JP2012192486A - Double surface polishing device - Google Patents

Double surface polishing device Download PDF

Info

Publication number
JP2012192486A
JP2012192486A JP2011058038A JP2011058038A JP2012192486A JP 2012192486 A JP2012192486 A JP 2012192486A JP 2011058038 A JP2011058038 A JP 2011058038A JP 2011058038 A JP2011058038 A JP 2011058038A JP 2012192486 A JP2012192486 A JP 2012192486A
Authority
JP
Japan
Prior art keywords
static pressure
surface plate
load
chamber
transmission shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011058038A
Other languages
Japanese (ja)
Other versions
JP5647923B2 (en
Inventor
Yoshio Koike
喜雄 小池
Takayuki Koyama
隆行 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SpeedFam Co Ltd
Original Assignee
SpeedFam Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SpeedFam Co Ltd filed Critical SpeedFam Co Ltd
Priority to JP2011058038A priority Critical patent/JP5647923B2/en
Publication of JP2012192486A publication Critical patent/JP2012192486A/en
Application granted granted Critical
Publication of JP5647923B2 publication Critical patent/JP5647923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a double surface polishing device capable of accurately and stably fine-tuning a pressing force applied to a workpiece at polishing from an upper surface plate by means of a pressure reducing mechanism which can reduce energy consumption in a simple structure.SOLUTION: The double surface polishing device has the pressure reducing mechanism 44 for making a load having a reverse direction with the load of the upper surface plate 3 act on the upper surface plate 3 at the polishing of the workpiece W where a difference between the load of the upper surface plate 3 and the reverse load is set up to be pressed pressure at polishing. The pressure reducing mechanism 44 has a static pressure transmission shaft 45 arranged in a vertically movable state at a position where an axis is coincident with the upper surface plate 3, a self-aligning bearing 49 for mutually connecting the upper surface plate 3 and the static pressure transmission shaft 45, and a static pressure generator 48 for generating static pressure generated by a liquid level difference of a standstill liquid 47 and acting the static pressure to the static pressure transmission shaft 45 as a reverse load to the load generated by the upper surface plate 3.

Description

本発明は、研磨加工時にワークに加わる上定盤による押圧力を微調整することができる両面研磨装置に関するものである。   The present invention relates to a double-side polishing apparatus capable of finely adjusting a pressing force applied by an upper surface plate applied to a workpiece during polishing.

ワークの両面を研磨加工する両面研磨装置は、一般に、同心状に配設された円環状の上定盤及び下定盤と、該下定盤の中心に配設された太陽歯車と、該下定盤の外周を取り囲むように配設された内歯歯車と、前記下定盤上に配設されて前記太陽歯車と内歯歯車とに噛合するキャリアとを有していて、該キャリアに保持させたワークを前記上定盤と下定盤とで挟み、前記太陽歯車と内歯歯車とを回転させることにより前記キャリアを自転させると共に太陽歯車の回りを公転させながら、前記上定盤と下定盤とを相対的に回転させて前記ワークの両面を研磨するように構成されている。   A double-side polishing apparatus that polishes both sides of a workpiece is generally an annular upper and lower surface plate disposed concentrically, a sun gear disposed in the center of the lower surface plate, An internal gear disposed so as to surround the outer periphery, and a carrier disposed on the lower surface plate and meshing with the sun gear and the internal gear, and a work held by the carrier The upper surface plate and the lower surface plate are relatively sandwiched between the upper surface plate and the lower surface plate, while rotating the sun gear and the internal gear to rotate the carrier and revolve around the sun gear. And both surfaces of the workpiece are polished.

研磨時に前記ワークには、上定盤により押圧力(加工荷重)が加えられる。その場合、上定盤の重量(荷重)は、付属する部材の重量を含めると非常に大きいため、ワークの加工条件に応じて上定盤の重量を調整する必要があり、特に、薄い水晶基板のように破損し易いワークを研磨する場合には、精密に微調整された小さな押圧力をワーク全体に均等に加えながら研磨する必要がある。このため、一般に、上定盤の荷重と逆向きの荷重(逆向き荷重)を発生させる減圧発生機構を設け、この減圧発生機構からの逆向き荷重を前記上定盤に作用させることにより、該上定盤の荷重と前記逆向き荷重との差を研磨時の押圧力とするようにしている。   During polishing, a pressing force (processing load) is applied to the workpiece by an upper surface plate. In that case, the weight (load) of the upper surface plate is very large including the weight of the attached member. Therefore, it is necessary to adjust the weight of the upper surface plate according to the processing conditions of the workpiece. In the case of polishing a workpiece that is easily damaged, it is necessary to polish the workpiece while applying a small pressing force finely adjusted precisely to the entire workpiece. For this reason, generally, a reduced pressure generation mechanism that generates a load (reverse load) opposite to the load of the upper surface plate is provided, and by applying a reverse load from the reduced pressure generation mechanism to the upper surface plate, The difference between the load on the upper surface plate and the reverse load is used as the pressing force during polishing.

特許文献1−特許文献4には、色々な構成の減圧発生機構を備えた研磨装置が開示されている。
特許文献1に記載された研磨装置の減圧発生機構は、錘で逆向き荷重を発生させて上定盤の重量に対向させるものであるが、構造によっては該上定盤の重量と同程度の重量の錘を設けなければならないため、研磨装置の総重量が非常に大きくなって装置も大がかりになり、逆向き荷重を調整するために錘を移動させたり増減させたりする機構が必要になるなど、構造も複雑である。
Patent Literature 1 to Patent Literature 4 disclose polishing apparatuses equipped with various configurations of reduced pressure generating mechanisms.
The depressurization generation mechanism of the polishing apparatus described in Patent Document 1 generates a reverse load with a weight and opposes the weight of the upper platen. However, depending on the structure, it is approximately the same as the weight of the upper platen. Since the weight of the weight must be provided, the total weight of the polishing device becomes very large and the device becomes large, and a mechanism for moving the weight and adjusting it to adjust the reverse load is required. The structure is also complicated.

また、特許文献2及び特許文献3に記載された研磨装置の減圧発生機構は、エアバッグを使用し、該エアバッグ内の空気圧を調整することによって上定盤の押圧力を調整するものである。しかし、このようにエアバッグを使用するものにおいては、該エアバッグに対して圧縮空気を給排するためにエアポンプや電磁弁等が必要であり、該エアポンプや電磁弁の駆動時には常に電力を必要とするため、構造が複雑でエネルギーの消費量も大きいという問題がある。さらに、前記電磁弁のオン・オフによってエアバッグに対して圧縮空気が急激に供給されたり急激に排出されたりするため、該エアバッグの内部における圧力の増減が大きく、上定盤に不安定な逆向き荷重が加わることによって押圧力が不安定になり、これがワークの破損につながり易い。   Further, the depressurization generating mechanism of the polishing apparatus described in Patent Document 2 and Patent Document 3 uses an airbag and adjusts the pressing force of the upper surface plate by adjusting the air pressure in the airbag. . However, in the case of using an air bag in this way, an air pump, a solenoid valve, or the like is necessary to supply / discharge compressed air to / from the air bag, and power is always required when the air pump or the solenoid valve is driven. Therefore, there is a problem that the structure is complicated and the energy consumption is large. Furthermore, since the compressed air is suddenly supplied to or discharged from the airbag by turning on and off the solenoid valve, the pressure inside the airbag is greatly increased and decreased, and the upper surface plate is unstable. When a reverse load is applied, the pressing force becomes unstable, and this tends to damage the workpiece.

さらに、特許文献4に記載された研磨装置の減圧発生機構は、上定盤と同心状に配置した上定盤昇降軸で該上定盤の重量を支持し、該上定盤昇降軸を2つの流体圧シリンダと2組の流体発生装置(ポンプ)及び流体制御弁とで昇降させることにより、前記上定盤の押圧力を調整するようにしている。しかし、この研磨装置においても、減圧発生機構の構造が複雑で電力等のエネルギーの消費量が大きいという問題があるばかりでなく、前記流体制御弁をオン・オフさせて流体圧シリンダ内に圧力流体を供給する際に圧力変動が生じ易いため、上定盤に不安定な逆向き荷重が作用し、これがワークの破損につながり易いという欠点がある。   Further, the depressurization generating mechanism of the polishing apparatus described in Patent Document 4 supports the weight of the upper surface plate by an upper surface plate lifting shaft arranged concentrically with the upper surface plate, The pressing force of the upper surface plate is adjusted by raising and lowering with two fluid pressure cylinders, two sets of fluid generators (pumps) and a fluid control valve. However, this polishing apparatus not only has a problem that the structure of the decompression generation mechanism is complicated and consumes a large amount of energy such as electric power, but also the fluid control valve is turned on and off to bring the pressure fluid into the fluid pressure cylinder. Since pressure fluctuations are likely to occur during the feeding of the steel plate, an unstable reverse load acts on the upper surface plate, which tends to cause damage to the workpiece.

特開2007−83328号公報JP 2007-83328 A 特開平10−264012号公報Japanese Patent Laid-Open No. 10-264012 特開2000−6005号公報Japanese Unexamined Patent Publication No. 2000-6005 特開2001−322062号公報Japanese Patent Laid-Open No. 2001-322062

本発明の技術的課題は、研磨加工時にワークに加わる上定盤による押圧力を、構成が簡単でエネルギー消費の少ない減圧機構によって精密かつ安定的に微調整できるようにすることにある。   The technical problem of the present invention is to make it possible to finely and stably finely adjust the pressing force applied by the upper surface plate applied to the workpiece during the polishing process with a pressure reducing mechanism having a simple configuration and low energy consumption.

前記課題を解決するため本発明は、ワークを挟んで研磨する駆動回転自在の上定盤及び下定盤と、前記上定盤を昇降させる上定盤昇降機構と、ワークの研磨時に前記上定盤の荷重と逆向きの荷重を該上定盤に作用させる減圧機構とを有し、前記上定盤の荷重と該減圧機構による荷重との差を研磨時の押圧力とする両面研磨装置において、前記減圧機構は、上定盤と軸線が一致する位置に上下動可能に配設された静圧力伝達軸と、前記上定盤と該静圧力伝達軸とを相互に連結する自動調芯軸受と、静止する液体の液位差により静圧力を発生させ、この静圧力を前記静圧力伝達軸に前記上定盤による荷重と逆向きの荷重として作用させる静圧力発生装置とを有することを特徴とするものである。   In order to solve the above-mentioned problems, the present invention provides an upper surface plate and a lower surface plate that can be driven and rotated while sandwiching a workpiece, an upper surface plate elevating mechanism that raises and lowers the upper surface plate, and the upper surface plate when polishing a workpiece. In a double-side polishing apparatus having a pressure reducing mechanism that acts on the upper surface plate in a direction opposite to that of the load, and using a difference between the load of the upper surface plate and the load by the pressure reducing mechanism as a pressing force during polishing, The pressure reducing mechanism includes a static pressure transmission shaft arranged to move up and down at a position where the axis line coincides with the upper surface plate, and an automatic centering bearing that interconnects the upper surface plate and the static pressure transmission shaft. A static pressure generating device that generates a static pressure due to a difference in liquid level of a stationary liquid and causes the static pressure to act on the static pressure transmission shaft as a load opposite to the load by the upper surface plate. To do.

