JP2012193246A - Method for adjusting slag form - Google Patents

Method for adjusting slag form Download PDF

Info

Publication number
JP2012193246A
JP2012193246A JP2011056944A JP2011056944A JP2012193246A JP 2012193246 A JP2012193246 A JP 2012193246A JP 2011056944 A JP2011056944 A JP 2011056944A JP 2011056944 A JP2011056944 A JP 2011056944A JP 2012193246 A JP2012193246 A JP 2012193246A
Authority
JP
Japan
Prior art keywords
slag
basicity
coal
range
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011056944A
Other languages
Japanese (ja)
Inventor
Masumi Itonaga
眞須美 糸永
Katsushi Kosuge
克志 小菅
Yasuki Namiki
泰樹 並木
Taku Takeda
卓 武田
Yoshiyuki Sachi
良之 幸
Hiroyuki Kotsuru
広行 小水流
Hideaki Yabe
英昭 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2011056944A priority Critical patent/JP2012193246A/en
Priority to PCT/JP2012/055983 priority patent/WO2012124604A1/en
Publication of JP2012193246A publication Critical patent/JP2012193246A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • C10J3/526Ash-removing devices for entrained flow gasifiers

Abstract

PROBLEM TO BE SOLVED: To provide a method for adjusting slag form in a coal gasifier, capable of preventing the formation of blockage of the slag by a discharging system such as a slag tap-discharging hole and a slag-discharging hole without additionally installing a mechanical constitution such as a dissolution mean.SOLUTION: This method for adjusting the slag form is characterized by setting within 0.3 to 1.2 range the basicity of the composition of molten slag formed in the gasifying furnace, determined by the weight ratio of CaO to SiO.

Description

本発明は、石炭を部分酸化してガス化するガス化炉を有する石炭ガス化装置に係り、石炭ガス化の際に石炭に含まれる灰分が溶融してなるスラグの排出において閉塞が発生することを防止するスラグ形態調整方法に関する技術である。   The present invention relates to a coal gasification apparatus having a gasification furnace that partially oxidizes coal to gasify, and clogging occurs in discharging slag formed by melting ash contained in coal during coal gasification. It is the technique regarding the slag form adjustment method which prevents this.

従来、この種の石炭ガス化装置として、例えば、特許文献1〜3に示される技術が知られている。
特許公報1及び2に示される石炭ガス化装置では、下段のガス化炉において、酸素、又は、酸素及び水蒸気と、石炭を投入して部分酸化によりガス化ガスを生成し、上段の改質炉において、前記生成したガス化ガス中に石炭及び水素を投入して水素化熱分解によりガス、オイル、及びチャーを生成する、上下二室二段の反応器を用いた方式が示されている。そして、このように反応器を二室二段とすることで、石炭のガス化を行う部分と水素化熱分解を行う部分を完全に分けることができ、各部分の操作条件を自由に設定することが可能となる。
Conventionally, as this type of coal gasifier, for example, techniques disclosed in Patent Documents 1 to 3 are known.
In the coal gasifier shown in Patent Publications 1 and 2, in the lower gasifier, oxygen or oxygen and water vapor and coal are introduced to generate gasified gas by partial oxidation, and the upper reformer Shows a system using a two-stage two-stage reactor in which coal and hydrogen are introduced into the generated gasified gas to generate gas, oil, and char by hydrothermal decomposition. And by making a reactor into two chambers and two stages in this way, the part which performs gasification of coal and the part which performs hydropyrolysis can be separated completely, and the operating conditions of each part can be set freely It becomes possible.

また、特許公報3に示される石炭ガス化装置では、微粉炭及びガス化剤(酸素含有ガス等)を、高温加圧されたガス化炉内に噴入して内部のガス化部で部分酸化させる構成であり、これにより生成ガスを得るものである。   Moreover, in the coal gasifier shown by patent document 3, pulverized coal and gasifying agents (oxygen-containing gas etc.) are injected in the gasification furnace pressurized at high temperature, and are partially oxidized in an internal gasification part. Thus, the product gas is obtained.

特開2008‐174583号公報JP 2008-174583 A 特開2005‐162896号公報Japanese Patent Laid-Open No. 2005-162896 特開平11‐140464号公報JP 11-140464 A

