JP2012193391A - Deposition device and deposition method - Google Patents

Deposition device and deposition method Download PDF

Info

Publication number
JP2012193391A
JP2012193391A JP2011055872A JP2011055872A JP2012193391A JP 2012193391 A JP2012193391 A JP 2012193391A JP 2011055872 A JP2011055872 A JP 2011055872A JP 2011055872 A JP2011055872 A JP 2011055872A JP 2012193391 A JP2012193391 A JP 2012193391A
Authority
JP
Japan
Prior art keywords
vapor deposition
mask
substrate
evaporation
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011055872A
Other languages
Japanese (ja)
Other versions
JP2012193391A5 (en
JP5883230B2 (en
Inventor
Koji Narumi
廣治 鳴海
Hiroyuki Tamura
博之 田村
Masahiro Ichihara
正浩 市原
Eiichi Matsumoto
栄一 松本
Mitsuyuki Tajima
三之 田島
Hiroaki Nagata
博彰 永田
Masaki Yoshioka
正樹 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Priority to JP2011055872A priority Critical patent/JP5883230B2/en
Priority to KR1020137026765A priority patent/KR101958499B1/en
Priority to PCT/JP2012/053621 priority patent/WO2012124428A1/en
Priority to TW101107918A priority patent/TW201250025A/en
Publication of JP2012193391A publication Critical patent/JP2012193391A/en
Publication of JP2012193391A5 publication Critical patent/JP2012193391A5/ja
Application granted granted Critical
Publication of JP5883230B2 publication Critical patent/JP5883230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • C23C14/044Coating on selected surface areas, e.g. using masks using masks using masks to redistribute rather than totally prevent coating, e.g. producing thickness gradient
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Abstract

PROBLEM TO BE SOLVED: To provide a deposition device which does not enlarge a deposition mask equally with the enlargement of a base board, can deposit deposition membranes of film-forming patterns by using the deposition mask in a wide range by relatively moving even the deposition mask which is smaller in size than the base board in a state that the base board is separated, can prevent the overlap of the film-forming patterns, can suppress the incidence of radiation heat from an evaporation source, and can perform deposition at high accuracy and at a high rate; and to provide a deposition method.SOLUTION: The deposition device is characterized in that: a mask holder 6 having a scatter limit part at a limiting opening 5 is arranged between the evaporation source 1 and the base board 4; the evaporation mask 2 is joined and additionally attached to the mask holder 6; the base board 4 is relatively and movably constituted while holding a separation state with the deposition mask 2 with respect to the mask holder 6 attached with the evaporation mask 2 and the evaporation source 1; and an evaporation opening 8 of the evaporation source 1 is formed into a slit shape which is long in the relative movement direction of the base board 4 and narrowed in width toward the lateral direction orthogonal to the relative movement direction.

Description

本発明は、蒸着マスクによる成膜パターンの蒸着膜を基板上に形成させる蒸着装置並びに蒸着方法に関するものである。   The present invention relates to a vapor deposition apparatus and a vapor deposition method for forming a vapor deposition film having a film formation pattern using a vapor deposition mask on a substrate.

近年、有機エレクトロルミネッセンス素子を用いた有機EL表示装置が、CRTやLCDに替る表示装置として注目されている。   In recent years, organic EL display devices using organic electroluminescence elements have attracted attention as display devices that replace CRTs and LCDs.

この有機EL表示装置は、基板に電極層と複数の有機発光層を積層形成し、更に封止層を被覆形成した構成であり、自発光で、LCDに比べて高速応答性に優れ、高視野角及び高コントラストを実現できるものである。   This organic EL display device has a structure in which an electrode layer and a plurality of organic light emitting layers are laminated on a substrate, and further a sealing layer is formed on the substrate. Corners and high contrast can be realized.

このような有機ELデバイスは、一般に真空蒸着法により製造されており、真空チャンバー内で基板と蒸着マスクをアライメントして密着させ蒸着を行い、この蒸着マスクにより所望の成膜パターンの蒸着膜を基板に形成している。   Such an organic EL device is generally manufactured by a vacuum vapor deposition method, in which a substrate and a vapor deposition mask are aligned and closely adhered in a vacuum chamber, and a vapor deposition film having a desired film formation pattern is formed on the substrate by the vapor deposition mask. Is formed.

また、このような有機ELデバイスの製造においては、基板の大型化に伴い所望の成膜パターンを得るための蒸着マスクも大型化するが、この大型化のためには蒸着マスクにテンションをかけた状態でマスクフレームに溶接固定して製作しなければならないため、大型の蒸着マスクの製造は容易でなく、またこのテンションが十分でないとマスクの大型化に伴い、マスク中心に歪みが生じ蒸着マスクと基板の密着度が低下してしまうことや、これらを考慮するためにマスクフレームが大型となり、肉厚化や重量の増大が顕著となる。   Further, in the manufacture of such an organic EL device, the vapor deposition mask for obtaining a desired film formation pattern is enlarged with an increase in the size of the substrate. For this increase in size, tension was applied to the vapor deposition mask. Since it must be manufactured by welding and fixing to the mask frame in the state, it is not easy to manufacture a large evaporation mask, and if this tension is not sufficient, the mask will be distorted and the center of the mask will be distorted. The degree of adhesion of the substrate is reduced, and the mask frame becomes large in order to take these into consideration, and the increase in thickness and weight becomes remarkable.

このように、基板サイズの大型化に伴って蒸着マスクの大型化が求められているが、高精細なマスクの大型化は困難で、また製作できても前記歪みの問題によって実用上様々な問題を生じている。   As described above, it is required to increase the size of the vapor deposition mask as the substrate size increases. However, it is difficult to increase the size of the high-definition mask. Has produced.

また、例えば、特表2010−511784号などに示されるように、基板と蒸着マスクとを離間配設し、蒸発源と指向性を持った蒸発粒子を発生させる開口部とにより有機発光層を高精度に成膜させる方法もあるが、前記蒸発源と指向性を発生させる前記開口部とが一体構造をしており、開口部から蒸発粒子を発生させるには前記一体構造を高温に加熱する構成となっているため、蒸発源からの輻射熱を蒸着マスクで受けることになり、蒸着マスクの熱膨張による成膜パターンの位置精度の低下を防ぐことができない。   Further, as shown in, for example, Japanese Translation of PCT International Application No. 2010-511784, the substrate and the vapor deposition mask are spaced apart from each other, and the organic light emitting layer is made high by an evaporation source and an opening for generating evaporated particles having directivity. Although there is a method of forming a film with high accuracy, the evaporation source and the opening for generating directivity have an integrated structure, and the integrated structure is heated to a high temperature to generate evaporated particles from the opening. Therefore, radiation heat from the evaporation source is received by the vapor deposition mask, and it is impossible to prevent a decrease in the position accuracy of the film formation pattern due to thermal expansion of the vapor deposition mask.

更に、基板と蒸着マスクとを離間配設して相対移動させる構成とすることで、小さな蒸着マスクでも広範囲に所望の成膜パターンを大型基板に蒸着させることができるが、蒸発粒子に指向性を付与するために、蒸発源開口部の直径を小さくしなくてはならず、蒸発レートを高くできないという問題点があった。   Furthermore, by arranging the substrate and the vapor deposition mask so that they are spaced apart and relatively moved, a desired film formation pattern can be vapor-deposited over a large area even with a small vapor deposition mask. In order to provide this, there has been a problem that the diameter of the evaporation source opening must be reduced and the evaporation rate cannot be increased.

特表2010−511784号公報Special table 2010-511784 gazette

本発明は、このような様々な問題を解決し、基板の大型化に伴って蒸着マスクを同等に大型化せず基板より小形の蒸着マスクでも、基板を離間状態で相対移動させることで広範囲に蒸着マスクによる成膜パターンの蒸着膜を蒸着でき、また、離間状態のまま相対移動させることで構造も簡易で効率良くスピーディーに蒸着でき、また、離間状態のままでも制限用開口部を蒸発源と蒸着マスクとの間に設けることで、蒸発粒子の飛散方向を制限して隣接する若しくは離れた位置の蒸発口部からの蒸発粒子を通過させず成膜パターンの重なりを防止すると共に、この制限用開口部を設けた飛散制限部を有するマスクホルダーに蒸着マスクを付設した構成とし、このマスクホルダーは飛散制限部としてだけでなく蒸発源からの輻射熱の入射を抑制し、前記蒸発源の蒸発口部は、前記基板の相対移動方向に長くこれと直交する横方向に幅狭いスリット状とすることで、基板と蒸着マスクとを離間状態で相対移動させる構成でありながら、高精度で高レートな蒸着が行える蒸着装置並びに蒸着方法を提供することを目的としている。   The present invention solves these various problems, and does not increase the size of the vapor deposition mask to the same size as the substrate is enlarged. Evaporation film with a deposition pattern can be deposited using a deposition mask, and the structure can be simply and efficiently deposited by moving it in a separated state, and the limiting opening can be used as an evaporation source even in the separated state. By providing it between the vapor deposition mask, it is possible to limit the scattering direction of the evaporated particles and prevent the evaporated particles from passing through the evaporation port at the adjacent or remote positions so as not to overlap the film formation patterns. The mask holder has an evaporation mask attached to a mask holder with a scattering restriction provided with an opening, and this mask holder not only serves as a scattering restriction but also suppresses the incidence of radiant heat from the evaporation source. The evaporation port portion of the evaporation source has a configuration in which the substrate and the evaporation mask are relatively moved in a separated state by forming a slit shape that is long in the relative movement direction of the substrate and narrow in the lateral direction perpendicular thereto. It is an object of the present invention to provide a vapor deposition apparatus and a vapor deposition method that can perform high-accuracy and high-rate vapor deposition.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

蒸発源1から蒸発した成膜材料を、蒸着マスク2のマスク開口部3を介して基板4上に堆積して、この蒸着マスク2により定められた成膜パターンの蒸着膜が基板4上に形成されるように構成した蒸着装置において、前記蒸発源1とこの蒸発源1に対向状態に配設する前記基板4との間に、前記蒸発源1から蒸発した前記成膜材料の蒸発粒子の飛散方向を制限する制限用開口部5を設けた飛散制限部を有するマスクホルダー6を配設し、このマスクホルダー6に前記基板4と離間状態に配設する前記蒸着マスク2を接合させて付設し、前記基板4を、前記蒸着マスク2を付設した前記マスクホルダー6及び前記蒸発源1に対して、前記蒸着マスク2との離間状態を保持したまま相対移動自在に構成し、前記蒸発源1の蒸発口部8は、前記基板4の相対移動方向に長くこれと直交する横方向に幅狭いスリット状としたことを特徴とする蒸着装置に係るものである。   A film forming material evaporated from the evaporation source 1 is deposited on the substrate 4 through the mask opening 3 of the vapor deposition mask 2, and a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4. In the vapor deposition apparatus configured as described above, scattering of the evaporated particles of the film forming material evaporated from the evaporation source 1 is between the evaporation source 1 and the substrate 4 disposed in a state of being opposed to the evaporation source 1. A mask holder 6 having a scattering restriction portion provided with a restriction opening portion 5 for restricting the direction is provided, and the substrate 4 and the vapor deposition mask 2 provided in a separated state are joined to the mask holder 6 and attached. The substrate 4 is configured to be relatively movable with respect to the mask holder 6 provided with the vapor deposition mask 2 and the evaporation source 1 while maintaining a separated state from the vapor deposition mask 2. The evaporation port 8 is formed of the substrate Those of the vapor deposition apparatus characterized by laterally to a long perpendicular to the relative movement direction is narrow slit-like.

また、減圧雰囲気とする蒸着室7内に、前記成膜材料を収めた前記蒸発源1と、この蒸発源1の前記蒸発口部8から蒸発した前記成膜材料の蒸発粒子が通過する前記マスク開口部3を設けた前記蒸着マスク2とを配設し、前記蒸発口部8を複数並設し、前記蒸着マスク2と離間状態に位置合わせする前記基板4に、前記複数の蒸発口部8から飛散する蒸発粒子が前記マスク開口部3を通過して堆積し、蒸着マスク2により定められる成膜パターンの蒸着膜が前記基板4に形成されるように構成し、この蒸発源1とこの蒸発源1と対向状態に配設する前記基板4との間に、隣接する若しくは離れた位置の前記蒸発口部8からの蒸発粒子を通過させない前記制限用開口部5を設けた前記飛散制限部を構成する前記マスクホルダー6を配設し、このマスクホルダー6に前記基板4と離間状態に配設する前記蒸着マスク2を付設し、前記基板4を、前記蒸着マスク2を付設した前記マスクホルダー6及び前記蒸発源1に対してこの蒸着マスク2との離間状態を保持したまま相対移動させて、この相対移動方向に前記蒸着マスク2の前記成膜パターンの蒸着膜を連続させて前記基板4より小さい前記蒸着マスク2でも広範囲に蒸着膜が形成されるように構成したことを特徴とする請求項1記載の蒸着装置に係るものである。   Further, the evaporation source 1 containing the film forming material and the mask through which the evaporation particles of the film forming material evaporated from the evaporation port 8 of the evaporation source 1 pass in the vapor deposition chamber 7 in a reduced pressure atmosphere. The vapor deposition mask 2 provided with the opening 3 is disposed, a plurality of the evaporation port portions 8 are arranged in parallel, and the plurality of evaporation port portions 8 are arranged on the substrate 4 which is aligned with the vapor deposition mask 2 in a separated state. The vaporized particles scattered from the vapor are deposited through the mask opening 3 and a vapor deposition film having a film formation pattern determined by the vapor deposition mask 2 is formed on the substrate 4. The scattering restricting portion provided with the restricting opening portion 5 that does not allow the evaporated particles from the evaporation port portion 8 adjacent to or away from the source 4 and the substrate 4 disposed in an opposing state to pass through. The mask holder 6 to be configured is disposed, and this The vapor deposition mask 2 disposed in a state of being separated from the substrate 4 is attached to the holder 6, and the vapor deposition mask 2 is attached to the substrate 4 and the evaporation source 1 with respect to the mask holder 6 provided with the vapor deposition mask 2. In this relative movement direction, the deposition film of the deposition pattern of the deposition mask 2 is continued in this relative movement direction, and a deposition film is formed over a wide range even with the deposition mask 2 smaller than the substrate 4. The vapor deposition apparatus according to claim 1, wherein the vapor deposition apparatus is configured as described above.

また、前記基板4の相対移動方向に対して直交する横方向に前記蒸発源1の前記蒸発口部8を複数並設すると共に、前記マスクホルダー6に設ける前記飛散制限部の前記制限用開口部5を前記横方向に沿って複数並設して、前記各蒸発口部8から蒸発する蒸発粒子が、対向する前記制限用開口部5のみを通過し更にこの制限用開口部5と対向する前記蒸着マスク2の前記マスク開口部3を介して前記基板4上に前記成膜パターンの蒸着膜が形成され、隣り合う若しくは離れた位置の前記蒸発口部8からの蒸発粒子は付着捕捉されるようにして前記制限用開口部5により前記蒸発粒子の飛散方向が制限されるように構成したことを特徴とする請求項1,2のいずれか1項に記載の蒸着装置に係るものである。   In addition, a plurality of the evaporation port portions 8 of the evaporation source 1 are arranged side by side in a lateral direction orthogonal to the relative movement direction of the substrate 4 and the restriction opening portion of the scattering restriction portion provided in the mask holder 6 5 are arranged side by side along the lateral direction, and the evaporated particles evaporating from the respective evaporation port portions 8 pass only through the opposed limiting opening 5 and further face the limiting opening 5. A vapor deposition film of the film formation pattern is formed on the substrate 4 through the mask opening 3 of the vapor deposition mask 2 so that the vaporized particles from the vaporization port 8 at adjacent or separated positions are attached and captured. The vapor deposition apparatus according to any one of claims 1 and 2, wherein the restriction opening 5 restricts the scattering direction of the evaporated particles.

また、前記マスクホルダー6の前記基板4側の端部に、前記蒸着マスク2を付設したことを特徴とする請求項1〜3のいずれか1項に記載の蒸着装置に係るものである。   The vapor deposition apparatus according to any one of claims 1 to 3, wherein the vapor deposition mask 2 is attached to an end portion of the mask holder 6 on the substrate 4 side.

また、前記マスクホルダー6の前記基板4側の端部に、前記蒸着マスク2に張力を付与して張設したことを特徴とする請求項4記載の蒸着装置に係るものである。   The vapor deposition apparatus according to claim 4, wherein a tension is applied to the vapor deposition mask 2 at an end of the mask holder 6 on the substrate 4 side.

また、前記マスクホルダー6は、前記基板4の相対移動方向に張力を付与して前記蒸着マスク2を張設したことを特徴とする請求項5記載の蒸着装置に係るものである。   The vapor deposition apparatus according to claim 5, wherein the mask holder 6 stretches the vapor deposition mask 2 by applying a tension in a relative movement direction of the substrate 4.

また、前記蒸着マスク2は、前記基板4の相対移動方向と直交する横方向に複数枚に分割した構成とし、この分割した蒸着マスク2を前記マスクホルダー6に前記横方向に並設状態に付設したことを特徴とする請求項1〜6のいずれか1項に記載の蒸着装置に係るものである。   The vapor deposition mask 2 is divided into a plurality of pieces in the lateral direction orthogonal to the relative movement direction of the substrate 4, and the divided vapor deposition mask 2 is attached to the mask holder 6 in the lateral direction. It concerns on the vapor deposition apparatus of any one of Claims 1-6 characterized by the above-mentioned.

また、前記蒸発源1の前記蒸発口部8を前記基板4の相対移動方向と直交する横方向に複数並設し、この一若しくは複数の蒸発口部8毎に夫々対向状態に前記制限用開口部5を設けた前記飛散制限部を有する前記マスクホルダー6の各制限用開口部5を覆うように、前記蒸着マスク2をマスクホルダー6の前記基板4側の端部に付設したことを特徴とする請求項4〜7のいずれか1項に記載の蒸着装置に係るものである。   In addition, a plurality of the evaporation ports 8 of the evaporation source 1 are arranged in the lateral direction perpendicular to the relative movement direction of the substrate 4, and the restriction opening is set to be opposed to each of the one or a plurality of evaporation ports 8. The deposition mask 2 is attached to an end of the mask holder 6 on the substrate 4 side so as to cover each restriction opening 5 of the mask holder 6 having the scattering restriction portion provided with the portion 5. It concerns on the vapor deposition apparatus of any one of Claims 4-7.

また、前記マスクホルダー6は、前記基板4の相対移動方向に延在して、前記蒸着マスク2をマスクホルダー6に張設する際に蒸着マスク2に付与される張力によるマスクホルダー6の変形を防ぐため、張設する方向におけるマスクホルダー6の剛性を向上させるリブ部24を、前記制限用開口部5間に設けた構成としたことを特徴とする請求項1〜8のいずれか1項に記載の蒸着装置に係るものである。   The mask holder 6 extends in the relative movement direction of the substrate 4 and deforms the mask holder 6 due to tension applied to the vapor deposition mask 2 when the vapor deposition mask 2 is stretched on the mask holder 6. In order to prevent, the rib part 24 which improves the rigidity of the mask holder 6 in the extending direction is provided between the restricting opening parts 5. This relates to the described vapor deposition apparatus.