本発明において、前記静圧力発生装置は、前記静圧力伝達軸に連結された受圧部材と、該受圧部材に静圧力を作用させる容積可変の静圧力作用室と、静止する液体の液位差により前記静圧力を発生させる静圧力発生室と、前記静圧力を調整する静圧力調整装置とを有し、前記静圧力発生室と静圧力作用室とが連通路によって連通されると共に、該静圧力発生室と静圧力作用室と連通路とに前記液体が収容されている。   In the present invention, the static pressure generator includes a pressure receiving member connected to the static pressure transmission shaft, a volume variable static pressure working chamber that applies a static pressure to the pressure receiving member, and a liquid level difference between the static liquid. A static pressure generating chamber that generates the static pressure; and a static pressure adjusting device that adjusts the static pressure, the static pressure generating chamber and the static pressure working chamber communicate with each other through a communication path, and the static pressure The liquid is contained in the generation chamber, the static pressure working chamber, and the communication path.

この場合に好ましくは、前記静圧力発生室内の液位は前記静圧力作用室内の液位より上位位置にあることであり、さらに好ましくは、前記受圧部材の受圧面の水平方向断面積は前記静圧力発生室の水平方向断面積より大きいことである。   In this case, preferably, the liquid level in the static pressure generating chamber is higher than the liquid level in the static pressure working chamber, and more preferably, the horizontal cross-sectional area of the pressure receiving surface of the pressure receiving member is the static level. It is larger than the horizontal sectional area of the pressure generating chamber.

本発明においては、前記静圧力調整装置がリフタからなり、該リフタで前記静圧力発生室又は静圧力作用室を昇降させて前記静圧力発生室内の液体の液位を変化させるように構成されていても、あるいは、前記静圧力調整装置が、前記静圧力発生室又は連通路に直接形成されるかあるいは該静圧力発生室又は連通路から分岐するように形成された容積可変部と、該容積可変部を押圧する押圧部材とを有し、該押圧部材で前記容積可変部を押圧して容積を変化させることにより前記静圧力発生室内の液体の液位を変化させるように構成されていても良い。   In the present invention, the static pressure adjusting device includes a lifter, and the lifter moves the static pressure generation chamber or the static pressure action chamber up and down to change the liquid level of the liquid in the static pressure generation chamber. Alternatively, the static pressure adjusting device may be formed directly in the static pressure generating chamber or the communication path or may be branched from the static pressure generation chamber or the communication path, and the volume A pressing member that presses the variable portion, and the liquid level in the static pressure generating chamber is changed by pressing the volume variable portion with the pressing member to change the volume. good.

本発明によれば、前記減圧機構が、静止する液体の液位差により発生する静圧力によって逆向き荷重を発生させる方式であるため、圧縮空気をポンプや電磁弁等によりエアシリンダやエアバッグ等に供給して逆向き荷重を発生させる従来方式に比べ、電気エネルギーの消費を極めて少なくすることができるだけでなく、不規則な圧力変動を伴わない静圧力を上定盤に逆向き荷重として安定的に作用させることができ、その結果、安定した押圧力を得ることができる。しかも、前記液位差を変化させることによって前記逆向き荷重即ち押圧力を精密かつ安定的に微調整することができるので、ワークが半導体基板やガラス基板等である場合はもちろんのこと、数十μmといった超極薄の水晶基板であっても、破損させることなく確実に研磨することができる。   According to the present invention, since the pressure reducing mechanism generates a reverse load by a static pressure generated by a liquid level difference of a stationary liquid, compressed air is compressed by an air cylinder, an air bag, or the like by a pump, a solenoid valve, or the like. Compared to the conventional method of generating a reverse load by supplying to the plate, not only can the consumption of electrical energy be significantly reduced, but the static pressure without irregular pressure fluctuations can be stably applied to the upper platen as a reverse load. As a result, a stable pressing force can be obtained. In addition, the reverse load, that is, the pressing force can be precisely and stably finely adjusted by changing the liquid level difference, so that the workpiece is a semiconductor substrate, a glass substrate, etc. Even an ultra-thin quartz substrate of μm can be reliably polished without being damaged.

本発明に係る両面研磨装置の第1実施形態を示す縦断面図で、上定盤が非研磨位置に上昇した状態を示すものである。It is a longitudinal cross-sectional view which shows 1st Embodiment of the double-side polish apparatus which concerns on this invention, and shows the state which the upper surface plate rose to the non-polishing position. 図1の伝達軸連結機構の部分を拡大して示す要部拡大図である。It is a principal part enlarged view which expands and shows the part of the transmission-shaft coupling mechanism of FIG. 図1の状態から上定盤が研磨のために下降し、ワークに接触する前の原点位置で停止している状態を示す断面図である。It is sectional drawing which shows the state which the upper surface plate descend | falls for grinding | polishing from the state of FIG. 1, and has stopped at the origin position before contacting a workpiece | work. 図3の状態から上定盤が下降し、ワークに接触して研磨が行われている状態を示す断面図であって、押圧力が小さい場合を示すものである。FIG. 4 is a cross-sectional view showing a state where the upper surface plate is lowered from the state of FIG. 3 and is in contact with the workpiece and polishing is performed, and shows a case where the pressing force is small. 図4より上定盤の押圧力が大きい場合の断面図である。It is sectional drawing when the pressing force of an upper surface plate is larger than FIG. 本発明に係る両面研磨装置の第2実施形態を示す縦断面図で、上定盤が研磨位置に下降した状態を示すものである。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the double-side polish apparatus which concerns on this invention, and shows the state which the upper surface plate fell to the grinding | polishing position. 本発明に係る両面研磨装置の第3実施形態を示す縦断面図で、上定盤が研磨位置に下降した状態を示すものである。It is a longitudinal cross-sectional view which shows 3rd Embodiment of the double-side polish apparatus which concerns on this invention, and shows the state which the upper surface plate fell to the grinding | polishing position. 本発明に係る両面研磨装置の第4実施形態を示す縦断面図で、上定盤が非研磨位置に上昇した状態を示すものである。It is a longitudinal cross-sectional view which shows 4th Embodiment of the double-side polish apparatus which concerns on this invention, and shows the state which the upper surface plate rose to the non-polishing position. 本発明に係る両面研磨装置の第5実施形態を示す縦断面図で、上定盤が研磨位置に下降した状態を示すものである。It is a longitudinal cross-sectional view which shows 5th Embodiment of the double-side polish apparatus which concerns on this invention, and shows the state which the upper surface plate fell to the grinding | polishing position.

図1−図5は両面研磨装置の第1実施形態を示すもので、この第1実施形態の両面研磨装置1Aは、機体2と、該機体2の内部に鉛直な軸線(加工中心軸線)Lを中心に同心状に配設された円環状の上定盤3及び下定盤4と、該下定盤4の中心に配設された太陽歯車5と、該下定盤4の外周を取り囲むように配設された内歯歯車6と、前記下定盤4上に配設されて前記太陽歯車5と内歯歯車6とに噛合する複数のキャリア7とを有している。   1 to 5 show a first embodiment of a double-side polishing apparatus. A double-side polishing apparatus 1A according to the first embodiment includes a machine body 2 and a vertical axis (processing center axis) L inside the machine body 2. Are arranged so as to surround the outer periphery of the lower surface plate 4, the annular upper surface plate 3, the lower surface plate 4, the sun gear 5 disposed at the center of the lower surface plate 4. An internal gear 6 provided, and a plurality of carriers 7 disposed on the lower surface plate 4 and meshing with the sun gear 5 and the internal gear 6 are provided.

前記機体2は、本体ケース2aと、該本体ケース2aから立ち上がった支柱2bと、該支柱2bの上端に支持された上枠2cと、前記本体ケース2aの上部中央に配置された円筒形のシャフトハウジング2dと、前記本体ケース2aの内部において該シャフトハウジング2dの下方に配置されたギアボックス2eとを備えている。   The machine body 2 includes a main body case 2a, a support column 2b rising from the main body case 2a, an upper frame 2c supported by the upper end of the support column 2b, and a cylindrical shaft disposed at the upper center of the main body case 2a. A housing 2d and a gear box 2e disposed below the shaft housing 2d inside the main body case 2a are provided.

前記下定盤4は下定盤受10に固定され、該下定盤受10の中央下部には円筒状の下定盤軸11が取り付けられ、該下定盤軸11は、前記シャフトハウジング2dの内部に収容され、下定盤軸受12で回転自在に支承されている。前記下定盤軸11の下端部には、前記ギアボックス2e内において下定盤ウオームギア13が取り付けられ、該下定盤ウオームギア13が、前記ギアボックス2eの外部に取り付けられた下定盤モータ14で駆動回転されるようになっている。   The lower surface plate 4 is fixed to the lower surface plate receiver 10, and a cylindrical lower surface plate shaft 11 is attached to the lower center of the lower surface plate receiver 10, and the lower surface plate shaft 11 is accommodated inside the shaft housing 2 d. The lower surface plate bearing 12 is rotatably supported. A lower surface plate worm gear 13 is attached to the lower end portion of the lower surface plate shaft 11 in the gear box 2e, and the lower surface plate worm gear 13 is driven and rotated by a lower surface plate motor 14 attached to the outside of the gear box 2e. It has become so.

また、前記太陽歯車5は、太陽歯車受17に固定され、該太陽歯車受17の中央下部には円筒状の太陽歯車軸18が取り付けられ、該太陽歯車軸18は、前記下定盤軸11の内部に同心状に収容され、下端部が前記ギアボックス2eの下部において太陽歯車軸受19で回転自在に支承されている。前記太陽歯車軸18には、太陽歯車ウオームギア20が取り付けられ、該太陽歯車ウオームギア20が、前記ギアボックス2eの外部に取り付けられた太陽歯車モータ21で駆動回転されるようになっている。   The sun gear 5 is fixed to a sun gear receiver 17, and a cylindrical sun gear shaft 18 is attached to the lower center of the sun gear receiver 17, and the sun gear shaft 18 is connected to the lower surface plate shaft 11. It is housed concentrically inside and is rotatably supported by a sun gear bearing 19 at the lower end of the gear box 2e. A sun gear worm gear 20 is attached to the sun gear shaft 18, and the sun gear worm gear 20 is driven and rotated by a sun gear motor 21 attached to the outside of the gear box 2e.

