JP2012190725A - Solid oxide fuel battery - Google Patents

Solid oxide fuel battery Download PDF

Info

Publication number
JP2012190725A
JP2012190725A JP2011054811A JP2011054811A JP2012190725A JP 2012190725 A JP2012190725 A JP 2012190725A JP 2011054811 A JP2011054811 A JP 2011054811A JP 2011054811 A JP2011054811 A JP 2011054811A JP 2012190725 A JP2012190725 A JP 2012190725A
Authority
JP
Japan
Prior art keywords
fuel
electrode layer
fuel cell
conductive
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011054811A
Other languages
Japanese (ja)
Other versions
JP5591743B2 (en
Inventor
Toshihiro Matsuno
敏博 松野
Masahiro Shibata
昌宏 柴田
Hiroya Ishikawa
浩也 石川
Etsuya Ikeda
悦也 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2011054811A priority Critical patent/JP5591743B2/en
Publication of JP2012190725A publication Critical patent/JP2012190725A/en
Application granted granted Critical
Publication of JP5591743B2 publication Critical patent/JP5591743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a solid oxide fuel battery improved in certainty of electrical conduction between a fuel battery cell body and a connector.SOLUTION: A solid oxide fuel battery includes: a plate-like fuel battery cell body having an air electrode layer, a solid electrolyte layer and a fuel electrode layer; a collector having a first principal surface in surface contact with one of the air electrode layer and the fuel electrode layer to be electrically connected and a second principal surface; a plate-like connector in surface contact with the second principal surface to be electrically connected; a plate-like conductive separator connected to the solid electrolyte layer and fractionating an inner space into an air electrode layer side and a fuel electrode layer side; a conductive member electrically connecting the one of the air electrode layer and the fuel electrode layer with the conductive separator; and a plate-like conductive frame with a through hole, which electrically connects the conductive separator and the connector, and in which at least a part of one of the air electrode layer and the fuel electrode layer is stored.

Description

本発明は,固体酸化物形燃料電池に関する。   The present invention relates to a solid oxide fuel cell.

電解質に固体酸化物を用いた固体酸化物形燃料電池(以下,「SOFC」又は単に「燃料電池」とも記す場合がある)が知られている。SOFCは,例えば,板状の固体電解質体の各面に燃料極と空気極とを備えた燃料電池セルを多数積層したスタック(燃料電池スタック)を有する。燃料極および空気極それぞれに,燃料ガスおよび酸化剤ガス(例えば,空気中の酸素)を供給し,固体電解質体を介して化学反応させることで,電力を発生させる。   A solid oxide fuel cell using a solid oxide as an electrolyte (hereinafter also referred to as “SOFC” or simply “fuel cell”) is known. The SOFC has, for example, a stack (fuel cell stack) in which a large number of fuel cells each having a fuel electrode and an air electrode are stacked on each surface of a plate-shaped solid electrolyte body. Electric power is generated by supplying a fuel gas and an oxidant gas (for example, oxygen in the air) to the fuel electrode and the air electrode, respectively, and causing a chemical reaction through the solid electrolyte body.

燃料電池セルは,一対のインターコネクタ,燃料電池セル本体(空気極,固体電解質体,燃料極が積層されたもの)を有する。燃料電池セル本体とインターコネクタの電気的接続のために,集電体が配置される。
ここで,燃料電池セルが温度変化等により変形した際に,燃料電池セル本体とインターコネクタの電気的接続が解除される可能性がある。例えば,集電体が塑性変形することで(例えば,座屈),集電体−燃料電池セル本体間,または集電体−インターコネクタ間の接触が断たれ,燃料電池セル本体とインターコネクタの電気的接続が解除される可能性がある。
The fuel cell has a pair of interconnectors and a fuel cell body (a stack of an air electrode, a solid electrolyte body, and a fuel electrode). A current collector is disposed for electrical connection between the fuel cell body and the interconnector.
Here, when the fuel cell is deformed due to a temperature change or the like, the electrical connection between the fuel cell body and the interconnector may be released. For example, when the current collector is plastically deformed (for example, buckling), the contact between the current collector and the fuel cell body or between the current collector and the interconnector is broken, and the fuel cell body and the interconnector are disconnected. Electrical connection may be broken.

次のような場合,集電体が変形しやすくなる。即ち,集電体に塑性変形し易い材料を用いる可能性が有る。固体電解質層,集電体,インターコネクタ,フレーム等の部材の全てに硬い材質を用い,SOFCのスタックを作製,組み付けると(ボルト締め付け),固体電解質層が割れる可能性がある。このため,アノード側の集電体に軟らかい材質,若しくはスポンジ状の材質が用いられることがある。この場合,高温により集電体が塑性変形(例えば,座屈)する可能性が高くなる。   In the following cases, the current collector is easily deformed. That is, there is a possibility that a material that is easily plastically deformed is used for the current collector. If a solid material is used for all members such as the solid electrolyte layer, current collector, interconnector, and frame, and the SOFC stack is fabricated and assembled (bolt tightening), the solid electrolyte layer may break. For this reason, a soft material or a sponge-like material may be used for the current collector on the anode side. In this case, there is a high possibility that the current collector is plastically deformed (for example, buckled) at a high temperature.

なお,起動→運転→停止を繰り返して使用しても気密性を失うことなく,十分な熱サイクル特性を有し,長期間にわたり安定して作動できる支持膜式固体酸化物形燃料電池の作製方法が開示されている(特許文献1参照)。   A method of manufacturing a supported membrane solid oxide fuel cell that has sufficient thermal cycle characteristics and can operate stably over a long period of time without losing hermeticity even when used repeatedly from start to operation to stop Is disclosed (see Patent Document 1).

特開2004−319286号公報JP 2004-319286 A

本発明は,燃料電池セル本体とコネクタ間の電気的導通の確実性を向上した固体酸化物形燃料電池を提供することを目的とする。   An object of the present invention is to provide a solid oxide fuel cell with improved reliability of electrical conduction between a fuel cell body and a connector.

本発明に係る固体酸化物形燃料電池は,空気極層,固体電解質層,燃料極層を有する板状の燃料電池セル本体と,前記空気極層,前記燃料極層の一方と面的に接触して電気的に接続される第1の主面と,前記第1の主面の反対側に位置する第2の主面とを有する集電体と,前記集電体の第2の主面と面的に接触して電気的に接続される,板状のコネクタと,前記燃料電池セル本体の前記固体電解質層に接続し,前記燃料電池本体と共に対向する二つの前記コネクタで挟まれた内部空間を空気極層側,燃料極層側の空間に分画する,板状の導電性セパレータと,前記空気極層,前記燃料極層の前記一方と,前記導電性セパレータとを電気的に接続する導電性部材と,前記導電性セパレータと前記コネクタとの間に配置されて,前記導電性セパレータと前記コネクタとを電気的に接続し,前記空気極層,前記燃料極層の前記一方の少なくとも一部が収容される貫通孔を有する,板状の導電性フレームと,を具備する。
集電体が変形した場合でも,導電性部材,導電性セパレータ,および導電性フレームによって,空気極層,燃料極層の一方と,コネクタの間での電気的導通が確保される。
なお,「板状の」コネクタ,燃料電池セル本体,導電性セパレータまたは導電性フレームは,その表面にガス流路を形成する凹凸状を有するものも含む。
A solid oxide fuel cell according to the present invention is in surface contact with a plate-shaped fuel cell body having an air electrode layer, a solid electrolyte layer, and a fuel electrode layer, and one of the air electrode layer and the fuel electrode layer. And a second main surface of the current collector, and a current collector having a first main surface electrically connected to the first main surface and a second main surface located on the opposite side of the first main surface. A plate-like connector that is in surface contact with and electrically connected, and an internal portion that is connected to the solid electrolyte layer of the fuel cell body and sandwiched between the two connectors facing the fuel cell body The plate-like conductive separator that divides the space into the space on the air electrode layer side and the fuel electrode layer side, and the one of the air electrode layer and the fuel electrode layer are electrically connected to the conductive separator. A conductive member, and a conductive separator disposed between the conductive separator and the connector. Electrically connecting data and the said connector, the air electrode layer, having said at least one of the through-hole part is accommodated in the fuel electrode comprises a plate-shaped conductive frame.
Even when the current collector is deformed, the conductive member, the conductive separator, and the conductive frame ensure electrical continuity between one of the air electrode layer and the fuel electrode layer and the connector.
The “plate-like” connector, the fuel cell body, the conductive separator, or the conductive frame includes those having an uneven shape that forms a gas flow path on the surface thereof.

