JP2012194388A - Bifocal lens - Google Patents

Bifocal lens Download PDF

Info

Publication number
JP2012194388A
JP2012194388A JP2011058385A JP2011058385A JP2012194388A JP 2012194388 A JP2012194388 A JP 2012194388A JP 2011058385 A JP2011058385 A JP 2011058385A JP 2011058385 A JP2011058385 A JP 2011058385A JP 2012194388 A JP2012194388 A JP 2012194388A
Authority
JP
Japan
Prior art keywords
distance
power surface
boundary line
point
interpolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011058385A
Other languages
Japanese (ja)
Other versions
JP5442658B2 (en
Inventor
Misa Okabe
美沙 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Itoh Optical Industrial Co Ltd
Original Assignee
Itoh Optical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itoh Optical Industrial Co Ltd filed Critical Itoh Optical Industrial Co Ltd
Priority to JP2011058385A priority Critical patent/JP5442658B2/en
Publication of JP2012194388A publication Critical patent/JP2012194388A/en
Application granted granted Critical
Publication of JP5442658B2 publication Critical patent/JP5442658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eyeglasses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bifocal lens capable of preventing spoiling of an appearance of a wearer by eliminating a clear border line between a close range section and a distant range section as well as preventing jumping of images.SOLUTION: A bifocal lens 10 has a distant range refractive power surface 1 in a top section and a close range refractive power surface 2 in a bottom section, either on a front surface or a back surface. The distant range refractive power surface 1 and the close range refractive power surface 2 come into contact only at one punctuate connecting section 3. In addition, the inclinations of the distant range refractive power surface 1 and the close range refractive power surface 2 in a vertical direction at the connecting section 3 are made identical. A curved surface interpolation surface 6 smoothly connecting the distant range refractive power surface 1 and the close range refractive power surface 2 exists in between the distant range refractive power surface 1 and the close range refractive power surface 2.

Description

本発明は二重焦点レンズに関し、特に、外観的に優れた二重焦点レンズに関する。   The present invention relates to a bifocal lens, and more particularly, to a bifocal lens excellent in appearance.

多焦点屈折力レンズとしては、累進多焦点屈折力レンズと二重焦点レンズの二つが主流である。累進多焦点屈折力レンズは、図15に示すように、遠用屈折力面300と近用屈折力面301とそれらの中間の累進帯302とによって面形成されている。   As the multifocal power lens, a progressive multifocal power lens and a bifocal lens are two mainstreams. As shown in FIG. 15, the progressive multifocal power lens is formed by a distance refracting power surface 300, a near refracting power surface 301, and an intermediate progressive zone 302.

また、二重焦点レンズには、図16(A)に示すように、遠用レンズ100に小玉と呼ばれる小径の近用レンズ101を組み込んだタイプと、図16(B)に示すように、上部に遠用レンズ200を下部に近用レンズ201を配してこれらを張り合わせたEXタイプとがある。下記特許文献1記載の二重焦点レンズは、前者のタイプであるが、遠用部の物体側の面の法線よりも近用部の回転対称軸の方を、装用状態における水平面に対して大きく傾けて設定して、近用部の下方部分と遠用部との間の境界線を略円弧状に形成することにより、外観の改良を図っている(同文献の段落0017参照)。   In addition, as shown in FIG. 16A, the bifocal lens has a type in which a near-distance lens 101 having a small diameter called a small ball is incorporated in the distance lens 100, and an upper portion as shown in FIG. In addition, there is an EX type in which a distance lens 200 is arranged at a lower portion and a near lens 201 is attached to the lower lens 200 and bonded together. The bifocal lens described in Patent Document 1 below is the former type, but the rotational symmetry axis of the near portion is more than the normal of the object side surface of the distance portion with respect to the horizontal plane in the wearing state. The outer appearance is improved by setting it to be greatly inclined and forming the boundary line between the lower portion of the near portion and the far portion in a substantially arc shape (see paragraph 0017 of the same document).

特開平10−186290号公報Japanese Patent Laid-Open No. 10-186290

累進多焦点屈折力レンズは、遠用屈折力面300と近用屈折力面301とを連続的なアトーリック面で構成しているため、遠用屈折力面300と近用屈折力面301との間に段差は発生せず、装用者の外観を損ねることはない。しかし、この連続した面の度数変化は像の揺れを誘発し、装用者によっては不快に感じる場合がある。   In the progressive multifocal refractive power lens, the distance power surface 300 and the near power surface 301 are formed of a continuous toric surface. Therefore, the distance power surface 300 and the near power surface 301 There is no step between them, and the appearance of the wearer is not impaired. However, this continuous change in the frequency of the surface induces image shaking, and may be uncomfortable for some wearers.

一方、二重焦点レンズは、累進多焦点屈折力レンズのような像の揺れは生じない。しかし、従来の二重焦点レンズは、外面(前面)若しくは内面(後面)の屈折力面(球面もしくは非球面)に対し、それに相対する外面もしくは内面の上部に遠用屈折力面、下部に近用屈折力面を配し、それぞれ指定の度数が得られるように計算された球面若しくはトーリック面を単一曲率にて合成するものであって、それぞれの面は物理的に違う単一曲率を持つため、はっきりとした像を装用者に提供する代わりに、図16(A)の符号102や、図16(B)の符号202に示すように、近用部と遠用部との間に段差が生じて、明確な境界線が現れてしまい、装用者の外観を損ねるとともに、イメージジャンプと称される結像倍率の急激な差を生じるという問題があった。   On the other hand, the bifocal lens does not cause image shake unlike the progressive multifocal power lens. However, the conventional bifocal lens has a refracting power surface on the upper surface of the outer surface or inner surface opposite to the refracting power surface (spherical surface or aspheric surface) on the outer surface (front surface) or inner surface (rear surface), and close to the lower surface. A spherical surface or a toric surface, which is calculated so that a specified power can be obtained, is synthesized with a single curvature, and each surface has a physically different single curvature. Therefore, instead of providing a clear image to the wearer, as shown by reference numeral 102 in FIG. 16A and reference numeral 202 in FIG. As a result, there is a problem that a clear boundary appears, impairing the appearance of the wearer, and causing a rapid difference in imaging magnification called image jump.

上記特許文献1記載の二重焦点レンズにおいても、やはり、近用部と遠用部との間には明確な境界線が現れてしまうため(同文献の図15参照)、上述した問題があった。   Even in the bifocal lens described in Patent Document 1, a clear boundary line appears between the near portion and the far portion (see FIG. 15 of the same document). It was.

本発明は、上述した問題を解決するものであり、近用部と遠用部との間の明確な境界線をなくして、装用者の外観を損ねることを防止可能であるとともに、イメージジャンプを防止可能な二重焦点レンズを提供することを目的とする。   The present invention solves the above-mentioned problems, and it is possible to eliminate a clear boundary line between the near portion and the far portion and prevent the wearer from damaging the appearance, and to perform an image jump. An object is to provide a bifocal lens that can be prevented.