さらに、前記内歯歯車6は、内歯歯車受24に固定され、該内歯歯車受24の中央下部には円筒状の内歯歯車軸25が取り付けられ、該内歯歯車軸25は、前記シャフトハウジング2dの外周を取り囲むように配置され、下端部が内歯歯車軸受26で回転自在に支承されている。前記内歯歯車軸25には、内歯歯車ギア27が取り付けられ、該内歯歯車ギア27が、機体2に取り付けられた内歯歯車モータ28で駆動回転されるようになっている。   Further, the internal gear 6 is fixed to an internal gear receiver 24, and a cylindrical internal gear shaft 25 is attached to a lower center portion of the internal gear receiver 24, and the internal gear shaft 25 is It arrange | positions so that the outer periphery of the shaft housing 2d may be surrounded, and the lower end part is rotatably supported by the internal gear bearing 26. FIG. An internal gear gear 27 is attached to the internal gear shaft 25, and the internal gear gear 27 is driven and rotated by an internal gear motor 28 attached to the machine body 2.

一方、前記上定盤3は、図2からも分かるように、上定盤吊31の下面に固定され、該上定盤吊31の上面には複数のスタッド32が上方に延出するように固定され、該スタッド32を介して前記上定盤3が、機体2の上部に設置された上定盤昇降機構33によって昇降自在かつ上定盤回転機構34によって駆動回転自在なるように支持されている。   On the other hand, as can be seen from FIG. 2, the upper surface plate 3 is fixed to the lower surface of the upper surface plate suspension 31, and a plurality of studs 32 extend upward on the upper surface of the upper surface plate suspension 31. The upper surface plate 3 is supported via the stud 32 so that the upper surface plate 3 can be moved up and down by an upper surface plate elevating mechanism 33 installed on the upper part of the machine body 2 and can be driven and rotated by an upper surface plate rotating mechanism 34. Yes.

前記上定盤昇降機構33は、機体2の上枠2cの上面に固定されたサーボ式の昇降シリンダ35と、該昇降シリンダ35のロッド35aの上端に固定された昇降プレート36と、該昇降プレート36から下向きに延びる円筒形の昇降ロッド37とを有し、該昇降ロッド37が、上枠2cの上面に固定されたロッド受38の内部に上下動自在に支持されている。前記昇降シリンダ35はサーボモータであっても良い。そして、前記昇降ロッド37の内部に、上定盤回転軸39が、前記加工中心軸線Lに沿う方向(上下方向)には該昇降ロッド37と相互に固定関係にあるが、回転方向には該昇降ロッド37と互いに自由な相互関係を有するように保持されている。   The upper surface plate elevating mechanism 33 includes a servo type elevating cylinder 35 fixed to the upper surface of the upper frame 2c of the machine body 2, an elevating plate 36 fixed to the upper end of the rod 35a of the elevating cylinder 35, and the elevating plate. A cylindrical lifting rod 37 extending downward from 36 is supported in a vertically movable manner inside a rod receiver 38 fixed to the upper surface of the upper frame 2c. The elevating cylinder 35 may be a servo motor. The upper surface plate rotating shaft 39 is fixedly connected to the lifting rod 37 in the direction (vertical direction) along the machining center axis L inside the lifting rod 37, but in the rotational direction, The lift rod 37 is held so as to have a free mutual relationship.

前記上定盤回転軸39の下端には、円板形をしたドライブプレート40が固定され、該ドライブプレート40に形成された連結孔40a内に、前記スタッド32が、上端を該ドライブプレート40から上方に突出させた状態で上下動自在に嵌合し、該スタッド32を介して上定盤3が駆動、回転されるようになっている。
前記スタッド32の上端には、フランジ状の係止部32aが設けられ、該係止部32aは、上定盤3の昇降時に前記ドライブプレート40の上面に係止して上定盤回転軸39と上定盤3とを相互に連結し、ワークWの研磨時には、該ドライブプレート40の上面から上方に離間して前記上定盤回転軸39に上定盤3の重量が加わらないようにする。
A disc-shaped drive plate 40 is fixed to the lower end of the upper platen rotating shaft 39, and the stud 32 extends from the drive plate 40 in the connecting hole 40 a formed in the drive plate 40. The upper surface plate 3 is driven and rotated through the stud 32 by being fitted so as to be movable up and down while protruding upward.
At the upper end of the stud 32, a flange-like locking portion 32 a is provided. The locking portion 32 a is locked to the upper surface of the drive plate 40 when the upper surface plate 3 is raised and lowered, and the upper surface plate rotating shaft 39. And the upper surface plate 3 are connected to each other so that when the workpiece W is polished, it is spaced upward from the upper surface of the drive plate 40 so that the weight of the upper surface plate 3 is not applied to the upper surface plate rotating shaft 39. .

前記上定盤回転軸39の上端には上定盤ギア41が固定され、該上定盤ギア41は上定盤モータ42に接続され、該上定盤モータ42で前記上定盤3が駆動回転されるようになっている。従って、前記上定盤回転軸39と上定盤ギア41と上定盤モータ42とは、前記上定盤回転機構34を構成するものである。
また、前記上定盤モータ42は前記昇降プレート36に固定され、該昇降プレート36及び前記上定盤回転軸39と一緒に昇降する。従って、該上定盤回転軸39は、前記上定盤昇降機構33の一部を構成すると同時に前記上定盤回転機構34の一部も構成するものである。
An upper surface plate gear 41 is fixed to the upper end of the upper surface plate rotation shaft 39, and the upper surface plate gear 41 is connected to an upper surface plate motor 42, and the upper surface plate motor 42 drives the upper surface plate 3. It is designed to be rotated. Therefore, the upper surface plate rotating shaft 39, the upper surface plate gear 41, and the upper surface plate motor 42 constitute the upper surface plate rotating mechanism 34.
The upper surface plate motor 42 is fixed to the elevating plate 36 and moves up and down together with the elevating plate 36 and the upper surface plate rotating shaft 39. Therefore, the upper surface plate rotation shaft 39 constitutes a part of the upper surface plate lifting mechanism 33 and also constitutes a part of the upper surface plate rotation mechanism 34.

前記下定盤モータ14、太陽歯車モータ21、内歯歯車モータ28、上定盤モータ42は、予め設定されたプログラムに従って制御装置(不図示)により制御され、必要な回転方向に必要な回転速度で個別に駆動回転されるようになっている。   The lower surface plate motor 14, the sun gear motor 21, the internal gear motor 28, and the upper surface plate motor 42 are controlled by a control device (not shown) according to a preset program at a necessary rotational speed in a necessary rotational direction. They are individually driven and rotated.

そして、ワークWを研磨するときは、該ワークWが前記キャリア7のワーク保持孔内に保持されたあと、図4のように、前記上定盤3が下降して該上定盤3の下面の作業面と前記下定盤4の上面の作業面との間に前記ワークWが挟持され、その状態で前記上定盤3と下定盤4と太陽歯車5と内歯歯車6とが回転することにより、前記キャリア7が自転しながら太陽歯車5の回りを公転し、該キャリア7に保持されたワークWの両面が前記上定盤3と下定盤4との作業面で研磨される。その研磨時に、前記上定盤3に形成された供給孔から研磨スラリーが前記作業面に供給される。   When polishing the workpiece W, after the workpiece W is held in the workpiece holding hole of the carrier 7, the upper surface plate 3 is lowered as shown in FIG. The workpiece W is sandwiched between the work surface of the lower surface plate 4 and the upper surface of the lower surface plate 4, and the upper surface plate 3, the lower surface plate 4, the sun gear 5, and the internal gear 6 rotate in this state. Thus, the carrier 7 revolves around the sun gear 5 while rotating, and both surfaces of the work W held by the carrier 7 are polished by the work surfaces of the upper surface plate 3 and the lower surface plate 4. At the time of polishing, polishing slurry is supplied to the working surface from a supply hole formed in the upper surface plate 3.

前記両面研磨装置1Aには、前記ワークWの研磨時に、前記上定盤3に該上定盤3の荷重と逆向きの荷重(以下、「逆向き荷重」と言う。)を作用させる減圧機構44が設けられ、前記上定盤3の荷重と該減圧機構44による逆向き荷重との差をワークWへの押圧力とするように構成されている。   In the double-side polishing apparatus 1 </ b> A, a pressure reducing mechanism that applies a load opposite to the load of the upper surface plate 3 (hereinafter referred to as “reverse direction load”) to the upper surface plate 3 when the workpiece W is polished. 44 is provided, and the difference between the load of the upper surface plate 3 and the reverse load of the pressure reducing mechanism 44 is used as the pressing force to the workpiece W.

前記減圧機構44は、上定盤3と軸線が一致する位置に上下動可能に配設された静圧力伝達軸45と、ワークWの研磨時に前記上定盤3と該静圧力伝達軸45とを相対的に回転自在なるように連結する伝達軸連結機構46と、静止する液体47の液位差Hにより静圧力を発生させて、この静圧力を前記静圧力伝達軸45に前記上定盤3による荷重と逆向きの荷重として作用させる静圧力発生装置48とを有している。   The pressure reducing mechanism 44 includes a static pressure transmission shaft 45 disposed so as to be vertically movable at a position where the axis of the upper surface plate 3 coincides with the upper surface plate 3, and the upper surface plate 3 and the static pressure transmission shaft 45 when the workpiece W is polished. A static pressure is generated by the liquid level difference H of the stationary liquid 47 and the transmission shaft coupling mechanism 46 that couples the upper surface plate to the static pressure transmission shaft 45. And a static pressure generating device 48 that acts as a load in the direction opposite to the load of 3.

前記静圧力伝達軸45は、前記太陽歯車軸18の内部に上下端が該太陽歯車軸18から上方及び下方に延出するように収容されていて、図示しない軸受機構により支持されている。従って該静圧力伝達軸45が配設されている位置は、前記上定盤3より下方である。
該静圧力伝達軸45の上端の接触面45aは水平な平面に形成され、前記伝達軸連結機構46を構成する自動調芯軸受49に接触して前記上定盤3による荷重を支えるようになっている。
The static pressure transmission shaft 45 is accommodated in the sun gear shaft 18 such that upper and lower ends extend upward and downward from the sun gear shaft 18 and is supported by a bearing mechanism (not shown). Therefore, the position where the static pressure transmission shaft 45 is disposed is below the upper surface plate 3.
A contact surface 45a at the upper end of the static pressure transmission shaft 45 is formed in a horizontal plane, and comes into contact with the self-aligning bearing 49 that constitutes the transmission shaft coupling mechanism 46 so as to support the load from the upper surface plate 3. ing.

