱変形開始前においては加熱変形開始後よりも小さく設定し、
加熱工程においては、前記凹部によって形成される前記各端面間の間隙に前記燃焼炎を吹き込むことを特徴とするガス圧接方法。
Two structural steel materials are abutted at their end faces, and the abutting portions are heated by a combustion flame composed of oxygen gas and acetylene gas while applying a pressing force in the axial direction of the material to the structural steel material. In the gas pressure welding method for joining two structural steel materials to each other,
When the structural steel materials are abutted at their end faces, a concave portion is formed on the end face of at least one of the structural steel materials so that the end faces are in contact with each other at the center and separated from each other at the peripheral edge. Provided,
The combustion flame is adjusted so that the amount of acetylene gas is larger and the amount of oxygen gas is larger than the amount of oxygen gas before the heat deformation of the butt portion due to the combustion flame is started, and the pressure is increased. Is set smaller before heating deformation start than after heating deformation start,
In the heating step, the gas pressure welding method is characterized in that the combustion flame is blown into a gap between the end faces formed by the recess.
前記各構造用鋼材の端面を周縁が中央よりもテーパ状に後退するように形成して前記凹部とした請求項1記載のガス圧接方法。 The gas pressure welding method according to claim 1, wherein the end surface of each structural steel material is formed so that the peripheral edge recedes in a taper shape from the center to form the concave portion. 前記構造用鋼材を鉄道用レールとした請求項1又は請求項2記載のガス圧接方法。 The gas pressure welding method according to claim 1 or 2, wherein the structural steel material is a railroad rail. 前記鉄道用レールをベイナイトレールとするとともに、前記間隙の離間寸法Wが端面縁部で1〜5mm、前記間隙の端面縁部からの深さDが5〜15mmとなるように前記凹部を構成した請求項3記載のガス圧接方法。 The rail is a bainite rail, and the concave portion is configured such that the gap separation dimension W is 1 to 5 mm at the end face edge and the depth D from the end face edge of the gap is 5 to 15 mm. The gas pressure welding method according to claim 3. 前記鉄道用レールをベイナイトレールとするとともに、前記加圧力を加熱変形開始前で15〜20MPa、加熱変形開始後で22〜25MPaとした請求項3記載のガス圧接方法。 The gas pressure welding method according to claim 3, wherein the rail for railroad is a bainite rail, and the applied pressure is set to 15 to 20 MPa before the start of heat deformation and 22 to 25 MPa after the start of heat deformation. 前記鉄道用レールをベイナイトレールとするとともに、前記燃焼炎におけるアセチレンガス量を加熱変形開始前で酸素ガス量の1.1〜1.3倍、加熱変形開始後で1.0〜1.05倍とした請求項3記載のガス圧接方法。 The rail for railroad is a bainite rail, and the amount of acetylene gas in the combustion flame is 1.1 to 1.3 times the amount of oxygen gas before the start of heating deformation, and 1.0 to 1.05 times after the start of heating deformation. The gas pressure welding method according to claim 3.
JP2011063653A 2011-03-23 2011-03-23 Gas pressure welding method Pending JP2012196704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011063653A JP2012196704A (en) 2011-03-23 2011-03-23 Gas pressure welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063653A JP2012196704A (en) 2011-03-23 2011-03-23 Gas pressure welding method

Publications (1)

Publication Number Publication Date
JP2012196704A true JP2012196704A (en) 2012-10-18

Family

ID=47179457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063653A Pending JP2012196704A (en) 2011-03-23 2011-03-23 Gas pressure welding method

Country Status (1)

Country Link
JP (1) JP2012196704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111678948A (en) * 2020-06-02 2020-09-18 四川大学 High-speed nondestructive detection method for surface defects of steel rail and implementation device thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138584A (en) * 1982-02-09 1983-08-17 Nippon Steel Corp Gas pressure welding method of steel pipe
JPH07227684A (en) * 1994-02-22 1995-08-29 Nippon Steel Corp Pressure welding method for opposing bag stock
JPH10158787A (en) * 1996-12-05 1998-06-16 Nkk Corp High strength bainitic rail excellent in gas pressure weldability and its production
JP2001293581A (en) * 2000-04-13 2001-10-23 Tokai Gas Assetsu Kk Method of gas-pressure welding using open butt method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138584A (en) * 1982-02-09 1983-08-17 Nippon Steel Corp Gas pressure welding method of steel pipe
JPH07227684A (en) * 1994-02-22 1995-08-29 Nippon Steel Corp Pressure welding method for opposing bag stock
JPH10158787A (en) * 1996-12-05 1998-06-16 Nkk Corp High strength bainitic rail excellent in gas pressure weldability and its production
JP2001293581A (en) * 2000-04-13 2001-10-23 Tokai Gas Assetsu Kk Method of gas-pressure welding using open butt method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111678948A (en) * 2020-06-02 2020-09-18 四川大学 High-speed nondestructive detection method for surface defects of steel rail and implementation device thereof

Similar Documents

Publication Publication Date Title
KR101257360B1 (en) Welded steel pipe welded with a high energy density beam, and a manufacturing method therefor
JP6407855B2 (en) Friction stir welding method for steel plate and method for manufacturing joint
CN104191072A (en) Welding method of stainless steel clad plate
JP6443319B2 (en) Lap laser spot welded joint and method of manufacturing the welded joint
CN102861985A (en) Repairing method of aluminum alloy agitating friction welding hole defects
CN103920986A (en) Stir friction both-side welding method for medium-thickness plate
CN102294545A (en) Laser penetration welding seam formation control method for Hass alloy conductive roller
CN103894725A (en) Friction-stir welding method for generating excess weld metal through additional top plate
Yamamoto et al. Development of hot-wire laser welding method for lap joint of steel sheet with wide gap
CN108788432B (en) Aviation homogeneous IC10 single crystal high-temperature alloy welding method
CN103192236B (en) Wharf ship loader telescoping mechanism rail production process and special rail butt joint tool thereof
CN104325230A (en) Abutting welding method for box columns of large-scale factory building
RU2509640C1 (en) Method of reconditioning of part of titanium alloys
JP2007268551A (en) Multi-electrode one side submerged arc welding method
JP2012196704A (en) Gas pressure welding method
JP2007021530A (en) Method for repairing steel casting by welding and steel casting having part repaired by welding
CN105108362A (en) Method of welding cutting teeth through electron beams
RU2325980C1 (en) Method of ragless rails pressure welding with heating
JP2017119305A (en) Manufacturing method of aluminum structural member
Baughurst et al. Welding defects, causes and correction
Mouallif et al. Finite element modeling of the aluminothermic welding with internal defects and experimental analysis
JP2012187590A (en) Method for producing laser-welded steel pipe
CN106363349B (en) A kind of processing method of manipulator circular orbit
CN102642121A (en) Cast steel stator pressing ring repair welding process
JP2023170075A (en) Gas pressure-welding method for rail

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150901