ここで,前記導電性セパレータと前記導電性フレーム,および前記導電性フレームと前記コネクタがそれぞれ,通電性を有する金属層を介して結合されてもよい。
導電性セパレータ,導電性フレーム,およびコネクタの電気的接続の確実性を向上できる。
なお,金属層を導電性フレームの貫通孔の全周に形成することで,導電性フレームの内部を気密に封止することが可能となる。
Here, the conductive separator and the conductive frame, and the conductive frame and the connector may be coupled to each other via a conductive metal layer.
The reliability of electrical connection of the conductive separator, the conductive frame, and the connector can be improved.
In addition, by forming the metal layer on the entire circumference of the through hole of the conductive frame, the inside of the conductive frame can be hermetically sealed.

導電性セパレータ,前記導電性フレーム,および前記コネクタが,FeおよびNiの少なくとも何れかを含む金属から構成できる。このような金属として,フェライト系あるいはオーステナイト系のステンレスが挙げられる。
このような金属材料を用いることで,導電性セパレータ,前記導電性フレーム,および前記コネクタの導電性と耐久性の両立が可能である。例えば,溶接により金属層を形成することが容易となる。
The conductive separator, the conductive frame, and the connector can be made of a metal containing at least one of Fe and Ni. Examples of such metals include ferritic or austenitic stainless steel.
By using such a metal material, it is possible to achieve both conductivity and durability of the conductive separator, the conductive frame, and the connector. For example, it becomes easy to form a metal layer by welding.

本発明によれば,燃料電池セル本体とコネクタ間の電気的導通の確実性を向上した固体酸化物形燃料電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the solid oxide fuel cell which improved the reliability of the electrical continuity between a fuel cell main body and a connector can be provided.

本発明の第1の実施形態に係る固体酸化物形燃料電池10を表す斜視図である。1 is a perspective view showing a solid oxide fuel cell 10 according to a first embodiment of the present invention. 燃料電池セル100の断面図である。1 is a cross-sectional view of a fuel cell 100. FIG. 燃料電池セル100の分解斜視図である。1 is an exploded perspective view of a fuel cell 100. FIG. 燃料電池セル100の断面図である(集電体181変形時)。FIG. 3 is a cross-sectional view of the fuel cell 100 (when the current collector 181 is deformed). 本発明の比較例に係る燃料電池セル100xの断面図である。It is sectional drawing of the fuel battery cell 100x which concerns on the comparative example of this invention. 燃料電池セル100xの断面図である(集電体181変形時)。It is sectional drawing of the fuel battery cell 100x (at the time of the collector 181 deformation | transformation). 本発明の変形例に係る燃料電池セル100aの断面図である。It is sectional drawing of the fuel battery cell 100a which concerns on the modification of this invention. 燃料電池セル100aの断面図である(集電体181変形時)。It is sectional drawing of the fuel battery cell 100a (at the time of the collector 181 deformation | transformation).

(第1の実施形態)
以下,図面を参照して,本発明の実施の形態を詳細に説明する。
図1は,本発明の第1の実施形態に係る固体酸化物形燃料電池(燃料電池スタック)10を表す斜視図である。固体酸化物形燃料電池10は,燃料ガスと酸化剤ガスの供給を受けて発電する装置である。
(First embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view showing a solid oxide fuel cell (fuel cell stack) 10 according to a first embodiment of the present invention. The solid oxide fuel cell 10 is a device that generates power upon receiving supply of fuel gas and oxidant gas.

燃料ガスとしては,水素,還元剤となる炭化水素,水素と炭化水素との混合ガス,及びこれらのガスを所定温度の水中を通過させ加湿した燃料ガス,これらのガスに水蒸気を混合させた燃料ガス等が挙げられる。炭化水素は特に限定されず,例えば,天然ガス,ナフサ,石炭ガス化ガス等が挙げられる。この燃料ガスとしては水素が好ましい。これらの燃料ガスは1種のみを用いてもよいし,2種以上を併用することもできる。また,50体積%以下の窒素及びアルゴン等の不活性ガスを含有していてもよい。   The fuel gas includes hydrogen, hydrocarbon as a reducing agent, mixed gas of hydrogen and hydrocarbon, fuel gas obtained by passing these gases through water at a predetermined temperature, and fuel obtained by mixing these gases with water vapor. Gas etc. are mentioned. The hydrocarbon is not particularly limited, and examples thereof include natural gas, naphtha, and coal gasification gas. The fuel gas is preferably hydrogen. These fuel gases may be used alone or in combination of two or more. Moreover, you may contain inert gas, such as nitrogen and argon of 50 volume% or less.

酸化剤ガスとしては,酸素と他の気体との混合ガス等が挙げられる。更に,この混合ガスには80体積%以下の窒素及びアルゴン等の不活性ガスが含有されていてもよい。これらの酸化剤ガスのうちでは安全であって,且つ安価であるため,空気(約80体積%の窒素が含まれている。)が好ましい。   Examples of the oxidant gas include a mixed gas of oxygen and another gas. Further, the mixed gas may contain 80% by volume or less of an inert gas such as nitrogen and argon. Of these oxidant gases, air (containing about 80% by volume of nitrogen) is preferred because it is safe and inexpensive.

固体酸化物形燃料電池10は,略直方体形状をなし,上面11,底面12,貫通孔21〜28を有する。貫通孔21〜24は,上面11,底面12の辺近傍(後述の燃料極フレーム160の辺近傍)を貫通し,貫通孔25〜28は,上面11,底面12の頂点近傍(後述の燃料極フレーム160の頂点近傍)を貫通する。貫通孔21〜28にはそれぞれ,連結部材(締結具であるボルト41〜48,ナット51〜58)が取り付けられる。なお,ナット53,54,57は,判りやすさのために,図示を省略している。   The solid oxide fuel cell 10 has a substantially rectangular parallelepiped shape, and has an upper surface 11, a bottom surface 12, and through holes 21 to 28. The through holes 21 to 24 pass through the vicinity of the sides of the top surface 11 and the bottom surface 12 (near the side of the fuel electrode frame 160 described later), and the through holes 25 to 28 include the vicinity of the tops of the top surface 11 and the bottom surface 12 (the fuel electrode described later). It passes through the vicinity of the apex of the frame 160. Connecting members (bolts 41 to 48, which are fasteners, and nuts 51 to 58) are attached to the through holes 21 to 28, respectively. The nuts 53, 54, and 57 are not shown for easy understanding.