本実施形態においては、前記自動調芯軸受49として玉軸受が使用されている。この玉軸受は、図2に示すように、下向きに開放する半球状の凹室49b内に球体49aを収容し、該球体49aと前記凹室49bの室内面との間に多数の小球49cを転動自在に介在させることにより、前記球体49aが全ての方向に360度回転自在であるように構成されたものである。該自動調芯軸受49は、前記上定盤吊31の中央の軸受取付部31aに取り付けられ、上定盤3の昇降によって前記球体49aが前記静圧力伝達軸45の上端の接触面45aに接触したり離間したりすることにより、該上定盤3が前記静圧力伝達軸45に対して相対的に回転自在なるように連結されたり切り離されたりするようになっている。   In the present embodiment, a ball bearing is used as the self-aligning bearing 49. As shown in FIG. 2, this ball bearing houses a spherical body 49a in a hemispherical concave chamber 49b that opens downward, and a large number of small balls 49c between the spherical body 49a and the interior surface of the concave chamber 49b. Is configured such that the sphere 49a can rotate 360 degrees in all directions. The self-aligning bearing 49 is attached to the center bearing mounting portion 31 a of the upper surface plate suspension 31, and the spherical body 49 a contacts the contact surface 45 a at the upper end of the static pressure transmission shaft 45 by raising and lowering the upper surface plate 3. The upper surface plate 3 is connected to or disconnected from the static pressure transmission shaft 45 so as to be rotatable relative to the static pressure transmission shaft 45.

前記静圧力伝達軸45の下端には、荷重センサ52を介して前記静圧力発生装置48が連結されている。該静圧力発生装置48は、前記静圧力伝達軸45の下端に前記荷重センサ52を介して連結されたプレート状の受圧部材53と、該受圧部材53に前記静圧力を作用させる静圧力作用室54と、静止する液体47の液位差Hにより前記静圧力を発生させる静圧力発生室55と、前記静圧力を調整する静圧力調整装置56とを有している。   The static pressure generator 48 is connected to the lower end of the static pressure transmission shaft 45 through a load sensor 52. The static pressure generator 48 includes a plate-shaped pressure receiving member 53 connected to the lower end of the static pressure transmission shaft 45 via the load sensor 52, and a static pressure working chamber for applying the static pressure to the pressure receiving member 53. 54, a static pressure generating chamber 55 that generates the static pressure by the liquid level difference H of the liquid 47 that is stationary, and a static pressure adjusting device 56 that adjusts the static pressure.

前記静圧力作用室54は、合成ゴムや合成樹脂のような薄くかつ軽量で強度と耐久性と可撓性とを有する液不透過性の素材からなるバッグ57の内部に形成され、該バッグ57は支持台58上に載置され、該バッグ57の上面に前記受圧部材53がその下面の受圧面で均等に圧力を受けるように当接している。   The static pressure working chamber 54 is formed inside a bag 57 made of a liquid-impermeable material that is thin and lightweight, such as synthetic rubber or synthetic resin, and has strength, durability, and flexibility. Is placed on a support base 58, and the pressure receiving member 53 is in contact with the upper surface of the bag 57 so that the pressure receiving surface on the lower surface receives the pressure evenly.

また、前記静圧力発生室55は、機体2に上下方向好ましくは鉛直に支持されたパイプなどの中空状部材59の内部に形成されていて、該静圧力発生室55の上部は外気に開放され、下部は可撓性のあるチューブ60内の連通路61を通じて前記静圧力作用室54の下部に連通され、これらの静圧力発生室55と連通路61と静圧力作用室54との内部に油や水等の前記液体47が充填されている。   The static pressure generating chamber 55 is formed inside a hollow member 59 such as a pipe supported in the vertical direction, preferably vertically, on the machine body 2, and the upper portion of the static pressure generating chamber 55 is open to the outside air. The lower part communicates with the lower part of the static pressure working chamber 54 through a communication passage 61 in the flexible tube 60, and the static pressure generating chamber 55, the communication path 61, and the static pressure working chamber 54 are filled with oil. The liquid 47 such as water or water is filled.

前記静圧力発生室55の水平方向断面形状は、円形や楕円形、矩形、三角形、その他の多角形など、任意の形状とすることができ、また、該静圧力発生室55の水平方向断面積は、高さ方向に一定であっても良いが、例えば円錐状、角錐状、円錐台状、角錐台状、逆円錐状、逆角錐状、逆円錐台状、逆角錐台状などのように、高さ方向に規則的あるいは不規則に変化していても良い。一方、前記静圧力作用室54の水平方向断面形状は、円形、円環形、多角形、多角環形など、任意の形状とすることができる。   The horizontal cross-sectional shape of the static pressure generation chamber 55 may be any shape such as a circle, an ellipse, a rectangle, a triangle, and other polygons, and the horizontal cross-sectional area of the static pressure generation chamber 55 May be constant in the height direction, such as conical, pyramidal, truncated cone, truncated pyramid, inverted cone, inverted pyramid, inverted truncated cone, inverted truncated pyramid, etc. The height may change regularly or irregularly. On the other hand, the horizontal cross-sectional shape of the static pressure working chamber 54 may be an arbitrary shape such as a circle, a ring, a polygon, or a polygon.

前記静圧力作用室54及び静圧力発生室55は、静圧力作用室54内の液位より静圧力発生室55内の液位の方が上位になるような位置関係に配置することが必要である。そして、前記受圧部材53の受圧面の水平方向断面積、すなわち前記受圧部材53と前記静圧力作用室54との接触面積を静圧力発生室55の水平方向断面積より大きく設定することで、装置スペースを格別広くとることなく、確実に静圧力を発生させることが可能となる。   The static pressure working chamber 54 and the static pressure generating chamber 55 need to be arranged in a positional relationship such that the liquid level in the static pressure generating chamber 55 is higher than the liquid level in the static pressure acting chamber 54. is there. The horizontal cross-sectional area of the pressure-receiving surface of the pressure-receiving member 53, that is, the contact area between the pressure-receiving member 53 and the static pressure working chamber 54 is set larger than the horizontal cross-sectional area of the static pressure generating chamber 55. Static pressure can be reliably generated without taking a particularly large space.

このように構成することにより、前記静圧力発生室55内の液体47と前記静圧力作用室54内の液体47との液位差Hにより静圧力が発生し、この静圧力が前記静圧力作用室54内の液体47を通じて前記受圧部材53に作用し、該受圧部材53を上方向に押し上げることにより、ワークWの研磨時に静圧力伝達軸45を介して上定盤3に逆向き荷重を作用させるものである。   With this configuration, a static pressure is generated by the liquid level difference H between the liquid 47 in the static pressure generating chamber 55 and the liquid 47 in the static pressure working chamber 54, and this static pressure is applied to the static pressure action. By acting on the pressure receiving member 53 through the liquid 47 in the chamber 54 and pushing the pressure receiving member 53 upward, a reverse load is applied to the upper surface plate 3 via the static pressure transmission shaft 45 when the workpiece W is polished. It is something to be made.

前記静圧力調整装置56は、前記支持台58を昇降させるリフタ64により構成され、このリフタ64で前記静圧力作用室54を昇降させて該静圧力作用室54の容積を変化させることにより、前記静圧力発生室55内の液体47の液位を変化させるものである。
前記リフタ64は、雄ねじからなる昇降軸65を、ボディ66内に設けた不図示の雌ねじ及びウオーム歯車を介してリフタ用モータ67で回転させることにより昇降させるもので、前記昇降軸65が前記支持台58の下面に連結されている。そして、前記リフタ用モータ67を制御装置で制御することにより、前記昇降軸65の昇降制御が精密に行われるように構成されたものである。しかし、前記リフタ64は、前記静圧力作用室54を昇降可能な機構であれば、このような構成のものに限定されない。
The static pressure adjusting device 56 includes a lifter 64 that moves the support table 58 up and down, and the lift 64 moves the static pressure working chamber 54 up and down to change the volume of the static pressure working chamber 54. The liquid level of the liquid 47 in the static pressure generating chamber 55 is changed.
The lifter 64 elevates and lowers an elevating shaft 65 made of a male screw by rotating it with a lifter motor 67 via a female screw (not shown) and a worm gear provided in the body 66, and the elevating shaft 65 is supported by the support shaft 65. It is connected to the lower surface of the table 58. The lifter motor 67 is controlled by a control device, so that the lift control of the lift shaft 65 is precisely performed. However, the lifter 64 is not limited to such a configuration as long as the lifter 64 can move up and down the static pressure working chamber 54.

次に、前記構成を有する両面研磨装置1AでワークWを研磨するときの動作について説明する。この動作は、前記制御装置に予め入力されたプログラムに従って自動的に行われる。
図1はワークWの非研磨時の状態を示している。このとき上定盤3は、昇降シリンダ35のロッド35aの伸長により、昇降プレート36及び昇降ロッド37、上定盤回転軸39、ドライブプレート40、スタッド32、上定盤吊31を介して持ち上げられ、上昇端の位置を占めている。また、前記リフタ64の昇降軸65が上昇端の位置にあるため、前記静圧力伝達軸45も上昇端の位置である原点位置を占めている。
Next, an operation when the workpiece W is polished by the double-side polishing apparatus 1A having the above configuration will be described. This operation is automatically performed according to a program previously input to the control device.
FIG. 1 shows a state when the workpiece W is not polished. At this time, the upper surface plate 3 is lifted by the extension of the rod 35a of the elevating cylinder 35 via the elevating plate 36 and the elevating rod 37, the upper surface plate rotating shaft 39, the drive plate 40, the stud 32, and the upper surface plate suspension 31. Occupies the position of the rising edge. Further, since the lifting shaft 65 of the lifter 64 is at the rising end position, the static pressure transmission shaft 45 also occupies the origin position which is the rising end position.

このとき、前記静圧力作用室54内の液体47には、前記受圧部材53を介して、該受圧部材53、荷重センサ52、静圧力伝達軸45の重量が荷重として下向きに作用し、これに対して前記受圧部材53には、前記静圧力作用室54と静圧力発生室55とにおける液体47の液位差Hにより発生する静圧力が逆向き荷重として上向きに作用し、これら下向きの荷重と前記逆向き荷重とが互いに釣り合っている。   At this time, the weight of the pressure receiving member 53, the load sensor 52, and the static pressure transmission shaft 45 acts downward on the liquid 47 in the static pressure acting chamber 54 as a load, via the pressure receiving member 53. On the other hand, the static pressure generated by the liquid level difference H of the liquid 47 in the static pressure acting chamber 54 and the static pressure generating chamber 55 acts on the pressure receiving member 53 upward as a reverse load. The reverse loads are balanced with each other.

ここで、前記受圧部材53の受圧面の水平方向断面積(受圧部材53と静圧力作用室54との接触面積)をA、該受圧部材53により静圧力作用室54内の液体47に作用する荷重(図1の状態では静圧力伝達軸45、荷重センサ52、受圧部材53の総重量)をF、液体47の比重をGとすると、F÷A=H×Gなる関係が成り立つ。   Here, the horizontal sectional area of the pressure receiving surface of the pressure receiving member 53 (the contact area between the pressure receiving member 53 and the static pressure acting chamber 54) is A, and the pressure receiving member 53 acts on the liquid 47 in the static pressure acting chamber 54. When the load (the total weight of the static pressure transmission shaft 45, the load sensor 52, and the pressure receiving member 53 in the state of FIG. 1) is F, and the specific gravity of the liquid 47 is G, the relationship F ÷ A = H × G is established.

