JP2012187672A - Method of manufacturing rotor hub - Google Patents

Method of manufacturing rotor hub Download PDF

Info

Publication number
JP2012187672A
JP2012187672A JP2011053956A JP2011053956A JP2012187672A JP 2012187672 A JP2012187672 A JP 2012187672A JP 2011053956 A JP2011053956 A JP 2011053956A JP 2011053956 A JP2011053956 A JP 2011053956A JP 2012187672 A JP2012187672 A JP 2012187672A
Authority
JP
Japan
Prior art keywords
workpiece
rotor hub
outer peripheral
cylindrical portion
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011053956A
Other languages
Japanese (ja)
Other versions
JP5643682B2 (en
Inventor
Hironobu Ito
浩信 伊藤
Keiji Nakazawa
圭司 中澤
健志 ▲高▼野
Kenji Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2011053956A priority Critical patent/JP5643682B2/en
Publication of JP2012187672A publication Critical patent/JP2012187672A/en
Application granted granted Critical
Publication of JP5643682B2 publication Critical patent/JP5643682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a rotor hub capable of reducing swarf and costs and improving work efficiency while maintaining high accuracy.SOLUTION: In this method of manufacturing a rotor hub including a cylindrical part having a cylindrical shape with a top and a flange with a disk mounting surface formed thereon, the method includes: a flow forming step of shaping a recess 51 to be an inner hole of the cylindrical part by pressing a mandrel 61 on an end face of a workpiece 50 while chucking the workpiece 50 to rotate it about an axial line O', shaping a protruding rib 52 to be the flange by moving a roller 62 along the axial direction while causing the roller 62 to abut against the outer peripheral surface of the workpiece 50 to cause an end of the workpiece 50 to protrude to the outer side in the radial direction, and shaping a peripheral wall surface 53 to be the outer peripheral surface of the cylindrical part; and a cutting step of forming the disk mounting surface by causing a blade tool 64 to abut against the surface of the protruding rib 52 while rotating the workpiece 50 in a chucked state about the axial line.

Description

本発明は、ロータハブの製造方法に関するものである。   The present invention relates to a method for manufacturing a rotor hub.

従来のロータハブの製造方法として、例えば下記特許文献1に示されているような製造方法がある。詳しく説明すると、まず、被加工材をチャッキングし、その被加工材からワーク材を切り出す工程を行う。このワーク材は、最終形状に近い形状に粗加工されたものであり、その概略構成としては、有頂円筒形状の筒部と、その筒部の開口縁部から径方向外側に向かって突出したフランジ部と、を備えている。そして、上記したワーク材の切り出し工程の後、ワーク材の筒部の外周面をチャッキングしてフランジ部の外周面及び下面並びに筒部の内孔を切削して仕上げる一次仕上げ加工工程を行う。次に、フランジ部の外周面をチャッキングして筒部の外周面及び頂壁上面並びにフランジ部の上面(ディスク載置面)を切削して仕上げる二次仕上げ加工工程を行う(例えば下記特許文献1の段落[0020]及び図13参照。)。   As a conventional method for manufacturing a rotor hub, for example, there is a manufacturing method as shown in Patent Document 1 below. More specifically, first, a work material is chucked and a work material is cut out from the work material. This work material is roughly processed into a shape close to the final shape, and as a schematic configuration, the workpiece has a cylindrical portion with a top, and projects from the opening edge of the cylindrical portion toward the outside in the radial direction. And a flange portion. Then, after the above-described work material cutting step, a primary finishing process is performed in which the outer peripheral surface of the cylindrical portion of the work material is chucked to cut and finish the outer peripheral surface and the lower surface of the flange portion and the inner hole of the cylindrical portion. Next, a secondary finishing process is performed in which the outer peripheral surface of the flange portion is chucked and the outer peripheral surface of the cylinder portion, the top wall upper surface, and the upper surface of the flange portion (disk placement surface) are cut and finished (for example, the following patent document) 1 [0020] and FIG. 13).

また、ワーク材の切り出し工程の後、先に、フランジ部の外周面をチャッキングして筒部の外周面及び頂壁上面並びにフランジ部の上面を仕上げ、その後、筒部の外周面をチャッキングしてフランジ部の外周面及び下面並びに筒部の内孔を仕上げる方法もある(例えば下記特許文献1の段落[0021]及び図14参照。)。   Also, after the workpiece cutting process, the outer peripheral surface of the flange portion is first chucked to finish the outer peripheral surface of the cylindrical portion, the top surface of the top wall, and the upper surface of the flange portion, and then the outer peripheral surface of the cylindrical portion is chucked. There is also a method of finishing the outer peripheral surface and lower surface of the flange portion and the inner hole of the cylindrical portion (see, for example, paragraph [0021] of FIG. 14 and FIG. 14).

また、筒部の頂壁の下面に円筒部が垂設された構成では、フランジ部の外周面をチャッキングする代わりに円筒部の外周面をチャッキングして筒部の外周面及び頂壁上面並びにフランジ部の上面を仕上げる方法もある。これにより、チャッキング時の歪みを抑制することができる(例えば下記特許文献1の段落[0024]及び図6参照。)。   Further, in the configuration in which the cylindrical portion is suspended from the lower surface of the top wall of the cylindrical portion, the outer peripheral surface of the cylindrical portion and the upper surface of the top wall are chucked by chucking the outer peripheral surface of the cylindrical portion instead of chucking the outer peripheral surface of the flange portion. There is also a method of finishing the upper surface of the flange portion. Thereby, distortion at the time of chucking can be suppressed (for example, refer to paragraph [0024] and FIG. 6 of Patent Document 1 below).

さらに、上記したワーク材の切り出し工程工の際、ワーク材が被加工材から切り離されないように筒部の頂壁を被加工材に繋げた状態にしておく方法もある。これにより、ワーク材をチャッキングすることなくフランジ部の外周面及び下面並びに筒部の内孔を仕上げることが可能である(例えば下記特許文献1の段落[0026]及び図7参照。)。   Furthermore, there is also a method in which the top wall of the cylindrical portion is connected to the work material so that the work material is not separated from the work material during the work material cutting process. Thereby, it is possible to finish the outer peripheral surface and lower surface of a flange part, and the inner hole of a cylinder part, without chucking a workpiece | work material (for example, refer to the paragraph [0026] of the following patent document 1, and FIG. 7).