本発明の二重焦点レンズは、上部に遠用屈折力面、下部に近用屈折力面を、前面又は後面に形成した二重焦点レンズにおいて、前記遠用屈折力面と前記近用屈折力面とは、点状の1つの結合部でのみ接し、前記結合部における前記遠用屈折力面と前記近用屈折力面の上下方向の傾きは、同一とされ、前記遠用屈折力面と前記近用屈折力面の間は、前記遠用屈折力面と前記近用屈折力面とを滑らかに連結する曲面状の補間面とされていることを特徴とする。   The bifocal lens of the present invention is a bifocal lens in which a distance refracting power surface is formed at an upper portion and a near refracting power surface is formed at a lower portion, and the distance refracting power surface and the near refracting power are formed. The surface is in contact with only one spot-like coupling portion, and the vertical refractive power surface and the near-side refractive power surface in the coupling portion have the same vertical inclination, Between the near refractive power surfaces, a curved interpolation surface that smoothly connects the far refractive power surface and the near refractive power surface is used.

これによれば、遠用屈折力面と近用屈折力面とは、点状の1つの結合部でのみ接し、遠用屈折力面と近用屈折力面の間は、遠用屈折力面と近用屈折力面とを滑らかに連結する曲面である補間面とされているので、遠用屈折力面と近用屈折力面との間に明確な境界線が現れない。したがって、装用者の外観を損ねることが防止されるとともに、イメージジャンプが防止される。   According to this, the distance refracting power surface and the near refracting power surface are in contact with only one point-like coupling portion, and the distance refracting power surface and the near refracting power surface are between the distance refracting power surfaces. Therefore, a clear boundary line does not appear between the distance refracting power surface and the near refracting power surface. Therefore, the appearance of the wearer is prevented from being impaired and image jump is prevented.

ここで、正面視において前記二重焦点レンズにおける左右方向をX軸、上下方向をY軸、前後方向をZ軸とする直交座標系を定義したとき、前記補間面は、前記遠用屈折力面と前記補間面との境界線(以下、「遠用境界線」という。)上の第1の点、前記第1の点とX座標値が同一であって前記第1の点よりY座標値が大きい前記遠用屈折力面上の第2の点、前記第1の点とX座標値が同一である前記近用屈折力面と前記補間面との境界線(以下、「近用境界線」という。)上の第3の点、及び、前記第1の点とX座標値が同一であって前記第3の点よりY座標値が小さい前記近用屈折力面上の第4の点、を通る所定の補間方法で求められた曲線の、前記第2の点と前記第3の点との間の部分を、X軸方向に複数連結した面から構成されていることとすることができる。   Here, in the front view, when defining an orthogonal coordinate system in which the left-right direction in the bifocal lens is the X-axis, the up-down direction is the Y-axis, and the front-rear direction is the Z-axis, the interpolation surface is the distance refractive power surface And the first point on the boundary line (hereinafter referred to as “distance boundary line”) between the interpolation surface and the first point, the X coordinate value is the same as the first point, and the Y coordinate value from the first point. The second point on the distance-use power surface having a large X, and the boundary line between the near-surface power surface and the interpolation surface having the same X coordinate value as the first point (hereinafter referred to as “near-use boundary line”) The third point above and the fourth point on the near refractive power surface whose X coordinate value is the same as that of the first point and whose Y coordinate value is smaller than that of the third point. , A curve obtained by a predetermined interpolation method is formed from a plane connecting a plurality of portions between the second point and the third point in the X-axis direction. It is possible to be.

また、前記遠用境界線と前記近用境界線は、いずれも、正面視において1又は複数の直線から構成されていることとすれば、補間のための計算が簡単であり、設計が容易である。   Moreover, if the distance boundary line and the distance boundary line are both composed of one or a plurality of straight lines when viewed from the front, the calculation for interpolation is simple and the design is easy. is there.

また、前記補間方法は、例えばN−スプライン補間法とすることができる。   Further, the interpolation method may be an N-spline interpolation method, for example.

本発明によれば、遠用屈折力面と近用屈折力面とは、点状の1つの結合部でのみ接し、遠用屈折力面と近用屈折力面の間は、遠用屈折力面と近用屈折力面とを滑らかに連結する曲面である補間面とされているので、遠用屈折力面と近用屈折力面との間に明確な境界線が現れない。したがって、装用者の外観を損ねることが防止されるとともに、イメージジャンプが防止される。   According to the present invention, the distance power surface and the near power surface are in contact with only one point-like coupling portion, and the distance power surface is between the distance power surface and the near power surface. Since the interpolation surface is a curved surface that smoothly connects the surface and the near power surface, no clear boundary line appears between the far power surface and the near power surface. Therefore, the appearance of the wearer is prevented from being impaired and image jump is prevented.

本発明の一実施形態に係る二重焦点レンズの正面図である。It is a front view of the bifocal lens concerning one embodiment of the present invention. 同実施形態における直交座標系及び補間ラインを示す斜視図である。It is a perspective view which shows the orthogonal coordinate system and interpolation line in the embodiment. 補間方法を説明するための図である。It is a figure for demonstrating the interpolation method. 結合部で結合する前の状態を説明するための概略図である。It is the schematic for demonstrating the state before couple | bonding with a coupling | bond part. 結合部で結合し、傾きを合わせていない状態を説明するための概略図である。It is the schematic for demonstrating the state which couple | bonded with the coupling | bond part and is not adjusting the inclination. 結合部で結合し、傾きを合わせて、補間ラインを定めた状態を説明するための概略図である。It is the schematic for demonstrating the state which couple | bonded with the coupling | bond part and matched the inclination and defined the interpolation line. 実施例の結合部を説明するための図である。It is a figure for demonstrating the coupling | bond part of an Example. 実施例の遠用境界線及び近用境界線を説明するための正面図である。It is a front view for demonstrating the distance boundary line and near boundary line of an Example. 実施例の補間面を説明するための正面図である。It is a front view for demonstrating the interpolation surface of an Example. 実施例のレンズの面を形成するラインを示す図である。It is a figure which shows the line which forms the surface of the lens of an Example. 実施例のレンズのS度数分布図である。It is S frequency distribution map of the lens of an Example. 実施例のレンズのC度数分布図である。It is C frequency distribution map of the lens of an Example. 遠用境界線及び近用境界線を曲線とした例である。It is an example which used the far boundary line and the near boundary line as a curve. 結合部をレンズの縁に設けた例である。This is an example in which the coupling portion is provided at the edge of the lens. 従来の累進多焦点屈折力レンズの正面図である。It is a front view of the conventional progressive multifocal refractive power lens. 従来の二重焦点レンズの正面図である。It is a front view of the conventional bifocal lens.

以下、本発明の一実施形態を図面に基づいて説明する。なお、以下の説明においては、二重焦点レンズを用いた眼鏡を装用したときの装用者に向かって左右、上下を、それぞれ、二重焦点レンズにおける左右、上下とし、装用者にとっての前方を、二重焦点レンズにおける前方、その反対側を後方とする。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following description, the left and right, up and down towards the wearer when wearing spectacles using a bifocal lens, respectively, left and right and up and down in the bifocal lens, the front for the wearer, The front side of the bifocal lens is the rear side.