この状態から、前記下定盤4上に載置されたキャリア7にワークWがセットされ、操作盤のスタートボタンが押されると、前記昇降シリンダ35のロッド35aの短縮により、上定盤3は、前記昇降プレート36及び昇降ロッド37から上定盤回転軸39、ドライブプレート40、スタッド32、上定盤吊31に至るまでの部材(以下、「昇降関連部材」という。)と一体となって高速で下降し、自動調芯軸受49の球体49aが静圧力伝達軸45の上端の接触面45aに接触する直前の第1停止位置に一旦停止する。   From this state, when the workpiece W is set on the carrier 7 placed on the lower surface plate 4 and the start button of the operation panel is pressed, the upper surface plate 3 is It is integrated with the members (hereinafter referred to as “elevation-related members”) from the elevating plate 36 and the elevating rod 37 to the upper surface plate rotating shaft 39, the drive plate 40, the stud 32, and the upper surface plate suspension 31. The spherical body 49a of the self-aligning bearing 49 is temporarily stopped at the first stop position immediately before contacting the contact surface 45a at the upper end of the static pressure transmission shaft 45.

次に、前記昇降シリンダ35のロッド35aがゆっくり短縮することにより、前記上定盤3は前記昇降関連部材と一体となったまま前記第1停止位置から低速で下降し、図3に示すように、自動調芯軸受49の球体49aが前記静圧力伝達軸45の接触面45aに接触して該上定盤の荷重が前記静圧力伝達軸45に作用するが、該上定盤3は未だワークWに接触しない位置である第2停止位置で停止する。上定盤吊31とスタッド32もその位置で停止する。しかし、その後も前記昇降シリンダ35のロッド35aは若干短縮を続けるため、前記ドライブプレート40はスタッド32に対して下方に変位し、該スタッド32の上端の係止部32aが該ドライブプレート40の上面から離間する。   Next, when the rod 35a of the lifting cylinder 35 is slowly shortened, the upper surface plate 3 is lowered at a low speed from the first stop position while being integrated with the lifting-related member, as shown in FIG. The spherical body 49a of the self-aligning bearing 49 comes into contact with the contact surface 45a of the static pressure transmission shaft 45, and the load of the upper surface plate acts on the static pressure transmission shaft 45. Stop at the second stop position, which is a position that does not contact W. The upper surface plate suspension 31 and the stud 32 also stop at that position. However, since the rod 35a of the elevating cylinder 35 continues to be slightly shortened thereafter, the drive plate 40 is displaced downward with respect to the stud 32, and the engaging portion 32a at the upper end of the stud 32 is located on the upper surface of the drive plate 40. Separate from.

この結果、前記上定盤吊31とスタッド32及び自動調芯軸受49を含めた上定盤3の総重量(以下、「上定盤荷重」という。)は、前記ドライブプレート40に作用していた状態から、全て前記静圧力伝達軸45に下向きに作用するようになる。このため、該静圧力伝達軸45の下端の受圧部材53及びバッグ57を介して静圧力作用室54内の液体47に作用する下向きの荷重は増大し、それと釣り合う逆向き荷重発生のために静圧力発生室55内の液位が上昇し、液位差Hが増大する。   As a result, the total weight of the upper surface plate 3 including the upper surface plate suspension 31, the stud 32 and the self-aligning bearing 49 (hereinafter referred to as “upper surface plate load”) acts on the drive plate 40. From this state, all act on the static pressure transmission shaft 45 downward. For this reason, the downward load acting on the liquid 47 in the static pressure acting chamber 54 via the pressure receiving member 53 and the bag 57 at the lower end of the static pressure transmission shaft 45 increases, and the static load is generated to generate a reverse load that balances it. The liquid level in the pressure generating chamber 55 rises and the liquid level difference H increases.

次に、図4に示すように、前記リフタ用モータ67の駆動によりリフタ64の昇降軸65が下降し、前記バッグ57の容積即ち静圧力作用室54の容積が拡大し、該静圧力作用室54内に前記静圧力発生室55内の液体47が流入することにより液位差Hが減少し、それに伴って前記受圧部材53に上向きに作用する逆向き荷重が減少する。このとき、依然として前記静圧力伝達軸45に上定盤荷重が作用しているので、減少した逆向き荷重に上定盤荷重が釣り合うために、前記バッグ57の上面が下方に変位して静圧力伝達軸45と上定盤3とが下降し、該上定盤3はワークWの上面に接触(着盤)する。この着盤動作時に、前記昇降軸65の下降速度を調整して前記静圧力作用室54内への液体47の流入速度を調整することにより、前記第2停止位置からの上定盤3の着盤速度を任意に設定することが可能である。   Next, as shown in FIG. 4, when the lifter motor 67 is driven, the lift shaft 65 of the lifter 64 is lowered, and the volume of the bag 57, that is, the volume of the static pressure working chamber 54 is expanded. When the liquid 47 in the static pressure generating chamber 55 flows into the liquid 54, the liquid level difference H decreases, and the reverse load acting upward on the pressure receiving member 53 decreases accordingly. At this time, since the upper surface plate load still acts on the static pressure transmission shaft 45, the upper surface of the bag 57 is displaced downwardly so that the upper surface plate load is balanced with the reduced reverse load. The transmission shaft 45 and the upper surface plate 3 are lowered, and the upper surface plate 3 comes into contact with the upper surface of the workpiece W (landing). During the landing operation, the lowering speed of the elevating shaft 65 is adjusted to adjust the flow rate of the liquid 47 into the static pressure working chamber 54, so that the upper surface plate 3 is attached from the second stop position. The board speed can be set arbitrarily.

また、前記リフタ64の昇降軸65の下降速度が一定であっても、前記中空状部材59の内部に形成された前記静圧力発生室55の水平方向断面積が上下方向に変化している場合には、該昇降軸65の昇降による液体47の移動量(流入量・流出量)は変わらないが、液位毎の断面積が徐々に小さく/大きくなるにつれて静圧力の変化速度が速く/遅くなるため、これを利用して前記静圧力作用室54内への液体47の流入速度を調整することができ、これにより、静圧力の変化速度、即ち上定盤3に作用する逆向き荷重の作用速度(着盤速度・上昇速度)を段階的(曲線的)に制御することが可能である。   Further, even when the descending speed of the lifting shaft 65 of the lifter 64 is constant, the horizontal sectional area of the static pressure generating chamber 55 formed inside the hollow member 59 is changed in the vertical direction. However, the moving amount (inflow amount / outflow amount) of the liquid 47 due to the raising and lowering of the elevating shaft 65 does not change, but the changing speed of the static pressure increases / decreases as the cross-sectional area for each liquid level gradually decreases / increases. Therefore, the flow rate of the liquid 47 into the static pressure working chamber 54 can be adjusted by using this, whereby the change rate of the static pressure, that is, the reverse load acting on the upper surface plate 3 can be adjusted. It is possible to control the action speed (landing speed / rising speed) stepwise (curved).

そして、前述した如く上定盤3がワークWの上面に接触した状態で、前記太陽歯車5、内歯歯車6、上定盤3、下定盤4が回転することにより、前記キャリア7が自転しながら太陽歯車5の回りを公転し、該キャリア7に保持されたワークWの両面が前記上定盤3と下定盤4との作業面で研磨される。このとき、前記上定盤3によりワークWに作用する押圧力は、前記上定盤荷重と前記減圧機構44により発生する逆向き荷重との差である。   As described above, the carrier 7 rotates as the sun gear 5, the internal gear 6, the upper surface plate 3, and the lower surface plate 4 rotate while the upper surface plate 3 is in contact with the upper surface of the workpiece W. While revolving around the sun gear 5, both surfaces of the work W held by the carrier 7 are polished by the work surfaces of the upper surface plate 3 and the lower surface plate 4. At this time, the pressing force acting on the workpiece W by the upper surface plate 3 is the difference between the upper surface plate load and the reverse load generated by the pressure reducing mechanism 44.

前記押圧力は、前記リフタ64の昇降軸65の高さを制御することによって研磨中に任意に変更することができる。即ち、前記昇降軸65を下降させると、前述したように、静圧力作用室54の容積が拡大して該静圧力作用室54内に静圧力発生室55内の液体47が流入するため、液位差Hが減少し、それに伴って受圧部材53に上向きに作用する逆向き荷重も減少するから、前記押圧力は大きくなる。   The pressing force can be arbitrarily changed during polishing by controlling the height of the lift shaft 65 of the lifter 64. That is, when the elevating shaft 65 is lowered, the volume of the static pressure working chamber 54 is expanded and the liquid 47 in the static pressure generating chamber 55 flows into the static pressure working chamber 54 as described above. Since the position difference H decreases and the reverse load acting upward on the pressure receiving member 53 decreases accordingly, the pressing force increases.

それとは逆に前記昇降軸65を上昇させると、静圧力作用室54の容積が縮小して該静圧力作用室54内の液体47が静圧力発生室55内に流出するため、液位差Hが増大し、それに伴って受圧部材53に上向きに作用する逆向き荷重も増大するから、前記押圧力は小さくなる。前記昇降軸65の上昇により押圧力を零にすることも可能である。
図5は、図4に比べ、前記昇降軸65が下降して逆向き荷重が減少することにより、大きい押圧力がワークWに作用している状態を示している。
On the contrary, when the elevating shaft 65 is raised, the volume of the static pressure working chamber 54 is reduced and the liquid 47 in the static pressure working chamber 54 flows out into the static pressure generating chamber 55. And the reverse load acting upward on the pressure receiving member 53 increases accordingly, and the pressing force decreases. It is also possible to make the pressing force zero by raising the elevating shaft 65.
FIG. 5 shows a state in which a large pressing force is acting on the workpiece W as the elevating shaft 65 is lowered and the reverse load is reduced as compared with FIG. 4.

前記押圧力は、前記荷重センサ52により測定される上定盤3と静圧力伝達軸45との荷重から求められ、該押圧力が設定した値となるように、前記荷重センサ52からの測定信号に基づいて前記リフタ64が研磨加工中に昇降制御される。例えば、ワークWの厚さが目標厚さに近づくにつれて前記押圧力を小さくしていき、研磨終了時に零にすることもできる。   The pressing force is obtained from the load of the upper surface plate 3 and the static pressure transmission shaft 45 measured by the load sensor 52, and the measurement signal from the load sensor 52 is set so that the pressing force becomes a set value. Based on the above, the lifter 64 is controlled to rise and fall during polishing. For example, the pressing force can be reduced as the thickness of the workpiece W approaches the target thickness, and can be reduced to zero at the end of polishing.

ここで、前記静圧力伝達軸45は、自動調芯軸受49を介して前記上定盤3に非回転状態に接続されることにより、該上定盤3の傾き等の影響を受けにくくなっており、前記荷重センサ52は、この非回転の静圧力伝達軸45の下部に設置されて前記上定盤3の傾き等の影響を全く受けることがないので、前記押圧力を正確かつ高精度に検出することができ、押圧力の制御精度が向上する。   Here, since the static pressure transmission shaft 45 is connected to the upper surface plate 3 through a self-aligning bearing 49 in a non-rotating state, the static pressure transmission shaft 45 is less affected by the inclination of the upper surface plate 3. The load sensor 52 is installed below the non-rotating static pressure transmission shaft 45 and is not affected by the inclination of the upper surface plate 3 at all, so that the pressing force can be accurately and accurately determined. Therefore, the control accuracy of the pressing force is improved.