上面11側の貫通孔21〜24の開口に,部材60が配置される。部材60(部材62)の貫通孔,貫通孔21〜24にボルト41〜44が挿通され,ナット51〜54がねじ込まれる。   The member 60 is disposed in the openings of the through holes 21 to 24 on the upper surface 11 side. Bolts 41 to 44 are inserted into the through holes and through holes 21 to 24 of the member 60 (member 62), and nuts 51 to 54 are screwed.

部材60は,部材62,導入管61を有する。部材62は,略円筒形状をなし,略平面状の上面および底面,曲面状の側面に,導入管61は上面と底面間を貫通する貫通孔を有する。部材62の貫通孔と導入管61の貫通孔とが連通する。   The member 60 has a member 62 and an introduction pipe 61. The member 62 has a substantially cylindrical shape, and has a substantially flat top and bottom surfaces and curved side surfaces, and the introduction tube 61 has a through-hole penetrating between the top and bottom surfaces. The through hole of the member 62 and the through hole of the introduction pipe 61 communicate with each other.

部材62の貫通孔と貫通孔21〜24の径は略同一である。これらの径より,ボルト41〜44の軸の径が小さいことで,部材62の貫通孔とボルト41〜44の軸間,および貫通孔21〜24とボルト41〜44の軸間をガス(酸化剤ガス(空気),発電後の残余の燃料ガス,発電後の残余の酸化剤ガス,燃料ガス)が通過する。即ち,酸化剤ガス(空気),燃料ガスが導入管61から流入し,貫通孔21,24をそれぞれ経由して,固体酸化物形燃料電池10内に流入する。発電後の残余の酸化剤ガス(空気),発電後の残余の燃料ガスが固体酸化物形燃料電池10から流入し,貫通孔23,22をそれぞれ経由して,導入管61から流出する。   The diameters of the through holes of the member 62 and the through holes 21 to 24 are substantially the same. Since the shaft diameters of the bolts 41 to 44 are smaller than these diameters, gas (oxidation) is formed between the through holes of the member 62 and the shafts of the bolts 41 to 44 and between the through holes 21 to 24 and the shafts of the bolts 41 to 44. Agent gas (air), residual fuel gas after power generation, residual oxidant gas after power generation, and fuel gas) pass through. That is, oxidant gas (air) and fuel gas flow from the introduction pipe 61 and flow into the solid oxide fuel cell 10 through the through holes 21 and 24, respectively. The remaining oxidant gas (air) after power generation and the remaining fuel gas after power generation flow from the solid oxide fuel cell 10 and flow out from the introduction pipe 61 via the through holes 23 and 22 respectively.

固体酸化物形燃料電池10は,発電単位である平板形の燃料電池セル100が複数個積層されて構成される。複数個の燃料電池セル100が電気的に直列に接続される。   The solid oxide fuel cell 10 is configured by laminating a plurality of flat plate fuel cells 100 as power generation units. A plurality of fuel cells 100 are electrically connected in series.

図2は,燃料電池セル100の断面図である。図3は,燃料電池セル100の分解斜視図である。
図2に示すように,前記燃料電池セル100は,いわゆる燃料極支持形タイプの燃料電池セルであり,上下一対の金属製のインターコネクタ110(1),110(2)の間に,燃料電池セル本体140が配置される。燃料電池セル本体140とインターコネクタ110(1),110(2)の間に,空気流路101,燃料ガス流路102が配置される。
FIG. 2 is a cross-sectional view of the fuel battery cell 100. FIG. 3 is an exploded perspective view of the fuel battery cell 100.
As shown in FIG. 2, the fuel cell 100 is a so-called fuel electrode support type fuel cell, and a fuel cell is interposed between a pair of upper and lower metal interconnectors 110 (1) and 110 (2). A cell body 140 is disposed. An air passage 101 and a fuel gas passage 102 are disposed between the fuel cell main body 140 and the interconnectors 110 (1) and 110 (2).

燃料電池セル本体140は,空気極(カソード)機能層141,反応防止層142,固体電解質層143,燃料極(アノード)機能層144,燃料極(アノード)基板層145が積層されて構成される。   The fuel cell body 140 is formed by laminating an air electrode (cathode) functional layer 141, a reaction preventing layer 142, a solid electrolyte layer 143, a fuel electrode (anode) functional layer 144, and a fuel electrode (anode) substrate layer 145. .

空気極機能層141は,空気極層として機能する。空気極機能層141の材料としては,例えば,各種の金属,金属の酸化物,金属の複酸化物等を用いることができる。金属としては,Pt,Au,Ag,Pd,Ir,Ru及びRh等の金属又は2種以上の金属を含有する合金が挙げられる。更に,金属の酸化物としては,La,Sr,Ce,Co,Mn及びFe等の酸化物(La,SrO,Ce,Co,MnO及びFeO等)が挙げられる。また,複酸化物としては,少なくともLa,Pr,Sm,Sr,Ba,Co,Fe及びMn等を含有する複酸化物(La1−xSrCoO系複酸化物,La1−xSrFeO系複酸化物,La1−xSrCo1−yFe系複酸化物,La1−xSrMnO系複酸化物,Pr1−xBaCoO系複酸化物及びSm1−xSrCoO系複酸化物等)が挙げられる。 The air electrode functional layer 141 functions as an air electrode layer. As a material of the air electrode functional layer 141, for example, various metals, metal oxides, metal double oxides, and the like can be used. Examples of the metal include metals such as Pt, Au, Ag, Pd, Ir, Ru, and Rh, or alloys containing two or more metals. Furthermore, examples of the metal oxide include oxides such as La, Sr, Ce, Co, Mn, and Fe (La 2 O 3 , SrO, Ce 2 O 3 , Co 2 O 3 , MnO 2, FeO, and the like). It is done. As the double oxide, a double oxide containing at least La, Pr, Sm, Sr, Ba, Co, Fe, Mn, etc. (La 1-x Sr x CoO 3 -based double oxide, La 1-x Sr x FeO 3 -based double oxide, La 1-x Sr x Co 1-y Fe y O 3 -based double oxide, La 1 -x Sr x MnO 3 -based double oxide, Pr 1-x Ba x CoO 3 -based double oxide And Sm 1-x Sr x CoO 3 -based double oxide).

反応防止層142は,空気極機能層141,固体電解質層143間での反応を制限するためのものである。その材質は特に限定されず,例えば,通常,CeOのCeの一部が少なくとも1種の希土類元素により置換されたCeO系酸化物が用いられる。 The reaction preventing layer 142 is for limiting the reaction between the air electrode functional layer 141 and the solid electrolyte layer 143. The material is not particularly limited. For example, a CeO 2 oxide in which part of Ce in CeO 2 is usually substituted with at least one rare earth element is used.