図1に示す実施形態の二重焦点レンズ10は、レンズ後面(内面)の上部に遠用屈折力面1が、レンズ後面の下部に近用屈折力面2が形成されている。遠用屈折力面1と近用屈折力面2とは、点状の1つの結合部3でのみ接している。すなわち、遠用屈折力面1と近用屈折力面2の結合箇所である結合部3は、点状で1箇所のみである。結合部3においては、遠用屈折力面1と近用屈折力面2との間には前後方向(レンズ奥行き方向)の段差がなく、また、結合部3における遠用屈折力面1と近用屈折力面2の上下方向の傾きは同一とされている。遠用屈折力面1と近用屈折力面2の間(結合部3以外の間隔のある部分)は、遠用屈折力面1と近用屈折力面2とを滑らかに連結するとともに前方に凸となる曲面状の補間面6とされている。補間面6は、非点収差を生じる面であり、以下、レンズ10において、後面が補間面6である部分を非点収差部16、後面が遠用屈折力面1である部分を遠用部11、後面が近用屈折力面2である部分を近用部12という。   In the bifocal lens 10 of the embodiment shown in FIG. 1, a distance refracting power surface 1 is formed above the lens rear surface (inner surface), and a near refracting power surface 2 is formed below the lens rear surface. The distance-use refracting power surface 1 and the near-use refracting power surface 2 are in contact with each other only at one point-like coupling portion 3. In other words, the connecting portion 3 that is a connecting portion between the distance-use refracting power surface 1 and the near-use refracting power surface 2 is dot-like and has only one place. In the coupling portion 3, there is no step in the front-rear direction (lens depth direction) between the distance-use refractive surface 1 and the near-side refractive surface 2, and the distance from the distance-use refractive surface 1 in the coupling portion 3 The inclination of the refractive power surface 2 in the vertical direction is the same. Between the distance power surface 1 and the near power surface 2 (a portion having a gap other than the coupling portion 3), the distance power surface 1 and the near power surface 2 are smoothly connected and forward. The curved interpolation surface 6 is convex. The interpolation surface 6 is a surface that generates astigmatism. Hereinafter, in the lens 10, a portion where the rear surface is the interpolation surface 6 is an astigmatism portion 16, and a portion where the rear surface is the distance refractive power surface 1 is a distance portion. 11. A portion whose rear surface is the near refractive power surface 2 is referred to as a near portion 12.

遠用屈折力面1と補間面6との境界線である遠用境界線4と、近用屈折力面2と補間面6との境界線である近用境界線5は、いずれも、正面視において2つの直線から構成されている。詳しくは、遠用境界線4は、正面視において、結合部3からレンズ10の左側部10Lの縁に向かって左斜め上方に延びる直線状の左側遠用境界線4Lと、結合部3からレンズ10の右側部10Rの縁に向かって右斜め上方に延びる直線状の右側遠用境界線4Rとから構成されている。近用境界線5は、正面視において、結合部3からレンズ10の左側部10Lの縁に向かって左斜め下方に延びる直線状の左側近用境界線5Lと、結合部3からレンズ10の右側部10Rの縁に向かって右斜め下方に延びる直線状の右側近用境界線5Rとから構成されている。そして、遠用境界線4と近用境界線5とは、正面視において結合部3のみで重なり合っている。なお、実施形態では、左側遠用境界線4Lと右側遠用境界線4R、左側近用境界線5Lと右側近用境界線5Rは、それぞれ、結合部3を通って上下方向に延びる軸(後述するY軸に相当。)について、左右対称とされているが、左右対称としなくてもよい。   The distance boundary line 4 that is a boundary line between the distance power surface 1 and the interpolation surface 6 and the near boundary line 5 that is a boundary line between the near power surface 2 and the interpolation surface 6 are both front surfaces. It consists of two straight lines when viewed. Specifically, the distance boundary line 4 includes a linear left distance boundary line 4L extending obliquely leftward and upward from the coupling portion 3 toward the edge of the left side portion 10L of the lens 10 in front view, and the coupling portion 3 to the lens. 10 is formed of a straight right-side distance boundary line 4R extending obliquely upward to the right toward the edge of the right side portion 10R. The near boundary line 5 includes a straight left side boundary line 5L that extends obliquely downward to the left from the coupling portion 3 toward the edge of the left side portion 10L of the lens 10 and the right side of the lens 10 from the coupling portion 3 when viewed from the front. It is composed of a straight right-side near boundary line 5R extending obliquely downward to the right toward the edge of the portion 10R. The distance boundary line 4 and the near boundary line 5 overlap only at the coupling portion 3 in a front view. In the embodiment, the left far boundary line 4L and the right far boundary line 4R, and the left near boundary line 5L and the right near boundary line 5R are respectively axes extending in the vertical direction through the coupling portion 3 (described later). Is equivalent to the Y axis), but is not necessarily symmetrical.

また、補間面6は、左側遠用境界線4Lと左側近用境界線5Lとの間の(すなわち、結合部3より左側の)左側補間面6Lと、右側遠用境界線4Rと右側近用境界線5Rとの間の(すなわち、結合部3より右側の)右側補間面6Rとからなる。   In addition, the interpolation plane 6 includes a left interpolation plane 6L between the left far boundary line 4L and the left near boundary line 5L (that is, the left side from the coupling unit 3), the right far boundary line 4R, and the right near line. It consists of a right interpolation surface 6R between the boundary line 5R (that is, on the right side of the coupling part 3).

ここで、図2に示すように、正面視においてレンズ10における左右方向をX軸(但し、右方向を正方向)、上下方向をY軸(但し、上方向を正方向)、前後方向をZ軸(但し、前方向を正方向)とする直交座標系を定義する。なお、図2では、レンズ10の後面のみを図示している。補間面6は、遠用境界線4上の第1の点P1、第1の点P1とX座標値が同一であって第1の点P1よりY座標値が大きい遠用屈折力面1上の第2の点P0、第1の点P1とX座標値が同一である近用境界線5上の第3の点P2、及び、第1の点P1とX座標値が同一であって第3の点P2よりY座標値が小さい近用屈折力面2上の第4の点P3、を通る下記補間方法で求められた曲線の、点P1と点P2との間の部分(以下、「補間ライン」という。)CLを、X軸方向に複数連結した面から構成されている。点P0と点P1とのY座標値の差、及び、点P2と点P3とのY座標値の差は、それらから、遠用屈折力面1の下端部におけるY軸方向の傾きと、近用屈折力面2の上端部におけるY軸方向の傾きとが算出されて、それらの傾きを用いて点P1,P2間が補間されることを考慮して定めるものとし、若干の差があればよい。ここでは、いずれも、後述する補間ラインCLのX軸方向の間隔と同じく、1mmとした。なお、図2では強調のため、点P0,P1間、点P2,P3間を、実際より長く表している。   Here, as shown in FIG. 2, in the front view, the left and right direction of the lens 10 is the X axis (where the right direction is the positive direction), the up and down direction is the Y axis (where the upward direction is the positive direction), and the front and rear direction is the Z axis. Define a Cartesian coordinate system with axes (however, the forward direction is the positive direction). In FIG. 2, only the rear surface of the lens 10 is shown. The interpolation surface 6 is on the distance-use refractive power surface 1 having the same X coordinate value as that of the first point P1 and the first point P1 on the distance boundary line 4 and having a larger Y coordinate value than the first point P1. The second point P 0, the third point P 2 on the near boundary line 5 having the same X coordinate value as the first point P 1, and the first point P 1 have the same X coordinate value as the first point P 1. 3 of the curve obtained by the following interpolation method passing through the fourth point P3 on the near refractive power surface 2 whose Y coordinate value is smaller than the point P2 of 3 (hereinafter referred to as “ This is referred to as an “interpolation line.”) A plurality of CLs are connected in the X-axis direction. The difference in the Y coordinate value between the point P0 and the point P1 and the difference in the Y coordinate value between the point P2 and the point P3 are calculated from the inclination in the Y-axis direction at the lower end portion of the distance refractive power surface 1, The inclination in the Y-axis direction at the upper end of the refractive power surface 2 is calculated and determined in consideration of the interpolation between the points P1 and P2 using these inclinations. Good. Here, in each case, the interval in the X-axis direction of the interpolation line CL described later is set to 1 mm. In FIG. 2, for the sake of emphasis, the distance between the points P0 and P1 and the distance between the points P2 and P3 are shown longer than actual.