ところで、上記特許公報1〜3に示される石炭ガス化装置では、ガス化炉内で発生したスラグを、該ガス化炉のスラグタップ排出孔を経由して下方に位置する水槽(水砕部)に案内し、さらに水槽のスラグ排出孔を通じてさらに下方のスラグロックホッパに案内するようにしているが、このとき、これらスラグタップ排出孔及びスラグ排出孔といった排出系が、排出されるスラグにより閉塞することがある。
このため、特許文献3では、別途、気体注入ライン、冷却水抜き出しラインなどの詰まり解消手段を設けているが、このような解消手段を設けることで、装置全体が複雑化する。また、このような解消手段を作動させれば、ガス化炉内の圧力及び温度が乱れ、石炭ガス化処理に支障を来たすという問題もあった。
By the way, in the coal gasifier shown by the said patent documents 1-3, the slag which generate | occur | produced in the gasification furnace is located in the water tank (granulation part) located below via the slag tap discharge hole of this gasification furnace. The slag lock hopper is further guided to the lower slag lock hopper through the slag discharge hole of the water tank. At this time, the discharge system such as the slag tap discharge hole and the slag discharge hole is blocked by the discharged slag. Sometimes.
For this reason, in Patent Document 3, clogging elimination means such as a gas injection line and a cooling water extraction line are separately provided. However, the provision of such elimination means complicates the entire apparatus. Moreover, if such a cancellation | release means is operated, the pressure and temperature in a gasification furnace will be disturb | confused, and there also existed a problem of causing trouble in coal gasification processing.

この発明は、上述した事情に鑑みてなされたものであって、解消手段といった機械的な構成を付加的に設けることなく、スラグタップ排出孔及びスラグ排出孔といった排出系にてスラグの詰まりが発生することを未然に防止することができる石炭ガス化装置におけるスラグ形態調整方法を提供する。   The present invention has been made in view of the above-described circumstances, and clogging of slag occurs in a discharge system such as a slag tap discharge hole and a slag discharge hole without additionally providing a mechanical configuration such as a solution means. The present invention provides a method for adjusting the slag form in a coal gasifier capable of preventing the occurrence.

上記課題を解決するために、この発明は以下の手段を提案している。
本願の請求項1は、石炭を部分酸化してガス化するガス化炉を有する石炭ガス化装置において、前記ガス化炉で形成される溶融スラグのスラグ形態調整方法であって、前記溶融スラグの組成は、CaOとSiOの重量比により決定される塩基度が0.3〜1.2の範囲内に設定されることを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
Claim 1 of this application is a coal gasification apparatus having a gasification furnace that partially gasifies and gasifies coal, and is a method for adjusting the slag form of the molten slag formed in the gasification furnace, The composition is characterized in that the basicity determined by the weight ratio of CaO and SiO 2 is set in the range of 0.3 to 1.2.

この発明によれば、ガス化炉で形成される溶融スラグの組成を、塩基度が0.3〜1.2の範囲内に設定することにより、スラグの融点が上昇して運転効率の低下を招かない範囲で、スラグ詰まりの原因となりうる繊維状スラグの発生割合を低下させることができ、これによって溶融スラグを炉外に排出する排出系にてスラグの詰まりが発生することを未然に防止することができる。また、本発明では、溶融スラグの組成を、塩基度が0.3〜1.2の範囲内に設定することにより、従来のように、解消手段といった機械的な構成を付加的に設けることなく、スラグ詰まりを効果的に防止することができる。
すなわち、前記塩基度が0.3よりも小さいと、繊維状スラグの発生割合を低下させることが難しく、前記塩基度が1.2よりも大きいと、スラグの融点が上昇して運転効率が低下するおそれがある。
According to this invention, by setting the composition of the molten slag formed in the gasification furnace within the range of the basicity within the range of 0.3 to 1.2, the melting point of the slag is increased and the operation efficiency is decreased. If not invited, the generation rate of fibrous slag that can cause slag clogging can be reduced, thereby preventing slag clogging in the discharge system that discharges molten slag out of the furnace. be able to. Further, in the present invention, by setting the composition of the molten slag within the range of the basicity within a range of 0.3 to 1.2, it is possible to provide a mechanical structure such as a solution means as in the conventional case. , Slag clogging can be effectively prevented.
That is, if the basicity is less than 0.3, it is difficult to reduce the generation rate of fibrous slag, and if the basicity is greater than 1.2, the melting point of the slag increases and the operating efficiency decreases. There is a risk.

本願の請求項2は、前記溶融スラグの塩基度を0.3〜1.2の範囲内に設定するために、前記石炭の原材料となる原炭及びその調製剤の成分を調整することを特徴とする。   Claim 2 of this application adjusts the raw coal used as the raw material of the said coal, and the component of the preparation agent, in order to set the basicity of the said molten slag in the range of 0.3-1.2. And

この発明によれば、溶融スラグの塩基度を0.3〜1.2の範囲内に設定するために、石炭の原材料となる原炭及びその調製剤の成分を調整することで、繊維状スラグを減少させてスラグ詰まりを防止できるので、従来のように、解消手段といった機械的な構成を付加的に設けることなく、スラグ詰まりを効果的に防止できる。   According to this invention, in order to set the basicity of molten slag within the range of 0.3 to 1.2, by adjusting the raw coal used as the raw material of coal and the components of the preparation agent, fibrous slag Therefore, slag clogging can be effectively prevented without additionally providing a mechanical structure such as a solution means as in the prior art.