また、前記減圧機構44は、静止する液体47の液位差Hにより発生する静圧力によって逆向き荷重を発生させる方式であるため、圧縮空気をポンプや電磁弁等によりエアシリンダやエアバッグ等に供給して逆向き荷重を発生させる従来方式に比べ、電気エネルギーの消費が極めて少ないだけでなく、不規則な圧力変動を伴わない静圧力を上定盤に逆向き荷重として安定的に作用させることができ、その結果、安定した押圧力を得ることができる。しかも、前記液位差Hを変化させることによって前記逆向き荷重即ち押圧力を精密かつ安定的に微調整することができるので、ワークWが半導体基板やガラス基板等である場合はもちろんのこと、数十μmといった超極薄の水晶基板であっても、破損させることなく確実に研磨することができる。   Further, since the pressure reducing mechanism 44 is a method of generating a reverse load by the static pressure generated by the liquid level difference H of the stationary liquid 47, the compressed air is supplied to an air cylinder, an air bag or the like by a pump or a solenoid valve. Compared to the conventional method that generates reverse load by supplying it, not only the consumption of electrical energy is very small, but also static pressure without irregular pressure fluctuations can act stably on the upper platen as reverse load. As a result, a stable pressing force can be obtained. Moreover, since the reverse load, that is, the pressing force can be precisely and stably finely adjusted by changing the liquid level difference H, of course, when the workpiece W is a semiconductor substrate or a glass substrate, Even an ultra-thin quartz substrate of several tens of μm can be reliably polished without being damaged.

研磨が終了すると、前記上定盤3、下定盤4、太陽歯車5、内歯歯車6の回転が停止され、昇降シリンダ35のロッド35aがゆっくり伸長することにより、昇降プレート36及び昇降ロッド37と上定盤回転軸39とドライブプレート40とが低速で上昇する。そして、該ドライブプレート40がスタッド32の係止部32aに係止して上定盤3が僅かに持ち上げられると、その位置から前記昇降シリンダ35のロッド35aが高速で伸長すること
により、前記上定盤3は高速で上昇して図1の上昇端の位置まで持ち上げられる。それと同時に前記減圧機構44も原点位置に復帰する。
そして、研磨されたワークWがキャリア7から取り出され、別のワークWがセットされて新たな研磨が行われる。
When the polishing is finished, the rotation of the upper surface plate 3, the lower surface plate 4, the sun gear 5, and the internal gear 6 is stopped, and the rod 35a of the elevating cylinder 35 is slowly extended, so that the elevating plate 36 and the elevating rod 37 The upper surface plate rotating shaft 39 and the drive plate 40 are raised at a low speed. When the drive plate 40 is locked to the locking portion 32a of the stud 32 and the upper surface plate 3 is slightly lifted, the rod 35a of the elevating cylinder 35 extends at a high speed from that position, thereby The surface plate 3 is lifted at a high speed and lifted to the position of the rising edge in FIG. At the same time, the pressure reducing mechanism 44 returns to the original position.
Then, the polished workpiece W is taken out from the carrier 7, and another workpiece W is set and new polishing is performed.

前記第1実施形態は、以下の各種変形例のように構成することもできる。即ち、図示した例では、前記上定盤昇降機構33において、前記昇降シリンダ35が昇降プレート36を介して前記昇降ロッド37に互いに並列する形に接続されているが、前記昇降シリンダ35と昇降ロッド37とを直列に接続しても良く、該昇降ロッド37と前記上定盤回転軸39とを一つの軸で兼用させても良い。   The first embodiment can also be configured as in the following various modifications. That is, in the illustrated example, in the upper surface plate elevating mechanism 33, the elevating cylinder 35 is connected in parallel to the elevating rod 37 via the elevating plate 36. 37 may be connected in series, and the elevating rod 37 and the upper surface plate rotation shaft 39 may be shared by a single shaft.

また、前記上定盤回転機構34は、前記昇降プレート36に取り付けた上定盤モータ42により上定盤回転軸39を介して上定盤3を駆動回転させるように構成されているが、通常の両面研磨装置で用いられている周知の回転機構であっても良い。即ち、下定盤4の中心部に前記静圧力伝達軸45を取り囲むように円筒状のドライバを回転自在に配設し、該ドライバを、前記太陽歯車軸18と同心状に延びるドライバ軸を介して機体の適宜位置に取り付けられた上定盤モータに連結し、該ドライバの外周の係止溝に前記上定盤3の内周から回転中心に向けて突出するフックを係合させ、該ドライバを介して前記上定盤3を回転させる回転機構であっても構わない。この場合、前記昇降プレート36や昇降ロッド37、上定盤回転軸39、上定盤ギア41、昇降プレート36上の上定盤モータ42等は省略され、前記昇降シリンダ35が、ロッド35aを下向きにした姿勢で加工中心軸線L上に配置され、該ロッド35aの下端に前記上定盤3が傾動自在かつ回転自在に連結される。   The upper surface plate rotating mechanism 34 is configured to drive and rotate the upper surface plate 3 via an upper surface plate rotation shaft 39 by an upper surface plate motor 42 attached to the elevating plate 36. It may be a known rotation mechanism used in the double-side polishing apparatus. That is, a cylindrical driver is rotatably disposed at the center of the lower surface plate 4 so as to surround the static pressure transmission shaft 45, and the driver is connected to the sun gear shaft 18 via a driver shaft extending concentrically. It is connected to an upper surface plate motor mounted at an appropriate position on the machine body, and a hook projecting from the inner periphery of the upper surface plate 3 toward the center of rotation is engaged with a locking groove on the outer periphery of the driver. Alternatively, a rotating mechanism that rotates the upper surface plate 3 may be used. In this case, the elevating plate 36, elevating rod 37, upper surface plate rotating shaft 39, upper surface plate gear 41, upper surface plate motor 42 on the elevating plate 36, etc. are omitted, and the elevating cylinder 35 faces the rod 35a downward. The upper surface plate 3 is tiltably and rotatably connected to the lower end of the rod 35a.

さらに、前記伝達軸連結機構46を構成する自動調芯軸受49は、前記静圧力伝達軸45に当接する球体49aを中心に備えた玉軸受で形成されているが、該自動調芯軸受49はこのような構成のものに限定されず、内輪と外輪の間にボールを介在させた自動調芯玉軸受や、内輪と外輪の間にころを介在させた自動調芯ころ軸受であっても良く、あるいはジャイロ型の軸受であっても良い。このような玉軸受やころ軸受あるいはジャイロ型軸受を自動調芯軸受として使用する場合、前記外輪が上定盤3側に取り付けられ、前記内輪に静圧力伝達軸45に対する接触面が形成される。この内輪側の接触面は、該内輪の下面に該内輪の中空部を塞ぐようにプレート等の部材を取り付けることにより形成することができる。また、該内輪の接触面に接触する前記静圧力伝達軸45の接触面45aは、水平な平面又は球面に形成することができる。   Further, the self-aligning bearing 49 constituting the transmission shaft coupling mechanism 46 is formed of a ball bearing having a spherical body 49a in contact with the static pressure transmission shaft 45 as a center. The present invention is not limited to such a configuration, and may be a self-aligning ball bearing in which a ball is interposed between an inner ring and an outer ring, or a self-aligning roller bearing in which a roller is interposed between an inner ring and an outer ring. Alternatively, a gyro-type bearing may be used. When such a ball bearing, roller bearing, or gyro-type bearing is used as the self-aligning bearing, the outer ring is attached to the upper surface plate 3 side, and a contact surface for the static pressure transmission shaft 45 is formed on the inner ring. The contact surface on the inner ring side can be formed by attaching a member such as a plate to the lower surface of the inner ring so as to close the hollow portion of the inner ring. The contact surface 45a of the static pressure transmission shaft 45 that contacts the contact surface of the inner ring can be formed in a horizontal plane or a spherical surface.

また、前記静圧力発生装置48における静圧力発生室55は、上端が外気に開放されることなく密閉されていても良い。その場合には、該静圧力発生室55を、前記静圧力作用室54と同様に、合成ゴムや合成樹脂のような薄くかつ軽量で強度と耐久性と可撓性とを有する液不透過性の素材からなるバッグで形成し、その中に、気体が混在しないように液体47のみを封入することが必要である。気体が混在すると、該気体の圧縮率は液体より大きいため、該気体の圧縮によって静圧力が吸収されるからである。   Further, the static pressure generating chamber 55 in the static pressure generating device 48 may be sealed without the upper end being opened to the outside air. In that case, like the static pressure working chamber 54, the static pressure generating chamber 55 is thin and lightweight, such as synthetic rubber or synthetic resin, and is liquid impervious having strength, durability and flexibility. It is necessary to enclose only the liquid 47 so that no gas is mixed therein. This is because when the gas is mixed, the compression rate of the gas is larger than that of the liquid, and the static pressure is absorbed by the compression of the gas.

図6には、本発明に係る両面研磨装置の第2実施形態が示されている。この第2実施形態の両面研磨装置1Bが前記第1実施形態の両面研磨装置1Aと異なる点は、静圧力調整装置56が、リフタ64で静圧力発生室55を昇降させることによって該静圧力発生室55内の液位を変化させるように構成されている点である。   FIG. 6 shows a second embodiment of the double-side polishing apparatus according to the present invention. The double-side polishing apparatus 1B of the second embodiment is different from the double-side polishing apparatus 1A of the first embodiment in that the static pressure adjusting device 56 raises and lowers the static pressure generating chamber 55 with a lifter 64. The liquid level in the chamber 55 is changed.

即ち、前記リフタ64は、ワイヤやチェーン等からなる牽引部材70と、機体2に回転自在に支持されて該牽引部材70が巻き掛けられたプーリやギア等の巻取部材71とで構成されていて、前記牽引部材70の先端は静圧力発生室55を形成する中空状部材59の上端に連結され、前記巻取部材71が不図示の駆動手段で駆動回転されるようになっている。そして、該巻取部材71を正逆に回転させて前記牽引部材70を巻き取ったり繰り出したりして前記静圧力発生室55を昇降させることにより、前記静圧力発生室55内の液体47の液位が上昇又は下降して静圧力作用室54内の静圧力が上昇又は下降するようにしたものである。
静圧力作用室54を形成するバッグ57は、機体2に固定された支持台72上に載置されている。
That is, the lifter 64 includes a pulling member 70 made of a wire, a chain, or the like, and a winding member 71 such as a pulley or a gear that is rotatably supported by the machine body 2 and around which the pulling member 70 is wound. The leading end of the pulling member 70 is connected to the upper end of a hollow member 59 forming a static pressure generating chamber 55, and the winding member 71 is driven and rotated by a driving means (not shown). Then, the winding member 71 is rotated in the forward and reverse directions to wind up or pull out the pulling member 70 to raise and lower the static pressure generating chamber 55, thereby liquid of the liquid 47 in the static pressure generating chamber 55. The static pressure in the static pressure working chamber 54 increases or decreases as the position increases or decreases.
The bag 57 forming the static pressure working chamber 54 is placed on a support base 72 fixed to the machine body 2.