補間方法は、次式を用いてN−スプライン関数(自然スプライン関数)により補間するN−スプライン補間法を用いた。なお、実施形態では、N=3とし、X軸方向の間隔1mm毎に補間ラインCLを決定した。   As an interpolation method, an N-spline interpolation method that interpolates with an N-spline function (natural spline function) using the following equation was used. In the embodiment, N = 3, and the interpolation line CL is determined every 1 mm in the X-axis direction.

Figure 2012194388
Figure 2012194388

この補間方法について、図3を用いて説明する。図3において、x=0と付された一点鎖線はZ軸であり、X0,X1,X2,X3はY座標値、z0,z1,z2,z3はZ座標値である。実施形態では、図3に示すように、上記点P0、P1、P2、P3に相当する4つの補間点(X0,z0),(X1,z1),(X2,z2),(X3,z3)が与えられており、i=1,i=2,i=3で示された3つの区間、すなわち、点P0,P1間、点P1,P2間、点P2,P3間を、それぞれ[数1]に示すN次式(実施形態では3次式)で近似し、各N次式の係数CをN−スプライン補間法で求める。なお、この求め方については周知であるので、ここでは説明を省略する。そして、補間面6に相当するi=2の区間を、係数Cを代入したN次式で補間する。すなわち、[数1]において係数Cをz2(X)に代入した式を、補間ラインCLの式とする。 This interpolation method will be described with reference to FIG. In FIG. 3, an alternate long and short dash line labeled x = 0 is the Z axis, X 0 , X 1 , X 2 , and X 3 are Y coordinate values, and z 0 , z 1 , z 2 , and z 3 are Z coordinate values. It is. In the embodiment, as shown in FIG. 3, four interpolation points (X 0 , z 0 ), (X 1 , z 1 ), (X 2 , z 2 ) corresponding to the above points P0, P1, P2, and P3. , (X 3 , z 3 ), i = 1, i = 2, i = 3, that is, between points P0 and P1, between points P1 and P2, and at point P2, The interval between P3 is approximated by an Nth order expression (third order expression in the embodiment) shown in [Equation 1], and a coefficient C of each Nth order expression is obtained by an N-spline interpolation method. Since this method of obtaining is well known, the description thereof is omitted here. Then, the section of i = 2 corresponding to the interpolation plane 6 is interpolated by an Nth order equation with the coefficient C substituted. In other words, an expression obtained by substituting the coefficient C in z 2 (X) in [Equation 1] is an expression of the interpolation line CL.

次に、レンズ10の設計方法について説明する。この設計方法では、装用者の処方度数を元に、下記計算を行う。   Next, a method for designing the lens 10 will be described. In this design method, the following calculation is performed based on the prescription frequency of the wearer.

まず、外面屈折力面の曲率計算を行って外面屈折力面を決定する。また、遠用度数から、内面屈折力面の遠用部曲率半径と遠用部乱視曲率半径を求めて、遠用屈折力面1を決定する。さらに、近用度数から、内面屈折力面の近用部曲率半径と近用部乱視曲率半径を求めて、近用屈折力面2を決定する。これらの面の決定方法については周知であるので、ここでは説明を省略する。   First, the curvature of the outer refractive power surface is calculated to determine the outer refractive power surface. Further, the distance refracting power surface 1 is determined by obtaining the distance portion curvature radius and the distance portion astigmatism curvature radius of the inner refracting power surface from the distance power. Furthermore, the near-use refractive power surface 2 is determined by obtaining the near-use part radius of curvature and the near-part astigmatism curvature radius of the internal refractive power surface from the near-use power. Since the determination method of these surfaces is well known, the description thereof is omitted here.

そして、遠用屈折力面1と近用屈折力面2との結合部3を1箇所定める。詳しくは、まず、図4に示すように、遠用屈折力面1上のある点PLを結合部3として定め、その点PLとX座標値及びY座標値が同じ近用屈折力面2上の点PSが、点PLに重なるように、すなわち、点PLと点PSとのZ座標値の差(結合部3における段差)dがなくなるように、遠用屈折力面1の点PLにおけるZ軸方向の高さzLと、近用屈折力面2の点PSにおけるZ軸方向の高さzSとを算出し、zL=zSとなるように、近用屈折力面2(或いは遠用屈折力面1)をZ軸方向に移動する。これにより、図5に示すように、点PLと点PSとが結合され、その結合箇所が結合部3となる。結合部3の設定箇所は任意であるが、ここでは、レンズ10の幾何学中心からY軸方向に沿って所定距離下がった箇所としている。なお、レンズ10の幾何学中心は、遠用屈折力面1上に設定している。 And one coupling | bond part 3 of the refracting power surface 1 and the near refracting power surface 2 is defined. Specifically, as shown in FIG. 4, first, a certain point P L on the distance power surface 1 is defined as a coupling portion 3, and the near power surface having the same X coordinate value and Y coordinate value as the point P L. 2 is such that the point P S above the point P L overlaps the point P L , that is, the Z coordinate value difference (step difference at the coupling portion 3) d between the point P L and the point P S is eliminated. and height z L in the Z-axis direction of the first point P L, and calculates the height z S in the Z-axis direction at the point P S of the near optical power surface 2, such that z L = z S, The near power surface 2 (or the far power surface 1) is moved in the Z-axis direction. Thereby, as shown in FIG. 5, the point P L and the point P S are coupled, and the coupled portion becomes the coupled portion 3. Although the setting location of the coupling part 3 is arbitrary, it is assumed here that the location is a predetermined distance from the geometric center of the lens 10 along the Y-axis direction. The geometric center of the lens 10 is set on the distance-use refractive power surface 1.

次に、結合部3における遠用屈折力面1の上下方向(Y軸方向)の傾きSLと、結合部3における近用屈折力面2のY軸方向の傾きSSとを算出し、面形状が結合部3を境に中折れもしくは中反りとなることを避けるため、SL=SSとなるように、近用屈折力面2を結合部3で結合したまま遠用屈折力面1に対して傾ける。 Next, an inclination S L in the vertical direction (Y-axis direction) of the distance refractive power surface 1 in the coupling portion 3 and an inclination S S in the Y-axis direction of the near refractive power surface 2 in the coupling portion 3 are calculated, In order to prevent the surface shape from being bent or warped at the boundary of the coupling portion 3, the near refractive power surface 2 is coupled at the coupling portion 3 so that S L = S S. Tilt to one.