本願の請求項1に係るスラグ形態調整方法によれば、ガス化炉で形成される溶融スラグの組成を、塩基度が0.3〜1.2の範囲内に設定することにより、スラグの融点が上昇して運転効率の低下を招かない範囲で、繊維状スラグの発生割合を低下させることができ、これによって溶融スラグを炉外に排出する排出系にてスラグの詰まりが発生することを未然に防止することができる。また、本発明では、溶融スラグの組成を、塩基度が0.3〜1.2の範囲内に設定することにより、従来のように、解消手段といった機械的な構成を付加的に設けることなく、スラグ詰まりを効果的に防止することができる。   According to the slag form adjustment method according to claim 1 of the present application, the melting point of the slag is set by setting the composition of the molten slag formed in the gasification furnace within the range of the basicity within a range of 0.3 to 1.2. As a result, the generation rate of fibrous slag can be reduced within a range that does not lead to a decrease in operating efficiency, thereby causing slag clogging in the discharge system that discharges molten slag out of the furnace. Can be prevented. Further, in the present invention, by setting the composition of the molten slag within the range of the basicity within a range of 0.3 to 1.2, it is possible to provide a mechanical structure such as a solution means as in the conventional case. , Slag clogging can be effectively prevented.

本願の請求項2に係るスラグ形態調整方法によれば、溶融スラグの塩基度を0.3〜1.2の範囲内に設定するために、石炭の原材料となる原炭及びその調製剤の成分を調整することで、繊維状スラグを減少させてスラグ詰まりを防止できるので、従来のように、解消手段といった機械的な構成を付加的に設けることなく、スラグ詰まりを効果的に防止できる。   According to the slag form adjusting method according to claim 2 of the present application, in order to set the basicity of the molten slag within the range of 0.3 to 1.2, the raw coal as a raw material of coal and the components of the preparation agent thereof By adjusting the slag, the slag clogging can be prevented by reducing the fibrous slag, so that the slag clogging can be effectively prevented without additionally providing a mechanical configuration such as a solving means as in the prior art.

本発明が適用される石炭ガス化装置の概略構成図である。It is a schematic block diagram of the coal gasifier to which this invention is applied. 溶融スラグの塩基度と繊維状スラグの発生割合を示すグラフである。It is a graph which shows the basicity of molten slag, and the generation | occurrence | production ratio of fibrous slag. 溶融スラグ形態を示す繊維状スラグを説明するための図である。It is a figure for demonstrating the fibrous slag which shows a molten slag form. 溶融スラグの塩基度とスラグの融点との関係を示すグラフである。It is a graph which shows the relationship between the basicity of molten slag, and melting | fusing point of slag.

本発明の一実施形態について図1〜図4を参照して説明する。
図1は、本実施形態として示される一般的な石炭ガス化装置100であって、ライン(図示略)より微粉炭(石炭)を搬送し、ライン1を用いてガス化剤(酸素含有ガス等)をバーナ2より高温の加圧されたガス化炉3内に噴入して部分酸化させる構成であり、このガス化炉3で生じる生成ガスGを上部開口3Aから排出する。
なお、ガス化炉3の上部開口3Aの上方には、該ガス化炉3内で生成したガス化ガス中に水素を投入して水素化熱分解によりガス、オイル、及びチャーを生成する図示しない改質炉が連設されている。
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows a general coal gasifier 100 shown as the present embodiment, which transports pulverized coal (coal) from a line (not shown) and uses a line 1 to form a gasifying agent (oxygen-containing gas or the like). ) Is injected into a pressurized gasification furnace 3 having a temperature higher than that of the burner 2 to be partially oxidized, and the generated gas G generated in the gasification furnace 3 is discharged from the upper opening 3A.
Above the upper opening 3A of the gasification furnace 3, hydrogen is introduced into the gasification gas generated in the gasification furnace 3, and gas, oil, and char are generated by hydrogenation pyrolysis (not shown). A reforming furnace is connected continuously.