しかし、この第2実施形態における前記リフタ64は、前記静圧力発生室55を昇降させることができるものであれば、このような構成のものに限定されない。   However, the lifter 64 in the second embodiment is not limited to such a configuration as long as it can raise and lower the static pressure generating chamber 55.

この第2実施形態の前記以外の構成及び作用や変形例等は、実質的に前記第1実施形態の場合と同じであるから、主要な同一構成部分に該第1実施形態と同じ符号を付し、その説明は省略する。   Since the other configurations, operations, modifications, and the like of the second embodiment are substantially the same as those of the first embodiment, the same reference numerals as those of the first embodiment are attached to the main identical components. The description is omitted.

図7には、本発明に係る両面研磨装置の第3実施形態が示されている。この第3実施形態の両面研磨装置1Cが前記第1実施形態の両面研磨装置1Aと異なる点は、静圧力調整装置56が、静圧力発生室55と静圧力作用室54とを結ぶ連通路61の断面積を変化させることによって前記静圧力発生室55内の液位を変化させるように構成されている点である。   FIG. 7 shows a third embodiment of the double-side polishing apparatus according to the present invention. The difference between the double-side polishing apparatus 1C of the third embodiment and the double-side polishing apparatus 1A of the first embodiment is that the static pressure adjusting device 56 connects the static pressure generating chamber 55 and the static pressure working chamber 54. The liquid level in the static pressure generating chamber 55 is changed by changing the cross-sectional area.

このため該第3実施形態においては、連通路61を形成するチューブ60の一部に、押圧により弾性変形して容積が変化する容積可変部62が形成され、該容積可変部62の両側に一対の押圧部材73a,73bが配設され、一方の第1押圧部材73aは機体2に固定され、他方の第2押圧部材73bは押圧装置74に連結されている。そして、該押圧装置74で前記第2押圧部材73bを前進させて前記容積可変部62を押圧し、それを変形させて断面積即ち容積を縮小させることにより、前記静圧力発生室55内の液位が上昇して静圧力作用室54内の静圧力が上昇するようになっている。
前記静圧力作用室54を形成するバッグ57は、機体2に固定された支持台72上に載置されている。
Therefore, in the third embodiment, a part of the tube 60 forming the communication passage 61 is formed with a volume variable part 62 whose volume is changed by being elastically deformed by pressing, and a pair of volumes is formed on both sides of the volume variable part 62. The first pressing member 73a is fixed to the machine body 2, and the other second pressing member 73b is connected to the pressing device 74. Then, the second pressing member 73b is advanced by the pressing device 74 to press the volume variable portion 62 and deformed to reduce the cross-sectional area, that is, the volume, thereby reducing the liquid in the static pressure generating chamber 55. As the position rises, the static pressure in the static pressure working chamber 54 increases.
The bag 57 forming the static pressure working chamber 54 is placed on a support base 72 fixed to the machine body 2.

なお、本第3実施形態では、前記容積可変部62が連通路61を形成するチューブ60に直接形成されているが、該容積可変部62は、チューブ60以外の場所に、前記静圧力作用室54以外のエリアを押圧するように形成することもできる。例えば、前記静圧力発生室55を形成する中空状部材59の液体47が収容されている部分に該容積可変部62を直接形成したり、該中空状部材59又は前記チューブ60から中空体(図9の「中空体77」を参照)を前記静圧力発生室55又は連通路61に連通するように分岐させ、この中空体に前記容積可変部62を形成することもできる。   In the third embodiment, the volume variable section 62 is formed directly on the tube 60 forming the communication path 61, but the volume variable section 62 is located at a place other than the tube 60 in the static pressure working chamber. It can also be formed so as to press areas other than 54. For example, the volume variable portion 62 may be directly formed in a portion of the hollow member 59 forming the static pressure generating chamber 55 where the liquid 47 is accommodated, or a hollow body (see FIG. 9 (see “Hollow body 77”) can be branched so as to communicate with the static pressure generating chamber 55 or the communication passage 61, and the volume variable portion 62 can be formed in the hollow body.

この第3実施形態の前記以外の構成及び作用や変形例等は、実質的に前記第1実施形態の場合と同じであるから、主要な同一構成部分に該第1実施形態と同じ符号を付し、その説明は省略する。   Since the configuration, operation, modification, and the like of the third embodiment other than those described above are substantially the same as those in the first embodiment, the same reference numerals as those in the first embodiment are attached to the main identical components. The description is omitted.

図8には、本発明に係る両面研磨装置の第4実施形態が示されている。この第4実施形態の両面研磨装置1Dが前記第1実施形態の両面研磨装置1Aと異なる点は、静圧力作用室54がケーシング76の内部に形成され、受圧部材53がピストンで形成されている点である。   FIG. 8 shows a fourth embodiment of the double-side polishing apparatus according to the present invention. The double-side polishing apparatus 1D of the fourth embodiment is different from the double-side polishing apparatus 1A of the first embodiment in that the static pressure working chamber 54 is formed inside the casing 76, and the pressure receiving member 53 is formed of a piston. Is a point.

即ち、前記ケーシング76の内部に、前記受圧部材即ちピストン53が不図示のシール部材を介して上下方向に摺動自在なるように収容され、該ピストン53の下面と前記ケーシング76の内底面及び内側面との間に前記静圧力作用室54が区画、形成されている。そして、該ケーシング76の外底面の中央位置にリフタ64の昇降軸65が連結されている。   That is, the pressure receiving member, that is, the piston 53 is accommodated in the casing 76 so as to be slidable in the vertical direction via a seal member (not shown), and the lower surface of the piston 53 and the inner bottom and inner surfaces of the casing 76 are accommodated. The static pressure working chamber 54 is defined and formed between the side surfaces. The lift shaft 65 of the lifter 64 is connected to the center position of the outer bottom surface of the casing 76.

この第4実施形態の前記以外の構成及び作用や変形例等は、実質的に前記第1実施形態
の場合と同じであるから、主要な同一構成部分に該第1実施形態と同じ符号を付し、その
説明は省略する。
Since the configuration, operation, modification, and the like of the fourth embodiment other than those described above are substantially the same as those in the first embodiment, the same reference numerals as those in the first embodiment are attached to the main same components. The description is omitted.

図9には、本発明に係る両面研磨装置の第5実施形態が示されている。この第5実施形態の両面研磨装置1Eが図7に示す第3実施形態の両面研磨装置1Cと相違する主要な相違点は、減圧機構44を構成する静圧力発生装置48の静圧力作用室54及び受圧部材53が機体2の上定盤3より上方の位置に設置され、また、上定盤回転軸39が静圧力伝達軸45を兼ねていて、該上定盤回転軸39を介して上定盤3に前記静圧力発生装置48からの静圧力が伝達されるようになっている点である。従って、前記静圧力伝達軸45も上定盤3の上方に配置されていることになる。   FIG. 9 shows a fifth embodiment of the double-side polishing apparatus according to the present invention. The main difference between the double-side polishing apparatus 1E of the fifth embodiment and the double-side polishing apparatus 1C of the third embodiment shown in FIG. 7 is that the static pressure working chamber 54 of the static pressure generator 48 that constitutes the decompression mechanism 44. And the pressure receiving member 53 is installed at a position above the upper surface plate 3 of the machine body 2, and the upper surface plate rotation shaft 39 also serves as the static pressure transmission shaft 45. The static pressure from the static pressure generator 48 is transmitted to the surface plate 3. Accordingly, the static pressure transmission shaft 45 is also disposed above the upper surface plate 3.

以下、この第5実施形態の前記第3実施形態との相違点について簡単に説明する。前記機体2の上枠2c上には、円環状をしたバッグ57が載置され、該バッグ57の内部に前記静圧力作用室54が形成され、該バッグ57の上に円環状をした前記受圧部材53が載置され、該受圧部材53の上に昇降シリンダ35が取り付けられ、該昇降シリンダ35のロッド35aが荷重センサ52を介して昇降プレート36に連結されている。   The difference between the fifth embodiment and the third embodiment will be briefly described below. An annular bag 57 is placed on the upper frame 2 c of the machine body 2, the static pressure working chamber 54 is formed inside the bag 57, and the pressure receiving member having an annular shape is formed on the bag 57. A member 53 is placed, a lifting cylinder 35 is mounted on the pressure receiving member 53, and a rod 35 a of the lifting cylinder 35 is connected to the lifting plate 36 via a load sensor 52.

前記上定盤回転軸39即ち静圧力伝達軸45は、前記受圧部材53及びバッグ57の中心を遊挿状態に貫通すると共に、ドライブプレート40の中心を該ドライブプレート40に固定された状態で貫通し、下端が前記上定盤3に、自動調芯軸受49を介して360度全ての方向に傾動自在であるように連結されている。また、前記ドライブプレート40とスタッド32とは、軸線が傾斜する方向には相互に自由度を持っているが、回転方向には相互に固定関係にあるように連結されている。   The upper platen rotating shaft 39, that is, the static pressure transmission shaft 45 penetrates the center of the pressure receiving member 53 and the bag 57 in a loosely inserted state, and penetrates the center of the drive plate 40 while being fixed to the drive plate 40. The lower end is connected to the upper surface plate 3 via an automatic alignment bearing 49 so as to be tiltable in all directions of 360 degrees. The drive plate 40 and the stud 32 have a degree of freedom in the direction in which the axis is inclined, but are connected so as to be fixed in the rotational direction.

前記静圧力作用室54は連通路61によって静圧力発生室55に連通され、該静圧力発生室55の下端にパイプなどの中空体77が分岐状態に接続され、該中空体77の下端部に容積が変更可能な容積可変部62が形成され、さらに、該容積可変部62を両側から押圧する一対の押圧部材73a,73bと、一方の押圧部材73bを押圧する押圧装置74とが配設されている。   The static pressure working chamber 54 communicates with the static pressure generating chamber 55 through the communication passage 61, and a hollow body 77 such as a pipe is connected to the lower end of the static pressure generating chamber 55 in a branched state. A volume variable portion 62 whose volume can be changed is formed, and a pair of pressing members 73a and 73b for pressing the volume variable portion 62 from both sides, and a pressing device 74 for pressing one pressing member 73b are provided. ing.