さらに、補間面6の領域を設定する。すなわち、正面視において、結合部3からレンズ10の左側部10Lの縁に向かって左斜め上方に延びる直線状の左側遠用境界線4Lと、結合部3からレンズ10の右側部10Rの縁に向かって右斜め上方に延びる直線状の右側遠用境界線4Rとを、任意に定めることにより、遠用境界線4を設定する。また、正面視において、結合部3からレンズ10の左側部10Lの縁に向かって左斜め下方に延びる直線状の左側近用境界線5Lと、結合部3からレンズ10の右側部10Rの縁に向かって右斜め下方に延びる直線状の右側近用境界線5Rとを、任意に定めることにより、近用境界線5を設定する。なお、近用境界線5は結合部3のみで遠用境界線4と重なり、それ以外の部分は遠用境界線4よりも下側(遠用境界線4を挟んで遠用屈折力面1とは反対側)に配置される。   Further, the area of the interpolation plane 6 is set. That is, when viewed from the front, the linear left boundary line 4L extending obliquely leftward from the coupling part 3 toward the edge of the left side part 10L of the lens 10 and the edge of the right side part 10R of the lens 10 from the coupling part 3 The distance boundary line 4 is set by arbitrarily defining a linear right distance boundary line 4R extending obliquely upward to the right. Further, in a front view, a straight left side boundary line 5L that extends obliquely downward to the left from the coupling part 3 toward the edge of the left side part 10L of the lens 10, and from the coupling part 3 to the edge of the right side part 10R of the lens 10. The near-use boundary line 5 is set by arbitrarily defining a straight right-hand side near-use boundary line 5R extending obliquely downward to the right. Note that the near boundary line 5 overlaps with the far boundary line 4 only at the coupling portion 3, and the other part is below the far boundary line 4 (the far refractive power surface 1 across the far boundary line 4. On the opposite side).

そして、遠用境界線4上の点P1を所定の間隔毎に(ここでは、X軸方向に沿った間隔を1mmとして)設定し、各点P1について補間ラインCLを次のように定める。   Then, the points P1 on the distance boundary line 4 are set at predetermined intervals (here, the interval along the X-axis direction is set to 1 mm), and the interpolation line CL is determined for each point P1 as follows.

点P1(xL,yL)と、上下方向に相対する(すなわち、X座標値が同じ)近用境界線5上の点P2(xS,yS)について、遠用屈折力面1の式と近用屈折力面2の式から、それぞれのZ座標値z(xL,yL)、z(xS,yS)を算出する。なお、xL,xSはX座標値であり、xL=xSである。また、yL,ySはY座標値である。また、点P1(xL,yL)をY軸に沿って+1mmした遠用屈折力面1上の点P0(xL,yL+1)と、点P2(xS,yS)をY軸に沿って−1mmした近用屈折力面2上の点P3(xS,yS−1)について、遠用屈折力面1の式と近用屈折力面2の式から、それぞれのZ座標値z(xL,yL+1)、z(xS,yS−1)を算出する。なお、座標値で「1」は長さで1mmに相当するものとする。そして、これら4点P0(X0,z0),P1(X1,z1),P2(X2,z2),P3(X3,z3)(但し、X0=yL+1,z0=z(xL,yL+1),X1=yL,z1=z(xL,yL),X2=yS,z2=z(xS,yS),X3=yS−1,z3=z(xS,yS−1))に基づいて、N−スプライン補間法を用いて、[数1]に示すN次方程式の係数Cを求め、求めた係数Cを[数1]に代入することにより、式z2(X)を決定する。この式z2(X)により、点P1と点P2との間を補間する補間ラインCLが定められる。 The point P1 (x L , y L ) and the point P2 (x S , y S ) on the near boundary line 5 that is vertically opposite (that is, has the same X coordinate value) are The respective Z coordinate values z (x L , y L ) and z (x S , y S ) are calculated from the formula and the formula for the near refractive power surface 2. Note that x L and x S are X coordinate values, and x L = x S. Y L and y S are Y coordinate values. Furthermore, the point P1 (x L, y L) and Y axis along with + 1 mm point of the distance power plane 1 P0 (x L, y L +1) and point P2 (x S, y S) of Y For the point P3 (x S , y S −1) on the near-side refractive power surface 2 that is −1 mm along the axis, the respective Z The coordinate values z (x L , y L +1) and z (x S , y S −1) are calculated. The coordinate value “1” corresponds to a length of 1 mm. And these four points P0 (X 0, z 0) , P1 (X 1, z 1), P2 (X 2, z 2), P3 (X 3, z 3) ( where, X 0 = y L +1, z 0 = z (x L, y L +1), X 1 = y L, z 1 = z (x L, y L), X 2 = y S, z 2 = z (x S, y S), X 3 = y S −1, z 3 = z (x S , y S −1)), the coefficient C of the Nth order equation shown in [Equation 1] is obtained by using the N-spline interpolation method. By substituting the obtained coefficient C into [Equation 1], the expression z 2 (X) is determined. This expression z 2 (X) defines an interpolation line CL for interpolating between the points P1 and P2.

以上のように、所定間隔で設定された遠用境界線4上の各点P1について補間ラインCLを定め、それらの補間ラインCLを連結することにより、補間面6を構築する(図6参照)。   As described above, the interpolation line CL is defined for each point P1 on the far boundary line 4 set at a predetermined interval, and the interpolation plane 6 is constructed by connecting these interpolation lines CL (see FIG. 6). .

以上述べたように、レンズ10では、遠用屈折力面1と近用屈折力面2とが、従来の二重焦点レンズのようなレンズ奥行き方向に段差を持った線状の結合部ではなく、点状の1つの結合部3のみで結合しており、結合部3の両側の遠用屈折力面1と近用屈折力面2の間は、遠用屈折力面1から近用屈折力面2にかけて滑らかな曲面で補間されている。したがって、レンズ10によれば、累進帯が無いため揺れを感じ難いという二重焦点レンズ本来の効果も損なわず、かつ、遠用部11と近用部12との間に明確な境界線が現れないため、装用者の外観を損ねることを防止可能であるとともに、イメージジャンプを防止可能である。   As described above, in the lens 10, the distance refractive power surface 1 and the near refractive power surface 2 are not a linear coupling portion having a step in the lens depth direction as in a conventional bifocal lens. In addition, the connection is made only by one point-like coupling part 3, and the distance between the distance refractive power surface 1 and the near refractive power surface 2 on both sides of the coupling part 3 is from the distance refractive power surface 1 to the near refractive power surface. Interpolated with a smooth curved surface over surface 2. Therefore, according to the lens 10, the original effect of the double focus lens that it is difficult to feel a shake because there is no progressive zone is not impaired, and a clear boundary line appears between the distance portion 11 and the near portion 12. Therefore, the appearance of the wearer can be prevented from being impaired and image jump can be prevented.

次に、実施例について説明する。実施例の処方度数、レンズデータ、及び、前面データを表1に示す。なお、実施例のレンズ10は正面視において単心円形状とし、前面を球面とし、後面に遠用屈折力面1、近用屈折力面2、及び、補間面6を生成する。まず、表1のデータに基づいて、表2に示す遠用屈折力面1のデータを算出して、次式[数2]により遠用屈折力面1(=DL)を決定し、また、表3に示す近用屈折力面2のデータを算出して、次式[数3]により近用屈折力面2(=DS)を決定した。 Next, examples will be described. Table 1 shows the prescription power, lens data, and front surface data of the examples. The lens 10 according to the embodiment has a single-centered circular shape when viewed from the front, has a front surface that is a spherical surface, and generates a distance refracting power surface 1, a near refracting power surface 2, and an interpolation surface 6. First, based on the data in Table 1, the data for the far-power surface 1 shown in Table 2 is calculated, and the far-power surface 1 (= D L ) is determined by the following equation [Equation 2]. The data of the near power surface 2 shown in Table 3 was calculated, and the near power surface 2 (= D S ) was determined by the following equation [Equation 3].