固体電解質層143の材料としては,例えばZrO系セラミック,LaGaO系セラミック,BaCeO系セラミック,SrCeO系セラミック,SrZrO系セラミック,及びCaZrO系セラミック等が挙げられる。 Examples of the material of the solid electrolyte layer 143 include ZrO 2 ceramics, LaGaO 3 ceramics, BaCeO 3 ceramics, SrCeO 3 ceramics, SrZrO 3 ceramics, and CaZrO 3 ceramics.

燃料極機能層144,燃料極基板層145の全体が燃料極層として機能する。
燃料極機能層144,燃料極基板層145の構成材料は同一でもよく,同一でなくても良い。燃料極機能層144,燃料極基板層145の構成材料を同一とする場合,これらの熱膨張係数が同程度となり,熱処理時や高温での作動時にこれらの間での剥離を抑制する効果がより大きい。
The whole of the fuel electrode functional layer 144 and the fuel electrode substrate layer 145 functions as a fuel electrode layer.
The constituent materials of the fuel electrode functional layer 144 and the fuel electrode substrate layer 145 may or may not be the same. When the constituent materials of the fuel electrode functional layer 144 and the fuel electrode substrate layer 145 are the same, their thermal expansion coefficients are approximately the same, and the effect of suppressing the separation between them during heat treatment or operation at high temperatures is more effective. large.

なお,燃料極機能層144,燃料極基板層145の構成材料として,例えば,金属,金属の酸化物,金属の複酸化物,金属と金属の酸化物の混合物などを用いることができる。
金属としては,Pt,Au,Ag,Pd,Ir,Ru,Ni及びRh等の金属又は2種以上の金属を含有する合金が挙げられる。
更に金属の酸化物としては,固体電解質層143と同等の材料で,例えばZrO系セラミック,LaGaO系セラミック,BaCeO系セラミック,SrCeO系セラミック,SrZrO系セラミック,及びCaZrO系セラミック等が挙げられる。
金属と金属の酸化物の混合物として,例えば,Ni金属とZrO系セラミックの混合物が挙げられる。なお,この場合,NiOとZrO系セラミックの混合物を初期材料(燃料電池セル100動作開始前の構成材料)として用いることができる。燃料極側では還元雰囲気に曝されるために,還元反応が進行した結果,NiOとZrO系セラミックの混合物が,Ni金属とZrO系セラミックの混合物に変化するからである。
In addition, as a constituent material of the fuel electrode functional layer 144 and the fuel electrode substrate layer 145, for example, a metal, a metal oxide, a metal double oxide, a mixture of a metal and a metal oxide, or the like can be used.
Examples of the metal include metals such as Pt, Au, Ag, Pd, Ir, Ru, Ni, and Rh, or alloys containing two or more metals.
Further, the metal oxide is the same material as the solid electrolyte layer 143, such as ZrO 2 ceramic, LaGaO 3 ceramic, BaCeO 3 ceramic, SrCeO 3 ceramic, SrZrO 3 ceramic, and CaZrO 3 ceramic. Is mentioned.
As a mixture of a metal and a metal oxide, for example, a mixture of Ni metal and ZrO 2 -based ceramic can be cited. In this case, a mixture of NiO and ZrO 2 ceramic can be used as an initial material (a constituent material before the operation of the fuel cell 100 is started). This is because the mixture of NiO and ZrO 2 -based ceramic changes to a mixture of Ni metal and ZrO 2 -based ceramic as a result of the progress of the reduction reaction because it is exposed to the reducing atmosphere on the fuel electrode side.

また,燃料極基板層145内での燃料の拡散を促進するため,燃料極基板層145の空孔率を燃料極機能層144より高く設定することが望ましい。   Further, in order to promote the diffusion of fuel in the anode substrate layer 145, it is desirable to set the porosity of the anode substrate layer 145 higher than that of the anode functional layer 144.

図3に示すように,燃料電池セル100は,上下一対のインターコネクタ110(1),110(2)の間に,ガスシール部120,セパレータ130,燃料極フレーム160,集電体181を備え,それらが積層されて一体に構成されている。なお,後述の理由により,燃料極フレーム160,インターコネクタ110(2)間(燃料極側)に,ガスシール部は配置されない。   As shown in FIG. 3, the fuel cell 100 includes a gas seal portion 120, a separator 130, a fuel electrode frame 160, and a current collector 181 between a pair of upper and lower interconnectors 110 (1) and 110 (2). , They are laminated to form a unitary structure. For reasons described later, the gas seal portion is not disposed between the fuel electrode frame 160 and the interconnector 110 (2) (fuel electrode side).

空気極機能層141とインターコネクタ110(1)との間に,その導通を確保するために集電体147が配置されている。燃料極基板層145とインターコネクタ110(2)との間に,その導通を確保するために集電体181が配置されている。集電体181の上面(第1の主面)が燃料極基板層145と電気的に接続される。集電体181の下面(第2の主面)がインターコネクタ110(2)(コネクタ)と電気的に接続される。   A current collector 147 is disposed between the air electrode functional layer 141 and the interconnector 110 (1) in order to ensure the conduction. A current collector 181 is disposed between the fuel electrode substrate layer 145 and the interconnector 110 (2) in order to ensure the conduction. The upper surface (first main surface) of the current collector 181 is electrically connected to the anode substrate layer 145. The lower surface (second main surface) of the current collector 181 is electrically connected to the interconnector 110 (2) (connector).

集電体181は,多孔質の金属(例えば,Ni)から構成される。集電体181は,多孔質のため,潰れ易く,後述のように,高温等に起因する応力の印加により塑性変形する可能性がある。
一方,集電体147は,非多孔質(多孔質でない)の金属(例えばステンレス)から構成され,座屈等の塑性変形は事実上無視できる。なお,集電体147を多孔質とすることも可能である。
The current collector 181 is made of a porous metal (for example, Ni). Since the current collector 181 is porous, it is easily crushed, and there is a possibility that the current collector 181 is plastically deformed by application of stress caused by high temperature or the like, as will be described later.
On the other hand, the current collector 147 is made of a non-porous (not porous) metal (for example, stainless steel), and plastic deformation such as buckling is virtually negligible. Note that the current collector 147 can be made porous.

以下,燃料電池セル100を構成する各部材について,更に詳細に説明する。なお,燃料電池セル100の平面形状は正方形であるので,燃料電池セル100を構成する各部材の平面形状も正方形に形成することが望ましい。各部材を正方形とする場合,ボルトで締め付けた際に燃料電池セル本体140面内にほぼ均一に荷重を印加することが可能となり,荷重の不均一による燃料電池セル本体140の割れなどを抑制する効果が大きい。
なお,各部材の平面形状は,「正方形」に限らず,他の平面形状とすることも可能である。例えば,長方形,円形などが挙げられる。他の平面形状とした場合では,燃料電池セル本体140面内の荷重をある程度均一にすることができる。
Hereinafter, each member constituting the fuel cell 100 will be described in more detail. Since the planar shape of the fuel cell 100 is a square, it is desirable that the planar shape of each member constituting the fuel cell 100 is also formed in a square. When each member is square, it is possible to apply a load almost uniformly in the surface of the fuel cell main body 140 when tightened with a bolt, and the cracking of the fuel cell main body 140 due to uneven load is suppressed. Great effect.
The planar shape of each member is not limited to “square”, and may be other planar shapes. For example, a rectangle and a circle can be mentioned. In the case of other planar shapes, the load in the surface of the fuel cell main body 140 can be made uniform to some extent.

