JP2012188950A - Engine - Google Patents
Engine Download PDFInfo
- Publication number
- JP2012188950A JP2012188950A JP2011051337A JP2011051337A JP2012188950A JP 2012188950 A JP2012188950 A JP 2012188950A JP 2011051337 A JP2011051337 A JP 2011051337A JP 2011051337 A JP2011051337 A JP 2011051337A JP 2012188950 A JP2012188950 A JP 2012188950A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- coolant
- water pump
- engine
- warm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Combined Controls Of Internal Combustion Engines (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Abstract
Description
本発明は、エンジンの内部通路と外部通路とを閉ループとして冷却液を循環可能にしたエンジンに関する。 The present invention relates to an engine in which coolant can be circulated with an internal passage and an external passage of the engine as a closed loop.
例えば特許文献1の段落0024には、電動式のウォーターポンプを備える内燃機関において、ヘッド側ウォータジャケットの排出口から排出された冷却水の温度を温度センサで検出し、この検出温度が所定温度以下の場合に前記ウォーターポンプを停止させることによって、エンジンの暖機を促進させるようにすることが記載されている。
For example, in paragraph 0024 of
また、特許文献1の段落0025,0026には、前記エンジン暖機時にウォータポンプを停止することに伴いシリンダヘッドなどで冷却水が局所的に高温になって沸騰する問題に対し、次のようにしている。つまり、ウォータポンプの停止制御を開始する前に、ウォータポンプを駆動することにより冷却水通路内の冷却液を前記温度センサに供給するようにし、この温度センサで検出される冷却水温度に基づいて冷却水が沸騰する可能性を判定する。そして、沸騰する可能性が低いと判定した場合に、前記ウォーターポンプの停止制御の開始を許可することが記載されている。
Further, paragraphs 0025 and 0026 of
この他、例えば特許文献2の段落0014−0017には、シリンダヘッド内の冷却水の温度が所定温度よりも低い場合に、電動式のウォータポンプを周期的に正回転、停止、逆回転させるという一連の制御を行うことにより、シリンダブロックとシリンダヘッドとに設けられる冷却水路という限られた範囲内で冷却水を攪拌させて、前記冷却水路のヒートスポットを回避しようとすることが記載されている。
In addition, for example, in paragraphs 0014-0017 of
上記特許文献2の場合、ウォータポンプを正回転、停止、逆回転という一連の制御を必要に応じて行うのであるが、ウォータポンプを正回転させることにより冷却水を循環方向に流動させた後、ウォータポンプを停止させてから逆回転させたとしても前記冷却水の慣性の影響で冷却液が循環方向の流れに対して直ぐには逆流するようにならない。仮に、所定時間遅延してから逆回転させたとしても冷却水の流れが弱まるか、あるいは停止する程度と考えられる。そのため、前記冷却水路内で冷却水を攪拌させる効果が薄く、また、攪拌させるまでには時間がかかり過ぎると考えられる。ここに改良の余地がある。
In the case of the above-mentioned
このような事情に鑑み、本発明は、エンジンの内部通路と外部通路とを閉ループとして冷却液を循環可能にしたエンジンにおいて、暖機を均一に温度管理しながら速やかに完了可能とすることを目的としている。 In view of such circumstances, an object of the present invention is to enable quick completion of warm-up while uniformly controlling the temperature of an engine in which an internal passage and an external passage of the engine are closed loops so that the coolant can be circulated. It is said.
本発明は、エンジンの内部通路と外部通路とを閉ループとして冷却液を循環可能にしたエンジンにおいて、冷却液を流動させるウォータポンプと、このウォータポンプの作動、停止を制御する制御装置と、前記外部通路に設けられかつ冷却液が暖機完了温度未満になると閉側となる一方で前記暖機完了温度以上になると全開になる流量制御弁と、前記外部通路において前記流量制御弁よりも冷却液流通方向の上流側に設けられかつ前記内部通路から排出される冷却液を受け入れてから押し出すように作用する可変容積タンクとを備え、前記制御装置は、前記冷間始動に伴い前記ウォータポンプを停止して冷却液の循環を停止させる昇温促進手段と、前記ウォータポンプの停止状態において前記内部通路の冷却液温度が、前記暖機完了温度よりも高く設定される上限温度以上か否かを判定する第1判定手段と、この第1判定手段で肯定判定した場合に前記ウォータポンプを間欠的に作動させる第1温調手段とを含む、ことを特徴としている。 The present invention relates to a water pump that allows coolant to circulate using an internal passage and an external passage of the engine as a closed loop, a control device that controls the operation and stop of the water pump, A flow rate control valve provided in the passage and closed when the coolant is lower than the warm-up completion temperature, and fully opened when the temperature is higher than the warm-up completion temperature, and the coolant flow in the external passage more than the flow control valve A variable volume tank provided upstream in the direction and acting to push out the coolant discharged from the internal passage, and the control device stops the water pump at the cold start. And a temperature rise promoting means for stopping the circulation of the coolant, and the coolant temperature in the internal passage when the water pump is stopped is higher than the warm-up completion temperature. First determination means for determining whether or not the upper limit temperature is set higher or higher, and first temperature adjustment means for intermittently operating the water pump when the first determination means makes an affirmative determination. It is a feature.