また、ガス化炉3での部分酸化に伴い、副産物として石炭中の灰分がスラグとなってガス化炉3の内壁にスラグコーティング(符号Sで示す)されるとともに、その一部は溶融スラグS1になって排出される。
すなわち、前記ガス化炉3は、その下部に設けられたスラグタップ排出孔3Bを経由して、内部で形成される溶融スラグS1が排出かつ滴下されるものであって、スラグタップ排出孔3Bから排出された溶融スラグS1は、スラグ冷却部4を滴下する間に冷却された後、スラグ水砕部5に貯留される。
このスラグ水砕部5は内部にスラグ冷却水6が貯留されるものであって、溶融スラグS1を水砕・急冷却して水砕スラグS2とした後、下部のスラグ排出孔5Aより排出する。
なお、ガス化炉3内の温度は、例えば約1300〜1600℃程度とされ、スラグ冷却部4の温度は、例えば約500〜800℃程度とされ、スラグ水砕部5の温度は、例えば約40〜60℃程度となっている。
Further, along with the partial oxidation in the gasification furnace 3, the ash content in the coal becomes a slag as a by-product and is slag-coated on the inner wall of the gasification furnace 3 (indicated by a symbol S), and a part of the molten slag S1 Will be discharged.
That is, the gasification furnace 3 is for discharging and dropping molten slag S1 formed therein via a slag tap discharge hole 3B provided in a lower portion thereof, and from the slag tap discharge hole 3B. The discharged molten slag S <b> 1 is cooled while dropping the slag cooling unit 4, and then stored in the slag granulating unit 5.
The slag water granulating unit 5 stores slag cooling water 6 therein, and after the molten slag S1 is granulated and rapidly cooled to form the granulated slag S2, it is discharged from the lower slag discharge hole 5A. .
In addition, the temperature in the gasification furnace 3 is about 1300-1600 degreeC, for example, the temperature of the slag cooling part 4 is about 500-800 degreeC, for example, and the temperature of the slag granulation part 5 is about about, for example It is about 40-60 degreeC.

前記スラグ水砕部5の下部に位置するスラグ排出孔5Aには、弁7を有する連結管8が接続されており、該連結管8を通じて、スラグ水砕部5から排出された水砕スラグS2がスラグロックホッパ10に送られる。
このスラグロックホッパ10は、例えば、水砕スラグS2を一定時間貯留して、スラグ沈殿させるものであって、一定時間が経過した後に、弁11を有する連結管12を経由して水砕スラグS2を系外に取り出すようにしている。
A connecting pipe 8 having a valve 7 is connected to the slag discharge hole 5A located at the lower part of the slag water granulating unit 5, and the granulated slag S2 discharged from the slag granulating unit 5 through the connecting pipe 8. Is sent to the slag lock hopper 10.
The slag lock hopper 10 stores, for example, the granulated slag S2 for a certain period of time and causes the slag to settle. After a certain period of time has elapsed, the granulated slag S2 passes through the connecting pipe 12 having the valve 11. Is taken out of the system.

次に、ガス化炉3で生じる溶融スラグS1について説明する。
本発明に係る溶融スラグS1の組成は、塩基度が0.3〜1.2の範囲内に設定されるものであって、このような塩基度の範囲設定により、スラグ排出時の閉塞原因となる繊維状スラグの発生を抑制し、スラグの安定した排出状態が維持されるものである。
そして、このような溶融スラグS1の塩基度を0.3〜1.2の範囲内に設定するためには、当該塩基度を基準として、石炭の原材料となる原炭及びその調製剤の成分を調整する。なお、ここで言う塩基度とは、CaOとSiOの重量比(=SiO/CaO)であって、溶融スラグS1の塩基度が、0.3〜1.2の範囲内になるように原炭及びその調製剤の成分を調整する。すなわち、溶融スラグS1の塩基度は、石炭における塩基度と相関関係があり、予め検証試験などを実施し、この相関関係を知得しておくことにより、石炭の塩基度に基づいて溶融スラグS1の塩基度を調整することが可能になる。
Next, the molten slag S1 generated in the gasification furnace 3 will be described.
The composition of the molten slag S1 according to the present invention is such that the basicity is set within a range of 0.3 to 1.2, and by such a basicity range setting, the cause of clogging during slag discharge The generation | occurrence | production of the fibrous slag which becomes is suppressed, and the stable discharge | emission state of slag is maintained.
And in order to set the basicity of such molten slag S1 in the range of 0.3-1.2, the raw coal used as the raw material of coal, and the component of the preparation agent are used on the basis of the basicity concerned. adjust. Here, the terms basicity say, a weight ratio of CaO and SiO 2 (= SiO 2 / CaO ), as basicity of the molten slag S1 is made within the range of 0.3 to 1.2 Adjust ingredients of raw coal and its preparation. That is, the basicity of the molten slag S1 has a correlation with the basicity of the coal, and a verification test or the like is performed in advance and the correlation is known, so that the molten slag S1 is based on the basicity of the coal. It is possible to adjust the basicity.

塩基度を0.3〜1.2の範囲内に設定する理由の一つとしては、スラグの融点が上昇して運転効率の低下を招かないように塩基度を1.2以下とするものである。すなわち、図4に示すように、塩基度を1.2より大きくすると、スラグの融点が急激に上昇し、運転効率の低下が招かれるおそれがある。   One reason for setting the basicity within the range of 0.3 to 1.2 is to set the basicity to 1.2 or less so that the melting point of the slag does not increase and the operating efficiency does not decrease. is there. That is, as shown in FIG. 4, when the basicity is greater than 1.2, the melting point of the slag rises rapidly, which may lead to a decrease in operating efficiency.