Figure 2012194388
Figure 2012194388

Figure 2012194388
Figure 2012194388

上記[数2]、[数3]において、xは光学中心からの距離、θは光学中心に対する角度、Kは非球面係数、A1,A2,A3,A4は定数、RLS、RSSは後面曲率半径、RLC、RSCは乱視面曲率半径であり、乱視度数が+の場合には、SINをCOSとする。なお、添字としてLSが付されているものは遠用部の後面に関するもの、LCが付されているものは遠用部の乱視面に関するもの、SSが付されているものは近用部の後面に関するもの、SCが付されているものは近用部の乱視面に関するものである。したがって、RLS、RLCは表2のRS、RCに相当し、RSS、RSCは表3のRS、RCに相当する。また、遠用屈折力面1及び近用屈折力面2は、いずれも球面として設計したので、K=1とし、A1,A2,A3,A4はいずれも0とした。また、前面も球面としているので、光学中心は幾何学中心に一致している。 In the above [Expression 2] and [Expression 3], x is a distance from the optical center, θ is an angle with respect to the optical center, K is an aspherical coefficient, A1, A2, A3, and A4 are constants, and R LS and R SS are rear surfaces. the radius of curvature, R LC, R SC is a cylindrical surface radius of curvature, in the case of the astigmatic power is + is the SIN and COS. In addition, those with LS as subscripts are related to the rear surface of the distance portion, those with LC are related to the astigmatic surface of the distance portion, and those with SS are the rear surface of the near portion. And those with SC are related to the astigmatic surface of the near portion. Thus, R LS, the R LC of Table 2 R S, corresponds to R C, R SS, R SC is equivalent to R S, R C of Table 3. Further, since the distance-use refracting power surface 1 and the near-use refracting power surface 2 are both designed as spherical surfaces, K = 1 and A1, A2, A3, and A4 are all 0. In addition, since the front surface is also a spherical surface, the optical center coincides with the geometric center.

次に、結合部3を、図7に示すように、幾何学中心OからY軸方向に7mm下がった位置に定め、結合部3における遠用屈折力面1と近用屈折力面2のZ座標値及びY軸方向の傾きを算出し、それぞれの差を求めた。本実施例では、結合部3における遠用屈折力面1と近用屈折力面2のZ座標値の差は0.08であり、上下方向の傾きの差は1.23°であったため、それらの差がなくなるように、近用屈折力面2をZ軸方向に移動し、かつ、遠用屈折力面1に対して傾けた。   Next, as shown in FIG. 7, the coupling portion 3 is set at a position 7 mm lower than the geometric center O in the Y-axis direction, and the Z of the far-side refractive power surface 1 and the near-side refractive power surface 2 in the coupling portion 3 is determined. The coordinate value and the inclination in the Y-axis direction were calculated, and the respective differences were obtained. In the present embodiment, the Z-coordinate difference between the distance refracting power surface 1 and the near refracting power surface 2 in the coupling portion 3 is 0.08, and the difference in the vertical inclination is 1.23 °. The near refracting power surface 2 was moved in the Z-axis direction and tilted with respect to the far refracting power surface 1 so as to eliminate the difference therebetween.

そして、図8に示すように、左側遠用境界線4L、右側遠用境界線4Rを、結合部3から、結合部3を通ってX軸に平行な軸X1に対しそれぞれ40°の角度をなして、左斜め上方、右斜め上方に向かって延びる直線とし、左側近用境界線5L、右側近用境界線5Rを、結合部から軸X1に対しそれぞれ50°の角度をなして、左斜め下方、右斜め下方に向かって延びる直線とした。   Then, as shown in FIG. 8, the left far boundary line 4L and the right far boundary line 4R are set at an angle of 40 ° from the coupling portion 3 to the axis X1 parallel to the X axis through the coupling portion 3. It is assumed that the straight line extends obliquely upward to the left and obliquely upward to the right, and the left-side near boundary line 5L and the right-side near boundary line 5R are inclined at an angle of 50 ° with respect to the axis X1 from the coupling portion. A straight line extending downward and obliquely downward to the right is used.

次に、図9に示すように、遠用境界線4上の点P1(xL,yL)と、近用境界線5上の点P2(xS,yS)(但し、xL=xS)について、それぞれのZ座標値z(xL,yL)、z(xS,yS)を算出し、また、点P1(xL,yL)をY軸に沿って+1mmした点P0(xL,yL+1)と、点P2(xS,yS)をY軸に沿って−1mmした点P3(xS,yS−1)について、それぞれのZ座標値z(xL,yL+1)、z(xS,yS−1)を算出した。そして、これら4点P0、P1、P2、P3を通る曲線を、N−スプライン補間法により求め、求めた曲線の点P1,P2間の部分を補間ラインCLとした(図3参照)。 Next, as shown in FIG. 9, a point P1 (x L , y L ) on the far-boundary boundary line 4 and a point P2 (x S , y S ) on the near-boundary boundary line 5 (where x L = For x S ), the respective Z coordinate values z (x L , y L ) and z (x S , y S ) are calculated, and the point P1 (x L , y L ) is +1 mm along the Y axis For the point P0 (x L , y L +1) and the point P3 (x S , y S −1) obtained by −1 mm along the Y axis of the point P2 (x S , y S ), the respective Z coordinate values z ( x L , y L +1) and z (x S , y S −1) were calculated. Then, a curve passing through these four points P0, P1, P2, and P3 was obtained by the N-spline interpolation method, and a portion between the obtained points P1 and P2 was defined as an interpolation line CL (see FIG. 3).

遠用境界線4の一端から他端までX軸方向の間隔を1mmとして採った全ての点P1について、上記のように補間ラインCLを生成し、それらの補間ラインCLを連結した面を、補間面6とした。図9の斜線部分は、補間面6の領域を示す。   Interpolation lines CL are generated as described above for all points P1 with the distance in the X-axis direction set to 1 mm from one end to the other end of the distance boundary line 4, and the plane connecting these interpolation lines CL is interpolated. Surface 6 was designated. The hatched portion in FIG. 9 indicates the area of the interpolation plane 6.

図10は、実施例のレンズ10の後面を形成するラインを、レンズ10の真下より少し後方の位置から見た斜視図であり、遠用屈折力面1から補間面6を経て近用屈折力面2まで、滑らかにラインが連続していることが分かる。   FIG. 10 is a perspective view of a line forming the rear surface of the lens 10 of the embodiment as viewed from a position slightly behind the lens 10, and the near power from the distance power surface 1 through the interpolation surface 6. It can be seen that the line continues smoothly to the surface 2.