一般に、エンジンを冷間始動するとエンジンの燃焼室から発生する熱でもってシリンダヘッドのほうがシリンダブロックに比べて昇温しやすくなる。なお、冷間始動時には、サーモスタットが閉じていて冷却液を循環させることができない状態になっている。その状態でエンジンの内部通路の冷却液を循環させていない場合には内部通路において燃焼室付近で高温となるので、内部通路の局所の冷却液が過剰昇温して沸騰しやすくなる。 In general, when the engine is cold-started, the temperature of the cylinder head is more easily raised than the cylinder block by the heat generated from the combustion chamber of the engine. At the cold start, the thermostat is closed and the coolant cannot be circulated. In this state, when the coolant in the internal passage of the engine is not circulated, the internal passage becomes high in the vicinity of the combustion chamber, so that the local coolant in the internal passage is excessively heated and tends to boil.
これに対し、本発明の前記構成では、前記したように暖機中にエンジンの内部通路で冷却水が過剰昇温するような場合に、ウォータポンプを間欠的あるいは周期的に作動させるようにしている。 On the other hand, in the configuration of the present invention, the water pump is operated intermittently or periodically when the cooling water is excessively heated in the internal passage of the engine during warm-up as described above. Yes.
そのため、ウォータポンプを作動させている期間はその吐出圧力で前記内部通路の冷却液が排出口から外部通路に押し出されることになって、この冷却液が可変容積タンク内に押し込まれることになる。そして、ウォータポンプを停止させると、前記可変容積タンク内に押し込まれた冷却液が今度は押し出されることになって前記排出口から内部通路へと逆流されることになる。 Therefore, during the period when the water pump is operated, the coolant in the internal passage is pushed out from the discharge port to the external passage by the discharge pressure, and the coolant is pushed into the variable volume tank. Then, when the water pump is stopped, the cooling liquid pushed into the variable volume tank is pushed out this time and flows backward from the discharge port to the internal passage.
このように、ウォータポンプを間欠作動させることによって、エンジンの内部通路内で冷却液が出し入れされるので、冷却液が揺らされるように攪拌されることになって、内部通路内の冷却液の温度分布が均一化されるようになる。そのために、内部通路の局所で冷却液が過剰昇温して沸騰することが避けられるようになる。 In this way, by intermittently operating the water pump, the coolant is taken in and out in the internal passage of the engine, so that the coolant is stirred so as to be shaken, and the temperature of the coolant in the internal passage The distribution becomes uniform. For this reason, it is possible to avoid boiling the coolant excessively at the local portion of the internal passage.
好ましくは、前記制御装置は、前記ウォータポンプの間欠作動中に前記外部通路において前記内部通路への冷却液の導入口寄りの冷却液温度が暖機完了温度以上になったか否かを判定する第2判定手段と、この第2判定手段により肯定判定した場合に前記ウォータポンプを連続的に作動させる第2温調手段とをさらに含む、構成とすることができる。 Preferably, the control device determines whether or not the coolant temperature near the inlet of the coolant to the internal passage is equal to or higher than the warm-up completion temperature in the external passage during the intermittent operation of the water pump. 2 determination means and a second temperature adjustment means for continuously operating the water pump when an affirmative determination is made by the second determination means.
ここでは、暖機が完了したときのウォータポンプの作動形態を特定している。この場合、流量制御弁の上流側の冷却液が暖機完了温度以上になると流量制御弁が全開になるとともに、第2温調手段がウォータポンプを連続的に作動させるので、エンジンの内部通路内の冷却液が外部通路へと排出されることになり、さらにこの外部通路から内部通路へと戻されることになる。つまり、エンジンの内部通路と外部通路とを閉ループとして冷却液が循環されることになるので、この冷却液の循環過程においてシリンダヘッドおよびシリンダブロックの熱を冷却液が回収して外部通路から大気に発散されることになる。これにより、循環させられている冷却液の温度が暖機完了温度に保たれるようになる。 Here, the operation mode of the water pump when the warm-up is completed is specified. In this case, when the coolant on the upstream side of the flow control valve reaches the warm-up completion temperature or more, the flow control valve is fully opened and the second temperature control means continuously operates the water pump. The coolant is discharged to the external passage, and is further returned from the external passage to the internal passage. In other words, the coolant is circulated with the internal passage and the external passage of the engine as a closed loop, and in this circulation of the coolant, the coolant recovers the heat of the cylinder head and the cylinder block, and is returned from the external passage to the atmosphere. Will be exhaled. Thereby, the temperature of the circulating coolant is kept at the warm-up completion temperature.