また、塩基度を0.3〜1.2の範囲内に設定する他の理由としては、図2に示すように、塩基度を上げることにより、スラグタップ排出孔3Bから排出される溶融スラグS1(滴下スラグ)に含有される「繊維状スラグ」の発生割合が減少するからであり、ここで閉塞発生の原因となりうる繊維状スラグの発生割合を80%以下とするために、塩基度を0.3以上とするものである。すなわち、繊維状スラグの発生割合が80%よりも大きいと、スラグ詰まりが発生し易いことが、本発明者の実験により確認されている。なお図2に示されるように、塩基度が0.5以上となると、繊維状スラグの発生割合が20%以下になる。   Further, as another reason for setting the basicity within the range of 0.3 to 1.2, as shown in FIG. 2, by increasing the basicity, the molten slag S1 discharged from the slag tap discharge hole 3B. This is because the generation rate of “fibrous slag” contained in (dripping slag) is reduced, and in order to reduce the generation rate of fibrous slag that can cause clogging to 80% or less, the basicity is set to 0. .3 or more. That is, it has been confirmed by experiments of the present inventors that slag clogging is likely to occur when the generation rate of fibrous slag is greater than 80%. As shown in FIG. 2, when the basicity is 0.5 or more, the generation rate of fibrous slag is 20% or less.

ここで、溶融スラグS1がガス化炉3のスラグタップ排出孔3Bから排出されてスラグ冷却部4を滴下する際の形態変化には、スラグのガラス化及び結晶化が係っており、これらガラス化及び結晶化にはスラグの塩基度と冷却速度が関係している。特に、本実施形態で示される石炭ガス化装置100のように、スラグがガス化炉3からスラグ冷却部4に排出され、スラグが溶融状態から急速に冷却される(冷却速度が高い範囲に設定される)場合には、塩基度の影響が大きいことが、本発明者の実験により確認されており、溶融スラグS1の塩基度を調整することでスラグの形態を制御することが可能となる。
このため、溶融スラグS1の塩基度調整のために、原炭及びその調製剤の成分を調整するようにし、これによって石炭ガス化装置100のガス化炉3から排出困難となる滴下スラグ(溶融スラグS1)中の繊維状スラグの形成を抑制し、該石炭ガス化装置100を安定的に運転可能とする。
Here, the molten slag S1 is discharged from the slag tap discharge hole 3B of the gasification furnace 3 and dropped into the slag cooling part 4, and the slag is vitrified and crystallized. The basicity and cooling rate of slag are related to crystallization and crystallization. In particular, as in the coal gasifier 100 shown in the present embodiment, slag is discharged from the gasification furnace 3 to the slag cooling unit 4 and the slag is rapidly cooled from the molten state (set to a range where the cooling rate is high). In this case, it has been confirmed by experiments of the present inventors that the influence of basicity is large, and it is possible to control the form of the slag by adjusting the basicity of the molten slag S1.
For this reason, in order to adjust the basicity of the molten slag S1, the components of the raw coal and its preparation agent are adjusted, and thereby dripping slag (molten slag) that becomes difficult to discharge from the gasification furnace 3 of the coal gasifier 100 The formation of fibrous slag in S1) is suppressed, and the coal gasifier 100 can be stably operated.

また、本実施形態で示される繊維状スラグは断面形状がほぼ円形の長尺体(すなわち、円柱形状)であって、図3に示すように、円柱の径が0.5mm以下となるスラグを、本実施形態で述べる「繊維状スラグ」とする。この繊維状スラグは、径の減少に従って水中での沈降速度が低下し、排出系に詰まりが発生しやすくなる。ここで繊維状スラグの径と沈降速度との関係を表1に示す。   Further, the fibrous slag shown in the present embodiment is a long body having a substantially circular cross-sectional shape (that is, a cylindrical shape), and as shown in FIG. 3, a slag having a cylindrical diameter of 0.5 mm or less is used. The “fibrous slag” described in the present embodiment. The fibrous slag has a lower sedimentation rate in water as the diameter decreases, and the discharge system is likely to be clogged. Table 1 shows the relationship between the diameter of the fibrous slag and the sedimentation speed.

Figure 2012193246
Figure 2012193246

なお、繊維状スラグの径の増減と、この繊維状スラグが水中を落下する場合のレイノルズ数Reとは対応しているが、レイノルズ数Reが100未満である場合には、繊維状スラグの抵抗係数Cdが、レイノルズ数Reの減少に対して一定の傾きで増加傾向を示す。そして、繊維状スラグが水中を落下する場合には、径0.5mmが「Re=100」に相当する。   The increase / decrease in the diameter of the fibrous slag corresponds to the Reynolds number Re when the fibrous slag falls in water, but when the Reynolds number Re is less than 100, the resistance of the fibrous slag The coefficient Cd shows an increasing tendency with a constant slope as the Reynolds number Re decreases. When the fibrous slag falls in water, the diameter of 0.5 mm corresponds to “Re = 100”.