また、前記マスクホルダー6の前記制限用開口部5間に、前記基板4の相対移動方向に延在する前記リブ部24の前記基板4側先端面に、前記各制限用開口部5に設ける前記蒸着マスク2を支承し接合するマスク取付支承面23を設けたことを特徴とする請求項1〜9のいずれか1項に記載の蒸着装置に係るものである。   The restriction openings 5 are provided on the front end surfaces of the ribs 24 extending in the relative movement direction of the substrate 4 between the restriction openings 5 of the mask holder 6. The vapor deposition apparatus according to any one of claims 1 to 9, wherein a mask mounting support surface 23 for supporting and bonding the vapor deposition mask 2 is provided.

また、前記マスクホルダー6は、前記制限用開口部5の形状を、前記基板4側の開口面積より前記蒸発源1側の開口面積が小さい形状に形成したことを特徴とする請求項1〜10のいずれか1項に記載の蒸着装置に係るものである。   The mask holder (6) is characterized in that the restriction opening (5) is formed so that the opening area on the evaporation source 1 side is smaller than the opening area on the substrate 4 side. It concerns on the vapor deposition apparatus of any one of these.

また、前記基板4と前記蒸着マスク2とが離間状態で蒸着し、この蒸着マスク2により成膜パターンの蒸着膜が基板4に形成される際、この蒸着膜の側端傾斜部分である陰影SHは、前記基板4と前記蒸着マスク2とのギャップをG,前記蒸発口部8の前記横方向の開口幅をφx,この蒸発口部8と前記蒸着マスク2との距離をTSとすると、下記の式(1)で表され、この陰影SHが隣接する蒸着膜との間隔PPに達しないように、前記ギャップGを大きく設定し、前記蒸発口部8の前記開口幅φxを小さく設定した構成とすることを特徴とする請求項1〜11のいずれか1項に記載の蒸着装置に係るものである。   When the substrate 4 and the vapor deposition mask 2 are vapor-deposited in a separated state, and the vapor deposition film of the film formation pattern is formed on the substrate 4 by the vapor deposition mask 2, the shadow SH which is a side edge inclined portion of the vapor deposition film. Where G is the gap between the substrate 4 and the vapor deposition mask 2, φx is the lateral opening width of the evaporation port 8, and TS is the distance between the evaporation port 8 and the vapor deposition mask 2. The gap G is set large and the opening width φx of the evaporation port 8 is set small so that the shadow SH does not reach the interval PP between the adjacent deposited films. It concerns on the vapor deposition apparatus of any one of Claims 1-11 characterized by the above-mentioned.

Figure 2012193391
Figure 2012193391

また、前記蒸発源1は、前記蒸発材料を加熱する蒸発粒子発生部26と、この蒸発粒子発生部26から発生した前記蒸発粒子が拡散し圧力を均一化する横長拡散部27と、前記横長拡散部27に前記基板4の相対移動方向と直交する横方向に複数並設する前記蒸発口部8とで構成し、前記蒸発源1を前記基板4の相対移動方向と直交する横方向に一つ若しくは複数並設することを特徴とする請求項1〜12のいずれか1項に記載の蒸着装置に係るものである。   In addition, the evaporation source 1 includes an evaporation particle generation unit 26 that heats the evaporation material, a horizontally long diffusion unit 27 in which the evaporation particles generated from the evaporation particle generation unit 26 diffuse and uniformize the pressure, and the horizontally long diffusion And a plurality of the evaporation ports 8 arranged in the lateral direction perpendicular to the relative movement direction of the substrate 4, and one evaporation source 1 is arranged in the lateral direction perpendicular to the relative movement direction of the substrate 4. Alternatively, the vapor deposition apparatus according to claim 1, wherein a plurality of the vapor deposition apparatuses are arranged in parallel.

また、前記横長拡散部27の周囲若しくは前記蒸発口部8の周囲の少なくとも一方に、前記蒸発源1の熱を遮断する熱遮断部19を配設したことを特徴とする請求項1〜13のいずれか1項記載の蒸着装置に係るものである。   14. The heat blocking part 19 for blocking the heat of the evaporation source 1 is disposed around at least one of the laterally long diffusion part 27 and the periphery of the evaporation port part 8. The present invention relates to any one of the vapor deposition apparatuses.

また、前記横長拡散部27で拡散した蒸発粒子が、前記蒸発口部8から噴出される際に指向性を持って飛散する導入部28を、前記横長拡散部27に配設したことを特徴とする請求項1〜14のいずれか1項記載の蒸着装置に係るものである。   In addition, the horizontally long diffusing portion 27 is provided with an introducing portion 28 in which the evaporated particles diffused by the horizontally long diffusing portion 27 are scattered with directivity when ejected from the evaporation port 8. It concerns on the vapor deposition apparatus of any one of Claims 1-14.

また、前記複数の蒸発口部8を前記導入部28の前記基板4側の先端面に設け、この導入部28の前記基板4側に向けての導入長を、前記基板4の相対移動方向と直交する横方向の前記導入部28の幅長より長い構成としたことを特徴とする請求項15記載の蒸着装置に係るものである。   Further, the plurality of evaporation port portions 8 are provided on the front end surface of the introduction portion 28 on the substrate 4 side, and the introduction length of the introduction portion 28 toward the substrate 4 side is defined as the relative movement direction of the substrate 4. 16. The vapor deposition apparatus according to claim 15, wherein the length is longer than the width of the introduction portion 28 in the transverse direction perpendicular to the vertical direction.

また、前記導入部28は、前記横長拡散部27から前記基板4側に向けて突出させて配設したことを特徴とする請求項15,16のいずれか1項記載の蒸着装置に係るものである。   17. The vapor deposition apparatus according to claim 15, wherein the introduction portion 28 is disposed so as to protrude from the laterally long diffusion portion 27 toward the substrate 4. is there.

また、前記蒸着マスク2の前記マスク開口部3は、前記基板4の前記相対移動方向と直交する横方向に複数並設した構成とし、この各マスク開口部3は、前記相対移動方向に長いスリット状に形成若しくは開口部を前記相対移動方向に複数並設し、この相対移動方向のトータル開口長を前記制限用開口部5の中央部に比して前記横方向に離れる程長くなるように設定したことを特徴とする請求項1〜17のいずれか1項に記載の蒸着装置に係るものである。   A plurality of the mask openings 3 of the vapor deposition mask 2 are arranged side by side in a lateral direction orthogonal to the relative movement direction of the substrate 4, and each mask opening 3 is a slit long in the relative movement direction. A plurality of openings are formed in the relative movement direction, and the total opening length in the relative movement direction is set to be longer as the distance from the central portion of the restriction opening 5 is longer in the lateral direction. It concerns on the vapor deposition apparatus of any one of Claims 1-17 characterized by the above-mentioned.

また、前記蒸着マスク2の前記基板4側に、前記マスク開口部3の一部を塞いで前記各マスク開口部3の開口範囲を設定する膜厚補正板29を配設したことを特徴とする請求項1〜18のいずれか1項に記載の蒸着装置に係るものである。   Further, a film thickness correction plate 29 is provided on the substrate 4 side of the vapor deposition mask 2 so as to block a part of the mask opening 3 and set an opening range of each mask opening 3. It concerns on the vapor deposition apparatus of any one of Claims 1-18.

また、前記基板4に蒸着される成膜パターンを決する前記蒸着マスク2のマスク開口部3の前記基板4の相対移動方向と直交する横方向における形成間隔Mpxは、前記基板4と前記蒸着マスク2とのギャップをG、前記蒸着マスク2と前記蒸発口部8との距離をTS、前記成膜パターンの基板4の相対移動方向と直交する横方向における形成間隔をPxとすると下記の式(2)で表され、成膜パターン形成間隔Pxより狭く設定し、前記蒸着マスク2のマスク開口部3の前記基板4の相対移動方向と直交する横方向における開口寸法Mxは、前記基板4と前記蒸着マスク2とのギャップをG、前記蒸着マスク2と前記蒸発口部8との距離をTS、前記蒸着膜の成膜パターンにおける成膜幅をPとすると下記式(3)で表され、前記蒸着膜の成膜パターン幅Pより広く設定したことを特徴とする請求項1〜19のいずれか1項に記載の蒸着装置に係るものである。   Further, the formation interval Mpx in the lateral direction perpendicular to the relative movement direction of the substrate 4 of the mask opening 3 of the vapor deposition mask 2 that determines the film formation pattern deposited on the substrate 4 is the substrate 4 and the vapor deposition mask 2. Is G, the distance between the vapor deposition mask 2 and the evaporation port 8 is TS, and the formation interval in the lateral direction orthogonal to the relative movement direction of the substrate 4 of the film formation pattern is Px. The opening dimension Mx in the lateral direction perpendicular to the relative movement direction of the substrate 4 of the mask opening 3 of the vapor deposition mask 2 is set to be narrower than the film formation pattern formation interval Px. When the gap with the mask 2 is G, the distance between the vapor deposition mask 2 and the evaporation port 8 is TS, and the film formation width in the film formation pattern of the vapor deposition film is represented by the following formula (3), the vapor deposition: Membrane Those of the vapor deposition apparatus according to any one of claims 1 to 19, characterized in that set wider than layer pattern width P.

Figure 2012193391
Figure 2012193391

Figure 2012193391
Figure 2012193391

また、前記蒸着マスク2が付設された前記マスクホルダー6を、蒸着室7と往復自在に移動できる交換室16を備えたことを特徴とする請求項1〜20のいずれか1項に記載の蒸着装置に係るものである。   21. The vapor deposition according to any one of claims 1 to 20, further comprising an exchange chamber 16 in which the mask holder 6 to which the vapor deposition mask 2 is attached can move reciprocally with the vapor deposition chamber 7. It concerns the device.

また、前記交換室16内に、前記マスクホルダー6若しくはマスクホルダー6に付設した前記蒸着マスク2の少なくとも一方に付着した成膜材料を洗浄する洗浄機構を備えたことを特徴とする請求項1〜21のいずれか1項に記載の蒸着装置に係るものである。   2. The cleaning chamber according to claim 1, further comprising a cleaning mechanism for cleaning the film deposition material attached to at least one of the mask holder or the vapor deposition mask attached to the mask holder in the exchange chamber. 21. The vapor deposition apparatus according to any one of items 21 to 21.

また、前記交換室16内に、前記マスクホルダー6若しくはマスクホルダー6に付設した前記蒸着マスク2の少なくとも一方に付着した成膜材料を回収する材料回収機構を備えたことを特徴とする請求項1〜22のいずれか1項に記載の蒸着装置に係るものである。   2. A material recovery mechanism for recovering a film forming material attached to at least one of the mask holder 6 or the vapor deposition mask 2 attached to the mask holder 6 in the exchange chamber 16. It concerns on the vapor deposition apparatus of any one of -22.

また、前記制限用開口部5に対向状態で配設する前記蒸発源1の前記蒸発口部8を前記基板4の相対移動方向と直交する横方向に複数並設し、この複数並設する蒸発口部8の間隔を、前記基板4と前記蒸着マスク2とのギャップG及び前記蒸発口部8と前記蒸着マスク2との距離TS及び前記蒸着マスク2の前記マスク開口部3の間隔を考慮して設定することで、前記マスク開口部3を通過した前記蒸発口部8から蒸発した蒸発粒子と、隣接する前記マスク開口部3を通過した隣接する前記蒸発口部8から蒸発した蒸発粒子とを、前記基板4上で重畳させるように構成したことを特徴とする請求項1〜23のいずれか1項に記載の蒸着装置に係るものである。   Further, a plurality of the evaporation port portions 8 of the evaporation source 1 disposed in a state of being opposed to the restriction opening 5 are arranged in parallel in the lateral direction perpendicular to the relative movement direction of the substrate 4, and the plurality of evaporations arranged in parallel. Considering the gap G between the substrate 4 and the vapor deposition mask 2, the distance TS between the evaporation port 8 and the vapor deposition mask 2, and the gap between the mask openings 3 of the vapor deposition mask 2. The evaporation particles evaporated from the evaporation port 8 that has passed through the mask opening 3 and the evaporation particles evaporated from the adjacent evaporation port 8 that has passed through the adjacent mask opening 3 are The vapor deposition apparatus according to claim 1, wherein the vapor deposition apparatus is configured to be superimposed on the substrate 4.

また、前記制限用開口部5に対向状態で配設する前記蒸発源1の前記蒸発口部8を前記基板4の相対移動方向と直交する横方向に複数並設し、この複数並設する蒸発口部8の間隔を、前記基板4と前記蒸着マスク2とのギャップG及び前記蒸発口部8と前記蒸着マスク2との距離TS及び前記蒸着マスク2の前記マスク開口部3の間隔を考慮して設定することで、前記制限用開口部5内の基板4の相対移動方向と直交する横方向のマスク開口部3は、同一の制限用開口部5に対向状態で配設される前記蒸発口部8の数に応じて、前記基板4の相対移動方向と直交する横方向の成膜パターン数より少なく均等な間隔で構成したことを特徴とする請求項1〜24のいずれか1項に記載の蒸着装置に係るものである。   Further, a plurality of the evaporation port portions 8 of the evaporation source 1 disposed in a state of being opposed to the restriction opening 5 are arranged in parallel in the lateral direction perpendicular to the relative movement direction of the substrate 4, and the plurality of evaporations arranged in parallel. Considering the gap G between the substrate 4 and the vapor deposition mask 2, the distance TS between the evaporation port 8 and the vapor deposition mask 2, and the gap between the mask openings 3 of the vapor deposition mask 2. Accordingly, the mask opening 3 in the lateral direction perpendicular to the relative movement direction of the substrate 4 in the restriction opening 5 is arranged so as to face the same restriction opening 5. 25. The structure according to any one of claims 1 to 24, wherein the number of the portions 8 is less than the number of film formation patterns in the lateral direction perpendicular to the relative movement direction of the substrate 4 and is evenly spaced. This relates to the vapor deposition apparatus.

また、前記マスクホルダー6に付設された前記蒸着マスク2を第一の蒸着マスク2とし、前記基板4と前記第一の蒸着マスク2との間に、第二の蒸着マスク10を配設したことを特徴とする請求項1〜25のいずれか1項に記載の蒸着装置に係るものである。   The vapor deposition mask 2 attached to the mask holder 6 is the first vapor deposition mask 2, and the second vapor deposition mask 10 is disposed between the substrate 4 and the first vapor deposition mask 2. It concerns on the vapor deposition apparatus of any one of Claims 1-25 characterized by these.

また、前記制限用開口部5内に配設される前記基板4の相対移動方向と直交する横方向の前記第二の蒸着マスク10のマスク開口部11の数は、この第二の蒸着マスク10より前記蒸発源1側の同一の前記制限用開口部5内に配設される基板4の相対移動方向と直交する横方向の前記第一の蒸着マスク2の前記マスク開口部3の数と同じであり、この夫々の蒸着マスク2,10のマスク開口部3,11は、前記基板4との距離の相違に対応して異なる形成間隔とし、第二の蒸着マスク10のマスク開口部11のマスク開口幅は第一の蒸着マスク2と比して同一か幅狭くなるように設けたことを特徴とする請求項26記載の蒸着装置に係るものである。   The number of mask openings 11 of the second vapor deposition mask 10 in the lateral direction perpendicular to the relative movement direction of the substrate 4 disposed in the restriction opening 5 is the number of the second vapor deposition mask 10. More than the number of the mask openings 3 of the first vapor deposition mask 2 in the lateral direction orthogonal to the relative movement direction of the substrate 4 disposed in the same restriction opening 5 on the evaporation source 1 side. The mask openings 3 and 11 of the respective vapor deposition masks 2 and 10 have different formation intervals corresponding to the difference in distance from the substrate 4, and the mask openings 11 of the second vapor deposition mask 10 are masked. 27. The vapor deposition apparatus according to claim 26, wherein the opening width is the same as or narrower than that of the first vapor deposition mask.

また、前記第二の蒸着マスク10は、これより前記蒸発源1側に位置する第一の前記蒸着マスク2より線膨張係数が大である材料で形成したことを特徴とする請求項26,27のいずれか1項に記載の蒸着装置に係るものである。   The second vapor deposition mask 10 is formed of a material having a larger linear expansion coefficient than the first vapor deposition mask 2 located on the evaporation source 1 side. It concerns on the vapor deposition apparatus of any one of these.

また、前記第二の蒸着マスク10は、電鋳で形成することを特徴とする請求項26〜28のいずれか1項に記載の蒸着装置に係るものである。   29. The second vapor deposition mask 10 according to any one of claims 26 to 28, wherein the second vapor deposition mask 10 is formed by electroforming.

また、前記制限用開口部5内に配設される前記基板4の相対移動方向と直交する横方向の前記第二の蒸着マスク10の前記マスク開口部11の数は、同一の前記制限用開口部5内に配設される前記基板4の相対移動方向と直交する横方向の第一の前記蒸着マスク2のマスク開口部3の数より、同一の前記制限用開口部5内に配設される前記蒸発口部8の数に応じて多く形成したことを特徴とする請求項26〜29のいずれか1項に記載の蒸着装置に係るものである。   The number of the mask openings 11 of the second vapor deposition mask 10 in the lateral direction perpendicular to the relative movement direction of the substrate 4 disposed in the restriction opening 5 is the same as the restriction opening. The number of mask openings 3 of the first vapor deposition mask 2 in the lateral direction perpendicular to the relative movement direction of the substrate 4 provided in the part 5 is arranged in the same restriction opening 5. 30. The vapor deposition apparatus according to any one of claims 26 to 29, wherein the vapor deposition apparatus is formed in a large number according to the number of the evaporation port portions 8.

また、前記成膜材料を、有機材料としたことを特徴とする請求項1〜30のいずれか1項に記載の蒸着装置に係るものである。   31. The vapor deposition apparatus according to claim 1, wherein the film forming material is an organic material.

また、前記請求項1〜31のいずれか1項記載の蒸着装置を用いて、前記基板4上に前記蒸着マスク2により定められた成膜パターンの蒸着膜を形成することを特徴とする蒸着方法に係るものである。   Moreover, the vapor deposition method of forming the vapor deposition film of the film-forming pattern defined by the said vapor deposition mask 2 on the said board | substrate 4 using the vapor deposition apparatus of any one of the said Claims 1-31. It is related to.

本発明は上述のように構成したから、基板の大型化に伴って蒸着マスクを同等に大型化せず基板より小形の蒸着マスクでも、基板を離間状態で相対移動させることで広範囲に蒸着マスクによる成膜パターンの蒸着膜を蒸着でき、また、離間状態のまま相対移動させることで構造も簡易で効率良くスピーディーに蒸着でき、また、離間状態のままでも制限用開口部を蒸発源と蒸着マスクとの間に設けることで、蒸発粒子の飛散方向を制限して隣接する若しくは離れた位置の蒸発口部からの蒸発粒子を通過させず成膜パターンの重なりを防止すると共に、この制限用開口部を設けた飛散制限部を有するマスクホルダーに蒸着マスクを接合させて付設した構成とし、基板と蒸着マスクとを離間状態で相対移動させる構成でありながら高精度の蒸着が行え、蒸発源の蒸発口部の開口幅を狭めることで、(基板と蒸着マスクとのギャップの大きさ、蒸発源と蒸着マスクの距離によっても変化する)成膜パターンの陰影(蒸着膜の側端傾斜部分のはみ出し量)を一層抑制することができ、また蒸発口部の開口長を相対移動方向に長くすることで蒸発レートを高くすることができる蒸着装置並びに蒸着方法となる。   Since the present invention is configured as described above, even if the deposition mask is not enlarged as the substrate is enlarged, the deposition mask can be widely used by relatively moving the substrate in a separated state even if the deposition mask is smaller than the substrate. Vapor deposition film can be deposited, and the structure can be simply and efficiently deposited by moving relative to each other in the separated state, and the limiting opening can be formed between the evaporation source and the vapor deposition mask even in the separated state. By limiting the direction in which the evaporated particles are scattered, it is possible to prevent the overlapping of the film formation patterns without passing the evaporated particles from the adjacent or distant evaporation ports. Highly accurate vapor deposition is possible with a configuration in which a vapor deposition mask is bonded to a mask holder having a scattering restriction provided, and the substrate and vapor deposition mask are relatively moved apart. Also, by narrowing the opening width of the evaporation port of the evaporation source, the shadow of the film formation pattern (which also changes depending on the size of the gap between the substrate and the evaporation mask and the distance between the evaporation source and the evaporation mask) (side of the evaporation film) The vapor deposition apparatus and vapor deposition method can further reduce the amount of protrusion of the end inclined portion and increase the evaporation rate by increasing the opening length of the evaporation port portion in the relative movement direction.