好ましくは、前記ウォータポンプは、電動機により作動される電動式ウォーターポンプとされる。ここではウォータポンプの種類を特定している。この特定によればウォータポンプの動作を簡易に制御することが明らかになる。 Preferably, the water pump is an electric water pump operated by an electric motor. Here, the type of water pump is specified. This identification makes it easy to control the operation of the water pump.
本発明は、エンジンの内部通路と外部通路とを閉ループとして冷却液を循環可能にしたエンジンにおいて、暖機を均一に温度管理しながら速やかに完了することが可能になる。 According to the present invention, in an engine in which an internal passage and an external passage of the engine are closed loops so that coolant can be circulated, warm-up can be quickly completed while the temperature is uniformly controlled.
以下、本発明を実施するための最良の実施形態について添付図面を参照して詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings.
図1から図4に、本発明の一実施形態を示している。この実施形態では直列多気筒型のエンジンを例に挙げて説明する。図1に示すエンジン1は、シリンダブロック11とシリンダヘッド12とを少なくとも備えている。
1 to 4 show an embodiment of the present invention. In this embodiment, an in-line multi-cylinder engine will be described as an example. The
シリンダブロック11内にはウォータジャケット13が設けられている。また、シリンダヘッド12内にはウォータジャケット14が設けられている。これらブロック側ウォータジャケット13およびヘッド側ウォータジャケット14が冷却液の内部通路である。冷却液は、例えばエチレングリコールの水溶液などの不凍液とされている。
A
ブロック側ウォータージャケット13は、シリンダブロック1のデッキ面つまりシリンダヘッド(図示省略)が組み付けられる面に向けて開放されている。このようなウォータージャケット13を備えるシリンダブロック1は、いわゆるオープンデッキタイプと呼ばれている。ヘッド側ウォータジャケット14は、下側つまりシリンダブロック1側へ向けて開口されている。つまり、シリンダブロック側ウォータジャケット13とシリンダヘッド側ウォータジャケット14との間で冷却液が流通可能になっている。
The block-
シリンダブロック13において気筒配列方向の一端面にはブロック側ウォータジャケット13に冷却液を導入させるための導入口15が設けられている。また、シリンダヘッド12において気筒配列方向の他端面にはヘッド側ウォータジャケット14から冷却液を排出させるための排出口16が設けられている。
In the
このシリンダブロック11の導入口15とシリンダヘッド12の排出口16とには、外部通路2が連通連結されている。この外部通路2には、ウォータポンプ4、ラジエータ5ならびにヒータコア6などが設けられている。
An
ウォータポンプ4は、外部通路2においてシリンダブロック11の導入口15寄りの位置に設けられている。
The
ラジエータ5は、冷却液の熱を大気に発散させるための熱交換器であり、外部通路2においてウォータポンプ4よりも冷却液流通方向の上流側に設けられている。
The
ヒータコア6は、車両室内を暖房するための熱交換器であり、外部通路2においてラジエータ5よりも冷却液流通方向の上流側に設けられている。
The
そして、外部通路2においてヒータコア6よりも冷却液流通方向の上流側でシリンダヘッド12の排出口16寄りの位置には、流量制御弁としてサーモスタット8が設けられている。
A
このサーモスタット8は、公知の構成であるので詳細に図示していないが、サーモスタット設置場所の冷却液温度が暖機完了温度(例えば約88℃)Th0未満になると、サーモワックスが凝固収縮してワックス圧が低くなるので、弁体が自動的に閉側になって外部通路2からウォータポンプ4への冷却液流通を少なくするが、サーモスタット設置場所の冷却液温度が暖機完了温度Th0以上になると、サーモワックスが溶融膨張されてワックス圧が高くなるので、弁体が自動的に全開になって外部通路2からウォータポンプ4への冷却液流通を許容する。
The
詳しくは、このサーモスタット8は、暖機完了温度Th0より低い所定温度(例えば82℃)未満になると全閉状態になり、その所定温度から開き始め、暖機完了温度になると全開状態になるのである。
Specifically, the