この第5実施形態においては、受圧部材53上の前記昇降シリンダ35により昇降プレート36、昇降ロッド37、静圧力伝達軸45を介して前記上定盤3が昇降され、また、前記昇降プレート36に取り付けられた上定盤モータ42により、前記静圧力伝達軸45を介して前記上定盤3が駆動回転される。
そして、ワークWの研磨時に、前記上定盤3が、前記昇降シリンダ35により静圧力伝達軸45を介してワークWに接触する直前の位置まで下降させられたあと、該昇降シリンダ35のエア回路が開放されることにより静圧力の作用でワークWに接触し、前記静圧力伝達軸45を介して駆動回転されることにより該ワークWの加工が行われる。研磨中の該上定盤3による押圧力の調整は、前記押圧装置74を操作することにより第3実施形態の場合と同様にして行われる。
In the fifth embodiment, the upper platen 3 is lifted and lowered by the lifting cylinder 35 on the pressure receiving member 53 via the lifting plate 36, the lifting rod 37 and the static pressure transmission shaft 45. The upper surface plate motor 42 is driven to rotate through the static pressure transmission shaft 45 by the attached upper surface plate motor 42.
Then, after polishing the work W, the upper surface plate 3 is lowered by the elevating cylinder 35 to a position immediately before contacting the work W via the static pressure transmission shaft 45, and then the air circuit of the elevating cylinder 35 The workpiece W is brought into contact with the workpiece W by the action of static pressure by being released, and the workpiece W is processed by being driven and rotated via the static pressure transmission shaft 45. Adjustment of the pressing force by the upper surface plate 3 during polishing is performed in the same manner as in the third embodiment by operating the pressing device 74.

前記第5実施形態の前記以外の構成及び作用や変形例等は、実質的に前記第3実施形態の場合と同じであるから、主要な同一構成部分に該第3実施形態と同じ符号を付し、その説明は省略する。   Since the configuration, operation, modification, and the like of the fifth embodiment other than those described above are substantially the same as those of the third embodiment, the same reference numerals as those of the third embodiment are assigned to the main identical components. The description is omitted.

1A,1B,1C,1D,1E 両面研磨装置
3 上定盤
4 下定盤
33 上定盤昇降機構
44 減圧機構
45 静圧力伝達軸
47 液体
48 静圧力発生装置
49 自動調芯軸受
53 受圧部材
54 静圧力作用室
55 静圧力発生室
56 静圧力調整装置
61 連通路
62 容積可変部
64 リフタ
73a,73b 押圧部材
W ワーク
H 液位差
L 軸線
1A, 1B, 1C, 1D, 1E Double-side polishing device 3 Upper surface plate 4 Lower surface plate 33 Upper surface plate lifting mechanism 44 Depressurization mechanism 45 Static pressure transmission shaft 47 Liquid 48 Static pressure generator 49 Automatic centering bearing 53 Pressure receiving member 54 Static Pressure working chamber 55 Static pressure generating chamber 56 Static pressure adjusting device 61 Communication path 62 Volume variable portion 64 Lifter 73a, 73b Press member W Work H Liquid level difference L Axis line

Claims (6)

ワークを挟んで研磨する駆動回転自在の上定盤及び下定盤と、前記上定盤を昇降させる上定盤昇降機構と、ワークの研磨時に前記上定盤の荷重と逆向きの荷重を該上定盤に作用させる減圧機構とを有し、前記上定盤の荷重と該減圧機構による荷重との差を研磨時の押圧力とする両面研磨装置において、
前記減圧機構は、上定盤と軸線が一致する位置に上下動可能に配設された静圧力伝達軸と、前記上定盤と該静圧力伝達軸とを相互に連結する自動調芯軸受と、静止する液体の液位差により静圧力を発生させ、この静圧力を前記静圧力伝達軸に前記上定盤による荷重と逆向きの荷重として作用させる静圧力発生装置とを有する、
ことを特徴とする両面研磨装置。
An upper surface plate and a lower surface plate that can be driven and rotated while sandwiching a workpiece, an upper surface plate elevating mechanism that raises and lowers the upper surface plate, and a load opposite to the load of the upper surface plate when polishing the workpiece. In a double-side polishing apparatus having a pressure reducing mechanism that acts on a surface plate, wherein the difference between the load of the upper surface plate and the load by the pressure reducing mechanism is a pressing force at the time of polishing,
The pressure reducing mechanism includes a static pressure transmission shaft arranged to move up and down at a position where the axis line coincides with the upper surface plate, and an automatic centering bearing that interconnects the upper surface plate and the static pressure transmission shaft. A static pressure generating device that generates a static pressure due to a liquid level difference of a stationary liquid, and that acts on the static pressure transmission shaft as a load opposite to a load by the upper surface plate,
A double-side polishing apparatus characterized by that.
前記静圧力発生装置は、前記静圧力伝達軸に連結された受圧部材と、該受圧部材に静圧力を作用させる容積可変の静圧力作用室と、静止する液体の液位差により前記静圧力を発生させる静圧力発生室と、前記静圧力を調整する静圧力調整装置とを有し、前記静圧力発生室と静圧力作用室とが連通路によって連通されると共に、該静圧力発生室と静圧力作用室と連通路とに前記液体が収容されていることを特徴とする請求項1に記載の両面研磨装置。   The static pressure generator includes a pressure receiving member connected to the static pressure transmission shaft, a volume variable static pressure working chamber that applies a static pressure to the pressure receiving member, and a static pressure generated by a liquid level difference between the static liquids. A static pressure generating chamber for generating the static pressure, and a static pressure adjusting device for adjusting the static pressure. The static pressure generating chamber and the static pressure working chamber communicate with each other through a communication path, and the static pressure generating chamber and the static pressure generating chamber The double-side polishing apparatus according to claim 1, wherein the liquid is contained in the pressure action chamber and the communication path. 前記静圧力発生室内の液位は前記静圧力作用室内の液位より上位位置にあることを特徴とする請求項2に記載の両面研磨装置。   The double-side polishing apparatus according to claim 2, wherein the liquid level in the static pressure generating chamber is higher than the liquid level in the static pressure working chamber. 前記受圧部材の受圧面の水平方向断面積は前記静圧力発生室の水平方向断面積より大きいことを特徴とする請求項3に記載の両面研磨装置。   4. The double-side polishing apparatus according to claim 3, wherein a horizontal sectional area of the pressure receiving surface of the pressure receiving member is larger than a horizontal sectional area of the static pressure generating chamber. 前記静圧力調整装置はリフタからなり、該リフタで前記静圧力発生室又は静圧力作用室を昇降させて前記静圧力発生室内の液体の液位を変化させることを特徴とする請求項2から4のいずれかに記載の両面研磨装置。   5. The static pressure adjusting device includes a lifter, and the lifter moves the static pressure generation chamber or the static pressure action chamber up and down to change the liquid level of the static pressure generation chamber. The double-side polishing apparatus according to any one of the above. 前記静圧力調整装置は、前記静圧力発生室又は連通路に直接形成されるかあるいは該静圧力発生室又は連通路から分岐するように形成された容積可変部と、該容積可変部を押圧する押圧部材とを有し、該押圧部材で前記容積可変部を押圧して容積を変化させることにより前記静圧力発生室内の液体の液位を変化させることを特徴とする請求項2から4のいずれかに記載の両面研磨装置。   The static pressure adjusting device is configured to press a volume variable portion that is directly formed in the static pressure generating chamber or the communication path or is formed so as to branch from the static pressure generation chamber or the communication path. The pressure level of the liquid in the static pressure generating chamber is changed by pressing the volume variable portion with the pressing member to change the volume. The double-side polishing apparatus according to claim 1.
JP2011058038A 2011-03-16 2011-03-16 Double-side polishing equipment Active JP5647923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011058038A JP5647923B2 (en) 2011-03-16 2011-03-16 Double-side polishing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011058038A JP5647923B2 (en) 2011-03-16 2011-03-16 Double-side polishing equipment

Publications (2)

Publication Number Publication Date
JP2012192486A true JP2012192486A (en) 2012-10-11
JP5647923B2 JP5647923B2 (en) 2015-01-07

Family

ID=47084896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011058038A Active JP5647923B2 (en) 2011-03-16 2011-03-16 Double-side polishing equipment

Country Status (1)

Country Link
JP (1) JP5647923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3093105A1 (en) 2015-05-13 2016-11-16 Shin-Etsu Chemical Co., Ltd. Method for producing substrates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158511A (en) * 1989-11-16 1991-07-08 Shimizu Corp Flexible mound
JP2001322062A (en) * 2000-05-18 2001-11-20 Hamai Co Ltd Polishing device
JP2006051575A (en) * 2004-08-12 2006-02-23 Fujikoshi Mach Corp Polishing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158511A (en) * 1989-11-16 1991-07-08 Shimizu Corp Flexible mound
JP2001322062A (en) * 2000-05-18 2001-11-20 Hamai Co Ltd Polishing device
JP2006051575A (en) * 2004-08-12 2006-02-23 Fujikoshi Mach Corp Polishing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3093105A1 (en) 2015-05-13 2016-11-16 Shin-Etsu Chemical Co., Ltd. Method for producing substrates
KR20160134506A (en) 2015-05-13 2016-11-23 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing substrates
US10086493B2 (en) 2015-05-13 2018-10-02 Shin-Etsu Chemical Co., Ltd. Method for producing substrates

Also Published As

Publication number Publication date
JP5647923B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
US6019671A (en) Carrier head for a chemical/mechanical polishing apparatus and method of polishing
US5624299A (en) Chemical mechanical polishing apparatus with improved carrier and method of use
KR101126382B1 (en) Conditioner of chemical mechanical polishing system
US20100311309A1 (en) Dressing apparatus, dressing method, and polishing apparatus
KR101679131B1 (en) Wafer&#39;s final polishing apparatus and final polishing method by it
JPH06126615A (en) Polishing device for wafer
KR101218437B1 (en) Polishing apparatus
KR102629676B1 (en) Conditioner of chemical mechanical polishing apparatus
JP5647923B2 (en) Double-side polishing equipment
US20110124273A1 (en) Wafer polishing apparatus for adjusting height of wheel tip
JP2001088012A (en) Polishing device
JP3354137B2 (en) Wafer polishing equipment
TWI232149B (en) The grinding device and the grinding method for liquid crystal panel surface
JP4307674B2 (en) Wafer polishing equipment
JPH11138419A (en) Wafer polishing device and wafer pressuring method
JP5077756B2 (en) Polishing equipment
KR101559278B1 (en) Low pressurised conditioner of chemical mechanical polishing apparatus
KR20050049406A (en) Polishing apparatus and method of polihsing work piece
JPH11207608A (en) Upper surface plate elevating and lowering mechanism in surface grinding device
WO2023197237A1 (en) Lapping table, lapping head, lapping apparatus and lapping method
CN215470443U (en) Polishing platform capable of vacuum adsorption polishing pad
JPH08243889A (en) Planet gear type polishing device
JP2001322062A (en) Polishing device
JP4611841B2 (en) Polishing equipment
CN117086774B (en) Special grinding machine and grinding process for ceramic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R150 Certificate of patent or registration of utility model

Ref document number: 5647923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250