特に有機ELデバイスの製造にあたり、基板の大型化に対応でき、有機発光層の蒸着も精度良く行え、マスク接触による基板,蒸着マスク,蒸着膜の損傷も防止でき、基板より小さな蒸着マスクにより高精度の蒸着が実現できる有機ELデバイス製造用の蒸着装置並びに蒸着方法となる。   Especially in the manufacture of organic EL devices, it is possible to cope with the increase in size of the substrate, the organic light emitting layer can be deposited with high accuracy, and the damage of the substrate, the deposition mask, and the deposited film due to the mask contact can be prevented. It becomes the vapor deposition apparatus and vapor deposition method for organic EL device manufacture which can implement | achieve vapor deposition of this.

また、請求項2記載の発明においては、一層本発明の作用・効果が良好に発揮され、一層実用性に優れた蒸着装置となる。   Further, in the invention described in claim 2, the function and effect of the present invention can be exhibited more satisfactorily, and the vapor deposition apparatus is further excellent in practicality.

また、請求項3記載の発明においては、基板の相対移動方向と直交する横方向に前記蒸発口部と前記制限用開口部を複数並設することで、隣り合う位置の蒸発粒子を通過させず成膜パターンの重なりを防止する構成で大面積の基板に蒸着できる優れた蒸着装置となる。   According to a third aspect of the present invention, a plurality of the evaporation ports and the restriction openings are arranged in parallel in a lateral direction perpendicular to the relative movement direction of the substrate, so that the evaporated particles at adjacent positions do not pass. It becomes the outstanding vapor deposition apparatus which can vapor-deposit on the board | substrate of a large area by the structure which prevents the overlap of the film-forming pattern.

また、請求項4,5記載の発明においては、蒸着マスクを蒸発源から最も離れた基板側の端部でマスクホルダーに付設するので、蒸発源からの輻射熱の入射を抑制でき、また、蒸着マスクに熱応力以上の張力を付与することで、安定的に維持される。   In the inventions according to claims 4 and 5, since the vapor deposition mask is attached to the mask holder at the end of the substrate side farthest from the evaporation source, the incidence of radiant heat from the evaporation source can be suppressed, and the vapor deposition mask By applying a tension equal to or higher than the thermal stress to the film, it is stably maintained.

また、請求項6記載の発明においては、蒸着マスクに対して基板の相対移動方向に張力を付与するので、蒸着マスクが撓むことがなくなり、撓みによって生じていた成膜誤差がなくなる。   According to the sixth aspect of the invention, since tension is applied in the relative movement direction of the substrate to the vapor deposition mask, the vapor deposition mask does not bend and film formation errors caused by the deflection are eliminated.

また、請求項7記載の発明においては、複数枚に分割した小さな蒸着マスクでも大型の基板に成膜できるので、蒸着マスクの作成が容易となる。   Further, in the invention described in claim 7, since even a small vapor deposition mask divided into a plurality of sheets can be formed on a large substrate, the vapor deposition mask can be easily created.

また、請求項8記載の発明においては、各蒸発口部毎の膜厚分布特性に基づいてこの蒸着領域毎で均一化を図るように、マスク開口部を個別に設定した蒸着マスクを並設したり、これら蒸着マスクを個別に取り替えたりできるように構成可能となるなど一層実用性に優れる。   Further, in the invention described in claim 8, vapor deposition masks having individually set mask openings are arranged side by side so as to achieve uniformity in each vapor deposition region based on the film thickness distribution characteristics of each evaporation port portion. Or the vapor deposition mask can be individually replaced, which makes it more practical.

また、請求項9,10記載の発明においては、基板の相対移動方向に延在させて設けたリブ部によって、蒸着マスクの張力によるマスクホルダーの変形が防止できると共に、蒸着マスクの張力が維持でき、かつ、マスク取付支承面を設けたことで、蒸着マスクのマスクホルダーへの支承・接合が強固に行える。   According to the ninth and tenth aspects of the present invention, the rib portion provided extending in the relative movement direction of the substrate can prevent the mask holder from being deformed by the tension of the deposition mask and can maintain the tension of the deposition mask. In addition, by providing a mask mounting support surface, it is possible to firmly support and join the vapor deposition mask to the mask holder.

また、請求項11記載の発明においては、マスクホルダーの制限用開口部の形状を、基板側の開口面積より蒸発源側の開口面積が小さい形状としたことで、蒸発源から蒸発した成膜材料の蒸発粒子を制限用開口部の蒸発源側でより多く捕捉することができることとなって、制限用開口部側面に付着する成膜材料を低減でき、マスクホルダーを交換した後の付着した成膜材料の剥離・回収が容易になる。   In the invention described in claim 11, the film forming material evaporated from the evaporation source is obtained by making the shape of the restriction opening of the mask holder smaller than the opening area on the substrate side. More evaporation particles can be captured on the evaporation source side of the restriction opening, so that the film forming material adhering to the side of the restriction opening can be reduced, and the attached film after replacing the mask holder can be reduced. Easy material peeling and recovery.

また、請求項12記載の発明においては、蒸発口部の開口幅を狭めることで、例えば、RGBの発光層を成膜するような場合に、隣接する蒸着パターン(隣接画素)に達する程の陰影が生じることを防止でき、またこのように蒸発口部の開口幅を狭めることで基板と蒸着マスクとのギャップを大きくとれることとなり、前述した制限用開口部間のマスク取付支承面を広くとれたり、蒸着マスク自体に温度制御機構を設けたりすることができるなど優れた蒸着装置となる。   Further, in the invention described in claim 12, by reducing the opening width of the evaporation port portion, for example, when forming an RGB light emitting layer, it is a shadow that reaches an adjacent vapor deposition pattern (adjacent pixel). In addition, by narrowing the opening width of the evaporation port portion in this way, the gap between the substrate and the vapor deposition mask can be increased, and the mask mounting support surface between the aforementioned limiting opening portions can be widened. The vapor deposition mask itself can be provided with a temperature control mechanism, which makes it an excellent vapor deposition apparatus.

また、請求項13記載の発明においては、蒸発源に横長拡散部を設け、これに複数の蒸発口部を並設することで、並設された複数の蒸発口部間での圧力の均一化を図れる。また、大型基板に蒸着する場合には、より拡散室の圧力が均一になるように、小さい拡散室を有する蒸発源を前記基板の相対方向と直交する横方向に複数並設するように構成してもよい。   Further, in the invention described in claim 13, by providing a horizontally long diffusion portion in the evaporation source and arranging a plurality of evaporation ports in parallel therewith, the pressure is uniformed among the plurality of evaporation ports arranged in parallel. Can be planned. Further, when vapor deposition is performed on a large substrate, a plurality of evaporation sources having small diffusion chambers are arranged side by side in a lateral direction perpendicular to the relative direction of the substrate so that the pressure in the diffusion chamber becomes more uniform. May be.

また、請求項14記載の発明においては、蒸発源の周囲に、蒸発源からの輻射熱を遮断する、例えば冷却部材などの熱遮断部(蒸発源に設ける温度制御部として機能すること)を配設することで、蒸着マスクの温度上昇を抑制できる。   Further, in the invention described in claim 14, a heat shut-off unit (functioning as a temperature control unit provided in the evaporation source) such as a cooling member is provided around the evaporation source to block radiant heat from the evaporation source. By doing, the temperature rise of a vapor deposition mask can be suppressed.

また、請求項15,16記載の発明においては、蒸発粒子の指向性が高められ、指向性の低い蒸発粒子と比較して、一蒸発口部から噴出する蒸発粒子の成膜に利用する材料量が同じであるとすると、成膜有効範囲内の蒸発粒子の飛散角度が全体的に小さくなるので、蒸発粒子が蒸着マスク開口部へ入射する入射角も全体的に小さくなり、基板と蒸着マスクとのギャップの変動に対しての成膜パターン位置の変化量を小さくすることができる。   Further, in the inventions according to claims 15 and 16, the amount of material used for film formation of the evaporated particles ejected from one evaporation port portion is improved as compared with the evaporated particles having a low directivity with the increased directivity of the evaporated particles. Are the same, the scattering angle of the evaporated particles within the effective range of film formation is reduced as a whole, and the incident angle at which the evaporated particles are incident on the vapor deposition mask opening is also reduced as a whole. The amount of change in the film forming pattern position with respect to the gap variation can be reduced.

また、請求項17記載の発明においては、横長拡散部から基板側に向けて導入部を突出させて配設させることで、熱遮断部を蒸発口部より蒸発源側に配設することが可能になり、蒸発口部間に熱遮断部を配設しても熱遮断部に蒸発粒子が付着せず、材料使用効率及びメンテナンス性が高い蒸着装置となる。   Further, in the invention described in claim 17, it is possible to dispose the heat shut-off portion closer to the evaporation source side than the evaporation port portion by disposing the introduction portion so as to protrude from the horizontally long diffusion portion toward the substrate side. Thus, even if a heat blocking part is provided between the evaporation ports, the evaporated particles do not adhere to the heat blocking part, resulting in a vapor deposition apparatus with high material use efficiency and maintainability.

また、請求項18記載の発明においては、基板の相対移動方向によって蒸着マスクのマスク開口部の横方向の配列によって決する成膜パターンの蒸着膜を形成するが、この蒸着マスクのマスク開口部は、基板の相対移動方向には長いトータル開口長を、制限用開口部の中央部(例えば蒸発口部と対向する位置)から横方向に離れる程長く設定したから、横方向に離れる程単位立体角あたりの蒸着レートが低くなるが、これに対応して開口長が長くなることで膜厚を均一にできる。   Further, in the invention of claim 18, the vapor deposition film having a film formation pattern determined by the horizontal arrangement of the mask opening portions of the vapor deposition mask is formed according to the relative movement direction of the substrate. Since the total opening length that is long in the relative movement direction of the substrate is set to be longer as the distance from the central portion of the opening for restriction (for example, the position facing the evaporation port portion) is increased in the horizontal direction, However, the film thickness can be made uniform by increasing the opening length correspondingly.

また、請求項19記載の発明においては、蒸着マスクをマスクホルダーに接合後に、膜厚の補正が必要になった場合、基板側に補正板を配設することで、蒸着マスクの交換をせずに膜厚を均一にできるし、初めから基板の相対移動方向に同一スリット長の蒸着マスクを用い補正板で膜厚を調整するようにしてもよい。   According to the nineteenth aspect of the present invention, when it is necessary to correct the film thickness after bonding the vapor deposition mask to the mask holder, the vapor deposition mask is not replaced by providing a correction plate on the substrate side. The film thickness can be made uniform, or the film thickness can be adjusted with a correction plate using a vapor deposition mask having the same slit length in the relative movement direction of the substrate from the beginning.

また、請求項20記載の発明においては、基板に蒸着される成膜パターンを決する蒸着マスクのマスク開口部の基板の相対移動方向と直交する横方向における形成間隔は、基板と蒸着マスクとのギャップと、蒸着マスクと蒸発口部との距離と、蒸着膜の基板の相対移動方向と直交する横方向の成膜パターン形成間隔で決定され、成膜パターン形成間隔より狭く設定し、蒸着マスクのマスク開口部の基板の相対移動方向と直交する横方向における開口寸法(マスク開口幅)は、基板と蒸着マスクとのギャップと、蒸着マスクと蒸発口部との距離と、前記蒸着膜の成膜パターン幅で決定され、前記蒸着膜の成膜パターン幅より広く設定することで基板と蒸着マスクとが離間し、これらの間にギャップが存在しても、成膜パターンの位置がずれたり、成膜パターンの幅がずれたりすることがなくなり、成膜パターンの形成精度を高精度にすることができる。   Further, in the invention described in claim 20, the formation interval in the lateral direction perpendicular to the relative movement direction of the mask opening of the vapor deposition mask for determining the film deposition pattern deposited on the substrate is the gap between the substrate and the vapor deposition mask. And the distance between the vapor deposition mask and the evaporation port and the film formation pattern formation interval in the lateral direction perpendicular to the relative movement direction of the substrate of the vapor deposition film, and set to be narrower than the film formation pattern formation interval. The opening dimension (mask opening width) in the lateral direction orthogonal to the relative movement direction of the substrate of the opening is the gap between the substrate and the evaporation mask, the distance between the evaporation mask and the evaporation port, and the deposition pattern of the evaporation film. It is determined by the width, and by setting it wider than the film formation pattern width of the vapor deposition film, the substrate and the vapor deposition mask are separated from each other, and even if there is a gap between them, the position of the film formation pattern may be shifted. It prevents the width of the deposition pattern is shifted or can be the formation accuracy of deposition pattern with high precision.

また、請求項21記載の発明においては、蒸着マスクが付設されたマスクホルダーを蒸着室と往復自在な交換室を備えることで、マスクホルダーの搬出入が容易となり、マスクホルダーの交換に伴う成膜工程の停止時間が短くなり、蒸着装置の稼動率が向上する。   In the invention of claim 21, the mask holder provided with the vapor deposition mask is provided with an exchange chamber that can reciprocate with the vapor deposition chamber, so that the mask holder can be easily carried in and out, and the film formation accompanying the exchange of the mask holder is performed. The stop time of the process is shortened, and the operation rate of the vapor deposition apparatus is improved.

また、請求項22記載の発明においては、交換室に、洗浄機構を備えたことで、マスクホルダー若しくは蒸着マスクに付着した成膜材料を、蒸着装置内で洗浄でき、マスクホルダーや蒸着マスクを再利用することが容易にできる。   Further, in the invention described in claim 22, since the exchange chamber is provided with a cleaning mechanism, the film forming material adhering to the mask holder or the vapor deposition mask can be cleaned in the vapor deposition apparatus, and the mask holder and the vapor deposition mask are reused. Can be easily used.

また、請求項23記載の発明においては、交換室に、材料回収機構を備えたことで、材料を回収して再利用ができ、例えば更に請求項11記載の発明のようにマスクホルダーのリブ部の形状は蒸発源側を大きくすることで、このマスクホルダーの蒸発源側端部に材料が付着し剥離・回収が一層簡易となる。   Further, in the invention described in claim 23, since the exchange chamber is provided with a material recovery mechanism, the material can be recovered and reused. For example, the rib portion of the mask holder as in the invention described in claim 11 can be used. By increasing the size of the evaporation source side, material adheres to the evaporation source side end portion of the mask holder, and separation and recovery are further simplified.

また、請求項24記載の発明においては、複数並設する蒸発口部からの蒸発粒子が基板上で重畳することで蒸着レートが高くなり、生産性の高い蒸着装置となる。   In the invention according to claim 24, the vapor deposition rate is increased by superimposing the vaporized particles from a plurality of vaporization openings arranged side by side on the substrate, and the vapor deposition apparatus has high productivity.

また、請求項25記載の発明においては、制限用開口部に対向状態で配設する蒸発口部を複数並設することで、複数の蒸発口部から蒸発した蒸発粒子は一つのマスク開口を通過して蒸着できるため、成膜パターンを決するマスク開口部数を減らし、マスク開口部の形成間隔を広げることができるので、蒸着マスクの機械的強度が増し、洗浄時のマスクの破壊や癒着を防止でき、かつマスク取付支承面を広く確保できるので、蒸着マスクとマスクホルダーの接合がより強固に行え、更に温度制御機構として蒸着マスクに設ける冷却媒体路若しくはヒートパイプの設置面積を大きくとれ、蒸発源からの輻射熱による蒸着マスクの温度上昇を防ぐことができる。   Further, in the invention of claim 25, by arranging a plurality of evaporation port portions arranged opposite to the restriction opening portion, the evaporated particles evaporated from the plurality of evaporation port portions pass through one mask opening. Since the number of mask openings that determine the film formation pattern can be reduced and the interval between mask openings can be increased, the mechanical strength of the evaporation mask can be increased, and the destruction and adhesion of the mask during cleaning can be prevented. In addition, since the mask mounting support surface can be secured widely, the deposition mask and the mask holder can be joined more firmly, and the installation area of the cooling medium path or heat pipe provided in the deposition mask as a temperature control mechanism can be increased, from the evaporation source. The temperature rise of the vapor deposition mask due to the radiant heat can be prevented.

また、請求項26記載の発明においては、第二の蒸着マスクを設けることで、蒸発源からの輻射熱の入射を第一の蒸着マスクで抑制した上で、第二の蒸着マスクの開口パターンで成膜できるので、第二の蒸着マスクの温度上昇を抑制しつつ一層高精度の蒸着が行える。   In the invention described in claim 26, by providing the second vapor deposition mask, the incidence of radiant heat from the evaporation source is suppressed by the first vapor deposition mask, and then the opening pattern of the second vapor deposition mask is formed. Since a film can be formed, vapor deposition with higher accuracy can be performed while suppressing the temperature rise of the second vapor deposition mask.

また、請求項27記載の発明においては、一層確実に陰影を防止でき高精度の蒸着が行える蒸着装置となる。   In the invention according to claim 27, it becomes a vapor deposition apparatus capable of preventing shadows more reliably and performing high-precision vapor deposition.

また、請求項28記載の発明においては、蒸着マスクとこれに接合する制限用開口部を設けた飛散制限部を有するマスクホルダーと、場合によってはこれに設けた温度制御機構によって蒸着マスクの温度上昇を抑えて温度を一定に保持することができるので、この蒸着マスクと基板との間に設ける第二の蒸着マスクは、更に温度上昇しにくくなることから、線膨張係数が大きい材料で形成できる。   Further, in the invention described in claim 28, the temperature of the vapor deposition mask is increased by a vapor deposition mask, a mask holder having a scattering restriction portion provided with a restriction opening to be joined thereto, and a temperature control mechanism provided in the mask holder in some cases. Since the temperature can be kept constant while suppressing the temperature, the second vapor deposition mask provided between the vapor deposition mask and the substrate can be made of a material having a large linear expansion coefficient because the temperature is further unlikely to rise.

また、請求項29記載の発明においては、第二のマスクは、電鋳で形成すると高精度なマスク開口部を形成でき、これにより一層精度の高いパターンを成膜できる蒸着装置となる。   In the invention described in claim 29, when the second mask is formed by electroforming, a highly accurate mask opening can be formed, thereby providing a vapor deposition apparatus capable of forming a pattern with higher accuracy.

また、請求項30記載の発明においては、第一の蒸着マスクの開口部間隔を広げることで、第一のマスク開口部から入射する輻射熱を減少させることができ、第二マスクの熱膨張を一層抑制することができる。また、第一の蒸着マスクの開口間隔を同じとしても、第二のマスク開口幅は狭くすることにより、高精細な成膜パターンを蒸着できる。   Further, in the invention of claim 30, by widening the opening interval of the first vapor deposition mask, the radiant heat incident from the first mask opening can be reduced, and the thermal expansion of the second mask is further increased. Can be suppressed. Moreover, even if the opening interval of the first vapor deposition mask is the same, a high-definition film formation pattern can be vapor-deposited by narrowing the second mask opening width.