さらに、外部通路2においてエンジン1の冷却液排出口16とサーモスタット8との間の領域には、可変容積タンク9が接続されている。この可変容積タンク9は、サーモスタット8が閉じているかあるいは閉側になっている状態でウォータポンプ4が作動することによって内部通路(ブロック側ウォータジャケット13およびヘッド側ウォータジャケット14)から排出される冷却液を受け入れるとともに、サーモスタット8が閉じているかあるいは閉側になっている状態でウォータポンプ4が停止したときに前記受け入れた冷却液を押し出すように作用する。
Further, a
具体的に、可変容積タンク9は、シリンダ91、ピストン92、リバーススプリング93などを備えている。シリンダ91は、内部通路(ブロック側ウォータジャケット13およびヘッド側ウォータジャケット14)における局所の冷却液温度TcBが過上昇したときに当該内部通路内で冷却液を揺らすための力を発生するような量の冷却液を収容可能とする容積に設定されている。ピストン92は、シリンダ91内に往復スライド可能に収納されてい。リバーススプリング93は、ピストン92をシリンダ91の開口を閉塞させる向きに付勢する。
Specifically, the
このようなエンジン1の温度は、制御装置20により制御される。この制御装置20は、エレクトロニックコントロールユニット(ECU)であり、詳細に図示していないが、CPU(中央処理装置)、ROM(プログラムメモリ)、RAM(データメモリ)、ならびにバックアップRAM(不揮発性メモリ)などを備える公知の構成とされる。
The temperature of the
ROMは、各種制御プログラムや、それら各種制御プログラムを実行する際に参照されるマップなどが記憶されている。CPUは、ROMに記憶された各種制御プログラムやマップに基づいて演算処理を実行する。また、RAMは、CPUでの演算結果や各センサから入力されたデータ等を一時的に記憶するメモリであり、バックアップRAMは、エンジン1の停止時にその保存すべきデータなどを記憶する不揮発性のメモリである。
The ROM stores various control programs, maps that are referred to when the various control programs are executed, and the like. The CPU executes arithmetic processing based on various control programs and maps stored in the ROM. The RAM is a memory that temporarily stores calculation results in the CPU, data input from each sensor, and the like. The backup RAM is a nonvolatile memory that stores data to be saved when the
この実施形態では、シリンダブロック2の導入口15付近に第1温度センサ21が設けられており、また、ヘッド側ウォータジャケット14内に第2温度センサ22が設けられている。
In this embodiment, a
この第1、第2温度センサ21,22は冷却水温度に対応する信号を出力して制御装置20に入力する。これにより、制御装置20は、第1温度センサ21の検出出力の入力に基づいてエンジン広範囲の冷却液温度TcBを認識し、第2温度センサ22の検出出力の入力に基づいてヘッド側ウォータジャケット14内の局所的な冷却液温度TcHを認識する。
The first and
この制御装置20は、例えばエンジン1の運転に関する各種制御を実行する他、下記するようなエンジン1の温度調整制御を実行する。
For example, the
次に、図4に示すフローチャートを参照して、制御装置20によるエンジン1の温度調整制御を説明する。
Next, the temperature adjustment control of the
エンジン1が始動されると、制御装置20が図4に示すフローチャートの処理を実行開始する。まず、ステップS1において外部通路2においてエンジン1の広範囲(エンジン1の導入口15寄り)の冷却液温度TcBが暖機完了温度Th0以上になったか否かを判定する。ここでは、第1温度センサ21からの出力信号に基づいてエンジン1の導入口15寄りの冷却液温度TcBをエンジン1の広範囲の冷却液温度として検出し、この検出値TcBと暖機完了温度Th0とを比較することにより判定することができる。
When the
ここで、TcB<Th0の場合には前記ステップS1で否定判定し、続くステップS2でウォータポンプ4を停止する。これにより、ヘッド側ウォータジャケット14およびブロック側ウォータジャケット13の冷却液温度が徐々に上昇するようになる。
If TcB <Th0, a negative determination is made in step S1, and the
しかし、TcB≧Th0の場合には前記ステップS1で肯定判定し、前記ステップS2を飛び越えてステップS3に移行する。 However, if TcB ≧ Th0, an affirmative determination is made in step S1, and the process skips step S2 and proceeds to step S3.