インターコネクタ110(1),110(2)は,例えばフェライト系ステンレスからなる厚み0.3〜2.0mmの板材であり,その外縁部には,前記ボルト41〜48が貫挿される例えば直径10mmの丸孔である貫通孔21〜28が,等間隔に形成されている。インターコネクタ110(2)は,「前記集電体の第2の主面と電気的に接続される,コネクタ」に対応する。   The interconnectors 110 (1) and 110 (2) are, for example, plate materials made of ferritic stainless steel having a thickness of 0.3 to 2.0 mm, and the outer edges thereof are inserted with the bolts 41 to 48, for example, a diameter of 10 mm. The through holes 21 to 28 which are round holes are formed at equal intervals. The interconnector 110 (2) corresponds to “a connector electrically connected to the second main surface of the current collector”.

ガスシール部120は,空気極機能層141側に配置され,例えばマイカからなる厚み0.2〜1.0mmの枠状の板材であり,その四隅の角部には,前記ボルト45〜48が貫挿される各貫通孔25〜28が形成されている。   The gas seal portion 120 is disposed on the air electrode functional layer 141 side, and is a frame-like plate material made of mica, for example, having a thickness of 0.2 to 1.0 mm. The bolts 45 to 48 are provided at corners of the four corners. Each through-hole 25-28 penetrated is formed.

このガスシール部120の四方の各辺の縁部には,前記ボルト41〜44が貫挿される各貫通孔21〜24と連通するように,その辺に沿って,ガスの流路となる略長方形状(長さ100mm×幅10mm)の貫通孔121〜124が形成されている。つまり,各貫通孔121〜124は,積層方向から見た場合,各貫通孔21〜24を含むように形成されている。   The gas seal portion 120 is provided with gas passages along the sides thereof so as to communicate with the respective through holes 21 to 24 through which the bolts 41 to 44 are inserted. Through holes 121 to 124 having a rectangular shape (length 100 mm × width 10 mm) are formed. That is, the through holes 121 to 124 are formed to include the through holes 21 to 24 when viewed from the stacking direction.

ガスシール部120には,中央の正方形の開口部125と左右の貫通孔121,123と連通するように,ガスシール部120の右左の枠部分に,細径(長さ20mm×幅5mm)のガス流路となる長方形の切り欠き127がそれぞれ4本ずつ形成されている。   The gas seal portion 120 has a small diameter (length: 20 mm × width: 5 mm) at the right and left frame portions of the gas seal portion 120 so as to communicate with the central square opening 125 and the left and right through holes 121 and 123. Four rectangular cutouts 127 each serving as a gas flow path are formed.

なお,この切り欠き127は,貫通孔として形成しても良く,ガスシール部120の一方の表面を掘って形成された溝でも良い。また,切り欠き127は,レーザやプレス加工によって形成できる。   The notch 127 may be formed as a through hole or a groove formed by digging one surface of the gas seal portion 120. The notch 127 can be formed by laser or press working.

この切り欠き127のガス流路の流れ方向(図3左右方向)における断面積(流れ方向と垂直の断面積)は,各貫通孔121,123の流れ方向(図3上下方向:積層方向)における断面積(流れ方向と垂直の断面積)より小さく設定されている。また,各切り欠き127は,左右の辺の中点を結んだ線を中心とした線対称となるように配置されているが,その本数については,例えば1つの辺について6本以上など,適宜設定すればよい。   The cross-sectional area (cross-sectional area perpendicular to the flow direction) in the flow direction of the gas flow path of the notch 127 (the cross-sectional area perpendicular to the flow direction) is the flow direction of the through holes 121 and 123 (the vertical direction in FIG. It is set smaller than the cross-sectional area (cross-sectional area perpendicular to the flow direction). The notches 127 are arranged so as to be symmetrical with respect to the line connecting the midpoints of the left and right sides. As for the number of the notches 127, for example, six or more per side, as appropriate. You only have to set it.

セパレータ130は,燃料電池セル本体140の外縁部の上面に接合して空気流路101と燃料ガス流路102との間を遮断するものであり,「固体電解質層に接続され,前記空気極層側,前記燃料極層側の空間を分画する,導電性セパレータ」として機能する。セパレータ130は,例えばフェライト系ステンレスからなる厚み0.02〜0.30mmの枠状の板状であり,その中央の正方形の開口部135には,開口部135を閉塞するように前記燃料電池セル本体140が接合される。   The separator 130 is joined to the upper surface of the outer edge portion of the fuel cell main body 140 to block between the air flow path 101 and the fuel gas flow path 102, and is connected to the solid electrolyte layer and the air electrode layer. Side, and functions as a conductive separator that separates the space on the fuel electrode layer side. The separator 130 is, for example, a frame-like plate made of ferritic stainless steel and having a thickness of 0.02 to 0.30 mm. The fuel cell unit is formed so that the opening 135 is closed at the central square opening 135. The main body 140 is joined.

このセパレータ130においても,前記ガスシール部120と同様に,その四隅の角部に同形状の各貫通孔25〜28が形成されるとともに,四方の各辺に沿って(第1ガス流路となる)同形状の各貫通孔131〜134が形成されている。   In the separator 130, similarly to the gas seal portion 120, through holes 25 to 28 having the same shape are formed at the corners of the four corners, and along the four sides (the first gas flow path and The through holes 131 to 134 having the same shape are formed.

燃料極フレーム160は,燃料ガス流路102側に配置され,中央に開口部165を備えた例えばフェライト系ステンレスからなる厚み0.5〜2.0mmの枠状の板材である。前記燃料極フレーム160は,前記セパレータ130と同様に,その四隅の角部に同形状の各貫通孔25〜28が形成されるとともに,四方の各辺に沿って,ガス流路となる各貫通孔161〜164が形成されている。   The fuel electrode frame 160 is a frame-like plate material having a thickness of 0.5 to 2.0 mm made of, for example, ferritic stainless steel, which is disposed on the fuel gas flow path 102 side and has an opening 165 at the center. Similarly to the separator 130, the fuel electrode frame 160 is formed with through holes 25 to 28 having the same shape at the corners of the four corners, and the through holes serving as gas flow paths along the four sides. Holes 161 to 164 are formed.

この燃料極フレーム160にも,対向する各枠部分に,開口部165と貫通孔162,164と連通するように,細径(長さ20mm以下×幅5mm)のガス流路となる切り欠き167がそれぞれ4本ずつ設けられている。   This fuel electrode frame 160 also has a notch 167 that forms a gas passage with a small diameter (length 20 mm or less × width 5 mm) so as to communicate with the opening 165 and the through-holes 162 and 164 in each opposed frame portion. There are four each.

本実施形態に係る燃料電池セル100は,金属層182,183,導電性部材184を有する。
金属層182は,セパレータ130の下面と燃料極フレーム160の上面を電気的に接続する。金属層183は,燃料極フレーム160の下面とインターコネクト110(2)の上面を電気的に接続する。
The fuel cell 100 according to this embodiment includes metal layers 182 and 183 and a conductive member 184.
The metal layer 182 electrically connects the lower surface of the separator 130 and the upper surface of the fuel electrode frame 160. The metal layer 183 electrically connects the lower surface of the fuel electrode frame 160 and the upper surface of the interconnect 110 (2).