また、請求項31記載の発明においては、有機材料の蒸発装置となり、一層実用性に優れる。また、請求項32記載の発明においては、前記作用・効果を発揮する優れた蒸着方法となる。   Further, in the invention described in claim 31, it becomes an organic material evaporation apparatus, and is more practical. Moreover, in the invention of Claim 32, it becomes the outstanding vapor deposition method which exhibits the said effect | action and effect.

本実施例の要部を断面した概略説明正面図である。It is the rough explanatory front view which cut the principal part of a present Example. 本実施例の蒸発源の説明斜視図である。It is a description perspective view of the evaporation source of a present Example. 本実施例の蒸発源の別例を示す説明斜視図である。It is explanatory perspective view which shows another example of the evaporation source of a present Example. 本実施例の導入部を横長拡散部内に配設した蒸発源の蒸発口部の開口幅を狭めることで蒸着膜の陰影を抑制でき、またこれによりギャップを大きくとることができることを示す説明図である。It is explanatory drawing which shows that the shadow of a vapor deposition film can be suppressed by narrowing the opening width | variety of the evaporation port part of the evaporation source which has arrange | positioned the introducing | transducing part of this Example in a horizontally long diffusion part, and this can take a gap large. is there. 本実施例の要部を断面した説明側面図である。It is the explanation side view which cut the important section of this example. 図5に示した蒸発口部がY軸方向に長いスリットとそうでない場合のY軸方向の膜厚分布の違いを示すグラフである。It is a graph which shows the difference in the film thickness distribution of the Y-axis direction when the evaporation port part shown in FIG. 本実施例の蒸着マスクの拡大説明平面図である。It is an expansion explanatory top view of the vapor deposition mask of a present Example. 本実施例の蒸着マスクの別例を示す拡大説明平面図である。It is an expansion explanatory top view which shows another example of the vapor deposition mask of a present Example. 本実施例のある位置xにおける蒸発粒子の飛散角度θを示す説明図である。It is explanatory drawing which shows the scattering angle (theta) of the evaporation particle | grains in the certain position x of a present Example. 本実施例の膜厚分布が余弦則に基づく分布となりこれに応じてマスク開口部のマスク開口長を中央部から横方向に離れる程長く補正設定することを示すグラフである。It is a graph which shows that the film thickness distribution of a present Example becomes distribution based on a cosine law, and according to this, the mask opening length of a mask opening part is corrected and set so that it leaves | separates from a center part in a horizontal direction. 本実施例の膜厚補正板の拡大説明平面図である。It is an expansion explanatory top view of the film thickness correction plate of a present Example. 本実施例の蒸着マスクのマスク開口部の横方向の形成ピッチが成膜パターンピッチよりも少し狭くすることを示す説明図である。It is explanatory drawing which shows that the formation pitch of the horizontal direction of the mask opening part of the vapor deposition mask of a present Example is made slightly narrower than the film-forming pattern pitch. 本実施例の蒸着マスクのマスク開口部の横方向の開口幅が成膜パターン幅よりも少し広くすることを示す説明図である。It is explanatory drawing which shows that the opening width of the horizontal direction of the mask opening part of the vapor deposition mask of a present Example is made a little wider than the film-forming pattern width. 本実施例のマスクホルダーの制限用開口部間のリブ部のマスク取付支承面を広くとることができることを示す説明図である。It is explanatory drawing which shows that the mask attachment support surface of the rib part between the opening parts for a restriction | limiting of the mask holder of a present Example can be taken widely. 第二実施例の複数の蒸発口部からの蒸発粒子が基板上で重畳し蒸着する場合を示す説明図である。It is explanatory drawing which shows the case where the evaporation particle | grains from the several evaporation port part of a 2nd Example overlap and vapor-deposit on a board | substrate. 第三実施例の制限用開口部内に奇数個の蒸発口部を配設し、マスク開口部の数を減らすことができることを示す説明図である。It is explanatory drawing which shows that the odd-number evaporation port part is arrange | positioned in the opening part for restriction | limiting of 3rd Example, and the number of mask opening parts can be reduced. 第三実施例の制限用開口部内に偶数個の蒸発口部を配設し、マスク開口部の数を減らすことができることを示す説明図である。It is explanatory drawing which shows that the even number of evaporation opening part is arrange | positioned in the opening part for restriction | limiting of 3rd Example, and the number of mask opening parts can be reduced. 図16に示した第三実施例の制限用開口部内に奇数個の蒸発口部を配設した構成で、マスク開口部の間隔を1/2にすると、成膜パターン間隔も1/2にすることができることを示す説明図である。In the configuration in which an odd number of evaporation openings are provided in the restriction openings of the third embodiment shown in FIG. 16, when the mask opening intervals are halved, the film forming pattern intervals are also halved. It is explanatory drawing which shows that it can be performed. 第三実施例のマスク開口部の数を減らしたマスク開口部間に媒体路やヒートパイプを配設することを示す説明図である。It is explanatory drawing which shows arrange | positioning a medium path and a heat pipe between the mask openings which reduced the number of the mask openings of 3rd Example. 図19に示す媒体路若しくはヒートパイプと蒸着マスクとの接触面積を増大できることを示す説明図である。It is explanatory drawing which shows that the contact area of the medium path or heat pipe shown in FIG. 19 and a vapor deposition mask can be increased. 第三実施例のマスク開口部の数を減らすことでマスク取付支承面を広くできることを示す説明図である。It is explanatory drawing which shows that a mask attachment support surface can be widened by reducing the number of mask openings of a 3rd Example. 第四実施例(第二の蒸着マスクを設けた実施例)の制限用開口部内の第一の蒸着マスクと第二の蒸着マスクのマスク開口部数が同じで、形成間隔が異なる説明図である。It is explanatory drawing in which the number of mask opening parts of the 1st vapor deposition mask in the opening part for restriction | limiting in the 4th Example (Example which provided the 2nd vapor deposition mask) and the 2nd vapor deposition mask are the same, and formation intervals differ. 第四実施例(第二の蒸着マスクを設けた実施例)の制限用開口部内に蒸発口部を三つ配設した説明図である。It is explanatory drawing which arrange | positioned three evaporation ports in the opening part for restriction | limiting of 4th Example (Example which provided the 2nd vapor deposition mask).

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

図1において、蒸発源1から蒸発した成膜材料は、飛散制限部として構成したマスクホルダー6の制限用開口部5を通過すると共に、蒸着マスク2のマスク開口部3を介して基板4上に堆積して、この蒸着マスク2により定められた成膜パターンの蒸着膜が基板4上に形成される。   In FIG. 1, the film-forming material evaporated from the evaporation source 1 passes through the restriction opening 5 of the mask holder 6 configured as a scattering restriction part, and onto the substrate 4 through the mask opening 3 of the vapor deposition mask 2. After deposition, a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4.

この際、前記基板4と前記蒸着マスク2とを離間状態に配設し、この基板4を、前記蒸着マスク2や前記蒸発源1に対してこの離間状態を保持したまま相対移動自在に構成して、この基板4を相対移動させることにより、蒸着マスク2自体よりも広い範囲にこの蒸着マスク2により定められる成膜パターンの蒸着膜が基板4上に形成される。   At this time, the substrate 4 and the vapor deposition mask 2 are arranged in a separated state, and the substrate 4 is configured to be movable relative to the vapor deposition mask 2 and the evaporation source 1 while maintaining the separated state. Thus, by relatively moving the substrate 4, a deposition film having a deposition pattern defined by the deposition mask 2 is formed on the substrate 4 in a wider range than the deposition mask 2 itself.

また、この蒸着マスク2と蒸発源1との間に、蒸発源1から蒸発した成膜材料の蒸発粒子の飛散方向を制限する前記制限用開口部5を設けた飛散制限部を有するマスクホルダー6を設けて、制限用開口部5により隣り合う若しくは離れた位置の蒸発口部8からの蒸発粒子を通過させず蒸着マスク2と基板4とが離間状態にあっても成膜パターンの重なりを防止している。   Further, a mask holder 6 having a scattering restriction portion provided with the restriction opening 5 for restricting the scattering direction of the evaporated particles of the film forming material evaporated from the evaporation source 1 between the vapor deposition mask 2 and the evaporation source 1. To prevent the deposition patterns from overlapping even if the vapor deposition mask 2 and the substrate 4 are in a separated state without allowing the vaporized particles from the vaporization openings 8 adjacent or separated by the restriction opening 5 to pass therethrough. is doing.

また更にこの飛散制限部を構成するマスクホルダー6に蒸着マスク2を接合させて付設した構成としたから、前記蒸発源1からの熱の入射が抑えられマスクホルダー6や蒸着マスク2の温度上昇が抑制され、また、蒸着マスク2が基板4と離間状態であってもこのマスクホルダー6と接合していることで蒸着マスク2の熱はマスクホルダー6へ伝導するから蒸着マスク2を一定の温度に保持する温度保持機能が向上する。   Furthermore, since the vapor deposition mask 2 is joined and attached to the mask holder 6 constituting the scattering restriction portion, the incidence of heat from the evaporation source 1 is suppressed and the temperature rise of the mask holder 6 and the vapor deposition mask 2 is increased. In addition, even when the vapor deposition mask 2 is separated from the substrate 4, since the heat of the vapor deposition mask 2 is conducted to the mask holder 6 by being bonded to the mask holder 6, the vapor deposition mask 2 is kept at a constant temperature. The temperature holding function to hold is improved.

また、更に例えば必要に応じてこのマスクホルダー6若しくは蒸着マスク2の少なくとも一方に蒸着マスク2の温度を保持する温度制御機構を設ければ、一層前記マスクホルダー6や蒸着マスク2の温度上昇が抑制され、一層蒸着マスク2を一定の温度に保持する温度保持機能が向上することとなる。   Further, for example, if a temperature control mechanism for holding the temperature of the vapor deposition mask 2 is provided in at least one of the mask holder 6 or the vapor deposition mask 2 as necessary, the temperature rise of the mask holder 6 or the vapor deposition mask 2 is further suppressed. Thus, the temperature holding function for holding the single-layer vapor deposition mask 2 at a constant temperature is improved.

従って、この飛散制限部を有するマスクホルダー6は、蒸発粒子の飛散方向の制限機能と同時に温度保持機能をも果たし、蒸着マスク2の温度上昇を抑制でき蒸着マスク2を一定の温度に保持し、熱による蒸着マスク2の歪みも生じにくいこととなる。   Therefore, the mask holder 6 having the scattering restriction portion also functions as a temperature holding function at the same time as the function of restricting the scattering direction of the evaporated particles, can suppress the temperature rise of the vapor deposition mask 2, and keep the vapor deposition mask 2 at a constant temperature. This also prevents distortion of the vapor deposition mask 2 due to heat.

従って、基板4を、蒸着マスク2,この蒸着マスク2を付設したマスクホルダー6及び蒸発源1に対してこの蒸着マスク2との離間状態を保持したまま相対移動させることで、蒸着マスク2による前記成膜パターンの蒸着膜をこの相対移動方向に連続させて形成し、基板4より小さい蒸着マスク2でも広範囲に蒸着膜が形成され、且つ隣り合う若しくは離れた位置の蒸発口部8からの入射による成膜パターンの重なりも、熱による歪みなども十分に抑制され高精度の蒸着が行える蒸着装置となる。   Accordingly, the substrate 4 is moved relative to the vapor deposition mask 2, the mask holder 6 provided with the vapor deposition mask 2 and the evaporation source 1 while maintaining the separated state from the vapor deposition mask 2, thereby the above-described vapor deposition mask 2. A vapor deposition film having a film formation pattern is formed continuously in this relative movement direction, and a vapor deposition film is formed over a wide range even with a vapor deposition mask 2 smaller than the substrate 4 and is incident on the adjacent or away from the evaporation port 8. Overlapping of film formation patterns, distortion due to heat, etc. are sufficiently suppressed, and a vapor deposition apparatus capable of performing highly accurate vapor deposition is obtained.

また、蒸発源1の蒸発口部8の開口幅φxを狭めることで、成膜パターンの陰影SH(蒸着膜の側端傾斜部分のはみ出し量)を一層抑制することができ、また蒸発口部8の開口長を相対移動方向に長くすることで蒸発レートを高くすることができることとなる。   Further, by narrowing the opening width φx of the evaporation port 8 of the evaporation source 1, the shadow SH of the film formation pattern (the amount of protrusion of the inclined portion on the side edge of the vapor deposition film) can be further suppressed, and the evaporation port 8 The evaporation rate can be increased by lengthening the opening length in the relative movement direction.

本発明の具体的な実施例1について図面に基づいて説明する。   A first embodiment of the present invention will be described with reference to the drawings.

図1は、概略装置の全体図である。   FIG. 1 is an overall view of the schematic apparatus.

本実施例は、減圧雰囲気とする蒸着室7内(例えば、真空チャンバー7内)に、成膜材料(例えば、有機ELデバイス製造のための有機材料)を収めた蒸発源1と、この蒸発源1の複数並設した蒸発口部8から蒸発する前記成膜材料の蒸発粒子が通過するマスク開口部3を設けた蒸着マスク2とを配設し、この蒸着マスクと離間状態に位置合わせする基板4に、前記複数の蒸発口部8から飛散する蒸発粒子が前記マスク開口部3を通過して堆積し、この蒸着マスク2により定められる成膜パターンの蒸着膜がこの基板4上に形成されるように構成し、この基板4と蒸発源1との間に、隣り合う若しくは離れた位置の蒸発口部8からの蒸発粒子を通過させないようにする制限用開口部5を設けた飛散制限部を構成するマスクホルダー6を配設し、このマスクホルダー6に基板4と離間状態に配設する前記蒸着マスク2を接合させて付設し、基板4を、蒸着マスク2を付設したマスクホルダー6及び蒸発源1に対して、蒸着マスク2との離間状態を保持したまま相対移動自在に構成して、この相対移動方向により蒸着マスク2より広い範囲にこの蒸着マスク2により定められる成膜パターンの蒸着膜が基板4上に連続して形成されるように構成している。   In this embodiment, an evaporation source 1 in which a film forming material (for example, an organic material for manufacturing an organic EL device) is housed in an evaporation chamber 7 (for example, in a vacuum chamber 7) in a reduced pressure atmosphere, and the evaporation source A substrate that is provided with a deposition mask 2 provided with a mask opening 3 through which evaporated particles of the film-forming material evaporating from a plurality of evaporation ports 8 arranged side by side pass, and is aligned with the deposition mask in a separated state 4, the evaporated particles scattered from the plurality of evaporation ports 8 pass through the mask opening 3 and are deposited, and an evaporation film having a film formation pattern defined by the evaporation mask 2 is formed on the substrate 4. The scattering restricting portion provided with the restricting opening 5 that prevents the evaporated particles from the adjacent or distant evaporation port 8 from passing between the substrate 4 and the evaporation source 1 is configured as described above. A mask holder 6 is provided. The mask 4 is attached to the mask holder 6 with the deposition mask 2 disposed in a separated state from the substrate 4. The substrate 4 is attached to the mask holder 6 to which the deposition mask 2 is attached and the evaporation source 1. The vapor deposition film of the film formation pattern defined by the vapor deposition mask 2 is continuously formed on the substrate 4 in a range wider than the vapor deposition mask 2 by this relative movement direction. It is constituted so that.

即ち、複数の蒸発口部8からの蒸発粒子によって蒸着する構成として、大面積の基板4に蒸着できるようにすると共に、制限用開口部5により隣り合う若しくは離れた位置の蒸発口部8からの入射を防止して蒸着マスク2と基板4とが離間状態にあっても成膜パターンの重なりも防止されるように構成している。   That is, as a configuration in which vapor deposition is performed with evaporated particles from the plurality of evaporation ports 8, vapor deposition can be performed on the substrate 4 having a large area, and from the evaporation ports 8 adjacent or separated by the restriction opening 5. Even if the vapor deposition mask 2 and the substrate 4 are separated from each other by preventing incidence, overlapping of the film formation patterns is prevented.

また本実施例では、複数の蒸発源1を並設して各蒸発口部8を並設してもよいが、一つの横長な蒸発源1に複数の蒸発口部8を並設した構成とし、前記成膜材料が加熱する蒸発粒子発生部26と、この蒸発粒子発生部26から発生した前記蒸発粒子を拡散させて圧力を均一化する横長拡散部27とで前記蒸発源1を構成し、この横長拡散部27に前記蒸発口部8を前記横方向に複数並設している。更に説明すると、例えば自動るつぼ交換機構により交換自在な蒸発粒子発生部26(るつぼ26)に成膜材料を収納し、このるつぼ26で加熱されて蒸発した蒸発粒子を一旦停留させて圧力を均一化する横長形の前記横長拡散部27を設け、この横長拡散部27の上部に、相対移動方向に長くこれと直交する横方向に前述のように幅狭いスリット状開口部を多数横方向に沿って並設して前記蒸発口部8を多数配設している。   In this embodiment, a plurality of evaporation sources 1 may be arranged side by side and the respective evaporation port portions 8 may be arranged in parallel. However, a configuration in which a plurality of evaporation port portions 8 are arranged in parallel on one horizontally long evaporation source 1 is adopted. The evaporation source 1 is composed of an evaporation particle generation unit 26 that heats the film forming material and a horizontally long diffusion unit 27 that diffuses the evaporation particles generated from the evaporation particle generation unit 26 to equalize the pressure, A plurality of the evaporation port portions 8 are arranged in the laterally long diffusion portion 27 in the lateral direction. To explain further, for example, the film-forming material is stored in the exchangeable particle generation unit 26 (crucible 26) by an automatic crucible exchange mechanism, and the vaporized particles heated and evaporated in the crucible 26 are temporarily stopped to equalize the pressure. The horizontally long diffuser 27 is provided, and a plurality of slit-like openings that are long in the relative movement direction and perpendicular to the transverse direction are formed on the top of the horizontally long diffuser 27 along the lateral direction. A large number of the evaporation port portions 8 are arranged in parallel.

また、横方向に並設する各蒸発口部8を、前記蒸発源1の前記横長拡散部27に突出した導入部28の先端に設け、横長拡散部27の周囲若しくは導入部28間に、蒸発源1の熱を遮断する熱遮断部19を配設している。   Further, each evaporation port 8 arranged in parallel in the horizontal direction is provided at the tip of the introduction part 28 protruding from the horizontally long diffusion part 27 of the evaporation source 1, and the evaporation is performed around the horizontal diffusion part 27 or between the introduction parts 28. A heat shut-off unit 19 that shuts off the heat of the source 1 is provided.

この熱遮断部19は、熱を遮蔽するものであればよいが、本実施例は冷却板9Dを採用し、冷却媒体を供給する媒体路を有し、冷却媒体が蒸発源1からの熱を奪いながら媒体路を通過して、この熱を交換する熱交換部20Dを設けて、熱遮蔽効果を高めている。   The heat shut-off unit 19 may be any unit that shields heat, but this embodiment employs a cooling plate 9D, has a medium path for supplying a cooling medium, and the cooling medium receives heat from the evaporation source 1. A heat exchanging portion 20D for exchanging this heat through the medium path while taking the heat is provided to enhance the heat shielding effect.