一方、塩基度が上昇することにより、繊維状スラグが減少するとともに該繊維状スラグが細かくなって、図3で示すような「粒状スラグ」に変化する。これによりスラグタップ排出孔3Bでの溶融スラグS1の流れが良くなってスラグ詰まりが確実に防止される。   On the other hand, as the basicity increases, the fibrous slag decreases and the fibrous slag becomes finer, and changes to “granular slag” as shown in FIG. Thereby, the flow of the molten slag S1 in the slag tap discharge hole 3B is improved, and slag clogging is reliably prevented.

ここで、溶融スラグS1の塩基度を0.3〜1.2の範囲内に設定するための塩基度の調整手順について説明する。   Here, the basicity adjustment procedure for setting the basicity of the molten slag S1 within the range of 0.3 to 1.2 will be described.

(1)予め、原炭の灰組成と灰分量を測定する。このとき例えば、原炭の灰組成として、SiO、CaO、Fe、Al、MnO、MgO、TiO、P、SO、KO、NaOを測定し、残分は強熱減量(ig. Loss)とする。 (1) The raw coal ash composition and ash content are measured in advance. At this time, for example, SiO 2 , CaO, Fe 2 O 3 , Al 2 O 3 , MnO, MgO, TiO 2 , P 2 O 5 , SO 3 , K 2 O, and Na 2 O are measured as the ash composition of raw coal. The remainder is assumed to be loss on ignition (ig. Loss).

(2)次に、前述の測定結果、および目標とするスラグ組成の塩基度(0.3〜1.2)に基づき、調製剤を準備する。ここで調製剤の原料としては、例えば、鉱物(石灰石、硅砂、葉ろう石等)や酸化物粉末(高炉スラグ粉末、耐火材粉末、各種セメント粉末等)等が利用できる。スラグ組成は、例えば、各灰組成および酸化物組成の加重平均で計算することができる。なおこのとき、重量比が大きい代表的な組成を2〜5種類選択して判断してもよい。 (2) Next, a preparation agent is prepared based on the measurement results described above and the basicity (0.3 to 1.2) of the target slag composition. Here, as the raw material of the preparation agent, for example, minerals (limestone, cinnabar, phyllite, etc.), oxide powders (blast furnace slag powder, refractory powder, various cement powders, etc.) can be used. The slag composition can be calculated, for example, by a weighted average of each ash composition and oxide composition. At this time, 2 to 5 types of representative compositions having a large weight ratio may be selected and judged.

(3)最後に、原炭と調製剤を混合する。例えば、原炭をコンベアスケール等で計量しながら搬送する場合は、その時間当りの流量(kg/h)に合わせて、調製剤を一定の重量比で混入する。この後、固体混合器や気流搬送等を用いて原炭と調製剤を良く混合する。 (3) Finally, the raw coal and the preparation agent are mixed. For example, when the raw coal is conveyed while being measured on a conveyor scale or the like, the preparation agent is mixed at a constant weight ratio in accordance with the flow rate per hour (kg / h). Thereafter, the raw coal and the preparation agent are well mixed using a solid mixer, an air current conveyance or the like.

〔実施例〕
以下に、本実施形態に係るスラグ形態調整方法の一例を示す。
まず、ここで使用する原炭をタニトハルム炭とし、その灰組成及びその灰分量は、例えば、SiOを51.05wt%、CaOを6.87wt%、Feを10.95wt%、Alを25.07wt%、MnOを0.05wt%、MgOを2.48wt%、TiOを1.13wt%、Pを0.33wt%、SOを0.09wt%、KOを1.28wt%、NaOを0.62wt%、ig. Lossを0.08wt%(いずれもDRY)とする。
本例では、原炭の塩基度は0.135程度である。そして、石炭ガス化炉を、部分酸化部石炭500kg/h、酸素315Nm/h、水蒸気50kg/h、改質部石炭量150kg/hを投入し、圧力2.5MPaG、温度1550℃で運転を行い、ガス発生量は約1440Nm/h、チャー60kg/hとなったところ、原炭を使用した際のスラグの発生量は、35kg/h程度であり、そのほとんどが繊維状スラグであった。
この原炭に対して、調製剤を徐々に増量していき溶融スラグS1の塩基度を上げると、図2に示すように、該溶融スラグS1に占める繊維状スラグの重量割合は、塩基度を上げるに従って、減少することが確認された。特に、溶融スラグS1の塩基度が0.3を越えた時点で、溶融スラグS1に占める繊維状スラグの重量割合は80%以下となって、スラグタップ排出孔3B及びさらに下流のスラグ排出孔5Aでのスラグ詰まりを防止できることが確認されている。
〔Example〕
Below, an example of the slag form adjustment method which concerns on this embodiment is shown.
First, the raw coal used here is Tanitoharum coal, and its ash composition and ash content are, for example, 51.05 wt% for SiO 2 , 6.87 wt% for CaO, 10.95 wt% for Fe 2 O 3 , Al 2 O 3 25.07 wt%, MnO 0.05 wt%, MgO 2.48 wt%, TiO 2 1.13 wt%, P 2 O 5 0.33 wt%, SO 3 0.09 wt%, K 2 O is 1.28 wt%, Na 2 O is 0.62 wt%, and ig. Loss is 0.08 wt% (all are DRY).
In this example, the basicity of the raw coal is about 0.135. Then, the coal gasification furnace was charged with 500 kg / h of partially oxidized coal, 315 Nm 3 / h of oxygen, 50 kg / h of steam, 150 kg / h of reformed coal, and operated at a pressure of 2.5 MPaG and a temperature of 1550 ° C. The gas generation amount was about 1440 Nm 3 / h and char 60 kg / h. When raw coal was used, the amount of slag generation was about 35 kg / h, most of which was fibrous slag. .
When the basicity of the molten slag S1 is increased by gradually increasing the preparation agent relative to the raw coal, as shown in FIG. 2, the weight ratio of the fibrous slag in the molten slag S1 It was confirmed that it decreased with increasing. In particular, when the basicity of the molten slag S1 exceeds 0.3, the weight ratio of the fibrous slag in the molten slag S1 becomes 80% or less, and the slag tap discharge hole 3B and the further downstream slag discharge hole 5A. It has been confirmed that slag clogging can be prevented.