これらの金属層182,183を燃料極フレーム160の枠部(燃料極フレーム160の開口部165の周囲)に配置することで,燃料極フレーム160の開口部165を外部から気密に封止できる。このように,金属層182,183を封止層として用いることで,燃料極側でガスシール部を不要とできる。例えば,セパレータ130の下面と燃料極フレーム160の上面をレーザ溶接,抵抗溶接,ろう付け(セパレータ130および燃料極フレーム160の構成材料より低融点の金属を接着剤として用いる固着)することで,金属層182(溶接層)を形成できる。同様に,燃料極フレーム160の下面とインターコネクタ110(2)の上面をレーザ溶接,抵抗溶接,ろう付けすることで,金属層183(溶接層)を形成できる。   By disposing these metal layers 182 and 183 on the frame part of the fuel electrode frame 160 (around the opening part 165 of the fuel electrode frame 160), the opening part 165 of the fuel electrode frame 160 can be hermetically sealed from the outside. Thus, by using the metal layers 182 and 183 as the sealing layer, the gas seal portion can be made unnecessary on the fuel electrode side. For example, the lower surface of the separator 130 and the upper surface of the fuel electrode frame 160 are laser welded, resistance welded, and brazed (fixed using a metal having a melting point lower than that of the constituent material of the separator 130 and the fuel electrode frame 160). A layer 182 (weld layer) can be formed. Similarly, the metal layer 183 (welded layer) can be formed by laser welding, resistance welding, or brazing the lower surface of the fuel electrode frame 160 and the upper surface of the interconnector 110 (2).

導電性部材184は,例えば,Ag,Pd,Pt,またはNiを主成分とする金属または金属ペーストにより構成される金属箔または金属膜である。導電性部材184は,例えば,Ag等を主成分とする金属を含むペーストを印刷等で塗布し,焼成することで形成できる。導電性部材184は,燃料電池セル本体140側面に配置され,セパレータ130と燃料極基板層145を電気的に接続する。導電性部材184は,「導電性セパレータと前記コネクタとを電気的に接続する導電性部材」として機能する。   The conductive member 184 is, for example, a metal foil or a metal film made of a metal or metal paste containing Ag, Pd, Pt, or Ni as a main component. The conductive member 184 can be formed, for example, by applying a paste containing a metal whose main component is Ag or the like by printing and baking. The conductive member 184 is disposed on the side surface of the fuel cell main body 140 and electrically connects the separator 130 and the fuel electrode substrate layer 145. The conductive member 184 functions as a “conductive member that electrically connects the conductive separator and the connector”.

この結果,図2に示すように,インターコネクタ110(1),110(2)間の電気的接続は,次の2つの経路によって確保される。
(1)燃料極基板層145および集電体181を経由する経路(電流I1)
(2)燃料極基板層145,導電性部材184,セパレータ130,金属層182,燃料極フレーム160,金属層183を経由する経路(電流I2)
As a result, as shown in FIG. 2, the electrical connection between the interconnectors 110 (1) and 110 (2) is ensured by the following two paths.
(1) A path (current I1) passing through the fuel electrode substrate layer 145 and the current collector 181
(2) Path through fuel electrode substrate layer 145, conductive member 184, separator 130, metal layer 182, fuel electrode frame 160, metal layer 183 (current I2)

このため,図4に示すように,集電体181の座屈などによる燃料極基板層145,インターコネクタ110(2)間の電気的接続が遮断された場合でも,経路(2)での導通(電流I2)が確保される(インターコネクタ110(1),110(2)間の導通確保)。   Therefore, as shown in FIG. 4, even when the electrical connection between the fuel electrode substrate layer 145 and the interconnector 110 (2) due to the buckling of the current collector 181 is interrupted, the conduction in the path (2) is performed. (Current I2) is secured (conducting conduction between the interconnectors 110 (1) and 110 (2)).

既述のように,集電体181は,比較的潰れやすい材料から構成される。これは,インターコネクタ110(1),110(2),燃料電池セル本体140,集電体147,181を積層し,締結具(ボルト41〜48,ナット51〜58)で締め付けたときに,燃料電池セル本体140,特に,固体電解質層143が割れることを防止するためである。集電体181が変形することで,燃料電池セル本体140に印加される応力が緩和される。   As described above, the current collector 181 is made of a material that is relatively easily crushed. This is because when the interconnectors 110 (1) and 110 (2), the fuel cell main body 140, and the current collectors 147 and 181 are stacked and tightened with fasteners (bolts 41 to 48 and nuts 51 to 58), This is to prevent the fuel cell body 140, in particular, the solid electrolyte layer 143 from cracking. As the current collector 181 is deformed, the stress applied to the fuel cell body 140 is relaxed.

しかし,集電体181を比較的潰れやすい材料から構成したことで,例えば,固体酸化物形燃料電池10の運転時の高温による熱応力により,集電体181が塑性変形する(例えば,座屈)可能性が高くなっている。図4では,集電体181の変形により,集電体181−燃料電池セル本体140間,または集電体181−インターコネクタ110(2)間での接触が断たれている。この結果,燃料電池セル本体140−集電体181−インターコネクタ110(2)間での直接的な電気的導通が遮断されている。   However, since the current collector 181 is made of a material that is relatively easily crushed, for example, the current collector 181 is plastically deformed (for example, buckled) due to thermal stress due to high temperature during operation of the solid oxide fuel cell 10. ) The possibility is high. In FIG. 4, due to the deformation of the current collector 181, the contact between the current collector 181 and the fuel cell body 140 or between the current collector 181 and the interconnector 110 (2) is broken. As a result, direct electrical conduction between the fuel cell main body 140 and the current collector 181 and the interconnector 110 (2) is interrupted.

本実施形態では,集電体181が座屈等変形した場合でも,金属層182,183,導電性部材184によって,燃料電池セル本体140−インターコネクタ110(2)間での電気的導通が確保される。   In the present embodiment, even when the current collector 181 is deformed such as buckling, the metal layers 182, 183 and the conductive member 184 ensure electrical continuity between the fuel cell body 140 and the interconnector 110 (2). Is done.

(比較例)
図5,図6は,本発明の比較例に係る燃料電池セル100xの断面図であり,それぞれ図2,図4に対応する。
燃料電池セル100xは,金属層182,183,導電性部材184を有せず,インターコネクタ110(1),110(2)間の電気的接続は,燃料極基板層145および集電体181を経由する経路(電流I1)のみに限定される。
このため,図6に示すように,集電体181による燃料極基板層145,インターコネクタ110(2)間の電気的接続が遮断された場合,インターコネクタ110(1),110(2)間の導通が確保されない。
(Comparative example)
5 and 6 are sectional views of a fuel cell 100x according to a comparative example of the present invention, and correspond to FIGS. 2 and 4, respectively.
The fuel battery cell 100x does not have the metal layers 182 and 183 and the conductive member 184, and the electrical connection between the interconnectors 110 (1) and 110 (2) includes the fuel electrode substrate layer 145 and the current collector 181. It is limited only to the route (current I1) that passes.
Therefore, as shown in FIG. 6, when the electrical connection between the fuel electrode substrate layer 145 and the interconnector 110 (2) by the current collector 181 is cut off, the interconnectors 110 (1) and 110 (2) are disconnected. Is not ensured.