図11、12は、以上のように設計したレンズ10を、前面を表1のデータに従ってモールド成形し、後面を上記設計に従って削ることにより、実際に作成し、度数を測定したものである。図11はS度数分布図、図12はC度数分布図であり、図中の破線は、設計上の遠用境界線4及び近用境界線5を示す。レンズ10では、図11から分かるように、遠用部11と近用部12とが明確に分かれるようにS度数が分布し、累進帯が無いため、像の揺れを感じ難い。そして、点状の結合部3付近で、遠用部11から近用部12に切り替わり、結合部3の両側の遠用部11と近用部12との間は、前面と後面とが共に遠用部11と近用部12とを滑らかに連結する曲面状とされた非点収差部16になっている。したがって、遠用部11と近用部12との間に明確な境界線が現れないことから、装用者の外観を損ねることを防止可能であり、また、イメージジャンプを防止可能である。   11 and 12, the lens 10 designed as described above is actually created by measuring the power by molding the front surface according to the data in Table 1 and cutting the rear surface according to the above design. 11 is an S frequency distribution diagram, and FIG. 12 is a C frequency distribution diagram. The broken lines in the figure indicate the far boundary line 4 and the near boundary line 5 in design. In the lens 10, as can be seen from FIG. 11, the S frequency is distributed so that the distance portion 11 and the near portion 12 are clearly separated, and there is no progressive zone, so it is difficult to feel the image shake. Then, in the vicinity of the point-like coupling portion 3, the distance portion 11 is switched to the near portion 12, and the distance between the distance portion 11 and the near portion 12 on both sides of the coupling portion 3 is the distance between the front surface and the rear surface. The astigmatism portion 16 is a curved surface that smoothly connects the use portion 11 and the near portion 12. Therefore, since a clear boundary line does not appear between the distance portion 11 and the near portion 12, it is possible to prevent the appearance of the wearer from being impaired and to prevent image jump.

〈変形例〉以下、変形例について述べる。   <Modification> A modification will be described below.

左側遠用境界線4Lを、正面視において結合部3から左方に向かって延設してもよいし、右側遠用境界線4Rを、正面視において結合部3から右方に向かって延設してもよい。左側近用境界線5L、右側近用境界線5Rについても同様である。但し、遠用境界線4と近用境界線5とは、正面視において結合部3のみで重なり合うように構成する。すなわち、左側遠用境界線4Lを、正面視において結合部3から左方に、右側遠用境界線4Rを、正面視において結合部3から右方に向かって延設して、遠用境界線4を真横に延びる1本の直線としたときは、左側近用境界線5Rは、正面視において結合部3から左斜め下方に、右側近用境界線5Rは、正面視において結合部3から右斜め下方に向かって延設する。   The left far boundary line 4L may extend from the coupling part 3 to the left in the front view, or the right far boundary line 4R extends from the coupling part 3 to the right in the front view. May be. The same applies to the left-side near boundary line 5L and the right-side near boundary line 5R. However, the distance boundary line 4 and the near boundary line 5 are configured to overlap only at the coupling portion 3 in a front view. That is, the left far boundary line 4L extends from the coupling part 3 to the left in the front view, and the right far boundary line 4R extends from the coupling part 3 to the right in the front view. When 4 is a straight line extending right side, the left-side near boundary line 5R is obliquely lower left from the coupling part 3 in the front view, and the right-side near boundary line 5R is right from the coupling part 3 in the front view. It extends obliquely downward.

また、遠用境界線4、近用境界線5を、正面視において曲線状としてもよい。例えば、図13に示すように、遠用境界線4をU字状、近用境界線5を逆U字状としてもよい。なお、図13、及び、後述する図14においては、上記実施形態と同様の要素については同じ符号を付している。また、遠用境界線4、近用境界線5のいずれか一方を、1又は複数の直線からなる線とし、他方を曲線としてもよい。   Further, the far boundary line 4 and the near boundary line 5 may be curved in front view. For example, as shown in FIG. 13, the distance boundary line 4 may be U-shaped, and the near boundary line 5 may be inverted U-shaped. In FIG. 13 and FIG. 14 described later, the same reference numerals are given to the same elements as those in the above embodiment. In addition, one of the far boundary line 4 and the near boundary line 5 may be a line composed of one or a plurality of straight lines, and the other may be a curve.

また、結合部3をレンズ10の縁に設けてもよい。例えば、図14に示すように、結合部3をレンズ10の左側部10L若しくは右側部10Rのいずれか一方の縁に設け、遠用境界線4及び近用境界線5を、それぞれ、結合部3からレンズ10の左側部10L若しくは右側部10Rのいずれか他方の縁まで延設するとともに、近用境界線5を遠用境界線4より下側に配置して、遠用境界線4と近用境界線5との間を補間面6としてもよい。図14の例では、遠用境界線4及び近用境界線5は、いずれも、正面視において1本の直線から構成されている。遠用境界線4及び近用境界線5を、いずれも、1又は複数の直線から構成された線とすれば、計算が簡単であり、設計が容易である。   Further, the coupling portion 3 may be provided on the edge of the lens 10. For example, as shown in FIG. 14, the coupling portion 3 is provided on one edge of either the left side portion 10L or the right side portion 10R of the lens 10, and the distance boundary line 4 and the near boundary line 5 are respectively connected to the coupling portion 3. To the left edge 10L or the right edge 10R of the lens 10 to the other edge, and the near boundary line 5 is arranged below the distance boundary line 4 so that the distance boundary line 4 An interpolation plane 6 may be formed between the boundary line 5 and the boundary line 5. In the example of FIG. 14, both the far boundary line 4 and the near boundary line 5 are configured by a single straight line when viewed from the front. If each of the distance boundary line 4 and the near boundary line 5 is a line composed of one or a plurality of straight lines, the calculation is simple and the design is easy.

また、補間方法として、ラグランジュ補間法等、他の補間方法を用いてもよい。   Further, as an interpolation method, other interpolation methods such as a Lagrange interpolation method may be used.

Figure 2012194388
Figure 2012194388

Figure 2012194388
Figure 2012194388

Figure 2012194388
Figure 2012194388

1…遠用屈折力面
2…近用屈折力面
3…結合部
4…遠用境界線
5…近用境界線
6…補間面
10…二重焦点レンズ
DESCRIPTION OF SYMBOLS 1 ... Distance refracting power surface 2 ... Near refracting power surface 3 ... Coupling part 4 ... Distant boundary line 5 ... Near boundary line 6 ... Interpolation surface 10 ... Double focus lens

Claims (4)