また、蒸着マスク2やマスクホルダー6には成膜中に蒸発粒子が次々に付着し、長時間使用すると成膜パターンに影響を及ぼす虞があるため、真空チャンバー7に不図示のゲート弁を介して交換室16(例えば、交換用チャンバー16)を並設し、真空チャンバー7から蒸着マスク2を付設したマスクホルダー6を取出自在に構成することで、マスクホルダー6の搬出入が容易となり、マスクホルダー6の交換に伴う成膜工程の停止時間が短くなり、蒸着装置の稼働率が向上する。また、前記交換用チャンバー16には、蒸着マスク2付のマスクホルダー6の洗浄機構を備え、付着した成膜材料を剥離させ、材料回収機構17で前記成膜材料を回収し再利用すると共に、成膜材料剥離後の蒸着マスク2付マスクホルダー6の表面に残った成膜材料やパーティクルを除去するために洗浄する。また、蒸着マスク2付のマスクホルダー6は、付着した成膜材料を剥離・回収せず、洗浄機構で洗浄するように構成してもよいし、蒸着マスク2付のマスクホルダー6自体を回収して交換するようにしてもよい。   In addition, vaporized particles adhere to the vapor deposition mask 2 and the mask holder 6 one after another during film formation, and if used for a long time, there is a possibility that the film formation pattern may be affected. The replacement chamber 16 (for example, the replacement chamber 16) is arranged in parallel, and the mask holder 6 provided with the vapor deposition mask 2 can be removed from the vacuum chamber 7 so that the mask holder 6 can be easily carried in and out. The stop time of the film forming process accompanying the replacement of the holder 6 is shortened, and the operating rate of the vapor deposition apparatus is improved. Further, the replacement chamber 16 includes a cleaning mechanism for the mask holder 6 with the vapor deposition mask 2 to peel off the deposited film forming material, and the material collecting mechanism 17 collects and reuses the film forming material. Cleaning is performed to remove the film forming material and particles remaining on the surface of the mask holder 6 with the vapor deposition mask 2 after the film forming material is peeled off. Further, the mask holder 6 with the vapor deposition mask 2 may be configured to be cleaned by a cleaning mechanism without peeling and collecting the deposited film forming material, or the mask holder 6 with the vapor deposition mask 2 itself may be collected. May be exchanged.

また、本実施例は、基板4を透明性基板4としてプラスチックフィルムを使用し、このプラスチックフィルム4上に陰極と、有機物質からなる複数の発光層と、陽極層とを設けた有機ELディスプレイをロールトゥーロール方式で製造する方法において、真空蒸着方式で発光層を蒸着する場合にも有効である。   Further, in this embodiment, an organic EL display in which a plastic film is used with the substrate 4 as the transparent substrate 4 and a cathode, a plurality of light emitting layers made of an organic substance, and an anode layer are provided on the plastic film 4 is used. This method is also effective when a light emitting layer is deposited by a vacuum deposition method in a method of manufacturing by a roll-to-roll method.

図2は、蒸発源1の斜視図である。   FIG. 2 is a perspective view of the evaporation source 1.

蒸発源1は、横長拡散部27に突出形成した導入部28を先端部に設けている。蒸発粒子が噴出する蒸発口部8の開口面積に対して、横長拡散部27の体積を充分大きくすることで、るつぼ26で加熱された蒸発粒子が、横長拡散部27で拡散し圧力が均一になることで、各蒸発口部8からの蒸発粒子が噴出する噴出圧力が均一になる。   The evaporation source 1 is provided with an introduction portion 28 that protrudes from the horizontally long diffusion portion 27 at the tip. By making the volume of the horizontally long diffusion part 27 sufficiently larger than the opening area of the evaporation port 8 from which the evaporated particles are ejected, the evaporated particles heated by the crucible 26 are diffused by the horizontally long diffusion part 27 and the pressure becomes uniform. As a result, the ejection pressure at which the evaporated particles from each evaporation port 8 are ejected becomes uniform.

また、各蒸発口部8の基板4側に向けて突出する導入部28の突出長を、前記基板4の相対移動方向と直交する横方向のこの導入部28の幅長より長くすることで、前記基板4の相対移動方向と直交する横方向に対する蒸発粒子の指向性を高めると同時に、基板4との相対移動方向には蒸発口部8の開口を広く設けることで、蒸発レートが高くなり生産性の高い蒸着装置となる。   Further, by making the protruding length of the introducing portion 28 protruding toward the substrate 4 side of each evaporation port portion 8 longer than the width length of the introducing portion 28 in the lateral direction perpendicular to the relative movement direction of the substrate 4, By increasing the directivity of the evaporation particles in the lateral direction perpendicular to the relative movement direction of the substrate 4 and at the same time providing a wide opening of the evaporation port 8 in the relative movement direction with respect to the substrate 4, the evaporation rate is increased and produced. It becomes a highly efficient vapor deposition apparatus.

また、図3に示すように、導入部28を横長拡散部27内に配設するように構成してもよく、この時、熱遮断部19に蒸発材料が付着してしまうので、蒸発口部8間には熱遮断部19を配設しない方が望ましい。   Further, as shown in FIG. 3, the introduction portion 28 may be arranged in the horizontally long diffusion portion 27. At this time, the evaporation material adheres to the heat shield portion 19, so that the evaporation port portion It is desirable not to dispose the heat shield 19 between the eight.

更に、前記蒸発口部8の開口形状の内角Rの値が大きいと、コーナー部分からの蒸発粒子の発生が減少し、蒸発レートが低下するので、前記蒸発口部8の開口形状の内角Rの値は小さい方が望ましい。   Further, if the value of the inner angle R of the opening shape of the evaporation port 8 is large, the generation of evaporation particles from the corner portion is reduced and the evaporation rate is lowered. Therefore, the inner angle R of the opening shape of the evaporation port 8 is reduced. A smaller value is desirable.

具体的には、蒸発口部8の基板4と相対移動方向の長さ(φy)を30mm、基板4と直交する横方向の長さ(φx)を2mmとすると、内角Rがない蒸発口部8と内角Rが1mmの蒸発口部のものと比較した。蒸発レートは蒸発口部8の開口面積におおよそ比例するので、開口面積で比較すると、内角Rがない方では、開口面積が60mmとなり、内角Rが1mmあるものでは、(56+π)mmとなり、約1.4%蒸発レートが低下する。 Specifically, when the length (φy) of the evaporation port 8 relative to the substrate 4 in the relative movement direction is 30 mm and the length (φx) in the horizontal direction orthogonal to the substrate 4 is 2 mm, the evaporation port without the inner angle R 8 and that of the evaporation port portion having an inner angle R of 1 mm. Since the evaporation rate is approximately proportional to the opening area of the evaporation port 8, when compared with the opening area, the opening area is 60 mm 2 when the inner angle R is not present, and (56 + π) mm 2 when the inner angle R is 1 mm. , About 1.4% evaporation rate decreases.

また、基板4と蒸着マスク2を離間状態で配設し、成膜する場合、図4に示すように蒸着膜の両側端部の傾斜部分である陰影(SH)が生じる。基板4と蒸着マスク2とのギャップをG、蒸発口部8の前記横方向の開口幅をφx、この蒸発口部8と蒸着マスク2との距離をTSとすると、下記の式(1)で表され、この陰影SHが隣接する蒸着膜との間隔PPに達しないように、蒸発口部8の開口幅φxを小さく設定してギャップGを大きく設定できるように構成している。   Further, when the substrate 4 and the vapor deposition mask 2 are arranged in a separated state and formed into a film, as shown in FIG. 4, shadows (SH) which are inclined portions at both end portions of the vapor deposition film are generated. When the gap between the substrate 4 and the vapor deposition mask 2 is G, the lateral opening width of the evaporation port 8 is φx, and the distance between the evaporation port 8 and the vapor deposition mask 2 is TS, the following equation (1) is satisfied. It is configured so that the gap G can be set large by setting the opening width φx of the evaporation port 8 small so that the shadow SH does not reach the interval PP between the adjacent vapor deposition films.

Figure 2012193391
Figure 2012193391

具体的には、陰影SHを0.03mm以下に設定し、上記TSを100〜300mmとし、上記φxを0.5〜3mmで設定すると、ギャップGが1mm以上確保できる。   Specifically, when the shadow SH is set to 0.03 mm or less, the TS is set to 100 to 300 mm, and the φx is set to 0.5 to 3 mm, the gap G can be secured to 1 mm or more.

例えば、上記TSを100mmで上記φxを3mmとすると、ギャップGは1mmとなり、また上記TSを100mmで上記φxを0.6mmまで小さくすると、ギャップGを5mm確保することができる。また、上記TSを300mmとし、上記φxを3mm、ギャップGを1mmとすると、陰影SHを0.01mmまで小さくすることができ、より高精細な成膜パターンに対応できるようにしてもよい。   For example, if the TS is 100 mm and the φx is 3 mm, the gap G is 1 mm. If the TS is 100 mm and the φx is reduced to 0.6 mm, the gap G can be 5 mm. Further, when the TS is 300 mm, the φx is 3 mm, and the gap G is 1 mm, the shadow SH can be reduced to 0.01 mm, and a higher-definition film forming pattern may be supported.

また、前記基板4の相対移動方向と直交する横方向に幅狭い蒸発口部8を有する蒸発源1を、前記基板4の相対移動方向に複数並設すると、基板4と蒸着マスク2が離間状態で蒸着しても、陰影を抑制しながら蒸発レートを高くすることができるが、成膜パターンの位置ずれが各蒸発口部8夫々の位置ずれの総和になり、前記基板4の相対移動方向に配設する蒸発源1の蒸発口部8の数は最小限に留める方がよい。   Further, when a plurality of evaporation sources 1 having evaporation ports 8 that are narrow in the lateral direction perpendicular to the relative movement direction of the substrate 4 are arranged side by side in the relative movement direction of the substrate 4, the substrate 4 and the vapor deposition mask 2 are separated from each other. Even if vapor deposition is performed, the evaporation rate can be increased while suppressing the shadow. However, the positional deviation of the film formation pattern becomes the sum of the positional deviations of the respective evaporation port portions 8, and the relative movement direction of the substrate 4 is increased. It is better to keep the number of evaporation ports 8 of the evaporation source 1 to be kept to a minimum.

そのため、本実施例では、図2に示すように、前記基板4の相対移動方向に配設する蒸発口部8は一つとし、前記蒸発口部8は、前記基板4の相対移動方向に長くこれと直交する横方向に幅狭いスリット状とする構成としている。   Therefore, in this embodiment, as shown in FIG. 2, there is one evaporation port 8 disposed in the relative movement direction of the substrate 4, and the evaporation port 8 is long in the relative movement direction of the substrate 4. The slit is narrow in the lateral direction perpendicular to this.

具体的には、搬送成膜時の膜厚(Å)は、蒸着レート(Å/s)/移動速度(mm/s)×蒸着マスクスリット長(mm)で表される。蒸発口部8の前記横方向の開口幅φxを1mmとし、図5に示すように、基板4の相対移動方向の長さφyの長さが1mm(図5(a))と60mm(図5(b))で成膜される場合を比較した。蒸発口部8から蒸発し、基板4上に蒸着された膜厚分布が余弦則のcosθの20乗に近似した分布になるとする。蒸発口部8の対向する位置での蒸着レートを1Å/s,移動速度を1mm/s,蒸着マスクスリットの長さを100mmとすると、搬送成膜後の膜厚は、φyが1mmの場合(図5(a))では、約83.3Åとなり、例えば蒸着膜の目標膜厚を400Åとすると、移動速度が約0.21mm/sとなる。   Specifically, the film thickness (Å) at the time of transport film formation is represented by vapor deposition rate (Å / s) / moving speed (mm / s) × deposition mask slit length (mm). The lateral opening width φx of the evaporation port 8 is 1 mm, and the length of the substrate 4 in the relative movement direction φy is 1 mm (FIG. 5A) and 60 mm (FIG. 5). The case where the film was formed in (b)) was compared. It is assumed that the film thickness distribution evaporated from the evaporation port 8 and deposited on the substrate 4 is a distribution that approximates the cosine law cos θ to the 20th power. Assuming that the vapor deposition rate at the position facing the evaporation port 8 is 1 mm / s, the moving speed is 1 mm / s, and the length of the vapor deposition mask slit is 100 mm, the film thickness after transport film formation is when φy is 1 mm ( In FIG. 5 (a)), it is about 83.3 mm. For example, when the target film thickness of the deposited film is 400 mm, the moving speed is about 0.21 mm / s.

しかし、φyが60mmの場合(図5(b))では、蒸発口部8のφyが(図5(a))と比較して60倍になるので、基板4上のある地点a,bに蒸着される蒸発粒子の入射角θbはθaの60倍となる。よって、同様に目標膜厚を400Åとすると、移動速度も60倍の約12.5mm/sとなり生産性が向上する。   However, when φy is 60 mm (FIG. 5B), φy of the evaporation port 8 is 60 times that of (FIG. 5A), so that at certain points a and b on the substrate 4. The incident angle θb of the evaporated particles to be deposited is 60 times θa. Therefore, similarly, when the target film thickness is 400 mm, the moving speed is about 12.5 mm / s, which is 60 times, and the productivity is improved.

ただし、厳密に言えば、φyが60mmの場合の成膜有効範囲内の蒸着レートはφyが1mmの60倍ではなく、φyの中心から左右対称に端に行くほど蒸発口部8から噴出し、制限用開口部5空間を飛散する蒸発粒子数が中心部と比して減少するので、蒸発レートは低下する。具体的に言うと、図5(a)の蒸発口部8のc地点から噴出する蒸発粒子が基板4上のa地点に蒸着される蒸発レートの方が、図5(b)の蒸発口部8のd地点から噴出する蒸発粒子が基板4上のa地点と同様にb地点に蒸着される蒸着レートより高くなる。よって、図6に示すように、成膜有効範囲内の膜厚分布は、(b)の方が広がる。   Strictly speaking, however, the evaporation rate within the film forming effective range when φy is 60 mm is not 60 times that of 1 mm, and is ejected from the evaporation port portion 8 toward the end symmetrically from the center of φy. Since the number of evaporated particles scattered in the restriction opening 5 space is reduced as compared with the central portion, the evaporation rate is lowered. More specifically, the evaporation rate at which the evaporation particles ejected from the point c of the evaporation port 8 in FIG. 5A are deposited at the point a on the substrate 4 is the evaporation port in FIG. Evaporated particles ejected from the point d of 8 become higher than the vapor deposition rate deposited at the point b similarly to the point a on the substrate 4. Therefore, as shown in FIG. 6, the film thickness distribution within the effective film formation range is wider in (b).

具体的には、φyが60mmの場合とφyが1mmの60倍の時の膜厚を比較すると、蒸着レート、移動速度、蒸着マスクスリットの長さが同じ場合では、φyが60mmの方が膜厚が約4.1%薄くなる。   Specifically, when the film thickness when φy is 60 mm is compared with the film thickness when φy is 60 times that of 1 mm, the film with φy of 60 mm is the same when the vapor deposition rate, the moving speed, and the length of the vapor deposition mask slit are the same. The thickness is reduced by about 4.1%.

また、本実施例の前記蒸着マスク2の前記マスク開口部3は、図7,図8に示すように前記基板4の前記相対移動方向と直交する横方向に多数並設した構成とし、この各マスク開口部3は、前記相対移動方向に長いスリット状に形成若しくは開口部を前記相対移動方向に複数並設して、この相対移動方向のトータル開口長を横方向の開口長より長く形成している。   Further, as shown in FIGS. 7 and 8, the mask openings 3 of the vapor deposition mask 2 of this embodiment are arranged in parallel in the lateral direction orthogonal to the relative movement direction of the substrate 4. The mask opening 3 is formed in a slit shape that is long in the relative movement direction or a plurality of openings are arranged in parallel in the relative movement direction, and the total opening length in the relative movement direction is longer than the lateral opening length. Yes.

即ち、蒸着マスク2の各列のマスク開口部3は、相対移動方向に長いスリット状開口部としてもよいし、蒸着マスク2の剛性を高めるため、このマスク開口部3は相対移動方向に長いスリット孔あるいは小孔などの小開口部をこの方向に点在させてトータル開口長(総合開口面積)を広く確保してもよい。   In other words, the mask openings 3 in each row of the vapor deposition mask 2 may be slit-like openings that are long in the relative movement direction. In order to increase the rigidity of the vapor deposition mask 2, the mask openings 3 are slits that are long in the relative movement direction. Small openings such as holes or small holes may be scattered in this direction to ensure a wide total opening length (total opening area).

更に、蒸着マスク2の開口スリット若しくはトータル開口長が中央部から横方向に離れるほど長くなるように設定して、中央部から離れるほど蒸着レートが低くなるが、蒸着膜の膜厚が一定になるように設定している。   Further, the opening slit or the total opening length of the vapor deposition mask 2 is set so as to be longer as the distance from the central portion is increased in the lateral direction, and the vapor deposition rate becomes lower as the distance from the central portion is increased, but the film thickness of the vapor deposition film becomes constant It is set as follows.

例えば、図9,図10に示すように、前記基板4の相対移動方向と直交する横方向(X軸方向)のある位置xにおける蒸発粒子の飛散角度をθとすると、xの位置では余弦則(cosθ)に累乗係数nを乗じた近似分布となり、前記基板4の相対移動方向(Y軸方向)の膜厚分布を勘案し、前記蒸着マスク2のマスク開口部3の形成長が中央部を境に左右対称に長く変化していくように設定している。   For example, as shown in FIGS. 9 and 10, when the scattering angle of the evaporated particles at a position x in the lateral direction (X-axis direction) orthogonal to the relative movement direction of the substrate 4 is θ, the cosine law at the position x. An approximate distribution obtained by multiplying (cos θ) by a power coefficient n, and considering the film thickness distribution in the relative movement direction (Y-axis direction) of the substrate 4, the formation length of the mask opening 3 of the vapor deposition mask 2 has a central portion. It is set to change symmetrically for a long time at the border.

具体的には、蒸発口部8の寸法が、例えば蒸発口部開口幅φxが1mm、蒸発口部スリット長φyが60mmとし、基板4の相対移動方向と直交する横方向の膜厚分布がcosθの20乗に近似した分布になるとすると、図8に示した膜厚分布となる。蒸発粒子の蒸着マスク2への入射角が大きくなると、前述した誤差の影響が大きくなるので、膜厚が中心の8割まで薄くなる位置まで成膜に使用すると、X軸方向の−30〜+30の幅60mmが一つのノズルで成膜する成膜有効範囲である。蒸発口部開口中心に対向するマスク位置での基板4の相対移動方向の形成長を100mmとすると、成膜有効範囲の両端である−30,+30の位置での蒸着マスク開口長は約146mmとなり、図10に示すように中心から両端に離れるほど左右対称にマスク開口長が長くなる。   Specifically, the dimensions of the evaporation port 8 are, for example, the evaporation port opening width φx is 1 mm, the evaporation port slit length φy is 60 mm, and the lateral film thickness distribution perpendicular to the relative movement direction of the substrate 4 is cos θ. If the distribution approximates the 20th power, the film thickness distribution shown in FIG. 8 is obtained. When the incident angle of the evaporated particles on the vapor deposition mask 2 is increased, the influence of the above-described error is increased. Therefore, when the film is used for film formation up to a position where the film thickness is reduced to 80% of the center, −30 to +30 in the X-axis direction. A width of 60 mm is an effective film forming range for forming a film with one nozzle. Assuming that the formation length in the relative movement direction of the substrate 4 at the mask position facing the center of the opening of the evaporation port is 100 mm, the evaporation mask opening length at −30, +30 positions, which are both ends of the effective film formation range, is about 146 mm. As shown in FIG. 10, as the distance from the center to both ends increases, the mask opening length becomes symmetrical.