以上詳細に説明したように本実施形態に係る石炭ガス化装置100におけるスラグ形態調整方法によれば、ガス化炉3で形成される溶融スラグS1の組成を、塩基度が0.3〜1.2の範囲内に設定することにより、繊維状スラグの発生割合を低下させることができ、これによって溶融スラグS1及びその後に形成される水砕スラグS2を炉外に排出する排出系にてスラグの詰まりが発生することを未然に防止することができる。また、本実施形態では、溶融スラグS1の組成を、塩基度が0.3〜1.2の範囲内に設定することにより、従来のように、解消手段といった機械的な構成を付加的に設けることなく、スラグ詰まりを効果的に防止することができる。   As explained in detail above, according to the slag form adjusting method in the coal gasifier 100 according to the present embodiment, the basicity of the composition of the molten slag S1 formed in the gasification furnace 3 is 0.3 to 1.. By setting it within the range of 2, the generation rate of fibrous slag can be reduced, and thereby the molten slag S1 and the granulated slag S2 formed thereafter are discharged from the furnace to discharge the slag. It is possible to prevent clogging from occurring. Further, in the present embodiment, by setting the composition of the molten slag S1 within a range of the basicity within a range of 0.3 to 1.2, a mechanical configuration such as a solving means is additionally provided as in the related art. Therefore, slag clogging can be effectively prevented.

なお、上記実施形態では、繊維状スラグの発生割合を低下させるために、塩基度を0.3〜1.2の範囲に設定することを必須とするものであるが、スラグの融点の上昇を抑えるために、0.3〜1.2の範囲内において特に0.3〜0.5の範囲に塩基度を設定しても良い。そして、0.3〜0.5の範囲内での塩基度設定により、20〜80%に繊維スラグ発生割合を維持することができる。   In addition, in the said embodiment, in order to reduce the generation | occurrence | production ratio of fibrous slag, it is essential to set basicity in the range of 0.3-1.2, but the raise of melting | fusing point of slag is carried out. In order to suppress it, basicity may be set in the range of 0.3 to 0.5, particularly in the range of 0.3 to 1.2. And the fiber slag generation | occurrence | production ratio can be maintained at 20 to 80% by the basicity setting in the range of 0.3-0.5.

また、上記実施形態では、ガス化炉3及び改質炉からなる二室二段炉を使用したが、これに限定されず、例えば1つの炉において、ガス化ガスを生成と、水素化熱分解とを共に行うガス化炉を有する石炭ガス化装置などにおいて、繊維状スラグの発生抑制のために、溶融スラグの塩基度を0.3〜1.2の範囲内に調整しても良い。   Moreover, in the said embodiment, although the two-chamber two-stage furnace which consists of the gasification furnace 3 and a reforming furnace was used, it is not limited to this, For example, in one furnace, gasification gas is produced | generated, and hydropyrolysis In a coal gasifier having a gasification furnace that performs both of the above, the basicity of the molten slag may be adjusted within the range of 0.3 to 1.2 in order to suppress the generation of fibrous slag.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。   As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.

本発明は、石炭を部分酸化してガス化するガス化炉を有する石炭ガス化装置におけるスラグ形態調整方法に関する。   The present invention relates to a slag form adjusting method in a coal gasification apparatus having a gasification furnace that partially oxidizes and gasifies coal.