上部に遠用屈折力面、下部に近用屈折力面を、前面又は後面に形成した二重焦点レンズにおいて、
前記遠用屈折力面と前記近用屈折力面とは、点状の1つの結合部でのみ接し、
前記結合部における前記遠用屈折力面と前記近用屈折力面の上下方向の傾きは、同一とされ、
前記遠用屈折力面と前記近用屈折力面の間は、前記遠用屈折力面と前記近用屈折力面とを滑らかに連結する曲面状の補間面とされていることを特徴とする二重焦点レンズ。
In the bifocal lens in which the distance refracting power surface is formed at the top and the near refracting power surface is formed at the bottom, the front surface or the rear surface is formed.
The distance refracting power surface and the near refracting power surface are in contact with only one point-like coupling portion,
The inclination in the vertical direction of the distance power surface and the near power surface in the coupling portion is the same,
A distance between the distance refracting power surface and the near refracting power surface is a curved interpolation surface that smoothly connects the distance refracting power surface and the near refracting power surface. Double focus lens.
正面視において前記二重焦点レンズにおける左右方向をX軸、上下方向をY軸、前後方向をZ軸とする直交座標系を定義したとき、前記補間面は、前記遠用屈折力面と前記補間面との境界線(以下、「遠用境界線」という。)上の第1の点、前記第1の点とX座標値が同一であって前記第1の点よりY座標値が大きい前記遠用屈折力面上の第2の点、前記第1の点とX座標値が同一である前記近用屈折力面と前記補間面との境界線(以下、「近用境界線」という。)上の第3の点、及び、前記第1の点とX座標値が同一であって前記第3の点よりY座標値が小さい前記近用屈折力面上の第4の点、を通る所定の補間方法で求められた曲線の、前記第2の点と前記第3の点との間の部分を、X軸方向に複数連結した面から構成されていることを特徴とする請求項1記載の二重焦点レンズ。   When an orthogonal coordinate system is defined in which the left-right direction in the bifocal lens is X-axis, the vertical direction is the Y-axis, and the front-rear direction is the Z-axis in front view, the interpolation plane is the distance refractive power surface and the interpolation The first point on the boundary line with the surface (hereinafter referred to as “distance boundary line”), the X coordinate value is the same as the first point, and the Y coordinate value is larger than the first point. The second point on the distance power surface, the boundary line between the near power surface and the interpolation surface, which has the same X coordinate value as the first point (hereinafter referred to as “near boundary line”). ) And the fourth point on the near refractive power surface whose X coordinate value is the same as that of the first point and whose Y coordinate value is smaller than that of the third point. A curve obtained by a predetermined interpolation method is composed of a plane formed by connecting a plurality of portions between the second point and the third point in the X-axis direction. Bifocal lens of claim 1 wherein symptoms. 前記遠用境界線と前記近用境界線は、いずれも、正面視において1又は複数の直線から構成されていることを特徴とする請求項2記載の二重焦点レンズ。   The bifocal lens according to claim 2, wherein each of the far boundary line and the near boundary line is composed of one or a plurality of straight lines in a front view. 前記補間方法が、N−スプライン補間法であることを特徴とする請求項2又は3記載の二重焦点レンズ。   4. The bifocal lens according to claim 2, wherein the interpolation method is an N-spline interpolation method.
JP2011058385A 2011-03-16 2011-03-16 Double focus lens for glasses Active JP5442658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011058385A JP5442658B2 (en) 2011-03-16 2011-03-16 Double focus lens for glasses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011058385A JP5442658B2 (en) 2011-03-16 2011-03-16 Double focus lens for glasses

Publications (2)

Publication Number Publication Date
JP2012194388A true JP2012194388A (en) 2012-10-11
JP5442658B2 JP5442658B2 (en) 2014-03-12

Family

ID=47086345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011058385A Active JP5442658B2 (en) 2011-03-16 2011-03-16 Double focus lens for glasses

Country Status (1)

Country Link
JP (1) JP5442658B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5882437B1 (en) * 2014-11-07 2016-03-09 伊藤光学工業株式会社 Eyeglass lenses
JP2016537664A (en) * 2013-06-07 2016-12-01 ワラフ,マイケル Non-progressive bifocal lens in which myopia and hyperopia are tangentially connected {NON-PROGRESSIVE CORRIDOR BI-FOCAL LENS WITH SUBSTINALLY TANGENT BOUNDARY OF NEARD AND VISUAL VISUAL
JP2017134172A (en) * 2016-01-26 2017-08-03 伊藤光学工業株式会社 Spectacle lens

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045545A (en) * 2017-08-30 2019-03-22 東海光学株式会社 Bifocal lens and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063629A (en) * 1992-01-28 1994-01-14 Johnson & Johnson Vision Prod Inc Eye lens having transparent axis and segmented multiple focal points
JPH09506184A (en) * 1993-09-30 1997-06-17 ポリマー テクノロジイ コーポレイション Aspherical multi-focus contact lens
JP2001021846A (en) * 1999-07-08 2001-01-26 Sota Suzuki Progressive focus lens for spectacles and its production as well as spectacles using this progressive focus lens for spectacles
JP2006517305A (en) * 2003-02-11 2006-07-20 ノバルティス アクチエンゲゼルシャフト Ophthalmic lens with optical zone blend design
JP2007510960A (en) * 2003-11-12 2007-04-26 ノバルティス アクチエンゲゼルシャフト Alternate vision bifocal mounting modality
JP2008257272A (en) * 2008-07-24 2008-10-23 Seiko Epson Corp Design method of eyeglasses lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063629A (en) * 1992-01-28 1994-01-14 Johnson & Johnson Vision Prod Inc Eye lens having transparent axis and segmented multiple focal points
JPH09506184A (en) * 1993-09-30 1997-06-17 ポリマー テクノロジイ コーポレイション Aspherical multi-focus contact lens
JP2001021846A (en) * 1999-07-08 2001-01-26 Sota Suzuki Progressive focus lens for spectacles and its production as well as spectacles using this progressive focus lens for spectacles
JP2006517305A (en) * 2003-02-11 2006-07-20 ノバルティス アクチエンゲゼルシャフト Ophthalmic lens with optical zone blend design
JP2007510960A (en) * 2003-11-12 2007-04-26 ノバルティス アクチエンゲゼルシャフト Alternate vision bifocal mounting modality
JP2008257272A (en) * 2008-07-24 2008-10-23 Seiko Epson Corp Design method of eyeglasses lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537664A (en) * 2013-06-07 2016-12-01 ワラフ,マイケル Non-progressive bifocal lens in which myopia and hyperopia are tangentially connected {NON-PROGRESSIVE CORRIDOR BI-FOCAL LENS WITH SUBSTINALLY TANGENT BOUNDARY OF NEARD AND VISUAL VISUAL
JP2019164392A (en) * 2013-06-07 2019-09-26 ワラフ,マイケル Non-progressive corridor bi-focal lens with substantially tangent boundary of near and distal visual fields
JP5882437B1 (en) * 2014-11-07 2016-03-09 伊藤光学工業株式会社 Eyeglass lenses
JP2017134172A (en) * 2016-01-26 2017-08-03 伊藤光学工業株式会社 Spectacle lens

Also Published As

Publication number Publication date
JP5442658B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP4979774B2 (en) Pair of progressive-power lenses and design method thereof
JP2006215303A (en) Method for designing spectacle lens
EP3126901A1 (en) Method of calculating an optical system according to a given spectacle frame
KR20080010314A (en) Design method for spectacle lens, spectacle lens, and spectacles
JP5442658B2 (en) Double focus lens for glasses
JP2012013742A (en) Progressive refractive power eyeglass lens and design method thereof
JP3617004B2 (en) Double-sided aspherical progressive-power lens
JP2008058576A (en) Spectacle lens design method
JP5952541B2 (en) Optical lens, optical lens design method, and optical lens manufacturing apparatus
WO2016104808A1 (en) Pair of eyeglass lenses for both eyes, production method therefor, provision system, and provision program
JP5805407B2 (en) Progressive power lens
JP3757682B2 (en) Progressive power lens design method
JP5415233B2 (en) Design method and manufacturing method of spectacle lens
WO2013137179A1 (en) Eyeglass lens and bifocal eyeglasses
JP5789108B2 (en) Progressive power lens and design method thereof
JP2020173469A (en) Lens, lens blank, and eye wear
JP6598695B2 (en) Eyeglass lenses
JPH11264955A (en) Progressive multifocus lens
JP6163697B2 (en) Progressive power lens design method
JP3899659B2 (en) Progressive multifocal lens and manufacturing method thereof
JP2019045545A (en) Bifocal lens and method for manufacturing the same
JP5882437B1 (en) Eyeglass lenses
KR20190052141A (en) Progressive lens pair, Progressive lens pair design method and Progressive lens pair manufacturing method
CN103631031A (en) Dynamic progressive multi-focal-point lens
JP2002122825A (en) Progressive refracting power ophthalmic lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131218

R150 Certificate of patent or registration of utility model

Ref document number: 5442658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250