また、被加工材からワーク材を切り出すのではなく、鍛造によってワーク材を成形する方法もある。すなわち、まず、鍛造によってワーク材を成形し、その後、ワーク材の筒部の外周面をチャッキングしてフランジ部の外周面及び下面並びに筒部の内孔を仕上げ、その後、フランジ部の外周面をチャッキングしてフランジ部の上面及び筒部の外周面及び頂壁の上面を仕上げる。或いは、鍛造によってワーク材を成形した後、ワーク材のフランジ部の外周面をチャッキングして筒部の外周面及び頂壁上面並びにフランジ部の上面を仕上げ、その後、筒部の外周面をチャッキングしてフランジ部の外周面及び下面並びに筒部の内孔を仕上げる。   There is also a method of forming a workpiece material by forging instead of cutting the workpiece material from the workpiece. That is, first, the work material is formed by forging, and then the outer peripheral surface of the cylindrical portion of the work material is chucked to finish the outer peripheral surface and lower surface of the flange portion and the inner hole of the cylindrical portion, and then the outer peripheral surface of the flange portion. To finish the upper surface of the flange portion, the outer peripheral surface of the cylindrical portion, and the upper surface of the top wall. Alternatively, after forming the workpiece material by forging, the outer peripheral surface of the flange portion of the workpiece material is chucked to finish the outer peripheral surface of the cylindrical portion, the top surface of the top wall, and the upper surface of the flange portion, and then the outer peripheral surface of the cylindrical portion is chucked. King to finish the outer peripheral surface and lower surface of the flange portion and the inner hole of the tube portion.

特開2010−35367号公報JP 2010-35367 A

しかしながら、被加工材からワーク材を切り出す従来の技術では、ワーク材の切り出し工程の際に切粉が多量に発生するという問題があり、また、材料費が嵩むという問題もある。
また、切削加工によって被加工材からワーク材を切り出すと、完成したロータハブの鍛流線(メタルフロー)が軸方向に沿って真直ぐに延在するため、筒部とフランジ部との間で不連続なメタルフローとなる。このため、所望の強度を得るためにフランジ部を厚くする必要があり、コストアップとなる。
However, in the conventional technique of cutting a workpiece material from a workpiece, there is a problem that a large amount of chips are generated during the workpiece cutting process, and there is also a problem that the material cost increases.
In addition, when the workpiece material is cut out from the workpiece by cutting, the forged streamline (metal flow) of the completed rotor hub extends straight along the axial direction, so it is discontinuous between the tube and the flange. Metal flow. For this reason, in order to obtain desired intensity | strength, it is necessary to thicken a flange part, and it becomes a cost increase.

また、鍛造によってワーク材を成形する従来の技術では、仕上げ加工を行うためにワーク材のチャッキングを2回行う必要があるので、作業工数が多くて煩雑であるという問題がある。   Moreover, in the conventional technique which shape | molds a workpiece | work material by forging, since it is necessary to chuck a workpiece | work material twice in order to perform a finishing process, there exists a problem that work man-hours are many and are complicated.

本発明は、上記した従来の問題が考慮されたものであり、切粉の発生量を削減することができ、また、材料費を低減させると共に強度を向上させて薄肉化することでコストダウンを図ることができ、さらに、作業工数を削減して作業効率を向上させることができるロータハブの製造方法を提供することを目的としている。   The present invention takes the above-mentioned conventional problems into consideration, can reduce the amount of chips generated, and can reduce the cost by reducing the material cost and improving the strength and reducing the thickness. It is another object of the present invention to provide a method for manufacturing a rotor hub that can reduce the number of work steps and improve the work efficiency.

本発明に係るロータハブの製造方法は、ディスク中央の孔に嵌着可能な有頂円筒形状の筒部と、該筒部の開口縁部から径方向外側に向かって突出し、前記ディスクを載置可能なディスク載置面が形成されたフランジ部と、を有するロータハブの製造方法において、被加工材をチャッキングして軸線回りに回転させながら、該被加工材の軸方向一方側の端面にマンドレルを押し付けることで、前記被加工材の軸方向一方側の端面に、前記筒部の内孔となる凹孔を成形し、且つ前記被加工材の径方向外側の外周面に回転自在なローラを当接させつつ該ローラを前記被加工材に対して相対的に該被加工材の軸方向に沿って移動させることで、前記被加工材の軸方向一方側の端部を径方向外側に突出させて前記フランジ部となる凸リブを成形すると共に前記筒部の外周面となる周壁面を成形するフローフォーミング工程と、前記被加工材をチャッキングしたまま軸線回りに回転させながら、前記凸リブの軸方向他方側の表面に刃具を当接させることで、前記凸リブの軸方向他方側の表面を切削して前記ディスク載置面を形成する切削工程と、を備えることを特徴としている。   The method of manufacturing a rotor hub according to the present invention includes a cylindrical portion having a top shape that can be fitted into a hole in the center of the disc, and projects radially outward from an opening edge of the cylindrical portion so that the disc can be placed thereon. In a method for manufacturing a rotor hub having a flange portion on which a disc mounting surface is formed, a mandrel is chucked on the work material on the one end surface in the axial direction while chucking the work material and rotating it around the axis. By pressing, a concave hole serving as an inner hole of the cylindrical portion is formed on the end surface on one side in the axial direction of the workpiece, and a rotatable roller is applied to the outer circumferential surface of the workpiece in the radial direction. By moving the roller relative to the workpiece along the axial direction of the workpiece while being in contact, the end on one axial side of the workpiece is protruded radially outward. Forming the convex ribs that form the flange A flow forming step of forming a peripheral wall surface that becomes an outer peripheral surface of the cylindrical portion, and a blade tool is brought into contact with the surface on the other axial side of the convex rib while rotating the workpiece around the axis while being chucked. And a cutting step of cutting the surface on the other axial side of the convex rib to form the disk mounting surface.

このような特徴により、フローフォーミング工程によってロータハブの粗成形が行われてロータハブの大まかな形状が成形され、その後、切削工程によってディスク載置面が形成される。前記したフローフォーミング工程は、被加工材を塑性変形させることで所定形状に成形する加工方法であり、切粉が発生せず、また、被加工材の大きさも最小限に抑えられる。また、フローフォーミング工程によって粗成形されたロータハブは、メタルフローが筒部からフランジ部にかけて連続するため、筒部とフランジ部とが連結部分の強度が高くなる。また、加工精度の高い切削加工によってディスク載置面が形成されるため、高精度なディスク載置面が得られる。さらに、フローフォーミング工程から切削加工にかけてチャッキングし直す必要がなく、ワンチャックで行うことが可能である。   Due to such characteristics, the rotor hub is roughly formed by the flow forming process to form a rough shape of the rotor hub, and then the disk mounting surface is formed by the cutting process. The flow forming process described above is a processing method in which a workpiece is plastically deformed to be molded into a predetermined shape, so that no chips are generated and the size of the workpiece is minimized. Further, in the rotor hub roughly formed by the flow forming process, the metal flow continues from the cylindrical portion to the flange portion, and therefore the strength of the connecting portion between the cylindrical portion and the flange portion is increased. Further, since the disk mounting surface is formed by cutting with high processing accuracy, a highly accurate disk mounting surface can be obtained. Furthermore, it is not necessary to rechuck from the flow forming process to the cutting process, and it is possible to carry out with one chuck.

また、本発明に係るロータハブの製造方法は、前記凹孔の内側に前記マンドレルを挿入したまま前記切削工程を行うことが好ましい。
これにより、凹孔にマンドレルが挿入されていることで、被加工材の軸方向一方側の端部の剛性が上昇するため、切削工程を行う際に被加工材(ワーク)が歪みにくくなり、切削精度を向上させることができる。
Moreover, it is preferable that the manufacturing method of the rotor hub which concerns on this invention performs the said cutting process, inserting the said mandrel inside the said recessed hole.
Thereby, because the mandrel is inserted into the recessed hole, the rigidity of the end on the one side in the axial direction of the workpiece is increased, so that the workpiece (work) is less likely to be distorted when performing the cutting process, Cutting accuracy can be improved.

また、本発明に係るロータハブの製造方法は、前記切削工程の際、前記周壁面及び前記凸リブの外周面のうちの少なくとも一方にも前記刃部を当接させて切削することで、前記筒部及び前記フランジ部のうちの少なくとも一方の外周面を仕上げることが好ましい。
これにより、作業工数を増加させることなく、ロータハブの真円度を向上させることができる。
Further, in the method for manufacturing a rotor hub according to the present invention, in the cutting step, the blade portion is also brought into contact with at least one of the peripheral wall surface and the outer peripheral surface of the convex rib to perform cutting. It is preferable to finish the outer peripheral surface of at least one of the portion and the flange portion.
Thereby, the roundness of the rotor hub can be improved without increasing the work man-hours.

本発明に係るロータハブの製造方法によれば、フローフォーミング工程でロータハブの粗成形が行われてロータハブの大まかな形状が成形され、その後、切削工程でディスク載置面を形成するため、ディスク載置面の精度を確保しつつ切粉の発生量を削減することができ、また、材料費を削減させることができる。また、メタルフローが筒部からフランジ部にかけて連続しており、筒部とフランジ部との連結部分が高強度となるため、ローラハブを薄肉化することが可能であり、コストダウンを図ることができる。さらに、ワンチャックで製造することができるので、作業工数を削減することができ、作業効率を向上させることができる。   According to the method for manufacturing a rotor hub according to the present invention, the rough forming of the rotor hub is performed in the flow forming process to form a rough shape of the rotor hub, and then the disk mounting surface is formed in the cutting process. The amount of chips generated can be reduced while ensuring the accuracy of the surface, and the material cost can be reduced. In addition, since the metal flow is continuous from the cylindrical portion to the flange portion, and the connecting portion between the cylindrical portion and the flange portion has high strength, the roller hub can be thinned, and the cost can be reduced. . Furthermore, since it can manufacture with one chuck | zipper, work man-hours can be reduced and work efficiency can be improved.

本発明の実施の形態を説明するためのロータハブを備えたスピンドルモータの断面図である。It is sectional drawing of the spindle motor provided with the rotor hub for demonstrating embodiment of this invention. 本発明の実施の形態を説明するための被加工材のセット状態を表した断面図である。It is sectional drawing showing the set state of the workpiece for demonstrating embodiment of this invention. 本発明の実施の形態を説明するためのフローフォーミング工程を表した断面図である。It is sectional drawing showing the flow forming process for demonstrating embodiment of this invention. 本発明の実施の形態を説明するための切削工程を表した断面図である。It is sectional drawing showing the cutting process for demonstrating embodiment of this invention.

以下、本発明に係るロータハブの製造方法の実施の形態について、図面に基いて説明する。   Embodiments of a method for manufacturing a rotor hub according to the present invention will be described below with reference to the drawings.

まず、ロータハブ1の構成について説明する。
図1に示すロータハブ1は、アウターロータ式のスピンドルモータ100を構成するカップ状の回転子であり、その概略構成としては、有頂円筒形状の筒部2と、筒部2の開口縁部21から径方向外側に向かって突出したフランジ部3と、を備えている。
なお、図1に示す一点鎖線Oは、ロータハブ1の回転中心線であり、以下「軸線O」と記す。また、軸線Oに沿った方向を「軸方向」とし、軸線Oに直交する方向を「径方向」とし、軸線O回りの方向を「周方向」とする。さらに、本実施の形態では、筒部2の頂壁部20側(図1における上側)を「上」とし、筒部2の開口縁部21側(図1における上側)を「下」とする。
First, the configuration of the rotor hub 1 will be described.
A rotor hub 1 shown in FIG. 1 is a cup-shaped rotor that constitutes an outer rotor type spindle motor 100. As a schematic configuration thereof, a cylindrical portion 2 having a top shape and an opening edge portion 21 of the cylindrical portion 2 are provided. The flange part 3 protruded toward the radial direction outer side.
1 is a rotation center line of the rotor hub 1 and is hereinafter referred to as an “axis O”. A direction along the axis O is referred to as an “axial direction”, a direction orthogonal to the axis O is referred to as a “radial direction”, and a direction around the axis O is referred to as a “circumferential direction”. Furthermore, in the present embodiment, the top wall 20 side (upper side in FIG. 1) of the cylinder part 2 is “upper”, and the opening edge 21 side (upper side in FIG. 1) of the cylinder part 2 is “lower”. .

上記したスピンドルモータ100は、ロータハブ1の他に、円筒形状の立上り筒部11が立設されたベース10と、立上り筒部11の内側に嵌合された円筒形状のスリーブ12と、スリーブ12内に軸回転可能に挿嵌されたシャフト13と、立上り筒部11の外周に配設されたステータ14と、ロータハブ1の筒部2の内周面に取り付けられた永久磁石15と、を備えている。シャフト13は、ロータハブ1の筒部2の頂壁部20の中央部分に垂設されており、軸線Oを共通軸にしてロータハブ1と同軸上に配設されている。そして、ロータハブ1は、前記シャフト13を介して軸線O回りに回転自在に支持されている。
ステータ14は、固定子にコイルが巻かれた構成からなり、複数のステータ14は、周方向に沿って並設されている。そして、これら複数のステータ14の外周側に前記した永久磁石15が配設されている。
In addition to the rotor hub 1, the spindle motor 100 described above includes a base 10 on which a cylindrical rising cylindrical portion 11 is erected, a cylindrical sleeve 12 fitted inside the rising cylindrical portion 11, and an inside of the sleeve 12. A shaft 13 that is rotatably fitted to the shaft, a stator 14 that is disposed on the outer periphery of the rising cylindrical portion 11, and a permanent magnet 15 that is attached to the inner peripheral surface of the cylindrical portion 2 of the rotor hub 1. Yes. The shaft 13 is suspended from the central portion of the top wall portion 20 of the cylindrical portion 2 of the rotor hub 1 and is disposed coaxially with the rotor hub 1 with the axis O as a common axis. The rotor hub 1 is supported by the shaft 13 so as to be rotatable around the axis O.
The stator 14 has a configuration in which a coil is wound around a stator, and the plurality of stators 14 are arranged in parallel along the circumferential direction. And the above-mentioned permanent magnet 15 is arrange | positioned at the outer peripheral side of these several stators 14. As shown in FIG.

ここで、ロータハブ1の構成について詳しく説明すると、筒部2は、ディスクDの中央の孔D1に嵌着可能なディスク嵌着部である。この筒部2は、平面視略円形の頂壁部20の外縁から円筒形状の周壁部22が垂下され、その周壁部22の下端に開口縁部21が形成された構成からなる。フランジ部3は、ディスクDの孔D1の縁部が載置されるディスク載置部であり、筒部2の開口縁部21に沿って全周に亘って平面視円環状に形成されている。フランジ部3の上面には、全周にディスクDの孔D1の縁部が載置されるディスク載置面30が形成されている。   Here, the configuration of the rotor hub 1 will be described in detail. The cylinder portion 2 is a disc fitting portion that can be fitted into the center hole D1 of the disc D. The cylindrical portion 2 has a configuration in which a cylindrical peripheral wall portion 22 is suspended from an outer edge of the top wall portion 20 that is substantially circular in plan view, and an opening edge portion 21 is formed at the lower end of the peripheral wall portion 22. The flange portion 3 is a disc placement portion on which the edge portion of the hole D1 of the disc D is placed, and is formed in an annular shape in plan view along the entire circumference of the opening edge portion 21 of the cylinder portion 2. . On the upper surface of the flange portion 3, a disk mounting surface 30 on which the edge of the hole D1 of the disk D is mounted is formed on the entire circumference.

次に、上記した構成からなるロータハブ1の製造方法について説明する。   Next, a method for manufacturing the rotor hub 1 having the above-described configuration will be described.

まず、図2に示すように、丸棒状(円柱形状)の被加工材50を用意する。この被加工材50は、上記した図1に示すロータハブ1の素材となる金属材料であり、例えばステンレス鋼などからなる。被加工材50の直径は、図1に示すロータハブ1の筒部2の直径に応じて適宜設定され、被加工材50の長さは、少なくともチャッキングできる程度の長さがあればよい。
なお、図2に示す一点鎖線O´は、被加工材50の中心軸線を示しており、この被加工材50の中心軸線O´と上記した図1に示すロータハブ1の軸線Oとは同一線上になる。なお、中心軸線O´に沿った方向を「軸方向」とし、中心軸線O´に直交する方向を「径方向」とする。
First, as shown in FIG. 2, a round bar-like (columnar shape) workpiece 50 is prepared. The workpiece 50 is a metal material that is a material of the rotor hub 1 shown in FIG. 1 and is made of, for example, stainless steel. The diameter of the workpiece 50 is appropriately set according to the diameter of the cylindrical portion 2 of the rotor hub 1 shown in FIG. 1, and the workpiece 50 only needs to be long enough to be chucked.
2 indicates the central axis of the workpiece 50, and the central axis O ′ of the workpiece 50 and the axis O of the rotor hub 1 shown in FIG. 1 are on the same line. become. The direction along the central axis O ′ is referred to as “axial direction”, and the direction perpendicular to the central axis O ′ is referred to as “radial direction”.

そして、上記した被加工材50を図示せぬ旋盤にセットする。具体的に説明すると、図示せぬ旋盤には、チャック60と、フローフォーミング用のマンドレル61及びローラ62と、切削加工用の刃具64(図4に示す)と、が備えられている。そして、前記したチャック60で被加工材50をチャッキングすると共に、被加工材50の軸方向一方側(図2における右側)の端面(先端面)にマンドレル61をセットし、さらに、被加工材50の外周面にローラ62をセットする。   Then, the workpiece 50 described above is set on a lathe (not shown). More specifically, a lathe (not shown) includes a chuck 60, a flow forming mandrel 61 and a roller 62, and a cutting tool 64 (shown in FIG. 4). Then, the workpiece 50 is chucked by the chuck 60 described above, and the mandrel 61 is set on the end surface (tip surface) on one side (right side in FIG. 2) of the workpiece 50 in the axial direction. The roller 62 is set on the outer peripheral surface of 50.

チャック60は、被加工材50の外周面を把持する把持機構であり、図示せぬ回転機構によって中心軸線O´回りに回転可能な構成となっている。このチャック60にチャッキングされた被加工材50は、チャック60の先端から所定長さだけ突出させた状態で保持されており、チャック60が図示せぬ回転機構によって回転することによって中心軸線O´回りに回転する。   The chuck 60 is a gripping mechanism that grips the outer peripheral surface of the workpiece 50, and is configured to be rotatable around a central axis O ′ by a rotation mechanism (not shown). The workpiece 50 chucked by the chuck 60 is held in a state of protruding a predetermined length from the tip of the chuck 60, and the center axis O ′ is rotated by the chuck 60 being rotated by a rotation mechanism (not shown). Rotate around.

マンドレル61は、被加工材50の先端面に図3に示す凹孔51を成形するための芯金であり、被加工材50よりも小径の丸棒状の部材である。このマンドレル61は、被加工材50の中心軸線O´の延長線上に延設されており、その先端面を被加工材50の先端面に当接させた状態でセットされる。また、マンドレル61は、図示せぬ回転機構によって中心軸線O´回りに回転可能な構成となっている。なお、マンドレル61の回転方向は、上記したチャック60(被加工材50)の回転方向と同方向であっても逆方向であってもよい。また、マンドレル61は、図示せぬ移動機構によって軸方向に往復移動可能な構成となっている。   The mandrel 61 is a metal core for forming the concave hole 51 shown in FIG. 3 on the distal end surface of the workpiece 50, and is a round bar member having a smaller diameter than the workpiece 50. The mandrel 61 extends on an extension line of the central axis O ′ of the workpiece 50 and is set in a state where the tip surface thereof is in contact with the tip surface of the workpiece 50. Further, the mandrel 61 is configured to be rotatable around the central axis O ′ by a rotation mechanism (not shown). The rotation direction of the mandrel 61 may be the same as or opposite to the rotation direction of the chuck 60 (workpiece 50). Further, the mandrel 61 is configured to be reciprocally movable in the axial direction by a moving mechanism (not shown).

ローラ62は、被加工材50の先端部に図3に示す凸リブ52を成形すると共に被加工材50の周壁面53を所定形状に成形するための成形ローラであり、アーム63の先端に回転自在に取り付けられている。このローラ62は、被加工材50の外周に配設され、その外周面を被加工材50の外周面に当接させた状態でセットされる。また、ローラ62は、図示せぬ移動機構によって軸方向に沿って往復移動可能な構成となっている。なお、図示せぬ移動機構によってローラ62とチャック60(被加工材50)とが相対的に往復移動する構成であればよく、ローラ62が移動せずにチャック60(被加工材50)が移動する構成であってもよく、或いは、ローラ62及びチャック60(被加工材50)がそれぞれ移動する構成であってもよい。   The roller 62 is a forming roller for forming the convex rib 52 shown in FIG. 3 at the front end portion of the workpiece 50 and forming the peripheral wall surface 53 of the workpiece 50 into a predetermined shape. It is attached freely. The roller 62 is disposed on the outer periphery of the workpiece 50 and is set in a state in which the outer peripheral surface thereof is in contact with the outer peripheral surface of the workpiece 50. The roller 62 is configured to be reciprocally moved along the axial direction by a moving mechanism (not shown). The roller 62 and the chuck 60 (workpiece 50) need only be configured to reciprocate relatively by a moving mechanism (not shown), and the chuck 60 (workpiece 50) moves without moving the roller 62. Alternatively, the roller 62 and the chuck 60 (workpiece 50) may be moved.

次に、図3に示すように、被加工材50の先端面に凹孔51を成形し、且つ、被加工材50の先端部に凸リブ52を成形すると共に被加工材50の外周面に所定形状の周壁面53を成形するフローフォーミング工程を行う。   Next, as shown in FIG. 3, a concave hole 51 is formed on the distal end surface of the workpiece 50, a convex rib 52 is molded on the distal end portion of the workpiece 50, and an outer peripheral surface of the workpiece 50 is formed. A flow forming step of forming the peripheral wall surface 53 having a predetermined shape is performed.

詳しく説明すると、まず、図示せぬ回転機構によってチャック60を中心軸線O´回りに回転させることで、被加工材50を中心軸線O´回りに軸回転させる。続いて、被加工材50を軸回転させた状態で、マンドレル61を図示せぬ移動機構によって被加工材50側(軸方向他方側)に付勢し、マンドレル61の先端を被加工材50の先端面に押し付ける。これにより、被加工材50が塑性変形しながらマンドレル61が被加工材50に押し込まれ、被加工材50の先端面に凹孔51が成形される。この凹孔51は、ロータハブ1の筒部2の内孔となる孔部であり、筒部2の内孔の大まかな形状に形成されている。   More specifically, first, the workpiece 50 is rotated about the central axis O ′ by rotating the chuck 60 about the central axis O ′ by a rotation mechanism (not shown). Subsequently, in a state in which the workpiece 50 is rotated, the mandrel 61 is urged toward the workpiece 50 (the other side in the axial direction) by a moving mechanism (not shown), and the tip of the mandrel 61 is moved to the workpiece 50. Press against the tip. Thereby, the mandrel 61 is pushed into the workpiece 50 while the workpiece 50 is plastically deformed, and the concave hole 51 is formed in the distal end surface of the workpiece 50. The concave hole 51 is a hole that becomes an inner hole of the cylindrical portion 2 of the rotor hub 1, and is formed in a rough shape of the inner hole of the cylindrical portion 2.

また、上述したように被加工材50を軸回転させた状態で、被加工材50の外周面に当接して回転するローラ62を図示せぬ移動機構によって軸方向に沿って先端側(軸方向一方側)に向かって移動させる。これにより、被加工材50の外周面がローラ62によってこそげるように塑性変形する。その結果、被加工材50の先端部が全周に亘って径方向外側に突出し、被加工材50の先端に円環状の環状の凸リブ52が成形されると共に、被加工材50の外周面に真円状の周壁面53が成形される。前記した凸リブ52は、ロータハブ1のフランジ部3となる突出部であり、フランジ部3の大まかな形状に形成される。周壁面53は、筒部2の外周面となる周壁面であり、軸方向に沿って直筒状に形成される。   In addition, as described above, with the workpiece 50 being axially rotated, the roller 62 that rotates in contact with the outer peripheral surface of the workpiece 50 is rotated by a moving mechanism (not shown) along the axial direction (axial direction). Move toward one side. As a result, the outer peripheral surface of the workpiece 50 is plastically deformed so as to be scraped by the roller 62. As a result, the tip of the workpiece 50 protrudes radially outward over the entire circumference, and an annular annular convex rib 52 is formed at the tip of the workpiece 50, and the outer peripheral surface of the workpiece 50 A perfect circular peripheral wall surface 53 is formed. The convex rib 52 described above is a protruding portion that becomes the flange portion 3 of the rotor hub 1, and is formed in a rough shape of the flange portion 3. The peripheral wall surface 53 is a peripheral wall surface serving as an outer peripheral surface of the cylindrical portion 2 and is formed in a straight cylindrical shape along the axial direction.

次に、図4に示すように、フローフォーミング加工された被加工材50の表面を切削加工によって仕上げる切削工程を行う。
詳しく説明すると、フローフォーミング工程に続けて被加工材50を中心軸線O´回りに回転させつつ、被加工材50の凹孔51にマンドレル61を挿入したままの状態で、前記した周壁面53、凸リブ52の軸方向他方側(図4における左側)の表面、及び凸リブ52の外周面に刃具64を順次当接させる。これにより、周壁面53が切削されて筒部2の外周面が形成され、また、凸リブ52の軸方向他方側の表面が切削されてフランジ部3のディスク載置面30が形成され、さらに、環状の凸リブ52の外周面が切削されてフランジ部3の外周面が形成される。
なお、凹孔51の内面にも刃具を当てて、凹孔51の内面を切削して筒部2の内孔を仕上げてもよい。
Next, as shown in FIG. 4, a cutting process is performed in which the surface of the workpiece 50 subjected to the flow forming process is finished by cutting.
More specifically, the peripheral wall surface 53 described above in a state where the mandrel 61 is inserted into the concave hole 51 of the workpiece 50 while rotating the workpiece 50 around the central axis O ′ following the flow forming step. The cutting tool 64 is sequentially brought into contact with the surface on the other axial side of the convex rib 52 (left side in FIG. 4) and the outer peripheral surface of the convex rib 52. As a result, the peripheral wall surface 53 is cut to form the outer peripheral surface of the cylindrical portion 2, the surface on the other axial side of the convex rib 52 is cut to form the disk mounting surface 30 of the flange portion 3, and The outer peripheral surface of the annular convex rib 52 is cut to form the outer peripheral surface of the flange portion 3.
Note that a cutting tool may also be applied to the inner surface of the concave hole 51 to cut the inner surface of the concave hole 51 to finish the inner hole of the cylindrical portion 2.

次に、筒部2の頂面位置において被加工材50を径方向に切断する切断工程を行う。これにより、上述したフローフォーミング加工及び切削加工が施された部分(ローラハブ1)が分離され、ロータハブ1が完成する。   Next, the cutting process which cut | disconnects the to-be-processed material 50 in radial direction in the top surface position of the cylinder part 2 is performed. Thereby, the part (roller hub 1) to which the flow forming process and the cutting process described above are performed is separated, and the rotor hub 1 is completed.

上記したロータハブ1の製造方法によれば、フローフォーミング工程でロータハブの1粗成形が行われてロータハブ1の大まかな形状が成形され、その後、切削工程でディスク載置面30等を形成するため、ディスク載置面30の精度を確保しつつ切粉の発生量を削減することができ、また、材料費を低減させることができる。   According to the method for manufacturing the rotor hub 1 described above, one rough forming of the rotor hub is performed in the flow forming process to form a rough shape of the rotor hub 1, and then the disk mounting surface 30 and the like are formed in the cutting process. The amount of chips generated can be reduced while ensuring the accuracy of the disk mounting surface 30, and the material cost can be reduced.

また、フローフォーミング工程によって粗成形されたロータハブ1は、メタルフローが筒部2からフランジ部3にかけて連続するため、筒部2とフランジ部3とが連結部分の強度が高くなる。これにより、ローラハブ1を薄肉化することが可能であり、コストダウンを図ることができる。   Further, in the rotor hub 1 roughly formed by the flow forming process, the metal flow continues from the cylindrical portion 2 to the flange portion 3, so that the strength of the connecting portion between the cylindrical portion 2 and the flange portion 3 is increased. As a result, the roller hub 1 can be thinned, and the cost can be reduced.

また、フローフォーミング工程から切削加工にかけてチャッキングし直す必要がなく、ワンチャックで製造することができるので、作業工数を削減することができ、作業効率を向上させることができる。   Further, it is not necessary to re-chuck from the flow forming process to the cutting process, and manufacturing can be performed with one chuck, so that the number of work steps can be reduced and the work efficiency can be improved.

また、フローフォーミング工程によって形成された凹孔51の内側にマンドレル61を挿入したまま切削工程を行うため、切削工程時における被加工材50の先端部の剛性が上昇する。これにより、切削工程を行う際に被加工材50が歪みにくくなり、切削精度を向上させることができる。   Further, since the cutting process is performed while the mandrel 61 is inserted inside the concave hole 51 formed by the flow forming process, the rigidity of the tip of the workpiece 50 during the cutting process is increased. Thereby, when performing a cutting process, the to-be-processed material 50 becomes difficult to be distorted, and it can improve cutting accuracy.

また、切削工程の際、ディスク載置面30だけでなく、筒部2の外周面及びフランジ部3の外周面も仕上げるため、作業工数を増加させることなく、ロータハブ1の真円度を向上させることができる。   Further, in the cutting process, not only the disk mounting surface 30 but also the outer peripheral surface of the cylindrical portion 2 and the outer peripheral surface of the flange portion 3 are finished, so that the roundness of the rotor hub 1 is improved without increasing the number of work steps. be able to.

以上、本発明に係るロータハブの製造方法の実施の形態について説明したが、本発明は上記した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記した実施の形態では、凹孔51にマンドレル61を挿入したまま切削工程を行っているが、本発明は、切削工程を行う前にマンドレル61を凹孔51から引き抜いてもよい。
As mentioned above, although embodiment of the manufacturing method of the rotor hub which concerns on this invention was described, this invention is not limited to above-described embodiment, In the range which does not deviate from the meaning, it can change suitably.
For example, in the above-described embodiment, the cutting process is performed while the mandrel 61 is inserted into the concave hole 51. However, in the present invention, the mandrel 61 may be pulled out from the concave hole 51 before the cutting process is performed.

また、上記した実施の形態では、切削工程の際に、被加工材50の周壁面53及び凸リブ52の外周面を切削して筒部2の外周面及びフランジ部3の外周面をそれぞれ仕上げているが、本発明は、フローフォーミング工程によって所望の真円度が確保されている場合、筒部2やフランジ部3の外周面を切削で仕上げる必要はない。   In the embodiment described above, the outer peripheral surface of the cylindrical portion 2 and the outer peripheral surface of the flange portion 3 are finished by cutting the peripheral wall surface 53 of the workpiece 50 and the outer peripheral surface of the convex rib 52 during the cutting process. However, in the present invention, when the desired roundness is ensured by the flow forming process, it is not necessary to finish the outer peripheral surface of the cylindrical portion 2 or the flange portion 3 by cutting.

また、上記した実施の形態では、アウターロータ式のスピンドルモータ100に用いられるロータハブ1について説明しているが、本発明は、インナーロータ式のスピンドルモータに用いられるロータハブであってもよい。
また、上記した実施の形態では、筒部2が直筒状に形成されているが、本発明は、筒部がテーパー筒状に形成されていてもよい。
また、上記した実施の形態では、凸リブ52(フランジ部3)が全周に亘って連続して円環状に形成されているが、本発明は、円環状の凸リブやフランジ部に限定されない。例えば、筒部の開口縁部に沿って複数の凸リブ(フランジ部)が周方向に間欠的に並設された構成であってもよく、或いは、平面視C状に形成された凸リブ(フランジ部)であってもよい。
In the embodiment described above, the rotor hub 1 used in the outer rotor type spindle motor 100 has been described. However, the present invention may be a rotor hub used in an inner rotor type spindle motor.
In the above-described embodiment, the cylindrical portion 2 is formed in a straight cylindrical shape. However, in the present invention, the cylindrical portion may be formed in a tapered cylindrical shape.
In the above-described embodiment, the convex rib 52 (flange portion 3) is continuously formed in an annular shape over the entire circumference, but the present invention is not limited to the annular convex rib or flange portion. . For example, a configuration may be employed in which a plurality of convex ribs (flange portions) are intermittently arranged in the circumferential direction along the opening edge of the cylindrical portion, or convex ribs formed in a C shape in plan view ( Flange portion).

その他、本発明の主旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した変形例を適宜組み合わせてもよい。   In addition, in the range which does not deviate from the main point of this invention, it is possible to replace suitably the component in above-mentioned embodiment with a well-known component, and you may combine the above-mentioned modification suitably.

1 ロータハブ
2 筒部
3 フランジ部
21 開口縁部
30 ディスク載置面
50 被加工材
51 凹孔
52 凸リブ
53 周壁面
61 マンドレル
62 ローラ
64 刃具
DESCRIPTION OF SYMBOLS 1 Rotor hub 2 Cylinder part 3 Flange part 21 Opening edge part 30 Disk mounting surface 50 Work material 51 Concave hole 52 Convex rib 53 Peripheral wall surface 61 Mandrel 62 Roller 64 Cutting tool

Claims (3)

ディスク中央の孔に嵌着可能な有頂円筒形状の筒部と、該筒部の開口縁部から径方向外側に向かって突出し、前記ディスクを載置可能なディスク載置面が形成されたフランジ部と、を有するロータハブの製造方法において、
被加工材をチャッキングして軸線回りに回転させながら、該被加工材の軸方向一方側の端面にマンドレルを押し付けることで、前記被加工材の軸方向一方側の端面に、前記筒部の内孔となる凹孔を成形し、且つ前記被加工材の径方向外側の外周面に回転自在なローラを当接させつつ該ローラを前記被加工材に対して相対的に該被加工材の軸方向に沿って移動させることで、前記被加工材の軸方向一方側の端部を径方向外側に突出させて前記フランジ部となる凸リブを成形すると共に前記筒部の外周面となる周壁面を成形するフローフォーミング工程と、
前記被加工材をチャッキングしたまま軸線回りに回転させながら、前記凸リブの軸方向他方側の表面に刃具を当接させることで、前記凸リブの軸方向他方側の表面を切削して前記ディスク載置面を形成する切削工程と、
を備えることを特徴とするロータハブの製造方法。
A cylindrical portion with a top shape that can be fitted into a hole in the center of the disc, and a flange that protrudes radially outward from the opening edge of the cylindrical portion and has a disc placement surface on which the disc can be placed A rotor hub having a portion,
While chucking the workpiece and rotating it around the axis, the mandrel is pressed against the end surface on one side in the axial direction of the workpiece, so that the end of the cylindrical portion on the end surface on the one side in the axial direction of the workpiece A concave hole serving as an inner hole is formed, and a rotatable roller is brought into contact with the outer peripheral surface of the workpiece in the radial direction, and the roller is moved relative to the workpiece. By moving along the axial direction, the end on one side in the axial direction of the workpiece is protruded radially outward to form a convex rib that becomes the flange portion, and the circumference that becomes the outer peripheral surface of the cylindrical portion A flow forming process for forming a wall surface;
While rotating the work piece around the axis while being chucked, the surface of the convex rib on the other side in the axial direction is cut by bringing the cutting tool into contact with the surface on the other side in the axial direction of the convex rib. A cutting process for forming a disk mounting surface;
A method of manufacturing a rotor hub, comprising:
請求項1に記載のロータハブの製造方法において、
前記凹孔の内側に前記マンドレルを挿入したまま前記切削工程を行うことを特徴とするロータハブの製造方法。
In the manufacturing method of the rotor hub according to claim 1,
The method of manufacturing a rotor hub, wherein the cutting step is performed while the mandrel is inserted inside the concave hole.
請求項1または2記載のロータハブの製造方法において、
前記切削工程の際、前記周壁面及び前記凸リブの外周面のうちの少なくとも一方にも前記刃部を当接させて切削することで、前記筒部及び前記フランジ部のうちの少なくとも一方の外周面を仕上げることを特徴とするロータハブの製造方法。
In the manufacturing method of the rotor hub according to claim 1 or 2,
In the cutting step, the outer periphery of at least one of the cylindrical portion and the flange portion is cut by bringing the blade portion into contact with at least one of the peripheral wall surface and the outer peripheral surface of the convex rib. A method of manufacturing a rotor hub, wherein a surface is finished.
JP2011053956A 2011-03-11 2011-03-11 Manufacturing method of rotor hub Active JP5643682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011053956A JP5643682B2 (en) 2011-03-11 2011-03-11 Manufacturing method of rotor hub

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011053956A JP5643682B2 (en) 2011-03-11 2011-03-11 Manufacturing method of rotor hub

Publications (2)

Publication Number Publication Date
JP2012187672A true JP2012187672A (en) 2012-10-04
JP5643682B2 JP5643682B2 (en) 2014-12-17

Family

ID=47081403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011053956A Active JP5643682B2 (en) 2011-03-11 2011-03-11 Manufacturing method of rotor hub

Country Status (1)

Country Link
JP (1) JP5643682B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050415A (en) * 2016-09-23 2018-03-29 日産自動車株式会社 Manufacturing method for rotor shaft

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210339A (en) * 1984-04-05 1985-10-22 Jidosha Kiki Co Ltd Production of valve sleeve
JP2002518186A (en) * 1998-06-24 2002-06-25 ゼネラル・エレクトリック・カンパニイ Manufacturing method for automotive wheels
JP2005205499A (en) * 2004-01-20 2005-08-04 Soode Nagano Co Ltd Method of manufacturing substantially cup-shaped metallic part
JP2008055494A (en) * 2006-09-04 2008-03-13 Fuji Heavy Ind Ltd Flow forming method and flow forming apparatus
JP2010035367A (en) * 2008-07-30 2010-02-12 Panasonic Corp Manufacturing method for spindle motor and rotor hub

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210339A (en) * 1984-04-05 1985-10-22 Jidosha Kiki Co Ltd Production of valve sleeve
JP2002518186A (en) * 1998-06-24 2002-06-25 ゼネラル・エレクトリック・カンパニイ Manufacturing method for automotive wheels
JP2005205499A (en) * 2004-01-20 2005-08-04 Soode Nagano Co Ltd Method of manufacturing substantially cup-shaped metallic part
JP2008055494A (en) * 2006-09-04 2008-03-13 Fuji Heavy Ind Ltd Flow forming method and flow forming apparatus
JP2010035367A (en) * 2008-07-30 2010-02-12 Panasonic Corp Manufacturing method for spindle motor and rotor hub

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050415A (en) * 2016-09-23 2018-03-29 日産自動車株式会社 Manufacturing method for rotor shaft

Also Published As

Publication number Publication date
JP5643682B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
US20170209940A1 (en) Lathe Chuck for Aluminum Alloy Hubs
JP2004167668A (en) Manufacturing method of bearing ring of roller bearing, manufacturing device of bearing ring of roller bearing and roller bearing
CN203779181U (en) Automatic self-centering clamp for thin-walled sleeve
US20030076002A1 (en) One-piece field core shell
JP5643682B2 (en) Manufacturing method of rotor hub
JP7145528B2 (en) Method for manufacturing a single component vehicle wheel
JP2012200757A (en) Method of manufacturing rotor core of electric rotating machine
JP2005261085A (en) Manufacturing method of motor yoke, motor yoke and motor
JP5118852B2 (en) Method and transmission component for manufacturing a flange on a metal blank
JP2005205499A (en) Method of manufacturing substantially cup-shaped metallic part
JP2015024471A (en) Processing tool and processing method for nut for ball screw
JP5962529B2 (en) Molding method and molding apparatus
CN104029066A (en) Thin-wall large-diameter part clamping device with locating function
CN102166719B (en) Clamp and process for machining welding yoke of automobile
JP2016120499A (en) Powder molding mold, and manufacturing method for the mold
CN106734651B (en) A kind of closing method of flow regulator bridge pipe
JP6848348B2 (en) Rotor manufacturing method
CN105108515A (en) Positioning fixture for lathe machining
JP6024614B2 (en) Work forming method
KR20160047625A (en) Manufacturing method of hollow shaft for vehicle having a small hollowness diameter
JP2002315276A (en) Method of manufacturing rotor for rotating electric machine
CN204019223U (en) A kind of thin-walled major diameter part chucking device carrying location
JP5942826B2 (en) Molding apparatus and molding method
CN213317772U (en) Outer rotor motor stator excircle processing fixing assembly
CN109641255A (en) Method for manufacturing rotationally symmetric body without cutting by metal plate disk blank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5643682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250