3 ガス化炉
3B スラグタップ排出孔
100 石炭ガス化装置
S1 溶融スラグ
3 Gasification furnace 3B Slag tap discharge hole 100 Coal gasifier S1 Molten slag

Claims (2)

石炭を部分酸化してガス化するガス化炉を有する石炭ガス化装置において、前記ガス化炉で形成される溶融スラグのスラグ形態調整方法であって、
前記溶融スラグの組成は、CaOとSiOの重量比により決定される塩基度が0.3〜1.2の範囲内に設定されることを特徴とするスラグ形態調整方法。
In a coal gasification apparatus having a gasification furnace that partially oxidizes coal to gasify, a method for adjusting the slag form of molten slag formed in the gasification furnace,
The composition of the molten slag is characterized in that the basicity determined by the weight ratio of CaO and SiO 2 is set within a range of 0.3 to 1.2.
前記溶融スラグの塩基度を0.3〜1.2の範囲内に設定するために、前記石炭の原材料となる原炭及びその調製剤の成分を調整することを特徴とする請求項1に記載のスラグ形態調整方法。   The raw coal used as the raw material of the coal and components of the preparation agent thereof are adjusted in order to set the basicity of the molten slag within a range of 0.3 to 1.2. Slag form adjustment method.
JP2011056944A 2011-03-15 2011-03-15 Method for adjusting slag form Withdrawn JP2012193246A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011056944A JP2012193246A (en) 2011-03-15 2011-03-15 Method for adjusting slag form
PCT/JP2012/055983 WO2012124604A1 (en) 2011-03-15 2012-03-08 Slag form adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056944A JP2012193246A (en) 2011-03-15 2011-03-15 Method for adjusting slag form

Publications (1)

Publication Number Publication Date
JP2012193246A true JP2012193246A (en) 2012-10-11

Family

ID=46830677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056944A Withdrawn JP2012193246A (en) 2011-03-15 2011-03-15 Method for adjusting slag form

Country Status (2)

Country Link
JP (1) JP2012193246A (en)
WO (1) WO2012124604A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101858841B1 (en) * 2016-11-21 2018-05-17 주식회사 포스코 Method for reducing operation temperature of sng gasifier using kanvara reactor powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105861062A (en) * 2015-01-19 2016-08-17 山西潞安煤基清洁能源有限责任公司 Modification method of high-rank coal for slag-tap boiler of entrained flow bed

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649291A (en) * 1987-07-02 1989-01-12 Kawasaki Steel Co Operating method of coal gasifier oven
JP3782334B2 (en) * 2001-01-12 2006-06-07 川崎重工業株式会社 Exhaust gas treatment equipment for gasifier
JP2005126629A (en) * 2003-10-27 2005-05-19 Mitsubishi Heavy Ind Ltd Facility for discharging material to be melted and method for operating facility for discharging material to be melted
JP2007231203A (en) * 2006-03-02 2007-09-13 Nippon Steel Corp Method for gasifying carbonaceous raw material
JP4903623B2 (en) * 2007-04-16 2012-03-28 財団法人電力中央研究所 Method for producing coal gasification slag with adjusted composition
JP5660761B2 (en) * 2009-03-24 2015-01-28 太平洋セメント株式会社 Coal gasification and fertilizer manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101858841B1 (en) * 2016-11-21 2018-05-17 주식회사 포스코 Method for reducing operation temperature of sng gasifier using kanvara reactor powder

Also Published As

Publication number Publication date
WO2012124604A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
EP2940386B1 (en) Waste melting furnace
KR100972195B1 (en) Method for manufacturing molten irons by injecting a hydrocarbon gas and apparatus for manufacturing molten irons using the same
JP2012193246A (en) Method for adjusting slag form
JP5745288B2 (en) Coal gasification method in coal gasifier
JP2015025091A (en) Operational method of gasification furnace
JP3410100B2 (en) Gasification of petroleum coke feedstock
WO2010010472A2 (en) Gasification of coal
CN102361961A (en) Coal gasification with additional production of useful materials
JP2006307306A (en) Method for operating blast furnace
JP5211369B1 (en) Coal pyrolysis method
JP5426997B2 (en) Blast furnace operation method
JP3620407B2 (en) Operation method of pulverized coal injection to blast furnace
JP5674517B2 (en) Coal gasification method
JP2007231203A (en) Method for gasifying carbonaceous raw material
CN108148631A (en) A kind of fluxing agent and its adding method for improving coal ash melting property
JP4759977B2 (en) Blast furnace operation method
US20230067815A1 (en) Gasification furnace operating method and gasification furnace
JP2005126629A (en) Facility for discharging material to be melted and method for operating facility for discharging material to be melted
JP7348466B2 (en) Blast furnace operating method and pig iron manufacturing method
WO1997012066A1 (en) Chromium ore smelting reduction process
JP2009019125A (en) Gasification method and apparatus
JP6361930B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JPH06313171A (en) Production of high-reactivity coke
JP2020152989A (en) Operation method of blast furnace and manufacturing method of pig iron
CN104498100B (en) A kind of gasification furnace and its application, the gasification process of carbonaceous material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603