(変形例)
図7,図8は,本発明の第1の実施形態の変形例に係る燃料電池セル100aの断面図であり,それぞれ図2,図4に対応する。
燃料電池セル100aは,導電性部材184に替えて,導電性部材185(第1の導電性部材)を有する。
(Modification)
7 and 8 are cross-sectional views of a fuel cell 100a according to a modification of the first embodiment of the present invention, and correspond to FIGS. 2 and 4, respectively.
The fuel cell 100a includes a conductive member 185 (first conductive member) instead of the conductive member 184.

導電性部材185は,Ag,Pd,Pt,またはNiを主成分とする金属または金属ペーストにより構成される金属箔または金属膜である。導電性部材185は,例えば,Ag等を主成分とする金属を含むペーストを印刷等で塗布し,焼成することで形成できる。導電性部材185は,燃料電池セル本体140a上面に配置され,セパレータ130と燃料極機能層144を電気的に接続する。   The conductive member 185 is a metal foil or a metal film made of a metal or metal paste mainly composed of Ag, Pd, Pt, or Ni. The conductive member 185 can be formed, for example, by applying a paste containing a metal containing Ag or the like as a main component by printing or the like and baking it. The conductive member 185 is disposed on the upper surface of the fuel cell main body 140a and electrically connects the separator 130 and the fuel electrode functional layer 144.

図7に示すように,燃料電池セル本体140の上面に,空気極機能層141(空気極層),反応防止層142,固定電解質層143が配置されず,燃焼極機能層144,燃焼極基板層145(燃料極層)のみが配置される領域を有する。導電性部材185が,この領域に配置され,燃焼極機能層144と電気的に接続される。   As shown in FIG. 7, the air electrode functional layer 141 (air electrode layer), the reaction preventing layer 142, and the fixed electrolyte layer 143 are not arranged on the upper surface of the fuel cell main body 140, and the combustion electrode functional layer 144, the combustion electrode substrate It has a region where only the layer 145 (fuel electrode layer) is disposed. A conductive member 185 is disposed in this region and is electrically connected to the combustion electrode functional layer 144.

この結果,図7に示すように,インターコネクタ110(1),110(2)間の電気的接続は,次の2つの経路によって確保される。
(1)燃料極基板層145および集電体181を経由する経路1(電流I1)
(2)燃料極基板層145,燃料極機能層144,導電性部材185,セパレータ130,金属層182,燃料極フレーム160,金属層183を経由する経路3(電流I3)
As a result, as shown in FIG. 7, the electrical connection between the interconnectors 110 (1) and 110 (2) is ensured by the following two paths.
(1) Path 1 (current I1) passing through the fuel electrode substrate layer 145 and the current collector 181
(2) Fuel electrode substrate layer 145, fuel electrode functional layer 144, conductive member 185, separator 130, metal layer 182, fuel electrode frame 160, and path 3 via metal layer 183 (current I3)

このため,図8に示すように,集電体181による燃料極基板層145,インターコネクタ110(2)間の電気的接続が遮断された場合でも,経路(3)での導通(電流I3)が確保される(インターコネクタ110(1),110(2)間の導通確保)。   Therefore, as shown in FIG. 8, even when the electrical connection between the fuel electrode substrate layer 145 and the interconnector 110 (2) by the current collector 181 is interrupted, the conduction (current I3) in the path (3) Is ensured (ensuring conduction between the interconnectors 110 (1) and 110 (2)).

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

(1)上記実施形態では,燃料極側に金属層182,183,導電性部材184を配置し,集電体181が変形した場合でも,燃料電池セル本体140の燃料極側とインターコネクタ110(2)間の電気的導通を確保している。
これに対して,空気極側に金属層182,183,導電性部材184を配置しても良い。この場合,集電体147が変形した場合でも,燃料電池セル本体140の空気極側とインターコネクタ110(1)間の電気的導通の確保が可能となる。
(1) In the above embodiment, even when the metal layers 182, 183 and the conductive member 184 are disposed on the fuel electrode side and the current collector 181 is deformed, the fuel electrode side of the fuel cell body 140 and the interconnector 110 ( 2) Ensures electrical continuity between.
On the other hand, the metal layers 182 and 183 and the conductive member 184 may be disposed on the air electrode side. In this case, even when the current collector 147 is deformed, it is possible to ensure electrical conduction between the air electrode side of the fuel cell main body 140 and the interconnector 110 (1).

(2)上記実施形態では,燃料電池セル本体140とインターコネクタ110(2)間の電気的導通を確保している。
インターコネクタ110は,燃料電池セル100間での電気的導通を確保するために,燃料電池セル100間に配置される。このインターコネクタ110(2)を,固体酸化物形燃料電池10の上端または下端の端末コネクタとしてもよい。即ち,インターコネクタ110(2)に替えて,コネクタ一般への適用が可能である。
(2) In the said embodiment, the electrical continuity between the fuel cell main body 140 and the interconnector 110 (2) is ensured.
The interconnector 110 is disposed between the fuel cells 100 in order to ensure electrical continuity between the fuel cells 100. The interconnector 110 (2) may be a terminal connector at the upper end or the lower end of the solid oxide fuel cell 10. That is, it can be applied to general connectors in place of the interconnector 110 (2).

10 固体酸化物形燃料電池
11 上面
12 底面
21-28 貫通孔
41-48 ボルト
51-58 ナット
60 部材
61 導入管
62 部材
100 燃料電池セル
101 空気流路
102 燃料ガス流路
110 インターコネクタ
120 ガスシール部
121-124 貫通孔
125 開口部
127 切り欠き
130 セパレータ
131-134 貫通孔
135 開口部
140 燃料電池セル本体
141 空気極機能層
142 反応防止層
143 固体電解質層
144 燃料極機能層
145 燃料極基板層
147 集電体
160 燃料極フレーム
161-164 貫通孔
165 開口部
167 切り欠き
181 集電体
182,183 金属層
184,185 導電性部材
DESCRIPTION OF SYMBOLS 10 Solid oxide fuel cell 11 Upper surface 12 Bottom surface 21-28 Through-hole 41-48 Bolt 51-58 Nut 60 Member 61 Introduction pipe 62 Member 100 Fuel cell 101 Air flow path 102 Fuel gas flow path 110 Interconnector 120 Gas seal Portion 121-124 Through-hole 125 Opening portion 127 Notch 130 Separator 131-134 Through-hole 135 Opening portion 140 Fuel cell body 141 Air electrode functional layer 142 Reaction prevention layer 143 Solid electrolyte layer 144 Fuel electrode functional layer 145 Fuel electrode substrate layer 147 Current collector 160 Fuel electrode frame 161-164 Through hole 165 Opening 167 Notch 181 Current collector 182, 183 Metal layers 184, 185 Conductive member

Claims (3)