このステップS3では、エンジン1の局所(ヘッド側ウォータジャケット14)の冷却水温度TcHが、上限温度Th1以上であるか否かを判定する。ここでは、第2温度センサ22からの出力信号に基づいてヘッド側ウォータジャケット14内の冷却水温度TcHをエンジン1の局所的な冷却液温度として検出し、この検出値TcHと上限温度Th1とを比較することにより判定することができる。なお、上限温度Th1は、暖機完了温度Th0よりも高く設定されるが、具体的に例えばシリンダヘッド12の安全保障温度(約95℃)に設定される。
In step S3, it is determined whether or not the coolant temperature TcH in the local area (head side water jacket 14) of the
ここで、TcH<Th1の場合には前記ステップS3で否定判定し、前記ステップS3に戻る。つまりウォータポンプ4の停止を継続することによりエンジン1の局所(ヘッド側ウォータジャケット14)の冷却液温度TcHを上昇させるようにする。このようにして、TcH≧Th1になると前記ステップS3で肯定判定し、続くステップS4に移行する。
Here, if TcH <Th1, a negative determination is made in step S3, and the process returns to step S3. That is, the coolant temperature TcH in the local area (head side water jacket 14) of the
このステップS4ではウォータポンプ4を間欠的に作動させる。ここでは、ウォータポンプ4の作動時期と停止時期とのインターバル、つまり周期を適宜に設定することが可能であり、また、ウォータポンプ4の作動時間と停止時間とを適宜に設定することが可能である。なお、前記作動時間と停止時間とを同じに設定してもよいし、また、長短異ならせるように設定してもよい。ちなみに、ウォータポンプ4の作動時期と停止時期とのインターバル、つまり周期を長く設定すると、冷却液の揺らし作用が大きくなると言える。この他、ウォータポンプ4の作動時の吐出能力を可及的に高く設定することも可能であり、その場合にも冷却液の揺らし作用が大きくなると言える。
In step S4, the
これにより、ウォータポンプ4が作動している期間ではその吐出圧力で内部通路(ヘッド側ウォータジャケット14およびブロック側ウォータジャケット13)の冷却液が排出口16から外部通路2に押し出されることになって、この冷却液が可変容積タンク9内に押し込まれるようになる。そして、ウォータポンプ4を停止させると可変容積タンク9内に押し込まれた冷却液が今度は押し出されることになって排出口16から内部通路(ヘッド側ウォータジャケット14およびブロック側ウォータジャケット13)へと逆流されるようになる。
As a result, during the period in which the
このように、ウォータポンプ4を間欠的に作動させると、エンジン1の内部通路(ヘッド側ウォータジャケット14およびブロック側ウォータジャケット13)内で冷却液が出し入れされるので、冷却液が揺らされるように攪拌されることになって、内部通路(ヘッド側ウォータジャケット14およびブロック側ウォータジャケット13)内の冷却液の温度分布が均一化されるようになる。そのために、内部通路(ヘッド側ウォータジャケット14およびブロック側ウォータジャケット13)の局所で冷却液が過剰昇温して沸騰することが避けられるようになる。
As described above, when the
この後、ステップS5において外部通路2においてエンジン1の広範囲(エンジン1の導入口15寄り)の冷却液温度TcBが暖機完了温度Th0以上になったか否かを判定する。ここでは、前記ステップS1と同様に第1温度センサ21からの出力信号に基づいてエンジン1の導入口15寄りの冷却液温度TcBをエンジン1の広範囲の冷却液温度として検出し、この検出値TcBと暖機完了温度Th0とを比較することにより判定することができる。
Thereafter, in step S5, it is determined whether or not the coolant temperature TcB in the wide range of the engine 1 (near the
ここで、TcB<Th0の場合には前記ステップS5で否定判定し、前記ステップS5に戻る。つまり前記ウォータポンプ4の間欠作動を継続することにより、エンジン1の広範囲(エンジン1の導入口15寄り)の冷却液温度TcBを上昇させるようにする。このようにして、TcB≧Th0になると前記ステップS5で肯定判定し、続くステップS6に移行する。
If TcB <Th0, a negative determination is made in step S5, and the process returns to step S5. That is, by continuing the intermittent operation of the
このステップS6ではウォータポンプ4を連続的に作動させる。このときのウォータポンプ4は、デューティ制御とされる。このとき、サーモスタット8の上流側の冷却液も暖機完了温度Th0以上になっているので、サーモスタット8が開弁している。そのため、エンジン1の内部通路(ヘッド側ウォータジャケット14およびブロック側ウォータジャケット13)と外部通路2とが閉ループになって冷却液が循環されるようになる。
In this step S6, the
この冷却液の循環過程では、シリンダヘッド12およびシリンダブロック11の熱を冷却液が回収してラジエータ5により大気に発散されることになるので、循環させられている冷却液の温度が暖機完了温度Th0に保たれるようになる。
In this circulation process of the coolant, the coolant recovers the heat of the
この後、続くステップS7において、外部通路2においてエンジン1の広範囲(エンジン1の導入口15寄り)の冷却液温度TcBが暖機完了温度Th0未満になったか否かを判定する。ここでは、前記ステップS1,S5と同様に第1温度センサ21からの出力信号に基づいてエンジン1の導入口15寄りの冷却液温度TcBをエンジン1の広範囲の冷却液温度として検出し、この検出値TcBと暖機完了温度Th0とを比較することにより判定することができる。
Thereafter, in the subsequent step S7, it is determined whether or not the coolant temperature TcB in the wide range of the engine 1 (near the
ここで、TcB≧Th0の場合には前記ステップS7で否定判定し、前記ステップS7に戻る。つまりウォータポンプ4の連続作動を継続することにより、エンジン1の広範囲(エンジン1の導入口15寄り)の冷却液温度TcBを低下させるようにする。このようにして、TcB<Th0になると前記ステップS7で肯定判定して、続くステップS8に移行する。
If TcB ≧ Th0, a negative determination is made in step S7, and the process returns to step S7. That is, by continuing the continuous operation of the
このステップS8では、外部通路2においてエンジン1の広範囲(エンジン1の導入口15寄り)の冷却液温度TcBが、下限温度Th2未満になったか否かを判定する。ここでは、前記ステップS1,S5,S7と同様に第1温度センサ21からの出力信号に基づいてエンジン1の導入口15寄りの冷却液温度TcBをエンジン1の広範囲の冷却液温度として検出し、この検出値TcBと下限温度Th2とを比較することにより判定することができる。なお、下限温度Th2は、暖機完了温度Th0よりも低く設定されるが、具体的に例えばエンジン1が安定的に動作するのに必要な基準温度(約80℃)に設定される。
In this step S8, it is determined whether or not the coolant temperature TcB in the wide range of the engine 1 (near the
ここで、TcB≧Th2の場合には前記ステップS8で否定判定し、前記ステップS7に戻る。つまりウォータポンプ4の連続作動を継続することにより、エンジン1の広範囲(エンジン1の導入口15寄り)の冷却液温度TcBを低下させるようにする。このようにして、TcB<Th2になると前記ステップS8で肯定判定して前記ステップS2に戻る。つまりウォータポンプ4の停止制御に移行することにより、エンジン1の広範囲(エンジン1の導入口15寄り)の冷却液温度TcBを上昇させるようにする。
If TcB ≧ Th2, a negative determination is made in step S8, and the process returns to step S7. That is, by continuing the continuous operation of the
以降、上記ステップS2〜S8を繰り返すことにより、エンジン1の温度が一定に調整される。
Thereafter, the temperature of the
以上説明したように本発明を適用した実施形態では、エンジン1の内部通路(ブロック側ウォータジャケット13、ヘッド側ウォータジャケット14)と外部通路(外部通路2)とを閉ループとして冷却液を循環可能にしたエンジン1において、暖機中にエンジン1の内部通路(13,14)の局所で冷却水が過剰昇温して沸騰することを回避して、暖機を均一に温度管理しながら速やかに完了することが可能になる
特に、ウォータポンプ4を周期的に作動、停止させるだけであって、従来例(特許文献2)のように周期的に正回転、停止、逆回転させるような場合に比べて、制御が簡易となり、制御プログラムの設計が容易となるなど、設備コストの上昇を抑制することが可能になる。
As described above, in the embodiment to which the present invention is applied, the coolant can be circulated with the internal passage (block
このようなことから、エンジン冷却系の設備を比較的安価に構築しながら、安定した暖気を速やかに完了できるようになってエンジン1の燃費改善に貢献できるようになる。
For this reason, it is possible to quickly complete stable warm-up while constructing the engine cooling system equipment at a relatively low cost, thereby contributing to the improvement of the fuel consumption of the
以上説明した実施形態に記載している構成要素と請求項に記載している構成要素との対応関係を説明する。請求項に記載の昇温促進手段は図4に示すステップS1,S2に相当し、請求項に記載の第1判定手段は図4に示すステップS3に相当し、請求項に記載の第1温調手段は図4に示すステップS4に相当し、請求項に記載の第2判定手段は図4に示すステップS5に相当し、請求項に記載の第2温調手段は図4に示すステップS6に相当している。 The correspondence relationship between the constituent elements described in the embodiment described above and the constituent elements described in the claims will be described. The temperature increase promotion means described in the claims corresponds to steps S1 and S2 shown in FIG. 4, and the first determination means described in the claims corresponds to step S3 shown in FIG. The adjustment means corresponds to step S4 shown in FIG. 4, the second determination means described in claims corresponds to step S5 shown in FIG. 4, and the second temperature adjustment means described in claims corresponds to step S6 shown in FIG. It corresponds to.
なお、本発明は、上記実施形態のみに限定されるものではなく、特許請求の範囲内および当該範囲と均等の範囲内で適宜に変更することが可能である。 In addition, this invention is not limited only to the said embodiment, It can change suitably in the range equivalent to the claim and the said range.
(1)上記実施形態では、ヒータコア6をサーモスタット8よりも冷却液流通方向の下流側に配置した例を挙げているが、本発明はこれに限定されるものではない。
(1) In the above embodiment, the
例えば図5に示すように、ヒータコア6をサーモスタット8および可変容積タンク9よりも冷却液流通方向の上流側に配置することが可能である。このような形態の場合には、上記実施形態の作用、効果に加えて、暖機中においてもヒータコア6を利用して車両暖房を行うことが可能になる。
For example, as shown in FIG. 5, the
(2)上記実施形態では、ウォータポンプ4を電動式ウォータポンプにした例を挙げているが、本発明はこれに限定されるものではない。
(2) In the above embodiment, an example is given in which the
例えばウォータポンプ4は、公知のメカニカルウォータポンプと呼ばれるタイプとすることも可能である。その場合、図示していないが、例えばウォータポンププーリとクランクシャフトプーリとにベルトを巻き掛けるようにし、ウォータポンププーリに電磁クラッチなどを装備した構成とし、この電磁クラッチを制御装置20で継合、切断させることによりウォータポンプ4を作動、停止させるように制御する構成にする。このような場合も上記実施形態と同様の作用、効果が得られる。
For example, the
(3)上記実施形態では、可変容積タンク9をシリンダタイプにした例を挙げているが、本発明はこれに限定されるものではない。例えば可変容積タンク9は、図示していないが、ゴムチューブなどのような可撓性材料で収縮可能なものにすることが可能である。このような場合も上記実施形態と同様の作用、効果が得られる。
(3) In the said embodiment, although the example which made the
本発明は、エンジンの内部通路と外部通路とを閉ループとして冷却液を循環可能にしたエンジンに好適に利用することが可能である。 INDUSTRIAL APPLICABILITY The present invention can be suitably used for an engine in which an internal passage and an external passage of the engine are closed loops so that coolant can be circulated.
1 エンジン
11 シリンダブロック
12 シリンダヘッド
13 ブロック側ウォータジャケット(内部通路)
14 ヘッド側ウォータジャケット(内部通路)
15 ブロック側ウォータジャケットの導入口
16 ヘッド側ウォータジャケットの排出口
2 外部通路
4 ウォータポンプ
5 ラジエータ
8 サーモスタット
9 可変容積タンク
20 制御装置
21 第1温度センサ
22 第2温度センサ
1
14 Head side water jacket (internal passage)
15 Block side
Claims (3)
冷却液を流動させるウォータポンプと、このウォータポンプの作動、停止を制御する制御装置と、前記外部通路に設けられかつ冷却液が暖機完了温度未満になると閉側となる一方で前記暖機完了温度以上になると全開になる流量制御弁と、前記外部通路において前記流量制御弁よりも冷却液流通方向の上流側に設けられかつ前記内部通路から排出される冷却液を受け入れてから押し出すように作用する可変容積タンクとを備え、
前記制御装置は、前記冷間始動に伴い前記ウォータポンプを停止して冷却液の循環を停止させる昇温促進手段と、
前記ウォータポンプの停止状態において前記内部通路の冷却液温度が、前記暖機完了温度よりも高く設定される上限温度以上か否かを判定する第1判定手段と、
この第1判定手段で肯定判定した場合に前記ウォータポンプを間欠的に作動させる第1温調手段とを含む、ことを特徴とするエンジン。 In an engine that allows the coolant to circulate with the internal passage and the external passage of the engine as a closed loop,
A water pump for causing the coolant to flow, a control device for controlling operation and stop of the water pump, and the warm-up completion while the external passage is closed when the coolant is below the warm-up completion temperature. A flow rate control valve that is fully opened when the temperature is higher than the temperature control valve, and is provided upstream of the flow rate control valve in the external passage in the coolant flow direction and acts to push out after receiving the coolant discharged from the internal passage. And a variable volume tank
The control device includes a temperature increase promoting means for stopping the water pump and stopping the circulation of the coolant with the cold start,
First determination means for determining whether or not the coolant temperature in the internal passage is equal to or higher than an upper limit temperature set higher than the warm-up completion temperature in a stopped state of the water pump;
An engine comprising: first temperature control means for intermittently operating the water pump when an affirmative determination is made by the first determination means.
前記制御装置は、前記ウォータポンプの間欠作動中に前記外部通路において前記内部通路への冷却液の導入口寄りの冷却液温度が暖機完了温度以上になったか否かを判定する第2判定手段と、
この第2判定手段により肯定判定した場合に前記ウォータポンプを連続的に作動させる第2温調手段とをさらに含む、ことを特徴とするエンジン。 The engine according to claim 1,
The control device determines whether or not the coolant temperature near the inlet of the coolant to the internal passage in the external passage becomes equal to or higher than the warm-up completion temperature during the intermittent operation of the water pump. When,
The engine further comprising: a second temperature control unit that continuously operates the water pump when the second determination unit makes a positive determination.
前記ウォータポンプは、電動機により作動される電動式ウォーターポンプとされる、ことを特徴とするエンジン。 The engine according to claim 1 or 2,
The engine, wherein the water pump is an electric water pump operated by an electric motor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011051337A JP5708060B2 (en) | 2011-03-09 | 2011-03-09 | engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011051337A JP5708060B2 (en) | 2011-03-09 | 2011-03-09 | engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012188950A true JP2012188950A (en) | 2012-10-04 |
JP5708060B2 JP5708060B2 (en) | 2015-04-30 |
Family
ID=47082395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011051337A Expired - Fee Related JP5708060B2 (en) | 2011-03-09 | 2011-03-09 | engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5708060B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018021461A (en) * | 2016-08-01 | 2018-02-08 | 株式会社Soken | Cooling system and device for controlling the same |
CN107701292A (en) * | 2017-11-17 | 2018-02-16 | 吉林大学 | A kind of expansion water tank cover, expansion tank and its control method of the anti-scald in engine high-temperature |
CN112177753A (en) * | 2020-08-21 | 2021-01-05 | 东风汽车集团有限公司 | Control method and control device of thermal management module under engine warm-up working condition |
CN115172816A (en) * | 2022-06-06 | 2022-10-11 | 中汽创智科技有限公司 | Cold start method and device of fuel cell |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002038948A (en) * | 2000-07-27 | 2002-02-06 | Aisin Seiki Co Ltd | Engine cooling device |
JP2005113719A (en) * | 2003-10-03 | 2005-04-28 | Honda Motor Co Ltd | Power device provided with internal combustion engine and stirling engine |
JP2006214280A (en) * | 2005-02-01 | 2006-08-17 | Mazda Motor Corp | Cooling device of engine |
JP2009248206A (en) * | 2008-04-02 | 2009-10-29 | Waida Seisakusho:Kk | Method of mounting rotary tool, rotary tool, machine tool, and mounting device for rotary tool |
JP2010059880A (en) * | 2008-09-04 | 2010-03-18 | Toyota Motor Corp | Cooling device for internal combustion engine |
-
2011
- 2011-03-09 JP JP2011051337A patent/JP5708060B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002038948A (en) * | 2000-07-27 | 2002-02-06 | Aisin Seiki Co Ltd | Engine cooling device |
JP2005113719A (en) * | 2003-10-03 | 2005-04-28 | Honda Motor Co Ltd | Power device provided with internal combustion engine and stirling engine |
JP2006214280A (en) * | 2005-02-01 | 2006-08-17 | Mazda Motor Corp | Cooling device of engine |
JP2009248206A (en) * | 2008-04-02 | 2009-10-29 | Waida Seisakusho:Kk | Method of mounting rotary tool, rotary tool, machine tool, and mounting device for rotary tool |
JP2010059880A (en) * | 2008-09-04 | 2010-03-18 | Toyota Motor Corp | Cooling device for internal combustion engine |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018021461A (en) * | 2016-08-01 | 2018-02-08 | 株式会社Soken | Cooling system and device for controlling the same |
WO2018025760A1 (en) * | 2016-08-01 | 2018-02-08 | 株式会社Soken | Cooling system and control device for cooling system |
CN107701292A (en) * | 2017-11-17 | 2018-02-16 | 吉林大学 | A kind of expansion water tank cover, expansion tank and its control method of the anti-scald in engine high-temperature |
CN107701292B (en) * | 2017-11-17 | 2023-07-11 | 吉林大学 | Anti-scalding expansion water tank cover at high temperature of engine, expansion water tank and control method thereof |
CN112177753A (en) * | 2020-08-21 | 2021-01-05 | 东风汽车集团有限公司 | Control method and control device of thermal management module under engine warm-up working condition |
CN112177753B (en) * | 2020-08-21 | 2022-03-01 | 东风汽车集团有限公司 | Control method and control device of thermal management module under engine warm-up working condition |
CN115172816A (en) * | 2022-06-06 | 2022-10-11 | 中汽创智科技有限公司 | Cold start method and device of fuel cell |
CN115172816B (en) * | 2022-06-06 | 2023-12-26 | 中汽创智科技有限公司 | Cold start method and device for fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP5708060B2 (en) | 2015-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9611781B2 (en) | System and method of thermal management for an engine | |
JP6079766B2 (en) | Engine cooling system and operation method thereof | |
JP4998537B2 (en) | Vehicle cooling device | |
US10544996B2 (en) | Internal combustion engine | |
JP5708060B2 (en) | engine | |
US9581076B2 (en) | Cooler apparatus and control method therefor | |
JP2017114299A (en) | Vehicular control apparatus | |
JP2019035372A (en) | Engine cooling structure | |
US8978599B2 (en) | Cooling apparatus of internal combustion engine for vehicle | |
JP2013047473A (en) | Engine cooling device | |
CN108699946B (en) | Cooling system for internal combustion engine | |
JP2010065608A (en) | Cooling system of internal combustion engine | |
CN110214222B (en) | Cooling device for engine | |
US20180147915A1 (en) | Vehicle air-conditioning system | |
JP2012215141A (en) | Engine cooling apparatus | |
JP6299270B2 (en) | Cooling device for internal combustion engine | |
JP7043143B2 (en) | Internal combustion engine cooling water control device | |
JP3906745B2 (en) | Cooling device for internal combustion engine | |
JP6590297B2 (en) | Engine cooling system | |
JP2010163897A (en) | Cooling equipment for internal-combustion engine | |
JP5206696B2 (en) | Internal combustion engine cooling system | |
JP2017155608A (en) | Cooling device of vehicle | |
JP2016133077A (en) | Cooling device of internal combustion engine | |
JP2013002434A (en) | Engine cooling system and controller | |
JP2018132007A (en) | Control device for cooling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150216 |
|
LAPS | Cancellation because of no payment of annual fees |