また、図11に示すように、基板4と蒸着マスク2が離間しているギャップGを利用して、膜厚補正板29を蒸着マスク2の基板4側に配設することで、蒸着マスク2をマスクホルダー6に接合後、更に膜厚補正が必要になった場合でも、蒸着マスク2を貼り替えることなく、蒸着膜の膜厚を補正できる。同様に蒸着マスク2のマスク開口部3を、左右両端に離れるほど基板4の相対移動方向に長いスリット状にせず、同一のスリットにし、図11に示すように所定範囲に開口部を形成しそれ以外を閉塞する膜厚補正板29で補正して図10に示すスリット開口長にするようにしてもよい。   In addition, as shown in FIG. 11, by using a gap G in which the substrate 4 and the vapor deposition mask 2 are separated from each other, the film thickness correction plate 29 is disposed on the substrate 4 side of the vapor deposition mask 2, so that the vapor deposition mask 2. Even if it is necessary to further correct the film thickness after bonding to the mask holder 6, the film thickness of the deposited film can be corrected without replacing the deposition mask 2. Similarly, the mask opening 3 of the vapor deposition mask 2 is not formed into a slit that is longer in the direction of relative movement of the substrate 4 as it moves away from the left and right ends, but is formed into the same slit and an opening is formed in a predetermined range as shown in FIG. The film thickness correction plate 29 may be used to correct the slit opening length shown in FIG.

また、図12に示すように、基板4に蒸着される成膜パターンを決する蒸着マスク2のマスク開口部3の前記基板4の相対移動方向と直交する横方向の形成ピッチを、前記蒸着膜の成膜パターンのピッチよりも、基板4と蒸着マスク2とのギャップGの大小及び蒸発口部8と蒸着マスク2までの距離TSの大小に応じた相違分だけ狭く設定している。   Further, as shown in FIG. 12, the formation pitch in the lateral direction perpendicular to the relative movement direction of the substrate 4 of the mask opening 3 of the vapor deposition mask 2 that determines the film formation pattern deposited on the substrate 4 is set to The pitch is set narrower than the pitch of the film formation pattern by a difference corresponding to the size of the gap G between the substrate 4 and the vapor deposition mask 2 and the distance TS between the evaporation port 8 and the vapor deposition mask 2.

具体的には、図12に示すように、蒸発源の蒸発口部開口中心に対向するマスク位置からマスク開口中心までの距離MPxは、蒸発口部開口中心に対向する基板位置から成膜パターン中心までの距離Pxにα/(1+α)を乗じた分(このときα=TS/G)小さくなる。   Specifically, as shown in FIG. 12, the distance MPx from the mask position facing the evaporation port opening center of the evaporation source to the mask opening center is the center of the film forming pattern from the substrate position facing the evaporation port opening center. The distance Px is multiplied by α / (1 + α) (where α = TS / G).

従って、例えば上記距離TSを100mm、上記ギャップGを1mmとすると、上記αは100となり、α/(1+α)は約0.99となる。よって、例えばPxを10mmとすると、MPxは9.9mmとなり、MPxはPxより小さい値となる。   Therefore, for example, if the distance TS is 100 mm and the gap G is 1 mm, α is 100 and α / (1 + α) is about 0.99. Therefore, for example, if Px is 10 mm, MPx is 9.9 mm, and MPx is smaller than Px.

即ち、基板4と蒸着マスク2とが離間しているため、基板4と蒸着マスク2とのギャップGの大小及び蒸発口部8と蒸着マスク2までの距離TSの大小に応じて、蒸着マスク2のマスク開口部3を通過して基板4上に堆積する蒸着膜の位置は横方向にずれるが、このずれ量を考慮して、蒸着マスク2の開口ピッチを、成膜パターンより狭く設定することで、成膜パターン位置精度の高い蒸着膜を形成できることとなる。   That is, since the substrate 4 and the vapor deposition mask 2 are separated from each other, the vapor deposition mask 2 depends on the size of the gap G between the substrate 4 and the vapor deposition mask 2 and the distance TS between the evaporation port 8 and the vapor deposition mask 2. The position of the vapor deposition film deposited on the substrate 4 through the mask opening 3 is shifted in the horizontal direction, but the opening pitch of the vapor deposition mask 2 should be set narrower than the film formation pattern in consideration of this deviation amount. Thus, it is possible to form a vapor deposition film with high film formation pattern position accuracy.

また、同様に、図13に示すように蒸着マスク開口幅Mxは、蒸発口部8の開口幅φxがこのマスク開口幅Mxより大きい場合、基板4と蒸着マスク2とのギャップGの大小及び蒸発口部8と蒸着マスク2までの距離TSの大小に応じた相違分だけ広くなる。具体的には、マスク開口幅Mxは(φx+αP/(1+α))で表される(このときα=TS/G)。   Similarly, as shown in FIG. 13, when the opening width φx of the evaporation port 8 is larger than the mask opening width Mx, the vapor deposition mask opening width Mx is larger or smaller than the gap G between the substrate 4 and the vapor deposition mask 2 and evaporated. It becomes wide by the difference according to the size of the distance TS between the mouth portion 8 and the vapor deposition mask 2. Specifically, the mask opening width Mx is represented by (φx + αP / (1 + α)) (in this case, α = TS / G).

例えば、蒸着パターン幅Pを0.1mm、TSを100mm、φxを1mmとした場合、マスク開口幅Mxは、Gが3mmでは約0.126mm、Gが5mmでは約0.143mmとなり、蒸着パターン幅Pより広くなる。   For example, when the deposition pattern width P is 0.1 mm, TS is 100 mm, and φx is 1 mm, the mask opening width Mx is about 0.126 mm when G is 3 mm, and about 0.143 mm when G is 5 mm. It becomes wider than P.

また、本実施例では、基板4の相対移動方向に延在するリブ部24を設け、このリブ部24の基板4側先端面に、各制限用開口部5に設ける蒸着マスク2を支承し接合するマスク取付支承面23を設けている。例えば、図14に示すように、発光層のR画素を蒸着する場合は、その他のG,B画素幅とその間隔分マスク取付支承面23を設けることができ、基板4と蒸着マスク2とのギャップGが離間していることで、広く確保できる。具体的には、基板4と蒸着マスク2が密着している構成でのマスク取付支承面23は、RGB画素蒸着のための蒸着膜間隔PPと蒸着パターン幅Pを用いて、2P+3PPで表される。更に、ギャップGを有することで、蒸発口部8と対向する基板4中心から見て、蒸着パターンの最端の位置と蒸着マスク2のマスク開口部3の最端の位置との差Aが生じる。AはG(Px+P/2−φx/2)/(TS+G)で表され、マスク取付支承面23は、基板4と蒸着マスク2が密着している場合と比較して2A分広くなる。   Further, in this embodiment, a rib portion 24 extending in the relative movement direction of the substrate 4 is provided, and the deposition mask 2 provided in each restriction opening 5 is supported and bonded to the front end surface of the rib portion 24 on the substrate 4 side. A mask mounting support surface 23 is provided. For example, as shown in FIG. 14, when the R pixel of the light emitting layer is vapor-deposited, other G and B pixel widths and the corresponding mask mounting support surface 23 can be provided. Since the gap G is separated, it can be secured widely. Specifically, the mask mounting support surface 23 in a configuration in which the substrate 4 and the vapor deposition mask 2 are in close contact is expressed by 2P + 3PP using the vapor deposition film interval PP and the vapor deposition pattern width P for RGB pixel vapor deposition. . Furthermore, the gap G causes a difference A between the extreme position of the vapor deposition pattern and the extreme position of the mask opening 3 of the vapor deposition mask 2 when viewed from the center of the substrate 4 facing the evaporation port 8. . A is represented by G (Px + P / 2−φx / 2) / (TS + G), and the mask mounting support surface 23 is wider by 2A than the case where the substrate 4 and the vapor deposition mask 2 are in close contact with each other.

更に具体的に説明すると、例えば蒸着パターン幅Pを0.1mm、蒸着膜間隔PPを0.05mmとした場合、基板4と蒸着マスク2が密着している場合のマスク取付支承面23は0.35mmとなる。しかし、本実施例の基板4と蒸着マスク2が離間状態にある場合では、例えば、上記TSを200mm、上記φxを1mm、上記Pxを30mmとすると、マスク取付支承面23はギャップGが1mmでは約0.64mm、ギャップGが5mmでは約1.79mmとなり、蒸着マスク2を重合してスポット溶接する面積を十分確保できる。   More specifically, for example, when the vapor deposition pattern width P is 0.1 mm and the vapor deposition film interval PP is 0.05 mm, the mask mounting support surface 23 when the substrate 4 and the vapor deposition mask 2 are in close contact is 0. 35 mm. However, in the case where the substrate 4 and the vapor deposition mask 2 are separated from each other in this embodiment, for example, if the TS is 200 mm, the φx is 1 mm, and the Px is 30 mm, the mask mounting support surface 23 has a gap G of 1 mm. When the gap G is about 0.64 mm and the gap G is about 5 mm, the thickness is about 1.79 mm, so that a sufficient area for spot welding can be secured by polymerizing the vapor deposition mask 2.

本発明の具体的な実施例2について図面に基づいて説明する。   A second embodiment of the present invention will be described with reference to the drawings.

図15に示すように、制限用開口部5毎に複数の蒸発口部8を並設し、複数の蒸発口部8からの蒸発粒子が基板4上で重畳することで蒸着レートを高くすることができる。   As shown in FIG. 15, a plurality of evaporation ports 8 are arranged in parallel for each restriction opening 5, and the evaporation rate is increased by overlapping evaporated particles from the plurality of evaporation ports 8 on the substrate 4. Can do.

具体的には、制限用開口部5毎に3つの蒸発口部8が配設された構成の場合、中央の蒸発口部8から蒸発した蒸発粒子は、マスク開口部3を通過して基板4上に堆積し、隣接する蒸発口部8から蒸発した蒸発粒子が、隣接するマスク開口部3を通過して前記基板4上の同位置に堆積する。蒸発口部8を複数並設する分、基板4上に重畳される量が多くなり蒸着レートが高くなる。   Specifically, in the case of the configuration in which three evaporation ports 8 are provided for each restriction opening 5, the evaporated particles evaporated from the central evaporation port 8 pass through the mask opening 3 and the substrate 4. Evaporated particles deposited on the substrate and evaporated from the adjacent evaporation port 8 pass through the adjacent mask opening 3 and are deposited at the same position on the substrate 4. Since a plurality of evaporation ports 8 are arranged side by side, the amount superposed on the substrate 4 increases and the deposition rate increases.

また、前記基板4の相対移動方向と直交する横方向に3つ並設する蒸発口部8の配設位置精度が良好な場合は、蒸着レートは同一になるが、各蒸発口部8の開口幅φxを1/3にすることで蒸着膜の陰影SHを一層抑制するような構成としてもよい。   Further, when the arrangement position accuracy of the three evaporation ports 8 arranged in the horizontal direction orthogonal to the relative movement direction of the substrate 4 is good, the vapor deposition rate is the same, but the opening of each evaporation port 8 is the same. It is good also as a structure which suppresses the shadow SH of a vapor deposition film further by making width | variety (phi) x into 1/3.

蒸着膜が基板4上で重畳されるための蒸発口部8の間隔は次の式(5)によって決定される。   The interval between the evaporation ports 8 for the vapor deposition film to be superimposed on the substrate 4 is determined by the following equation (5).

Figure 2012193391
Figure 2012193391

(Pφx=蒸発口部の間隔、PMx=蒸着マスクのマスク開口部の間隔、G=基板と蒸着マスクの距離、TS=蒸発口部と蒸着マスクの距離)   (Pφx = interval of evaporation port, PMx = interval of mask opening of vapor deposition mask, G = distance between substrate and vapor deposition mask, TS = distance between vapor deposition port and vapor deposition mask)

具体的には、PMxを0.5mm、Gを4mm、TSを200mmとすると、Pφxは25.5mmとなる。   Specifically, when PMx is 0.5 mm, G is 4 mm, and TS is 200 mm, Pφx is 25.5 mm.

本発明の具体的な実施例3について図面に基づいて説明する。   A specific third embodiment of the present invention will be described with reference to the drawings.

制限用開口部5に対向状態で配設する蒸発口部8を基板4の相対移動方向と直交する横方向に複数並設することで、複数の蒸発口部8から蒸発した蒸発粒子は一つのマスク開口部3を通過して、等間隔の成膜パターンに蒸着できるため、成膜パターンを決するマスク開口部3の数を減らし、マスク開口部3のピッチを広げることができるので、蒸着材マスキング部位の幅が広くでき、蒸着マスク2の機械的強度が増し、洗浄時のマスクの破壊や癒着を防止でき、かつマスク取付支承面23を広く確保できるので、蒸着マスク2とマスクホルダー6の接合がより強固に行える。   By arranging a plurality of evaporation ports 8 arranged opposite to the restriction opening 5 in the lateral direction perpendicular to the relative movement direction of the substrate 4, one evaporated particle evaporated from the plurality of evaporation ports 8 is one. Since vapor deposition can be performed on the film formation pattern at equal intervals through the mask opening 3, the number of mask openings 3 for determining the film formation pattern can be reduced and the pitch of the mask openings 3 can be widened. The width of the part can be widened, the mechanical strength of the vapor deposition mask 2 can be increased, the mask can be prevented from being destroyed or adhered during cleaning, and the mask mounting support surface 23 can be secured widely, so that the vapor deposition mask 2 and the mask holder 6 can be joined. Can be performed more firmly.

具体的に言うと、図16に示すように、制限用開口部5内に対向状態で配設する蒸発口部8が奇数(3)個の場合でも、図17に示すように、制限用開口部5内に対向状態で配設する蒸発口部8が偶数(2)個の場合でも、制限用開口部5内のマスク開口部3の間隔が均等で、制限用開口部5内の成膜パターン数を蒸発口部8の数で除した数にマスク開口部3の数を減じることができる。   Specifically, as shown in FIG. 16, even when there are an odd number (3) of evaporating openings 8 disposed in the restricting opening 5 in an opposed state, as shown in FIG. Even when there are an even number (2) of the evaporation port portions 8 disposed in the state of being opposed to each other in the portion 5, the distance between the mask openings 3 in the restriction opening 5 is uniform, and the film formation in the restriction opening 5 is performed. The number of mask openings 3 can be reduced to the number obtained by dividing the number of patterns by the number of evaporation ports 8.

更に、図16に示した制限用開口部5内に対向状態で蒸発口部8が奇数(3)個配設され、制限用開口部5内の成膜パターン数を蒸発口部8の数で除した数にマスク開口部3の数を減じることができる構成では、図18に示すように、マスク開口部3の間隔を1/2にすることで、成膜パターン間隔も1/2にすることができ、より高精度な成膜パターンが蒸着できるようになる。   Further, an odd number (3) of evaporation ports 8 are disposed in the limiting opening 5 shown in FIG. 16 in an opposed state, and the number of film formation patterns in the limiting opening 5 is equal to the number of evaporation ports 8. In the configuration in which the number of mask openings 3 can be reduced to the divided number, as shown in FIG. 18, the interval between the mask openings 3 is halved and the film forming pattern interval is also halved. Therefore, a highly accurate film formation pattern can be deposited.

また、図19に示すように、マスク開口部3の数を減らしたため、マスク開口部3があったマスク表面にも媒体路やヒートパイプを配設できるようになり、蒸着マスク2の表面の温度を一定に保持する能力が一層向上し、また図20に示すように、媒体を若しくはヒートパイプの数を増やすのではなく、蒸着マスク2と接触する表面積を増やすことにより、蒸着マスク2の温度を一定に保持するようにしてもよい。更に、マスクホルダー6にも温度制御機構を備えることで、マスクホルダー6に付設している蒸着マスク2の温度を一層保持できるようにしてもよい。   Further, as shown in FIG. 19, since the number of the mask openings 3 is reduced, a medium path and a heat pipe can be arranged on the mask surface where the mask openings 3 were provided, and the temperature of the surface of the vapor deposition mask 2 is increased. As shown in FIG. 20, the temperature of the vapor deposition mask 2 is increased by increasing the surface area in contact with the vapor deposition mask 2 instead of increasing the number of media or heat pipes. You may make it hold | maintain constant. Furthermore, by providing the mask holder 6 with a temperature control mechanism, the temperature of the vapor deposition mask 2 attached to the mask holder 6 may be further maintained.

複数の蒸発口部8から蒸発した蒸発粒子が、同一のマスク開口部3を通過して、所望の成膜ピッチで蒸着するための蒸発口部8の間隔は次の式(5)によって決定される。   The interval between the evaporation ports 8 for the evaporation particles evaporated from the plurality of evaporation ports 8 to pass through the same mask opening 3 and deposit at a desired film formation pitch is determined by the following equation (5). The

Figure 2012193391
Figure 2012193391

(Pφx=蒸発口部の間隔、PMx=蒸着マスクのマスク開口部の間隔、G=基板と蒸着マスクの距離、TS=蒸発口部と蒸着マスクの距離)   (Pφx = interval of evaporation port, PMx = interval of mask opening of vapor deposition mask, G = distance between substrate and vapor deposition mask, TS = distance between vapor deposition port and vapor deposition mask)

具体的には、PMxを0.5mm、Gを4mm、TSを200mmとすると、Pφxは25.5mmとなり、蒸発口部8を3つ配設すると、マスク開口部ピッチが3倍になるので、PMxは1.5mmとなる。   Specifically, if PMx is 0.5 mm, G is 4 mm, and TS is 200 mm, Pφx is 25.5 mm. If three evaporation ports 8 are provided, the mask opening pitch is tripled. PMx is 1.5 mm.

また、図21に示すように、成膜パターンを決するマスク開口部3の数を減らすことで、マスク開口部の間隔を広げることができるので、実施例2に示した成膜パターンを基板4上で重畳させる場合や、制限用開口部5に対向状態に配設する蒸発口部8を1つ配設する場合と比較して、最端のマスク開口部Bが塞がれる分マスク取付支承面23を大きくすることができる。   Further, as shown in FIG. 21, since the interval between the mask openings can be increased by reducing the number of mask openings 3 for determining the film formation pattern, the film formation pattern shown in the second embodiment is applied to the substrate 4. Compared with the case of overlapping with each other or the case where one evaporation port 8 disposed in a state of being opposed to the restricting opening 5 is provided, the mask mounting support surface is blocked by the mask opening B at the end. 23 can be enlarged.

本発明の具体的な実施例4について図面に基づいて説明する。   A fourth embodiment of the present invention will be described with reference to the drawings.

図22に示すように、前記基板4と前記蒸着マスク2との間に、第二の蒸着マスク10を基板4と密着して配設している。よって、本実施例では、蒸発源1、マスクホルダー6及び第一の蒸着マスク2が第二の蒸着マスク10、基板4と相対移動する構成となっているが、第二の蒸着マスク10は第一の蒸着マスク2と基板4の間に離間状態で配設されていてもよく、蒸発源1及びマスクホルダー6に付設した蒸着マスク2と基板4との相対移動において、どちらの相対移動と共にしてもよい。   As shown in FIG. 22, a second vapor deposition mask 10 is disposed in close contact with the substrate 4 between the substrate 4 and the vapor deposition mask 2. Therefore, in this embodiment, the evaporation source 1, the mask holder 6 and the first vapor deposition mask 2 are configured to move relative to the second vapor deposition mask 10 and the substrate 4. The vapor deposition mask 2 and the substrate 4 may be arranged in a separated state. In the relative movement between the vapor deposition mask 2 and the substrate 4 attached to the evaporation source 1 and the mask holder 6, which one of the relative movements is performed. May be.