空気極層,固体電解質層,燃料極層を有する板状の燃料電池セル本体と,
前記空気極層,前記燃料極層の一方と面的に接触して電気的に接続される第1の主面と,前記第1の主面の反対側に位置する第2の主面とを有する集電体と,
前記集電体の第2の主面と面的に接触して電気的に接続される,板状のコネクタと,
前記燃料電池セル本体の前記固体電解質層に接続し,前記燃料電池本体と共に対向する二つの前記コネクタで挟まれた内部空間を空気極層側,燃料極層側の空間に分画する,板状の導電性セパレータと,
前記空気極層,前記燃料極層の前記一方と,前記導電性セパレータとを電気的に接続する導電性部材と,
前記導電性セパレータと前記コネクタとの間に配置されて,前記導電性セパレータと前記コネクタとを電気的に接続し,前記空気極層,前記燃料極層の前記一方の少なくとも一部が収容される貫通孔を有する,板状の導電性フレームと,
を具備することを特徴とする固体酸化物形燃料電池。
A plate-shaped fuel cell body having an air electrode layer, a solid electrolyte layer, and a fuel electrode layer;
A first main surface that is in surface contact with and electrically connected to one of the air electrode layer and the fuel electrode layer; and a second main surface located on the opposite side of the first main surface. A current collector,
A plate-like connector that is in surface contact with and electrically connected to the second main surface of the current collector;
A plate-like shape, which is connected to the solid electrolyte layer of the fuel cell body and is divided into an air electrode layer side and a fuel electrode layer side space between the two connectors facing the fuel cell body. A conductive separator of
A conductive member that electrically connects the air electrode layer, the one of the fuel electrode layers, and the conductive separator;
Arranged between the conductive separator and the connector to electrically connect the conductive separator and the connector and accommodate at least a part of the one of the air electrode layer and the fuel electrode layer A plate-like conductive frame having a through hole;
A solid oxide fuel cell comprising:
前記導電性セパレータと前記導電性フレーム,および前記導電性フレームと前記コネクタがそれぞれ,通電性を有する金属層を介して結合される
ことを特徴とする請求項1に記載の固体酸化物形燃料電池。
2. The solid oxide fuel cell according to claim 1, wherein the conductive separator and the conductive frame, and the conductive frame and the connector are coupled to each other via a conductive metal layer. .
前記導電性セパレータ,前記導電性フレーム,および前記コネクタが,FeおよびNiの少なくとも何れかを含む金属から構成される
ことを特徴とする請求項1または2に記載の固体酸化物形燃料電池。
The solid oxide fuel cell according to claim 1, wherein the conductive separator, the conductive frame, and the connector are made of a metal containing at least one of Fe and Ni.
JP2011054811A 2011-03-11 2011-03-11 Solid oxide fuel cell Expired - Fee Related JP5591743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011054811A JP5591743B2 (en) 2011-03-11 2011-03-11 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011054811A JP5591743B2 (en) 2011-03-11 2011-03-11 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2012190725A true JP2012190725A (en) 2012-10-04
JP5591743B2 JP5591743B2 (en) 2014-09-17

Family

ID=47083665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011054811A Expired - Fee Related JP5591743B2 (en) 2011-03-11 2011-03-11 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5591743B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150077489A (en) * 2013-12-27 2015-07-08 재단법인 포항산업과학연구원 Cell for metal supported solid oxide fuel cell and method for manufacturing the same
JP2015130275A (en) * 2014-01-07 2015-07-16 日本特殊陶業株式会社 Fuel cell cassette and fuel cell stack
WO2015108012A1 (en) * 2014-01-15 2015-07-23 日本特殊陶業株式会社 Fuel cell cassette and fuel cell stack
JP2015159106A (en) * 2014-01-23 2015-09-03 日本特殊陶業株式会社 Fuel cell cassette and manufacturing method therefor, fuel cell stack
JPWO2022219791A1 (en) * 2021-04-15 2022-10-20

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303666A (en) * 2003-03-31 2004-10-28 Tokyo Gas Co Ltd Supporting membrane type solid oxide fuel cell
JP2008535149A (en) * 2005-03-23 2008-08-28 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Interconnects for high temperature fuel cells
JP2009009802A (en) * 2007-06-27 2009-01-15 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303666A (en) * 2003-03-31 2004-10-28 Tokyo Gas Co Ltd Supporting membrane type solid oxide fuel cell
JP2008535149A (en) * 2005-03-23 2008-08-28 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Interconnects for high temperature fuel cells
JP2009009802A (en) * 2007-06-27 2009-01-15 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150077489A (en) * 2013-12-27 2015-07-08 재단법인 포항산업과학연구원 Cell for metal supported solid oxide fuel cell and method for manufacturing the same
KR102163688B1 (en) 2013-12-27 2020-10-08 재단법인 포항산업과학연구원 Cell for metal supported solid oxide fuel cell and method for manufacturing the same
JP2015130275A (en) * 2014-01-07 2015-07-16 日本特殊陶業株式会社 Fuel cell cassette and fuel cell stack
WO2015108012A1 (en) * 2014-01-15 2015-07-23 日本特殊陶業株式会社 Fuel cell cassette and fuel cell stack
JP6039110B2 (en) * 2014-01-15 2016-12-07 日本特殊陶業株式会社 Fuel cell cassette and fuel cell stack for solid oxide fuel cell
EP3096381A4 (en) * 2014-01-15 2017-09-27 NGK Spark Plug Co., Ltd. Fuel cell cassette and fuel cell stack
US10707499B2 (en) 2014-01-15 2020-07-07 Morimura Sofc Technology Co., Ltd. Fuel cell cassette and fuel cell stack
JP2015159106A (en) * 2014-01-23 2015-09-03 日本特殊陶業株式会社 Fuel cell cassette and manufacturing method therefor, fuel cell stack
JPWO2022219791A1 (en) * 2021-04-15 2022-10-20
WO2022219791A1 (en) * 2021-04-15 2022-10-20 日産自動車株式会社 Fuel cell, and method for manufacturing fuel cell
JP7294522B2 (en) 2021-04-15 2023-06-20 日産自動車株式会社 FUEL CELL AND FUEL CELL MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP5591743B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5330577B2 (en) Fuel cell and fuel cell stack
JP5313667B2 (en) Solid electrolyte fuel cell stack
JP5198797B2 (en) Solid electrolyte fuel cell
JP5198799B2 (en) Solid electrolyte fuel cell
JP5242985B2 (en) Solid oxide fuel cell
JP5685348B2 (en) Fuel cell and fuel cell stack
JP2007317490A (en) Solid electrolyte fuel cell stack
JP5876944B2 (en) Fuel cell and fuel cell stack
JP5591743B2 (en) Solid oxide fuel cell
JP2008052943A (en) Fuel cell stack and fuel cell
JP5346402B1 (en) Fuel cell and fuel cell stack
JP5254588B2 (en) Solid oxide fuel cell module
JP5685349B2 (en) Fuel cell and fuel cell stack
JP6169429B2 (en) Fuel cell with separator and fuel cell stack
JP5607561B2 (en) Solid oxide fuel cell
JP5844167B2 (en) Solid oxide fuel cell
JP5739943B2 (en) Fuel cell and fuel cell stack
JP5727431B2 (en) Fuel cell with separator and fuel cell
JP5608588B2 (en) Solid oxide fuel cell
JP2007242279A (en) Solid electrolyte fuel cell stack, and method for fabrication thereof
JP2014026974A5 (en)
JP4949737B2 (en) Solid oxide fuel cell stack and solid oxide fuel cell
JP5480171B2 (en) Solid oxide fuel cell
JP2011228171A (en) Fuel cell
JP2008021596A (en) Solid-oxide fuel cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140730

R150 Certificate of patent or registration of utility model

Ref document number: 5591743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees