JP2012186020A - Manufacturing method of lithium ion secondary battery and lithium ion secondary battery - Google Patents

Manufacturing method of lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP2012186020A
JP2012186020A JP2011048338A JP2011048338A JP2012186020A JP 2012186020 A JP2012186020 A JP 2012186020A JP 2011048338 A JP2011048338 A JP 2011048338A JP 2011048338 A JP2011048338 A JP 2011048338A JP 2012186020 A JP2012186020 A JP 2012186020A
Authority
JP
Japan
Prior art keywords
electrode plate
lithium ion
positive electrode
negative electrode
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011048338A
Other languages
Japanese (ja)
Inventor
Yoshiharu Konno
義治 今野
Kenichi Shinmyo
健一 新明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2011048338A priority Critical patent/JP2012186020A/en
Publication of JP2012186020A publication Critical patent/JP2012186020A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a lithium ion secondary battery with high charge and discharge performance of positive and negative electrode plates and high safety, and a lithium ion secondary battery by the same.SOLUTION: A manufacturing method of a lithium ion secondary battery formed by laminating a positive electrode plate, a negative electrode plate, and an electrolyte membrane comprises: a first step of applying nonaqueous electrolyte to one plate surface of the positive electrode plate and the negative electrode plate; a second step of forming a gel-like electrolyte membrane on the one plate surface of the positive electrode plate and the negative electrode plate after the first step; and a third step of alternately laminating the positive electrode plate and the negative electrode plate so that the electrolyte membrane intervenes therebetween after the second step.

Description

本発明は、リチウムイオン二次電池の製造方法及びリチウムイオン二次電池に関する。   The present invention relates to a method for producing a lithium ion secondary battery and a lithium ion secondary battery.

従来より、電解液を用いたリチウムイオン二次電池が有する液漏れ等の問題を回避するために、固体電解質膜やゲル状の電解質膜を用いたリチウムイオン二次電池が開発されている。特に、ゲル状の電解質膜は電解液成分が含まれており、固体電解質膜よりも正極板と負極板との活物質層に染み込み易く充放電性能が良いため、電解液を用いたリチウムイオン二次電池に代わるものとして期待されており、このような電池の製造方法として、例えば特許文献1に記載されたリチウムイオン二次電池の製造方法等が提案されている。   Conventionally, lithium ion secondary batteries using solid electrolyte membranes or gel electrolyte membranes have been developed in order to avoid problems such as liquid leakage of lithium ion secondary batteries using electrolyte solutions. In particular, the gel electrolyte membrane contains an electrolyte component, and is more easily soaked into the active material layer of the positive electrode plate and the negative electrode plate than the solid electrolyte membrane and has better charge / discharge performance. As a method for manufacturing such a battery, for example, a method for manufacturing a lithium ion secondary battery described in Patent Document 1 has been proposed.

特許文献1に記載されたリチウムイオン二次電池の製造方法は、ゲル塗料の濃度を低くした、すなわちゲル塗料の粘度を低くしたゲル状の電解質膜と、ゲル塗料の濃度を高くしたゲル状の電解質膜とに分けて、最初にゲル塗料の濃度が低い電解液を正極板及び負極板に塗布しゲル状の電解質膜を形成している。   The method of manufacturing a lithium ion secondary battery described in Patent Document 1 includes a gel electrolyte membrane in which the concentration of the gel paint is lowered, that is, the viscosity of the gel paint is lowered, and a gel-like electrolyte in which the concentration of the gel paint is increased. Separately from the electrolyte membrane, first, an electrolyte solution having a low concentration of gel paint is applied to the positive electrode plate and the negative electrode plate to form a gel electrolyte membrane.

特開2000−173656号公報JP 2000-173656 A

しかし、上記特許文献1のリチウムイオン二次電池の製造方法によれば、最初に濃度の低い電解液を塗布しても正極板及び負極板の活物質層に十分に染み込まないため、正極板及び負極板の充放電性能を十分に引き出すことができないという問題があった。   However, according to the method of manufacturing a lithium ion secondary battery of Patent Document 1, the positive electrode plate and the active material layer of the positive electrode plate and the negative electrode plate are not sufficiently soaked even when an electrolyte solution having a low concentration is first applied. There was a problem that the charge / discharge performance of the negative electrode plate could not be fully exploited.

そこで、本発明は、上記課題を解決するために以下の手段を提供している。
請求項1の発明は、正極板、負極板、及び電解質膜を積層して形成されるリチウムイオン二次電池の製造方法において、前記正極板及び前記負極板の一の板面に非水電解液を塗布する第1の工程と、前記第1の工程の後に、前記正極板及び前記負極板の前記一の板面にゲル状の電解質膜を形成する第2の工程と、前記第2の工程の後に、前記正極板と前記負極板とをこれらの間に前記電解質膜が介在するように交互に積層する第3の工程とを有することを特徴とする。
本発明では、ゲル状の電解質膜を形成する前に正極板及び負極板に非水電解液を塗布するので、正極板及び負極板の活物質層に非水電解液を十分に浸透させることができる。したがって、正極板内部及び負極板内部でのリチウムイオンの授受がより多く行われる。また、電解液だけの電池に比べて電解液の使用量が少なく、かつ非水電解液が正極板及び負極板に浸透しているので、液漏れがない。
Therefore, the present invention provides the following means in order to solve the above problems.
The invention according to claim 1 is a method of manufacturing a lithium ion secondary battery formed by laminating a positive electrode plate, a negative electrode plate, and an electrolyte membrane, and a nonaqueous electrolytic solution is provided on one plate surface of the positive electrode plate and the negative electrode plate. A second step of forming a gel electrolyte membrane on the one plate surface of the positive electrode plate and the negative electrode plate after the first step, and the second step. And a third step of alternately stacking the positive electrode plate and the negative electrode plate so that the electrolyte membrane is interposed therebetween.
In the present invention, since the non-aqueous electrolyte is applied to the positive electrode plate and the negative electrode plate before forming the gel electrolyte membrane, the non-aqueous electrolyte can be sufficiently infiltrated into the active material layers of the positive electrode plate and the negative electrode plate. it can. Therefore, more lithium ions are exchanged inside the positive electrode plate and the negative electrode plate. In addition, the amount of electrolyte used is smaller than that of a battery having only an electrolyte, and the nonaqueous electrolyte penetrates into the positive electrode plate and the negative electrode plate.

請求項2の発明は、請求項1に記載のリチウムイオン二次電池の製造方法において、前記非水電解液と前記ゲル状の電解質膜に含まれる非水電解液とが同一材料の組み合わせにより調製されていることを特徴とする。
本発明では、非水電解液を前記ゲル状の電解質膜に含まれる非水電解液と同一材料の組み合わせにより調整することにより、非水電解液が浸透した正極板とゲル状電解質膜との界面、並びに非水電解液が浸透した負極板とゲル状電解質膜との界面において、リチウムイオンの授受がよりスムーズに行われる。
The invention of claim 2 is the method for producing a lithium ion secondary battery according to claim 1, wherein the non-aqueous electrolyte and the non-aqueous electrolyte contained in the gel electrolyte membrane are prepared by a combination of the same materials. It is characterized by being.
In the present invention, the non-aqueous electrolyte is adjusted by a combination of the same materials as the non-aqueous electrolyte contained in the gel electrolyte membrane, so that the interface between the positive electrode plate and the gel electrolyte membrane permeated with the non-aqueous electrolyte is obtained. In addition, lithium ions are more smoothly exchanged at the interface between the negative electrode plate and the gel electrolyte membrane into which the nonaqueous electrolytic solution has permeated.

請求項3の発明は、請求項1又は2に記載のリチウムイオン二次電池の製造方法において、前記第2の工程において、前記ゲル状の電解質膜は、基材にゲル用電解液を塗布して形成されることを特徴とする。
本発明では、基材にゲル用電解液を塗布することにより、正極板と負極板との間の短絡を防止することができるとともに、正極板と負極板の積層を積層した積層体の強度を向上させることができ、更にリチウムイオン二次電池の製造工程において厚みを制御しやすくなる。
A third aspect of the present invention is the method of manufacturing a lithium ion secondary battery according to the first or second aspect, wherein, in the second step, the gel electrolyte membrane is formed by applying a gel electrolyte to a substrate. It is characterized by being formed.
In the present invention, by applying the gel electrolyte to the base material, it is possible to prevent a short circuit between the positive electrode plate and the negative electrode plate, and to increase the strength of the laminate obtained by laminating the positive electrode plate and the negative electrode plate. Further, the thickness can be easily controlled in the manufacturing process of the lithium ion secondary battery.

請求項4の発明は、請求項1から3のいずれか一項に記載のリチウムイオン二次電池の製造方法において、前記第2の工程のゲル状の電解質膜は、前記ゲル用電解液を加温して形成されることを特徴とする。
本発明では、ゲル状の電解質膜はゲル用電解液を加温して形成されるので、ゲル用電解液の粘度が低下し、ゲル用電解液の流動性が高くなることで、電解質膜を正極板及び負極板の間で均一に形成することができる。
According to a fourth aspect of the present invention, in the method for producing a lithium ion secondary battery according to any one of the first to third aspects, the gel electrolyte membrane in the second step is applied with the gel electrolyte. It is formed by heating.
In the present invention, the gel electrolyte membrane is formed by heating the gel electrolyte solution, so that the viscosity of the gel electrolyte solution is reduced and the fluidity of the gel electrolyte solution is increased. It can form uniformly between a positive electrode plate and a negative electrode plate.

請求項5の発明は、リチウムイオン二次電池であって、請求項1から4のいずれか一に記載のリチウムイオン二次電池の製造方法により製造されたことを特徴とする。
本発明では、充放電性能が高く、液洩れのし難いリチウムイオン二次電池とすることができる。
The invention of claim 5 is a lithium ion secondary battery, which is manufactured by the method of manufacturing a lithium ion secondary battery according to any one of claims 1 to 4.
In this invention, it can be set as the lithium ion secondary battery with high charging / discharging performance and being hard to leak.

本発明に係るリチウムイオン二次電池の製造方法によれば、上記した解決手段によって以下の効果を奏する。
すなわち、本発明によれば、ゲル状の電解質膜を形成する前に正極板及び負極板に非水電解液を塗布するので、正極板及び負極板の活物質層に非水電解液を十分に浸透させることができる。したがって、正極板内部及び負極板内部でのリチウムイオンの授受がより多く行われる。また、電解液だけの電池に比べて非水電解液の使用量が少なく、かつ該非水電解液が正極板及び負極板に浸透している。したがって、充放電性能が高くかつ液漏れし難いリチウムイオン二次電池を製造することができるという効果を奏する。
According to the method for manufacturing a lithium ion secondary battery of the present invention, the following effects can be achieved by the above-described solving means.
That is, according to the present invention, since the non-aqueous electrolyte is applied to the positive electrode plate and the negative electrode plate before forming the gel electrolyte membrane, the non-aqueous electrolyte is sufficiently applied to the active material layer of the positive electrode plate and the negative electrode plate. Can penetrate. Therefore, more lithium ions are exchanged inside the positive electrode plate and the negative electrode plate. Further, the amount of non-aqueous electrolyte used is smaller than that of a battery having only an electrolyte, and the non-aqueous electrolyte penetrates into the positive electrode plate and the negative electrode plate. Therefore, it is possible to produce a lithium ion secondary battery that has high charge / discharge performance and is difficult to leak.

以下、本発明の実施形態について説明する。
本発明の製造方法により製造されたリチウムイオン二次電池は、端部から端子用タブを突出させ少なくとも一方の板面に非水電解液が塗布された正極板と、ゲル状の電解質膜と、端部から端子用タブを突出させ少なくとも一方の板面に非水電解液が塗布された負極板とを交互に積層して形成された多層の膜電極接合体を、ラミネートフィルムによって包み封止したものである。
Hereinafter, embodiments of the present invention will be described.
A lithium ion secondary battery manufactured by the manufacturing method of the present invention has a positive electrode plate in which a tab for terminals protrudes from an end and a nonaqueous electrolyte is applied to at least one plate surface, a gel electrolyte membrane, A multi-layer membrane electrode assembly formed by alternately laminating a negative electrode plate with a non-aqueous electrolyte applied to at least one plate surface by projecting a terminal tab from an end portion was wrapped and sealed with a laminate film. Is.

正極板は、例えばアルミニウム箔等からなる正極集電体に正極活物質層を形成し、正極集電体の端部に端子用タブが接続されたものであり、該正極板の正極活物質層が電解質膜の表面上に収まるよう例えば矩形に切断されている。
正極板の端子用タブの材質としては、例えばアルミニウム等が挙げられる。
The positive electrode plate is formed by forming a positive electrode active material layer on a positive electrode current collector made of, for example, an aluminum foil, and having a terminal tab connected to an end of the positive electrode current collector. Is cut into, for example, a rectangle so as to fit on the surface of the electrolyte membrane.
Examples of the material for the terminal tab of the positive electrode plate include aluminum.

正極活物質層は、例えば正極活物質と、導電助剤、バインダーとなる結着剤を溶媒に分散させてなる正極用スラリーを、正極集電体の片面又は両面に塗布し、該正極用スラリーを乾燥させて得られる。塗布後は、必要に応じてプレスを行ってもよい。
正極活物質としては、例えば一般式LiMxOy(ただし、Mは金属であり、x及びyは金属Mと酸素Oの組成比である)で表される金属酸リチウム化合物が用いられる。具体的には、金属酸リチウム化合物としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等が用いられる。
導電助剤としては、例えばアセチレンブラック等が用いられ、結着剤としてはポリフッ化ビニリデン等が用いられる。
The positive electrode active material layer is formed by, for example, applying a positive electrode slurry in which a positive electrode active material, a conductive additive, and a binder serving as a binder are dispersed in a solvent to one or both sides of the positive electrode current collector, Is obtained by drying. After application, pressing may be performed as necessary.
As the positive electrode active material, for example, a metal acid lithium compound represented by the general formula LiMxOy (where M is a metal and x and y are composition ratios of the metal M and oxygen O) is used. Specifically, lithium cobaltate, lithium nickelate, lithium manganate and the like are used as the metal acid lithium compound.
For example, acetylene black or the like is used as the conductive assistant, and polyvinylidene fluoride or the like is used as the binder.

負極板は、例えば銅(Cu)等からなる負極集電体に負極活物質層を形成し、負極集電体の端部に端子用タブが接続されたものであり、該負極板の負極活物質層が電解質膜の表面上に収まるよう例えば矩形に切断されている。
負極の端子用タブの材質としては、例えばニッケルが挙げられる。
The negative electrode plate is formed by forming a negative electrode active material layer on a negative electrode current collector made of, for example, copper (Cu) and the like, and a terminal tab is connected to an end of the negative electrode current collector. For example, the material layer is cut into a rectangular shape so as to fit on the surface of the electrolyte membrane.
An example of the material for the negative terminal tab is nickel.

負極活物質層は、例えば炭素粉末や黒鉛粉末等からなる炭素材料と、ポリフッ化ビニリデンのような結着剤とを溶媒に分散させてなる負極用スラリーを、負極集電体の片面又は両面に塗布し、該負極用スラリーを乾燥させることによって得られる。塗布後は、必要に応じてプレスを行ってもよい。   The negative electrode active material layer is made of, for example, a negative electrode slurry obtained by dispersing a carbon material made of carbon powder or graphite powder and a binder such as polyvinylidene fluoride in a solvent on one or both surfaces of the negative electrode current collector. It is obtained by coating and drying the negative electrode slurry. After application, pressing may be performed as necessary.

非水電解液は、正極板及び負極板に塗布されるものであり、非水溶媒及び電解質塩からなる。
この非水電解液に用いられる非水溶媒は、γ−ブチロラクトン等のラクトン化合物;エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の炭酸エステル化合物;ギ酸メチル、酢酸メチル、プロピオン酸メチル等のカルボン酸エステル化合物;テトラヒドロフラン、ジメトキシエタン等のエーテル化合物;テトラヒドロフラン、ジメトキシエタン等のエーテル化合物;アセトニトリル等のニトリル化合物;スルホラン等のスルホン化合物、ジメチルホルムアミド等のアミド化合物等、単独または2種類以上を混合して調製される。
The nonaqueous electrolytic solution is applied to the positive electrode plate and the negative electrode plate, and includes a nonaqueous solvent and an electrolyte salt.
The non-aqueous solvent used in this non-aqueous electrolyte is a lactone compound such as γ-butyrolactone; a carbonate compound such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, or methyl ethyl carbonate; methyl formate, methyl acetate, propionic acid Carboxylic acid ester compounds such as methyl; ether compounds such as tetrahydrofuran and dimethoxyethane; ether compounds such as tetrahydrofuran and dimethoxyethane; nitrile compounds such as acetonitrile; sulfone compounds such as sulfolane; amide compounds such as dimethylformamide; It is prepared by mixing the above.

電解質膜は、ゲル用電解液を塗布してゲル化させたもの、又はゲル用電解液を不織布等よりなる基材に塗布してゲル化させたものである。
基材の材質としては、特に限定されないがポリオレフィン系樹脂(ポリプロピレン、ポリエチレン等)やポリエステル系樹脂、ポリイミド系樹脂等が用いられる。
The electrolyte membrane is a gel formed by applying a gel electrolyte, or a gel formed by applying a gel electrolyte to a substrate made of a nonwoven fabric or the like.
The material of the substrate is not particularly limited, and polyolefin resins (polypropylene, polyethylene, etc.), polyester resins, polyimide resins and the like are used.

ゲル用電解液は、非水電解液(すなわち、非水溶媒を用いた電解液)に高分子マトリックスを配合することで、ゲル化されて表面に粘着性を生じるものである。このゲル用電解液には、希釈溶媒が含まれていてもよい。また、ゲル用電解液は、基材に塗布又は含浸された際に粘着性を有するものが用いられる。
なお、電解質膜は、正極板及び負極板又は基材の表面から分離しない自立膜を形成するものであることが好ましい。
The electrolyte solution for gel is gelled by adding a polymer matrix to a non-aqueous electrolyte solution (that is, an electrolyte solution using a non-aqueous solvent), thereby producing adhesiveness on the surface. The gel electrolyte may contain a diluting solvent. Moreover, what has adhesiveness is used for the electrolyte solution for gels, when it apply | coats or impregnates to a base material.
In addition, it is preferable that an electrolyte membrane forms the self-supporting film | membrane which does not isolate | separate from the surface of a positive electrode plate, a negative electrode plate, or a base material.

高分子マトリックスとしては、ポリフッ化ビニリデン(PVDF)、ヘキサフルオロプロピレン共重合体(PVDF−HFP)、ポリアクリロニトリル、ポリエチレンオキシドやポリプロピレンオキシド等のアルキレンエーテルをはじめ、ポリエステル、ポリアミン、ポリフォスファゼン、ポリシロキサン等が用いられる。   Polymer matrices include polyvinylidene fluoride (PVDF), hexafluoropropylene copolymer (PVDF-HFP), polyacrylonitrile, alkylene ethers such as polyethylene oxide and polypropylene oxide, polyester, polyamine, polyphosphazene, and polysiloxane. Etc. are used.

非水溶媒は、γ−ブチロラクトン等のラクトン化合物;エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の炭酸エステル化合物;ギ酸メチル、酢酸メチル、プロピオン酸メチル等のカルボン酸エステル化合物;テトラヒドロフラン、ジメトキシエタン等のエーテル化合物;テトラヒドロフラン、ジメトキシエタン等のエーテル化合物;アセトニトリル等のニトリル化合物;スルホラン等のスルホン化合物、ジメチルホルムアミド等のアミド化合物等、単独または2種類以上を混合して調製される。
なお、正極板及び負極板に塗布させる非水電解液と電解質膜に含まれる非水電解液とは、同一の材料の組み合わせにより調製されていることが望ましい。これにより、非水電解液が浸透した正極板及び負極板とゲル状電解質界面との間で、リチウムイオンの授受がよりスムーズに行われる。
The non-aqueous solvent is a lactone compound such as γ-butyrolactone; a carbonic acid ester compound such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, or methyl ethyl carbonate; a carboxylic acid ester compound such as methyl formate, methyl acetate, or methyl propionate; Ether compounds such as tetrahydrofuran and dimethoxyethane; ether compounds such as tetrahydrofuran and dimethoxyethane; nitrile compounds such as acetonitrile; sulfone compounds such as sulfolane; amide compounds such as dimethylformamide; .
In addition, it is desirable that the nonaqueous electrolytic solution applied to the positive electrode plate and the negative electrode plate and the nonaqueous electrolytic solution contained in the electrolyte membrane are prepared by a combination of the same materials. Thereby, the transfer of lithium ions is performed more smoothly between the positive electrode plate and the negative electrode plate infiltrated with the non-aqueous electrolyte and the gel electrolyte interface.

電解質塩としては、特に限定されないが六フッ化リン酸リチウム、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩等が使用できる。
希釈溶媒を混合する場合には、非水電解液よりも沸点の低いジメチルカーボネート(DMC),テトロヒドロフラン(THF),アセトニトリル等が用いられる。
The electrolyte salt is not particularly limited, and lithium salts such as lithium hexafluorophosphate, lithium perchlorate, and lithium tetrafluoroborate can be used.
When the diluting solvent is mixed, dimethyl carbonate (DMC), tetrohydrofuran (THF), acetonitrile, or the like having a boiling point lower than that of the nonaqueous electrolytic solution is used.

次に、リチウムイオン二次電池の製造方法の各工程(I)〜(III)について説明する。リチウムイオン二次電池の製造方法は、(I)正極板及び負極板の少なくとも一方の板面に非水電解液を塗布する第1の工程と、(II)第1の工程の後に、正極板及び負極板の少なくとも前記一方の板面にゲル状の電解質膜を形成する第2の工程と、(III)第2の工程の後に、正極板と負極板とをこれらの間にゲル状の電解質膜が介在するように交互に積層する第3の工程とを有する。   Next, each process (I)-(III) of the manufacturing method of a lithium ion secondary battery is demonstrated. The method for producing a lithium ion secondary battery includes (I) a first step of applying a non-aqueous electrolyte to at least one plate surface of a positive electrode plate and a negative electrode plate, and (II) a positive electrode plate after the first step. And a second step of forming a gel electrolyte membrane on at least one surface of the negative electrode plate, and (III) a gel electrolyte between the positive electrode plate and the negative electrode plate after the second step. And a third step of alternately laminating with the film interposed.

(I)正極板及び負極板の少なくとも一方の板面に非水電解液を塗布する第1の工程
まず、アルミ箔等の正極集電体に正極活物質層を形成し、その後ロール上に巻回しておいた正極板を延伸させ該電極板の少なくとも一方の板面に非水電解液を塗布する。この正極板は、予め所定寸法に切断されたものであってもよい。
塗布方法は、特に限定されないが、例えばディッピング法やスプレー法等が採用される。
また、非水電解液の塗布量は、特に限定されないが、非水電解液が正極板の前記一方の板面全体に行き渡り、正極活物質層に十分に染み込みかつ滴らない程度であることが望ましく、例えば、電極の単位体積あたり、非水電解液の塗布量が(1マイクロリッター/cm2〜100マイクロリッター/cm2)となるようにすることが好ましい。
負極板についても、正極板と同様に、非水電解液が塗布されて形成される。
なお、正極板及び負極板の前記一方の板面に塗布される非水電解液とゲル状の電解質膜に含まれる非水電解液とは、同一材料の組み合わせにより調整されることが好ましい。
(I) First step of applying non-aqueous electrolyte to at least one plate surface of positive electrode plate and negative electrode plate First, a positive electrode active material layer is formed on a positive electrode current collector such as an aluminum foil, and then wound on a roll. The rotated positive electrode plate is stretched and a non-aqueous electrolyte is applied to at least one plate surface of the electrode plate. This positive electrode plate may be previously cut to a predetermined dimension.
The application method is not particularly limited, and for example, a dipping method or a spray method is employed.
Further, the amount of the nonaqueous electrolyte applied is not particularly limited, but the nonaqueous electrolyte may be spread over the entire surface of the one of the positive electrode plates, so that the positive electrode active material layer is not sufficiently soaked and dripped. Desirably, for example, the application amount of the nonaqueous electrolytic solution per unit volume of the electrode is preferably (1 microliter / cm2 to 100 microliter / cm2).
Similarly to the positive electrode plate, the negative electrode plate is formed by applying a non-aqueous electrolyte.
In addition, it is preferable that the nonaqueous electrolytic solution applied to the one plate surface of the positive electrode plate and the negative electrode plate and the nonaqueous electrolytic solution contained in the gel electrolyte membrane are adjusted by a combination of the same materials.

(II)ゲル状の電解質膜を形成する第2の工程
ゲル状の電解質膜は、ゲル用電解液を前記第1の工程で形成された正極板及び負極板の非水電解液が塗布された板面に直接塗布するか、又はゲル用電解液を基材に含浸させた上で正極板及び負極板の非水電解液が塗布された板面に貼り合されて形成される。
この場合、ゲル用電解液を予め40℃〜120℃の範囲で加温して該ゲル用電解液の粘度を低下させるとよい。
ゲル用電解液の塗布又は含浸方法としては、例えば、ドクターブレード法,ディッピング、グラビアコーター、コンマコーター、リップコーター等を用いる各種コーター方式が挙げられる。
なお、塗布又は含浸するゲル用電解液に希釈溶媒が含まれている場合には、該ゲル用電解液を基材に塗布又は含浸した後、希釈溶媒を揮発させ、ゲル化させる。
(II) Second Step of Forming Gelled Electrolyte Membrane The gelled electrolyte membrane was coated with the nonaqueous electrolytic solution of the positive electrode plate and the negative electrode plate formed in the first step. It is formed by directly applying to the plate surface, or by impregnating the substrate with a gel electrolyte, and then bonding the positive electrode plate and the negative electrode plate to the plate surface to which the nonaqueous electrolyte solution is applied.
In this case, the gel electrolyte may be preheated in the range of 40 ° C. to 120 ° C. to reduce the viscosity of the gel electrolyte.
Examples of the method for applying or impregnating the gel electrolyte include various coater methods using a doctor blade method, dipping, a gravure coater, a comma coater, a lip coater, and the like.
In addition, when the dilution solvent is contained in the electrolyte solution for gels to apply | coat or impregnate, after apply | coating or impregnating this electrolyte solution for gels, a dilution solvent is volatilized and it gelatinizes.

(III)第2の工程の後に、正極板と負極板とをこれらの間に電解質膜が介在するように交互に積層する第3の工程
上記のようにして形成された正極板及び負極板を、これらの間にゲル状の電解質膜が介在するように交互に積層して接合し、正極板及び負極板の外方に突設させた端子用タブを超音波溶接等により接合し、多層の膜電極接合体を得る。
なお、この際、正極板及び負極板のゲル状の電解質膜を40℃〜120℃の範囲で加温し、該電解質膜においてゲル化されたゲル用電解液を溶融しておくのが望ましい。
(III) After the second step, the third step of alternately stacking the positive electrode plate and the negative electrode plate so that the electrolyte membrane is interposed therebetween. The positive electrode plate and the negative electrode plate formed as described above These are laminated alternately and joined so that the gel electrolyte membrane is interposed between them, and the terminal tabs protruding outward from the positive electrode plate and the negative electrode plate are joined by ultrasonic welding or the like, A membrane electrode assembly is obtained.
At this time, it is desirable to heat the gel electrolyte membranes of the positive electrode plate and the negative electrode plate in the range of 40 ° C. to 120 ° C. and melt the gel electrolyte solution gelled in the electrolyte membrane.

上記のようにして正極板と負極板とを積層すると、電解質膜はゲル化された状態又は溶融状態で粘着性を有しているため、これら正極板及び負極板は、電解質膜に貼着される。
電解質膜を加温した場合には、その後、電解質膜を再び常温におき、電解質膜を再びゲル化させる。
上記のようにして得られた多層の膜電極接合体は、円筒型、角型、又はラミネート型等の筐体内に収容されるが、他の筐体に比べてエネルギー密度が高く、放熱性が良いラミネート型の電池構造とすることが好ましい。例えばラミネート型の筐体に収容した場合には、正極板及び負極板から突出させた端子用タブをアルミラミネートフィルムの外方に突出させて該フィルムの外周をラミネート加工して封止し、リチウムイオン二次電池が完成する。
When the positive electrode plate and the negative electrode plate are laminated as described above, since the electrolyte membrane has adhesiveness in a gelled state or a molten state, the positive electrode plate and the negative electrode plate are adhered to the electrolyte membrane. The
When the electrolyte membrane is heated, the electrolyte membrane is then placed at room temperature again, and the electrolyte membrane is gelled again.
The multilayer membrane electrode assembly obtained as described above is housed in a cylindrical, square, or laminate type housing, but has a higher energy density and heat dissipation than other housings. A good laminate type battery structure is preferable. For example, when housed in a laminate-type housing, the terminal tabs protruded from the positive electrode plate and the negative electrode plate are protruded outward from the aluminum laminate film, and the outer periphery of the film is laminated and sealed. An ion secondary battery is completed.

本実施形態のリチウムイオン二次電池の製造方法によれば、ゲル状の電解質膜を形成する前に正極板の少なくとも一方の板面及び負極板の少なくとも一方の板面に非水電解液を塗布するので、正極板及び負極板の活物質層に十分に非水電解液を浸透させることができる。そして非水電解液が塗布された板面にゲル状の電解質膜を形成させるので、正極板内部及び負極板内部でのリチウムイオンの授受がより多く行われる。また、電解液だけの電池に比べて非水電解液の使用量が少なくかつ該非水電解液が正極板及び負極板に浸透している。したがって、充放電性能に優れかつ液漏れし難いリチウムイオン二次電池を製造することができるという効果が得られる。   According to the method for manufacturing a lithium ion secondary battery of this embodiment, before forming the gel electrolyte membrane, the nonaqueous electrolyte is applied to at least one plate surface of the positive electrode plate and at least one plate surface of the negative electrode plate. Therefore, the non-aqueous electrolyte can be sufficiently permeated into the active material layers of the positive electrode plate and the negative electrode plate. And since the gel-like electrolyte membrane is formed on the plate surface coated with the non-aqueous electrolyte, more lithium ions are transferred inside and outside the positive electrode plate and the negative electrode plate. Further, the amount of non-aqueous electrolyte used is smaller than that of a battery having only an electrolyte, and the non-aqueous electrolyte penetrates into the positive electrode plate and the negative electrode plate. Therefore, it is possible to produce a lithium ion secondary battery that is excellent in charge / discharge performance and hardly leaks.

また、正極板及び負極板に塗布される非水電解液がゲル状の電解質膜に含まれる非水電解液と同じ材料により調製されている場合には、非水電解液が浸透した電極とゲル状電解質界面との間でリチウムイオンの授受がよりスムーズに行われる。したがってリチウムイオン二次電池の充放電性能がより向上するという効果が得られる。   In addition, when the non-aqueous electrolyte applied to the positive electrode plate and the negative electrode plate is made of the same material as the non-aqueous electrolyte contained in the gel electrolyte membrane, the electrode and the gel infiltrated with the non-aqueous electrolyte Lithium ions are more smoothly exchanged with the electrolyte interface. Therefore, the effect of improving the charge / discharge performance of the lithium ion secondary battery can be obtained.

また、ゲル状の電解質膜が、不織布等の基材にゲル用電解液を含浸させゲル化して形成されることにより正極板と負極板との間の短絡を効果的に防止することができるとともに、正極板と負極板の積層体の強度が向上するという効果が得られる。更に、リチウムイオン二次電池の製造工程においてリチウムイオン二次電池の厚みを制御しやすくなるという効果が得られる。   Moreover, while the gel electrolyte membrane is formed by impregnating a base material such as a nonwoven fabric with gel electrolyte and gelling, it can effectively prevent a short circuit between the positive electrode plate and the negative electrode plate. The effect of improving the strength of the laminate of the positive electrode plate and the negative electrode plate is obtained. Furthermore, the effect that it becomes easy to control the thickness of a lithium ion secondary battery in the manufacturing process of a lithium ion secondary battery is acquired.

また、正極板及び負極板にゲル状の電解質膜を形成する際にゲル用電解液を加温した場合には、ゲル用電解液の粘度が低下しゲル用電解液の流動性が高くなることで、電解質膜を正極板及び負極板の間で均一に形成することができるので、正極板及び負極板の充放電性能に優れたリチウムイオン二次電池を製造することができるという効果が得られる。   In addition, when the gel electrolyte is heated when the gel electrolyte membrane is formed on the positive electrode plate and the negative electrode plate, the viscosity of the gel electrolyte decreases and the fluidity of the gel electrolyte increases. Thus, since the electrolyte membrane can be uniformly formed between the positive electrode plate and the negative electrode plate, an effect that a lithium ion secondary battery excellent in charge / discharge performance of the positive electrode plate and the negative electrode plate can be produced.

以下、実施例をもって本発明を具体的に説明する。
1)リチウムイオン二次電池の作製
<電極>
<正極板> LiCoO2(コバルト酸リチウム 日本化学工業(株)セルシードC-5H)89質量部と、PVDF(ポリフッ化ビニリデン、(株)クレハ KFポリマーL♯1120)6質量部と、カーボンブラック(電気化学工業 デンカブラック)5質量部と、N−メチルピロリドン(NMP)100質量部とをディスパー(プライミクス(株)製 TKホモディスパー2.5型)で1時間混合し、得られた混合物を20μmのアルミニウム箔に両面塗布し、更に減圧乾燥(100℃、−0.1MPa、10時間)してロールプレスした。
Hereinafter, the present invention will be specifically described with reference to examples.
1) Fabrication of lithium ion secondary battery <Electrode>
<Positive electrode plate> 89 parts by mass of LiCoO 2 (lithium cobaltate Nippon Chemical Industry Co., Ltd., Cellseed C-5H), 6 parts by mass of PVDF (polyvinylidene fluoride, Kureha KF Polymer L # 1120), carbon black (electric Chemical Industry Denka Black) 5 parts by mass and N-methylpyrrolidone (NMP) 100 parts by mass were mixed with a disper (Primix Co., Ltd., TK homodisper 2.5 type) for 1 hour, and the resulting mixture was mixed with 20 μm. Both surfaces were coated on an aluminum foil, and further dried under reduced pressure (100 ° C., −0.1 MPa, 10 hours) and roll-pressed.

<負極板>グラファイト(日本黒鉛工業(株)CGB−10)90質量部、PVDF(ポリフッ化ビニリデン、(株)クレハ KFポリマーL♯1120)10質量部、N−メチルピロリドン(NMP)120質量部を前記ディスパーで1時間混合し、得られた混合物を20μmの銅箔に両面塗布し、減圧乾燥(100℃、−0.1MPa、10時間)してロールプレスした。   <Negative Electrode Plate> 90 parts by mass of graphite (Nippon Graphite Industries Co., Ltd. CGB-10), 10 parts by mass of PVDF (polyvinylidene fluoride, Kureha KF Polymer L # 1120), 120 parts by mass of N-methylpyrrolidone (NMP) Were mixed with the disper for 1 hour, and the resulting mixture was coated on both sides of a 20 μm copper foil, dried under reduced pressure (100 ° C., −0.1 MPa, 10 hours), and roll-pressed.

上記の正極板及び負極板をあらかじめ略矩形にカットした。活物質層で被覆された部分を、負極は80×80mm、正極は78×78mmとした。活物質層で被覆されていない部分(タブ部分)を2×5cm程度残してカットした。   The positive electrode plate and the negative electrode plate were cut into a substantially rectangular shape in advance. The portion covered with the active material layer was 80 × 80 mm for the negative electrode and 78 × 78 mm for the positive electrode. The portion not covered with the active material layer (tab portion) was cut to leave about 2 × 5 cm.

<ゲル用電解液>
高分子マトリックスであるPVDF−HFP(ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体、アルドリッチ社製)10質量部と、非水電解液(LiPF6 (キシダ化学製)を、リチウム塩濃度が1mol/lとなるように、ジメチルカーボネート:エチレンカーボネート(2:1、体積比)の混合溶媒に溶解させたもの)90質量部とを混合した。この混合溶液を前記ディスパーで1時間攪拌して、ゲル用電解液(1)を得た。
また、前記PVDF−HFPの使用量を10質量部に代えて3質量部とし、前記非水電解液の使用量を90質量部に代えて97質量部としたこと以外は、ゲル用電解液(1)の場合と同様の方法で、ゲル用電解液(2)を得た。
<Electrolytic solution for gel>
10 parts by mass of PVDF-HFP (polyvinylidene fluoride / hexafluoropropylene copolymer, manufactured by Aldrich), which is a polymer matrix, and non-aqueous electrolyte (LiPF6 (manufactured by Kishida Chemical Co., Ltd.)) with a lithium salt concentration of 1 mol / l 90 parts by mass of dimethyl carbonate: ethylene carbonate (2: 1, volume ratio) dissolved in a mixed solvent was mixed. This mixed solution was stirred with the disper for 1 hour to obtain an electrolyte solution for gel (1).
Moreover, the amount of the PVDF-HFP used is 3 parts by mass instead of 10 parts by mass, and the amount of the nonaqueous electrolyte used is 97 parts by mass instead of 90 parts by mass. In the same manner as in 1), an electrolyte solution for gel (2) was obtained.

[実施例1]
正極板及び負極板の両板面に非水電解液としてLiPF6溶液をディッピング法により塗布した。非水電解液は、電極の単位体積あたり、LiPF6の塗布量が(15マイクロリッター/cm2〜25マイクロリッター/cm2)となるように塗布した。次いで、得られたゲル用電解液(1)を、バーコーターを用いて上記非水電解液が塗布された正極板上及び負極板上に厚みが20μmになるように塗布して乾燥させ、ラミネート電池加工をし、リチウムイオン二次電池を作製した。
[Example 1]
A LiPF6 solution was applied as a nonaqueous electrolyte solution to both the positive electrode plate and the negative electrode plate by a dipping method. The non-aqueous electrolyte was applied so that the application amount of LiPF6 was (15 microliters / cm2 to 25 microliters / cm2) per unit volume of the electrode. Next, the obtained electrolyte solution for gel (1) was applied on the positive electrode plate and the negative electrode plate to which the nonaqueous electrolyte solution was applied using a bar coater so as to have a thickness of 20 μm, dried, and laminated. The battery was processed to produce a lithium ion secondary battery.

[実施例2]
正極板及び負極板に実施例1の場合と同様に非水電解液を塗布し、その上にゲル用電解液(1)を基材(廣瀬製紙(株)製HOP6)に含浸塗布してゲル化させたものを貼り合せた後、ラミネート電池加工をし、リチウムイオン二次電池を作製した。
[Example 2]
A non-aqueous electrolyte solution was applied to the positive electrode plate and the negative electrode plate in the same manner as in Example 1, and then the gel electrolyte solution (1) was impregnated and applied to a base material (HOP6 manufactured by Hirose Paper Co., Ltd.). After the laminated ones were laminated, the laminated battery was processed to produce a lithium ion secondary battery.

[比較例1]
正極板及び負極板に非水電解液を塗布しなかったこと以外は、実施例1と同様の方法でリチウムイオン二次電池を作製した。
[Comparative Example 1]
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the non-aqueous electrolyte was not applied to the positive electrode plate and the negative electrode plate.

[比較例2]
正極板及び負極板にゲル用電解液(2)を塗布した後、更にその上に、ゲル用電解液(1)を塗布してラミネート電池加工をし、リチウムイオン二次電池を作製した。 表1に実施例1,2、比較例1,2の詳細を示す。
[Comparative Example 2]
After applying the electrolyte solution for gel (2) to the positive electrode plate and the negative electrode plate, the electrolyte solution for gel (1) was further applied thereon to process the laminated battery to produce a lithium ion secondary battery. Table 1 shows details of Examples 1 and 2 and Comparative Examples 1 and 2.

Figure 2012186020
Figure 2012186020

2)評価結果
上記各実施例及び比較例のリチウムイオン二次電池の電極の設計容量に対して0.2C(18.2mAh/cm2)で4.2Vに達するまで充電し、その後0.2Cと1C(91mAh/cm2)の条件で2.7Vに達するまで放電し、その時の放電容量を設計容量に対する比率、すなわち放電容量/設計容量×100(%)で各実施例と比較例とを比較した。その結果を下記表2に示す。各実施例に係るリチウムイオン二次電池に充電した場合の設計容量に対する放電容量比は、いずれも比較例に係る従来型のリチウムイオン二次電池よりも高く、比較例1,2のリチウムイオン二次電池は、いずれも実施例1,2のリチウムイオン二次電池に比べて放電容量比が低かった。
2) Evaluation result It charges until it reaches 4.2V with 0.2C (18.2mAh / cm2) with respect to the design capacity of the electrode of the lithium ion secondary battery of each of the above examples and comparative examples, and then 0.2C It discharged until it reached 2.7 V under the condition of 1 C (91 mAh / cm 2), and the discharge capacity at that time was compared with the design capacity, ie, the discharge capacity / design capacity × 100 (%), and each example and the comparative example were compared. . The results are shown in Table 2 below. When the lithium ion secondary battery according to each example is charged, the discharge capacity ratio to the design capacity is higher than that of the conventional lithium ion secondary battery according to the comparative example. Both secondary batteries had a lower discharge capacity ratio than the lithium ion secondary batteries of Examples 1 and 2.

Figure 2012186020
Figure 2012186020

Claims (5)

正極板、負極板、及び電解質膜を積層して形成されるリチウムイオン二次電池の製造方法において、
前記正極板及び前記負極板の一の板面に非水電解液を塗布する第1の工程と、
前記第1の工程の後に、前記正極板及び前記負極板の前記一の板面にゲル状の電解質膜を形成する第2の工程と、
前記第2の工程の後に、前記正極板と前記負極板とをこれらの間に前記電解質膜が介在するように交互に積層する第3の工程とを有することを特徴とするリチウムイオン二電池の製造方法。
In the method for producing a lithium ion secondary battery formed by laminating a positive electrode plate, a negative electrode plate, and an electrolyte membrane,
A first step of applying a non-aqueous electrolyte to one plate surface of the positive electrode plate and the negative electrode plate;
A second step of forming a gel electrolyte membrane on the one plate surface of the positive electrode plate and the negative electrode plate after the first step;
A lithium ion battery comprising: a third step of alternately stacking the positive electrode plate and the negative electrode plate so that the electrolyte membrane is interposed between the positive electrode plate and the negative electrode plate after the second step. Production method.
請求項1に記載のリチウムイオン二次電池の製造方法において、
前記非水電解液と前記ゲル状の電解質膜に含まれる非水電解液とが同一材料の組み合わせにより調製されていることを特徴とするリチウムイオン二次電池の製造方法。
In the manufacturing method of the lithium ion secondary battery according to claim 1,
The method for producing a lithium ion secondary battery, wherein the non-aqueous electrolyte and the non-aqueous electrolyte contained in the gel electrolyte membrane are prepared by a combination of the same materials.
請求項1又は2に記載のリチウムイオン二次電池の製造方法において、
前記第2の工程において、前記ゲル状の電解質膜は、基材にゲル用電解液を塗布して形成されることを特徴とするリチウムイオン二次電池の製造方法。
In the manufacturing method of the lithium ion secondary battery according to claim 1 or 2,
In the second step, the gel electrolyte membrane is formed by applying an electrolyte solution for gel to a base material.
請求項1から3のいずれか一項に記載のリチウムイオン二次電池の製造方法において、
前記第2の工程の前記ゲル状の電解質膜は、前記ゲル用電解液を加温して形成されることを特徴とするリチウムイオン二次電池の製造方法。
In the manufacturing method of the lithium ion secondary battery as described in any one of Claim 1 to 3,
The method for producing a lithium ion secondary battery, wherein the gel electrolyte membrane in the second step is formed by heating the electrolyte solution for gel.
請求項1から4のいずれか一項に記載のリチウムイオン二次電池の製造方法により製造されたことを特徴とするリチウムイオン電池。   A lithium ion battery manufactured by the method for manufacturing a lithium ion secondary battery according to any one of claims 1 to 4.
JP2011048338A 2011-03-04 2011-03-04 Manufacturing method of lithium ion secondary battery and lithium ion secondary battery Pending JP2012186020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011048338A JP2012186020A (en) 2011-03-04 2011-03-04 Manufacturing method of lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011048338A JP2012186020A (en) 2011-03-04 2011-03-04 Manufacturing method of lithium ion secondary battery and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2012186020A true JP2012186020A (en) 2012-09-27

Family

ID=47015928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011048338A Pending JP2012186020A (en) 2011-03-04 2011-03-04 Manufacturing method of lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2012186020A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074526A (en) * 1996-08-30 1998-03-17 Sanyo Electric Co Ltd Polymer solid electrolyte battery and manufacture thereof
JPH11329501A (en) * 1998-05-19 1999-11-30 Asahi Chem Ind Co Ltd Manufacture of polymer battery
JP2001023693A (en) * 1999-07-08 2001-01-26 Sony Corp Solid electrolyte battery
JP2002158038A (en) * 2000-11-17 2002-05-31 Sharp Corp Lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074526A (en) * 1996-08-30 1998-03-17 Sanyo Electric Co Ltd Polymer solid electrolyte battery and manufacture thereof
JPH11329501A (en) * 1998-05-19 1999-11-30 Asahi Chem Ind Co Ltd Manufacture of polymer battery
JP2001023693A (en) * 1999-07-08 2001-01-26 Sony Corp Solid electrolyte battery
JP2002158038A (en) * 2000-11-17 2002-05-31 Sharp Corp Lithium secondary battery

Similar Documents

Publication Publication Date Title
JP4228541B2 (en) Method for producing non-aqueous gel electrolyte battery
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
JP4041044B2 (en) Method for manufacturing electrochemical device
JP5760593B2 (en) Method for producing active material, electrode and lithium ion secondary battery
JP3474853B2 (en) Manufacturing method of lithium ion secondary battery
JP4414165B2 (en) Electronic component separator and electronic component
JP2011253804A (en) Electrode structure, method of manufacturing the same and bipolar battery
JP2009252396A (en) Lithium secondary battery cathode and method for manufacturing the same
JP2012156128A (en) Multilayered membrane electrode assembly manufacturing method and lithium ion secondary battery
JP4992203B2 (en) Lithium ion secondary battery
JP2008171575A (en) Cathode plate for nonaqueous electrolytic solution secondary battery, its manufacturing method, and nonaqueous electrolytic secondary battery using it
JP5043076B2 (en) Non-aqueous lithium secondary battery
JP2013182735A (en) Method for manufacturing multilayered membrane electrode assembly and lithium ion secondary battery
JP4490055B2 (en) Separator for lithium ion secondary battery or polymer lithium battery
JP2019164964A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP2013218926A (en) Separator and lithium-ion secondary battery using the same
JP2004247180A (en) Electrode mix, electrode structure using it, and nonaqueous electrochemical element
JP2006164883A (en) Winding electrode and its manufacturing method, and method of manufacturing battery
JP5516700B2 (en) Lithium secondary battery
JP2003297337A (en) Electrode structure, its manufacturing method, and secondary battery
JP2016081707A (en) Negative electrode and lithium ion secondary battery using the same
JP2012186020A (en) Manufacturing method of lithium ion secondary battery and lithium ion secondary battery
JP5217066B2 (en) Lithium secondary battery
JP2013073855A (en) Method of manufacturing multilayer membrane electrode assembly, method of manufacturing lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140812