この第二の蒸着マスク10のマスク開口部11は、前記成膜パターンを最終的に決する配列とし、この第二の蒸着マスク10より前記蒸発源1側に位置する前記第一の蒸着マスク2の前記マスク開口部3の幅は、第二の蒸着マスク10と同一かこれより幅広くなるように設けている。また、制限用開口部5内の第二の蒸着マスク10のマスク開口部11の形成間隔は、第一の蒸着マスク2のマスク開口部3の形成間隔より広く形成している。   The mask openings 11 of the second vapor deposition mask 10 are arranged to finally determine the film formation pattern, and the first vapor deposition mask 2 located on the evaporation source 1 side with respect to the second vapor deposition mask 10. The width of the mask opening 3 is set to be the same as or wider than that of the second vapor deposition mask 10. Further, the formation interval of the mask openings 11 of the second vapor deposition mask 10 in the restriction opening 5 is formed wider than the formation interval of the mask openings 3 of the first vapor deposition mask 2.

本実施例では、第二の蒸着マスク10を基板4と密着させて配設することで、第一となる前記蒸着マスク2による陰影SHが発生しない。また、蒸発源1からの輻射熱と蒸発粒子が伝導する熱量は第一の蒸着マスク2で吸収され、この第一の蒸着マスク2から放出される放射熱が第二の蒸着マスク10へ伝播するので、第二の蒸着マスク10へ入射する熱量は大幅に減少され、第二の蒸着マスク10の熱膨張を抑制できる。   In this embodiment, the second deposition mask 10 is disposed in close contact with the substrate 4 so that the shadow SH due to the first deposition mask 2 does not occur. The radiation heat from the evaporation source 1 and the amount of heat conducted by the evaporated particles are absorbed by the first vapor deposition mask 2 and the radiant heat emitted from the first vapor deposition mask 2 propagates to the second vapor deposition mask 10. The amount of heat incident on the second vapor deposition mask 10 is greatly reduced, and the thermal expansion of the second vapor deposition mask 10 can be suppressed.

更に、マスクホルダー6に冷却機構を備えることで、第一の蒸着マスク2の温度が一層上昇しないように構成してもよい。   Furthermore, you may comprise so that the temperature of the 1st vapor deposition mask 2 may not rise further by providing the cooling mechanism in the mask holder 6. FIG.

従って、本実施例では、第一の蒸着マスク2は、蒸発源1からの熱を第二の蒸着マスク10へ伝播させないようにし、第二のマスク開口部11へ入射する蒸着パターンがずれないように線膨張係数の小さいインバー材で形成し、マスク開口部3はエッチング加工で形成する。第二の蒸着マスク10は、第一の蒸着マスク2が配設されていることで、熱量の入射が大幅に抑制されるから、線膨張係数の大きいニッケルなどで形成しても熱膨張せず、その結果、最終的に決定される成膜パターンの蒸着膜を形成することから、マスク開口部11を高精度に形成できる電鋳法を用いることができる。   Therefore, in the present embodiment, the first vapor deposition mask 2 prevents the heat from the evaporation source 1 from propagating to the second vapor deposition mask 10 and prevents the vapor deposition pattern incident on the second mask opening 11 from shifting. The mask opening 3 is formed by etching. Since the second vapor deposition mask 10 is provided with the first vapor deposition mask 2 so that the incidence of heat is greatly suppressed, even if it is formed of nickel or the like having a large linear expansion coefficient, the second vapor deposition mask 10 does not thermally expand. As a result, a vapor deposition film having a film formation pattern finally determined is formed, so that an electroforming method capable of forming the mask opening 11 with high accuracy can be used.

また、図23に示すように、制限用開口部5毎に複数の蒸発口部8を並設し、複数の蒸発口部8からの蒸発粒子が基板4上で重畳させることで蒸着レートを高くすることができる構成では、製作及び取付精度や蒸発源1加熱時の熱膨張などが原因で、基板4と蒸着マスク2とのギャップG、蒸発口部8と蒸着マスク2との距離TS、基板4の相対移動方向と直交する横方向における蒸発口部8同士の距離が変化することで、複数の蒸発口部8からの蒸発粒子が正確に基板4上に重畳できず、成膜パターンが広がってしまうが、第二の蒸着マスク10を基板4と密着させて配設させることで、第二のマスク開口部11の成膜パターンが形成されるので、上述した位置ずれを許容できる蒸着装置となる。   Further, as shown in FIG. 23, a plurality of evaporation ports 8 are arranged in parallel for each restriction opening 5, and the evaporation particles from the plurality of evaporation ports 8 are overlapped on the substrate 4 to increase the deposition rate. In the configuration that can be performed, the gap G between the substrate 4 and the evaporation mask 2, the distance TS between the evaporation port 8 and the evaporation mask 2, the substrate, due to the manufacturing and mounting accuracy, thermal expansion during heating of the evaporation source 1, and the like. 4, the evaporation particles from the plurality of evaporation ports 8 cannot be accurately superimposed on the substrate 4, and the film formation pattern spreads. However, since the film formation pattern of the second mask opening 11 is formed by arranging the second vapor deposition mask 10 in close contact with the substrate 4, a vapor deposition apparatus that can tolerate the above-described positional deviation. Become.

尚、本発明は、実施例1〜4に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   In addition, this invention is not restricted to Examples 1-4, The concrete structure of each component can be designed suitably.

φx 開口幅
G ギャップ
MPx 形成ピッチ
Mx 開口寸法
P 成膜幅
PP 蒸発膜との間隔
SH 陰影
TS 距離
1 蒸発源
2 蒸着マスク
3 マスク開口部
4 基板
5 制限用開口部
6 マスクホルダー
7 蒸着室
8 蒸発口部
10 第二の蒸着マスク
11 第二のマスク開口部
16 交換室
17 材料回収機構
19 熱遮断部
23 マスク取付支承面
24 リブ部
26 蒸発粒子発生部
27 横長拡散部
28 蒸発口部形成用突出部
29 膜厚補正板
φx Aperture width G Gap MPx Formation pitch Mx Aperture dimension P Deposition width PP Evaporation film distance SH Shadow TS Distance 1 Evaporation source 2 Deposition mask 3 Mask opening 4 Substrate 5 Restriction opening 6 Mask holder 7 Deposition chamber 8 Evaporation Mouth
10 Second deposition mask
11 Second mask opening
16 Exchange room
17 Material recovery mechanism
19 Thermal block
23 Mask mounting bearing surface
24 Ribs
26 Evaporating particle generator
27 Horizontal diffuser
28 Protrusion for forming the evaporation port
29 Film thickness correction plate

Claims (32)

蒸発源から蒸発した成膜材料を、蒸着マスクのマスク開口部を介して基板上に堆積して、この蒸着マスクにより定められた成膜パターンの蒸着膜が基板上に形成されるように構成した蒸着装置において、前記蒸発源とこの蒸発源に対向状態に配設する前記基板との間に、前記蒸発源から蒸発した前記成膜材料の蒸発粒子の飛散方向を制限する制限用開口部を設けた飛散制限部を有するマスクホルダーを配設し、このマスクホルダーに前記基板と離間状態に配設する前記蒸着マスクを接合させて付設し、前記基板を、前記蒸着マスクを付設した前記マスクホルダー及び前記蒸発源に対して、前記蒸着マスクとの離間状態を保持したまま相対移動自在に構成し、前記蒸発源の蒸発口部は、前記基板の相対移動方向に長くこれと直交する横方向に幅狭いスリット状としたことを特徴とする蒸着装置。   The film forming material evaporated from the evaporation source is deposited on the substrate through the mask opening of the vapor deposition mask, and a vapor deposition film having a film formation pattern defined by the vapor deposition mask is formed on the substrate. In the vapor deposition apparatus, a limiting opening is provided between the evaporation source and the substrate disposed opposite to the evaporation source to limit a scattering direction of evaporated particles of the film forming material evaporated from the evaporation source. A mask holder having a scattering restricting portion, and attaching the vapor deposition mask arranged in a separated state with the substrate to the mask holder, and attaching the substrate to the mask holder provided with the vapor deposition mask; The evaporation source is configured to be relatively movable while maintaining a state separated from the vapor deposition mask, and the evaporation port of the evaporation source has a width in a lateral direction that is long in the relative movement direction of the substrate and orthogonal thereto. Vapor deposition apparatus is characterized in that a slit-shaped are. 減圧雰囲気とする蒸着室内に、前記成膜材料を収めた前記蒸発源と、この蒸発源の前記蒸発口部から蒸発した前記成膜材料の蒸発粒子が通過する前記マスク開口部を設けた前記蒸着マスクとを配設し、前記蒸発口部を複数並設し、前記蒸着マスクと離間状態に位置合わせする前記基板に、前記複数の蒸発口部から飛散する蒸発粒子が前記マスク開口部を通過して堆積し、蒸着マスクにより定められる成膜パターンの蒸着膜が前記基板に形成されるように構成し、この蒸発源とこの蒸発源と対向状態に配設する前記基板との間に、隣接する若しくは離れた位置の前記蒸発口部からの蒸発粒子を通過させない前記制限用開口部を設けた前記飛散制限部を構成する前記マスクホルダーを配設し、このマスクホルダーに前記基板と離間状態に配設する前記蒸着マスクを付設し、前記基板を、前記蒸着マスクを付設した前記マスクホルダー及び前記蒸発源に対してこの蒸着マスクとの離間状態を保持したまま相対移動させて、この相対移動方向に前記蒸着マスクの前記成膜パターンの蒸着膜を連続させて前記基板より小さい前記蒸着マスクでも広範囲に蒸着膜が形成されるように構成したことを特徴とする請求項1記載の蒸着装置。   The evaporation source provided with the evaporation source containing the film forming material and the mask opening through which the evaporated particles of the film forming material evaporated from the evaporation port portion of the evaporation source pass in an evaporation chamber having a reduced pressure atmosphere A plurality of the evaporation port portions are arranged side by side, and the evaporation particles scattered from the plurality of evaporation port portions pass through the mask opening portions on the substrate that is aligned with the vapor deposition mask in a separated state. A vapor deposition film having a film formation pattern defined by a vapor deposition mask is formed on the substrate, and is adjacent to the evaporation source and the substrate disposed opposite to the evaporation source. Alternatively, the mask holder that constitutes the scattering restricting portion provided with the restricting opening that does not allow evaporation particles from the evaporation port portion at a distant position to pass therethrough is disposed, and the mask holder is arranged in a state of being separated from the substrate. Set up The deposition mask is attached, and the substrate is moved relative to the mask holder and the evaporation source attached with the deposition mask while maintaining a separated state from the deposition mask, and the deposition is performed in the relative movement direction. The vapor deposition apparatus according to claim 1, wherein the vapor deposition film of the film formation pattern of the mask is made continuous so that the vapor deposition film is formed in a wide range even with the vapor deposition mask smaller than the substrate. 前記基板の相対移動方向に対して直交する横方向に前記蒸発源の前記蒸発口部を複数並設すると共に、前記マスクホルダーに設ける前記飛散制限部の前記制限用開口部を前記横方向に沿って複数並設して、前記各蒸発口部から蒸発する蒸発粒子が、対向する前記制限用開口部のみを通過し更にこの制限用開口部と対向する前記蒸着マスクの前記マスク開口部を介して前記基板上に前記成膜パターンの蒸着膜が形成され、隣り合う若しくは離れた位置の前記蒸発口部からの蒸発粒子は付着捕捉されるようにして前記制限用開口部により前記蒸発粒子の飛散方向が制限されるように構成したことを特徴とする請求項1,2のいずれか1項に記載の蒸着装置。   A plurality of the evaporation ports of the evaporation source are arranged side by side in a transverse direction orthogonal to the relative movement direction of the substrate, and the restriction opening of the scattering restriction provided in the mask holder is along the transverse direction. The vaporized particles evaporating from the respective evaporation port portions pass only through the limiting opening portion facing each other and further pass through the mask opening portion of the vapor deposition mask facing the limiting opening portion. A vapor deposition film of the film formation pattern is formed on the substrate, and the evaporation particles from the evaporation port at adjacent or separated positions are attached and trapped so that the evaporation particles are scattered by the restriction opening. The vapor deposition apparatus according to claim 1, wherein the vapor deposition apparatus is configured to be limited. 前記マスクホルダーの前記基板側の端部に、前記蒸着マスクを付設したことを特徴とする請求項1〜3のいずれか1項に記載の蒸着装置。   The vapor deposition apparatus according to claim 1, wherein the vapor deposition mask is attached to an end of the mask holder on the substrate side. 前記マスクホルダーの前記基板側の端部に、前記蒸着マスクに張力を付与して張設したことを特徴とする請求項4記載の蒸着装置。   The vapor deposition apparatus according to claim 4, wherein a tension is applied to the vapor deposition mask at an end of the mask holder on the substrate side. 前記マスクホルダーは、前記基板の相対移動方向に張力を付与して前記蒸着マスクを張設したことを特徴とする請求項5記載の蒸着装置。   The vapor deposition apparatus according to claim 5, wherein the mask holder stretches the vapor deposition mask by applying a tension in a relative movement direction of the substrate. 前記蒸着マスクは、前記基板の相対移動方向と直交する横方向に複数枚に分割した構成とし、この分割した蒸着マスクを前記マスクホルダーに前記横方向に並設状態に付設したことを特徴とする請求項1〜6のいずれか1項に記載の蒸着装置。   The vapor deposition mask is divided into a plurality of pieces in a lateral direction perpendicular to the relative movement direction of the substrate, and the divided vapor deposition masks are attached to the mask holder in a juxtaposed state in the lateral direction. The vapor deposition apparatus of any one of Claims 1-6. 前記蒸発源の前記蒸発口部を前記基板の相対移動方向と直交する横方向に複数並設し、この一若しくは複数の蒸発口部毎に夫々対向状態に前記制限用開口部を設けた前記飛散制限部を有する前記マスクホルダーの各制限用開口部を覆うように、前記蒸着マスクをマスクホルダーの前記基板側の端部に付設したことを特徴とする請求項4〜7のいずれか1項に記載の蒸着装置。   A plurality of the evaporation port portions of the evaporation source are arranged in parallel in a lateral direction orthogonal to the relative movement direction of the substrate, and the scattering opening in which the restriction opening portion is provided in an opposing state for each of the one or a plurality of evaporation port portions. 8. The method according to claim 4, wherein the vapor deposition mask is attached to an end portion of the mask holder on the substrate side so as to cover each restriction opening of the mask holder having a restriction portion. The vapor deposition apparatus of description. 前記マスクホルダーは、前記基板の相対移動方向に延在して、前記蒸着マスクをマスクホルダーに張設する際に蒸着マスクに付与される張力によるマスクホルダーの変形を防ぐため、張設する方向におけるマスクホルダーの剛性を向上させるリブ部を、前記制限用開口部間に設けた構成としたことを特徴とする請求項1〜8のいずれか1項に記載の蒸着装置。   The mask holder extends in the relative movement direction of the substrate, and prevents the mask holder from being deformed by tension applied to the vapor deposition mask when the vapor deposition mask is stretched on the mask holder. The vapor deposition apparatus according to any one of claims 1 to 8, wherein a rib portion for improving the rigidity of the mask holder is provided between the restricting openings. 前記マスクホルダーの前記制限用開口部間に、前記基板の相対移動方向に延在する前記リブ部の前記基板側先端面に、前記各制限用開口部に設ける前記蒸着マスクを支承し接合するマスク取付支承面を設けたことを特徴とする請求項1〜9のいずれか1項に記載の蒸着装置。   A mask that supports and joins the vapor deposition mask provided in each of the restriction openings on the substrate-side front end surface of the rib portion extending in the relative movement direction of the substrate between the restriction openings of the mask holder. The vapor deposition apparatus according to any one of claims 1 to 9, wherein an attachment support surface is provided. 前記マスクホルダーは、前記制限用開口部の形状を、前記基板側の開口面積より前記蒸発源側の開口面積が小さい形状に形成したことを特徴とする請求項1〜10のいずれか1項に記載の蒸着装置。   The said mask holder formed the shape of the said opening for a restriction | limiting in the shape where the opening area by the side of the said evaporation source is smaller than the opening area by the side of the said board | substrate. The vapor deposition apparatus of description. 前記基板と前記蒸着マスクとが離間状態で蒸着し、この蒸着マスクにより成膜パターンの蒸着膜が基板に形成される際、この蒸着膜の側端傾斜部分である陰影SHは、前記基板と前記蒸着マスクとのギャップをG,前記蒸発口部の前記横方向の開口幅をφx,この蒸発口部と前記蒸着マスクとの距離をTSとすると、下記の式(1)で表され、この陰影SHが隣接する蒸着膜との間隔PPに達しないように、前記ギャップGを大きく設定し、前記蒸発口部の前記開口幅φxを小さく設定した構成とすることを特徴とする請求項1〜11のいずれか1項に記載の蒸着装置。
Figure 2012193391
When the substrate and the vapor deposition mask are vapor-deposited in a separated state, and the vapor deposition film of the film formation pattern is formed on the substrate by the vapor deposition mask, the shadow SH which is a side edge inclined portion of the vapor deposition film is When the gap with the vapor deposition mask is G, the lateral opening width of the evaporation port portion is φx, and the distance between the evaporation port portion and the vapor deposition mask is TS, it is expressed by the following formula (1). The gap G is set to be large and the opening width φx of the evaporation port is set to be small so that SH does not reach the interval PP between adjacent vapor deposition films. The vapor deposition apparatus of any one of these.
Figure 2012193391
前記蒸発源は、前記蒸発材料を加熱する蒸発粒子発生部と、この蒸発粒子発生部から発生した前記蒸発粒子が拡散し圧力を均一化する横長拡散部と、前記横長拡散部に前記基板の相対移動方向と直交する横方向に複数並設する前記蒸発口部とで構成し、前記蒸発源を前記基板の相対移動方向と直交する横方向に一つ若しくは複数並設することを特徴とする請求項1〜12のいずれか1項に記載の蒸着装置。   The evaporation source includes an evaporation particle generation unit that heats the evaporation material, a horizontally long diffusion unit that diffuses the evaporation particles generated from the evaporation particle generation unit to equalize pressure, and a relative position of the substrate to the horizontally long diffusion unit. A plurality of the evaporation ports arranged in parallel in a lateral direction orthogonal to the moving direction, wherein one or a plurality of the evaporation sources are arranged in parallel in the horizontal direction orthogonal to the relative moving direction of the substrate. The vapor deposition apparatus of any one of claim | item 1 -12. 前記横長拡散部の周囲若しくは前記蒸発口部の周囲の少なくとも一方に、前記蒸発源の熱を遮断する熱遮断部を配設したことを特徴とする請求項1〜13のいずれか1項記載の蒸着装置。   14. The heat blocking part for blocking heat of the evaporation source is disposed around at least one of the periphery of the horizontally long diffusion part and the periphery of the evaporation port part. Vapor deposition equipment. 前記横長拡散部で拡散した蒸発粒子が、前記蒸発口部から噴出される際に指向性を持って飛散する導入部を、前記横長拡散部に配設したことを特徴とする請求項1〜14のいずれか1項記載の蒸着装置。   15. The introduction part for disperse the evaporated particles diffused in the horizontally long diffusion part with directivity when ejected from the evaporation port part is provided in the horizontally long diffusion part. The vapor deposition apparatus of any one of these. 前記複数の蒸発口部を前記導入部の前記基板側の先端面に設け、この導入部の前記基板側に向けての導入長を、前記基板の相対移動方向と直交する横方向の前記導入部の幅長より長い構成としたことを特徴とする請求項15記載の蒸着装置。   The plurality of evaporation port portions are provided on the front end surface of the introduction portion on the substrate side, and the introduction length of the introduction portion toward the substrate side is the introduction portion in the lateral direction orthogonal to the relative movement direction of the substrate. The vapor deposition apparatus according to claim 15, wherein the vapor deposition apparatus is configured to be longer than the width of the film. 前記導入部は、前記横長拡散部から前記基板側に向けて突出させて配設したことを特徴とする請求項15,16のいずれか1項記載の蒸着装置。   The vapor deposition apparatus according to any one of claims 15 and 16, wherein the introduction portion is disposed so as to protrude from the laterally long diffusion portion toward the substrate side. 前記蒸着マスクの前記マスク開口部は、前記基板の前記相対移動方向と直交する横方向に複数並設した構成とし、この各マスク開口部は、前記相対移動方向に長いスリット状に形成若しくは開口部を前記相対移動方向に複数並設し、この相対移動方向のトータル開口長を前記制限用開口部の中央部に比して前記横方向に離れる程長くなるように設定したことを特徴とする請求項1〜17のいずれか1項に記載の蒸着装置。   A plurality of the mask openings of the vapor deposition mask are arranged in parallel in a lateral direction orthogonal to the relative movement direction of the substrate, and each mask opening is formed or formed in a slit shape long in the relative movement direction. A plurality of the above-mentioned are arranged side by side in the relative movement direction, and the total opening length in the relative movement direction is set so as to become longer as the distance in the lateral direction is longer than the central part of the restriction opening. Item 18. The vapor deposition device according to any one of Items 1 to 17. 前記蒸着マスクの前記基板側に、前記マスク開口部の一部を塞いで前記各マスク開口部の開口範囲を設定する膜厚補正板を配設したことを特徴とする請求項1〜18のいずれか1項に記載の蒸着装置。   19. The film thickness correction plate for closing a part of the mask opening and setting the opening range of each mask opening is disposed on the substrate side of the vapor deposition mask. The vapor deposition apparatus of Claim 1. 前記基板に蒸着される成膜パターンを決する前記蒸着マスクのマスク開口部の前記基板の相対移動方向と直交する横方向における形成間隔Mpxは、前記基板と前記蒸着マスクとのギャップをG、前記蒸着マスクと前記蒸発口部との距離をTS、前記成膜パターンの基板の相対移動方向と直交する横方向における形成間隔をPxとすると下記の式(2)で表され、成膜パターン形成間隔Pxより狭く設定し、前記蒸着マスクのマスク開口部の前記基板の相対移動方向と直交する横方向における開口寸法Mxは、前記基板と前記蒸着マスクとのギャップをG、前記蒸着マスクと前記蒸発口部との距離をTS、前記蒸着膜の成膜パターンにおける成膜幅をPとすると下記式(3)で表され、前記蒸着膜の成膜パターン幅Pより広く設定したことを特徴とする請求項1〜19のいずれか1項に記載の蒸着装置。
Figure 2012193391
Figure 2012193391
The formation interval Mpx in the lateral direction perpendicular to the relative movement direction of the substrate of the mask of the vapor deposition mask that determines the film formation pattern deposited on the substrate is G, and the gap between the substrate and the vapor deposition mask is G. When the distance between the mask and the evaporation port portion is TS and the formation interval in the lateral direction perpendicular to the relative movement direction of the substrate of the film formation pattern is Px, the film formation pattern formation interval Px is expressed by the following equation (2). The opening size Mx in the lateral direction orthogonal to the relative movement direction of the substrate of the deposition mask is set to be narrower, the gap between the substrate and the deposition mask is G, and the deposition mask and the evaporation port portion. The distance between and TS is represented by TS, and the film formation width in the film formation pattern of the vapor deposition film is represented by the following formula (3). Deposition apparatus according to any one of claims 1 to 19 to symptoms.
Figure 2012193391
Figure 2012193391
前記蒸着マスクが付設された前記マスクホルダーを、蒸着室と往復自在に移動できる交換室を備えたことを特徴とする請求項1〜20のいずれか1項に記載の蒸着装置。   The vapor deposition apparatus according to any one of claims 1 to 20, further comprising an exchange chamber in which the mask holder provided with the vapor deposition mask is reciprocally movable with the vapor deposition chamber. 前記交換室内に、前記マスクホルダー若しくはマスクホルダーに付設した前記蒸着マスクの少なくとも一方に付着した成膜材料を洗浄する洗浄機構を備えたことを特徴とする請求項1〜21のいずれか1項に記載の蒸着装置。   The cleaning chamber according to any one of claims 1 to 21, further comprising a cleaning mechanism for cleaning a film deposition material attached to at least one of the mask holder or the vapor deposition mask attached to the mask holder in the exchange chamber. The vapor deposition apparatus of description. 前記交換室内に、前記マスクホルダー若しくはマスクホルダーに付設した前記蒸着マスクの少なくとも一方に付着した成膜材料を回収する材料回収機構を備えたことを特徴とする請求項1〜22のいずれか1項に記載の蒸着装置。   The material exchange mechanism which collects the film-forming material adhering to at least one of the above-mentioned mask holder or the above-mentioned vapor deposition mask attached to the mask holder is provided in the above-mentioned exchange room. The vapor deposition apparatus of description. 前記制限用開口部に対向状態で配設する前記蒸発源の前記蒸発口部を前記基板の相対移動方向と直交する横方向に複数並設し、この複数並設する蒸発口部の間隔を、前記基板と前記蒸着マスクとのギャップG及び前記蒸発口部と前記蒸着マスクとの距離TS及び前記蒸着マスクの前記マスク開口部の間隔を考慮して設定することで、前記マスク開口部を通過した前記蒸発口部から蒸発した蒸発粒子と、隣接する前記マスク開口部を通過した隣接する前記蒸発口部から蒸発した蒸発粒子とを、前記基板上で重畳させるように構成したことを特徴とする請求項1〜23のいずれか1項に記載の蒸着装置。   A plurality of the evaporation port portions of the evaporation source arranged in a state of being opposed to the opening for restriction are arranged in parallel in a lateral direction perpendicular to the relative movement direction of the substrate, and the interval between the evaporation port portions arranged in parallel is set, By setting the gap G between the substrate and the deposition mask, the distance TS between the evaporation port and the deposition mask, and the distance between the mask openings of the deposition mask, the mask opening is passed. The evaporated particles evaporated from the evaporation port portion and the evaporated particles evaporated from the adjacent evaporation port portion that passed through the adjacent mask opening are configured to overlap on the substrate. Item 24. The vapor deposition apparatus according to any one of Items 1 to 23. 前記制限用開口部に対向状態で配設する前記蒸発源の前記蒸発口部を前記基板の相対移動方向と直交する横方向に複数並設し、この複数並設する蒸発口部の間隔を、前記基板と前記蒸着マスクとのギャップG及び前記蒸発口部と前記蒸着マスクとの距離TS及び前記蒸着マスクの前記マスク開口部の間隔を考慮して設定することで、前記制限用開口部内の基板の相対移動方向と直交する横方向のマスク開口部は、同一の制限用開口部に対向状態で配設される前記蒸発口部の数に応じて、前記基板の相対移動方向と直交する横方向の成膜パターン数より少なく均等な間隔で構成したことを特徴とする請求項1〜24のいずれか1項に記載の蒸着装置。   A plurality of the evaporation port portions of the evaporation source arranged in a state of being opposed to the opening for restriction are arranged in parallel in a lateral direction perpendicular to the relative movement direction of the substrate, and the interval between the evaporation port portions arranged in parallel is set, By setting the gap G between the substrate and the vapor deposition mask, the distance TS between the evaporation port portion and the vapor deposition mask, and the distance between the mask openings of the vapor deposition mask, the substrate in the restriction opening portion is set. The lateral mask openings perpendicular to the relative movement direction of the substrate are transverse directions perpendicular to the relative movement direction of the substrate in accordance with the number of the evaporation port portions arranged opposite to the same restriction opening. The vapor deposition apparatus according to any one of claims 1 to 24, wherein the vapor deposition apparatus is configured at equal intervals less than the number of film formation patterns. 前記マスクホルダーに付設された前記蒸着マスクを第一の蒸着マスクとし、前記基板と前記第一の蒸着マスクとの間に、第二の蒸着マスクを配設したことを特徴とする請求項1〜25のいずれか1項に記載の蒸着装置。   The vapor deposition mask attached to the mask holder is used as a first vapor deposition mask, and a second vapor deposition mask is disposed between the substrate and the first vapor deposition mask. 26. The vapor deposition apparatus according to any one of 25. 前記制限用開口部内に配設される前記基板の相対移動方向と直交する横方向の前記第二の蒸着マスクのマスク開口部の数は、この第二の蒸着マスクより前記蒸発源側の同一の前記制限用開口部内に配設される基板の相対移動方向と直交する横方向の前記第一の蒸着マスクの前記マスク開口部の数と同じであり、この夫々の蒸着マスクのマスク開口部は、前記基板との距離の相違に対応して異なる形成間隔とし、第二の蒸着マスクのマスク開口部のマスク開口幅は第一の蒸着マスクと比して同一か幅狭くなるように設けたことを特徴とする請求項26記載の蒸着装置。   The number of mask openings of the second vapor deposition mask in the lateral direction orthogonal to the relative movement direction of the substrate disposed in the restriction opening is the same on the evaporation source side than the second vapor deposition mask. The number of the mask openings of the first vapor deposition mask in the lateral direction orthogonal to the relative movement direction of the substrate disposed in the restriction opening, the mask openings of the respective vapor deposition masks, Different formation intervals corresponding to the difference in distance from the substrate, and the mask opening width of the mask opening of the second vapor deposition mask is set to be the same or narrower than that of the first vapor deposition mask. 27. The vapor deposition apparatus according to claim 26, characterized in that: 前記第二の蒸着マスクは、これより前記蒸発源側に位置する第一の前記蒸着マスクより線膨張係数が大である材料で形成したことを特徴とする請求項26,27のいずれか1項に記載の蒸着装置。   The said 2nd vapor deposition mask was formed from the material whose linear expansion coefficient is larger than the said 1st said vapor deposition mask located in the said evaporation source side from this. The vapor deposition apparatus of description. 前記第二の蒸着マスクは、電鋳で形成することを特徴とする請求項26〜28のいずれか1項に記載の蒸着装置。   29. The vapor deposition apparatus according to any one of claims 26 to 28, wherein the second vapor deposition mask is formed by electroforming. 前記制限用開口部内に配設される前記基板の相対移動方向と直交する横方向の前記第二の蒸着マスクの前記マスク開口部の数は、同一の前記制限用開口部内に配設される前記基板の相対移動方向と直交する横方向の第一の前記蒸着マスクのマスク開口部の数より、同一の前記制限用開口部内に配設される前記蒸発口部の数に応じて多く形成したことを特徴とする請求項26〜29のいずれか1項に記載の蒸着装置。   The number of the mask openings of the second vapor deposition mask in the lateral direction perpendicular to the relative movement direction of the substrate disposed in the restriction opening is the same as the number of the mask openings disposed in the restriction opening. More than the number of mask openings of the first vapor deposition mask in the lateral direction perpendicular to the relative movement direction of the substrate, the number of the openings formed in accordance with the number of the evaporation openings disposed in the same restriction opening. The vapor deposition apparatus of any one of Claims 26-29 characterized by these. 前記成膜材料を、有機材料としたことを特徴とする請求項1〜30のいずれか1項に記載の蒸着装置。   The vapor deposition apparatus according to claim 1, wherein the film forming material is an organic material. 前記請求項1〜31のいずれか1項記載の蒸着装置を用いて、前記基板上に前記蒸着マスクにより定められた成膜パターンの蒸着膜を形成することを特徴とする蒸着方法。   32. A vapor deposition method, wherein a vapor deposition film having a film formation pattern defined by the vapor deposition mask is formed on the substrate using the vapor deposition apparatus according to any one of claims 1 to 31.
JP2011055872A 2011-03-14 2011-03-14 Vapor deposition apparatus and vapor deposition method Active JP5883230B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011055872A JP5883230B2 (en) 2011-03-14 2011-03-14 Vapor deposition apparatus and vapor deposition method
KR1020137026765A KR101958499B1 (en) 2011-03-14 2012-02-16 Deposition device and deposition method
PCT/JP2012/053621 WO2012124428A1 (en) 2011-03-14 2012-02-16 Deposition device and deposition method
TW101107918A TW201250025A (en) 2011-03-14 2012-03-08 Deposition device and deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011055872A JP5883230B2 (en) 2011-03-14 2011-03-14 Vapor deposition apparatus and vapor deposition method

Publications (3)

Publication Number Publication Date
JP2012193391A true JP2012193391A (en) 2012-10-11
JP2012193391A5 JP2012193391A5 (en) 2014-05-01
JP5883230B2 JP5883230B2 (en) 2016-03-09

Family

ID=46830505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011055872A Active JP5883230B2 (en) 2011-03-14 2011-03-14 Vapor deposition apparatus and vapor deposition method

Country Status (4)

Country Link
JP (1) JP5883230B2 (en)
KR (1) KR101958499B1 (en)
TW (1) TW201250025A (en)
WO (1) WO2012124428A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021275A (en) 2013-06-21 2016-02-24 샤프 가부시키가이샤 Process for producing organic electroluminescent element, and organic electroluminescent display device
JP2018127662A (en) * 2017-02-07 2018-08-16 キヤノン株式会社 Vapor deposition device and vapor deposition source
JP2018127663A (en) * 2017-02-07 2018-08-16 キヤノン株式会社 Vapor deposition device and vapor deposition source

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102373436B1 (en) 2015-03-30 2022-03-14 삼성디스플레이 주식회사 Displya apparatus, manufacturing apparatus for the same and manufacturing method for the same
JP2018003120A (en) * 2016-07-05 2018-01-11 キヤノントッキ株式会社 Vapor deposition apparatus and evaporation source
KR101866956B1 (en) * 2016-12-30 2018-06-14 주식회사 선익시스템 Crucible for linear evaporation source and Linear evaporation source having the same
CN110273133A (en) * 2019-07-26 2019-09-24 西安拉姆达电子科技有限公司 A kind of magnetron sputtering coater being exclusively used in chip plated film
US11659759B2 (en) 2021-01-06 2023-05-23 Applied Materials, Inc. Method of making high resolution OLED fabricated with overlapped masks

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286272A (en) * 1993-11-09 1995-10-31 General Vacuum Equip Ltd Method and apparatus for vacuum web coating
JPH10319870A (en) * 1997-05-15 1998-12-04 Nec Corp Shadow mask and production for color thin film el display device using the same
JP2004103268A (en) * 2002-09-05 2004-04-02 Sanyo Electric Co Ltd Manufacturing method for organic electroluminescence display device
JP2010106304A (en) * 2008-10-29 2010-05-13 Hitachi High-Technologies Corp Apparatus and method of cleaning vapor deposition mask
JP2010150662A (en) * 2008-12-18 2010-07-08 Veeco Instruments Inc Linear deposition source
JP2010270396A (en) * 2009-05-22 2010-12-02 Samsung Mobile Display Co Ltd Thin film deposition apparatus
JP2011047035A (en) * 2009-08-25 2011-03-10 Samsung Mobile Display Co Ltd Thin film vapor deposition apparatus and method for manufacturing organic emission display by using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055198A (en) * 2002-07-17 2004-02-19 Konica Minolta Holdings Inc Manufacturing device and method for display device having organic electroluminescent element
JP4156891B2 (en) 2002-09-20 2008-09-24 株式会社アルバック Thin film forming equipment
US20080131587A1 (en) 2006-11-30 2008-06-05 Boroson Michael L Depositing organic material onto an oled substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286272A (en) * 1993-11-09 1995-10-31 General Vacuum Equip Ltd Method and apparatus for vacuum web coating
JPH10319870A (en) * 1997-05-15 1998-12-04 Nec Corp Shadow mask and production for color thin film el display device using the same
JP2004103268A (en) * 2002-09-05 2004-04-02 Sanyo Electric Co Ltd Manufacturing method for organic electroluminescence display device
JP2010106304A (en) * 2008-10-29 2010-05-13 Hitachi High-Technologies Corp Apparatus and method of cleaning vapor deposition mask
JP2010150662A (en) * 2008-12-18 2010-07-08 Veeco Instruments Inc Linear deposition source
JP2010270396A (en) * 2009-05-22 2010-12-02 Samsung Mobile Display Co Ltd Thin film deposition apparatus
JP2011047035A (en) * 2009-08-25 2011-03-10 Samsung Mobile Display Co Ltd Thin film vapor deposition apparatus and method for manufacturing organic emission display by using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021275A (en) 2013-06-21 2016-02-24 샤프 가부시키가이샤 Process for producing organic electroluminescent element, and organic electroluminescent display device
US9537096B2 (en) 2013-06-21 2017-01-03 Sharp Kabushiki Kaisha Method for producing organic electroluminescent element, and organic electroluminescent display device
JP2018127662A (en) * 2017-02-07 2018-08-16 キヤノン株式会社 Vapor deposition device and vapor deposition source
JP2018127663A (en) * 2017-02-07 2018-08-16 キヤノン株式会社 Vapor deposition device and vapor deposition source

Also Published As

Publication number Publication date
KR101958499B1 (en) 2019-03-14
WO2012124428A1 (en) 2012-09-20
KR20140044313A (en) 2014-04-14
JP5883230B2 (en) 2016-03-09
TW201250025A (en) 2012-12-16

Similar Documents

Publication Publication Date Title
JP5883230B2 (en) Vapor deposition apparatus and vapor deposition method
JP5616812B2 (en) Vapor deposition apparatus and vapor deposition method
JP2012193391A5 (en)
JP5356210B2 (en) Mask assembly, manufacturing method thereof, and vapor deposition apparatus for flat panel display using the same
TWI687315B (en) Vapor deposition mask, pattern manufacturing method, organic semiconductor element manufacturing method
TWI509095B (en) A manufacturing method of the imposition-type deposition mask and a manufacturing method of the resulting stencil sheet and an organic semiconductor device
TWI737969B (en) Vapor deposition mask for the manufacture of organic semiconductor elements, manufacturing method of vapor deposition mask for the manufacture of organic semiconductor elements, vapor deposition mask preparations for the manufacture of organic semiconductor elements, pattern formation method, and organic semiconductor elements Manufacturing method
US9388488B2 (en) Organic film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
TWI611031B (en) Film forming cover and method of manufacturing film forming cover
TWI618804B (en) Mask strips and method for manufacturing organic light emitting diode display using the same
TW201807222A (en) Vapor deposition mask, vapor deposition mask preparation body, method for producing vapor deposition mask, and method for producing organic semiconductor element
KR102072679B1 (en) Method of manufacturing mask assembly for thin film deposition
US20070234959A1 (en) Evaporation apparatus, evaporation method, method of manufacturing electro-optical device, and film-forming apparatus
WO2012127993A1 (en) Vapor-deposition device and vapor-deposition method
US9644256B2 (en) Mask assembly and thin film deposition method using the same
JP5745895B2 (en) Vapor deposition apparatus and vapor deposition method
WO2014050501A1 (en) Vapor deposition device and vapor deposition method
JP2012197467A5 (en)
WO2012127981A1 (en) Vapor-deposition device and vapor-deposition method
TWI816883B (en) Deposition apparatus
KR100990185B1 (en) Evaporation apparatus for the manufacture of LCPOS process and deposition jig for pre-tilt control
JP2008106336A (en) Method for producing film-deposited substrate, and production device for film-deposited substrate
JP2008057009A (en) Apparatus for manufacturing film-formed substrate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160205

R150 Certificate of patent or registration of utility model

Ref document number: 5883230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250