JP2012185081A - Nonlinear absorption measurement method of optical material - Google Patents

Nonlinear absorption measurement method of optical material Download PDF

Info

Publication number
JP2012185081A
JP2012185081A JP2011049299A JP2011049299A JP2012185081A JP 2012185081 A JP2012185081 A JP 2012185081A JP 2011049299 A JP2011049299 A JP 2011049299A JP 2011049299 A JP2011049299 A JP 2011049299A JP 2012185081 A JP2012185081 A JP 2012185081A
Authority
JP
Japan
Prior art keywords
photon absorption
measurement
optical material
measurement region
absorption coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011049299A
Other languages
Japanese (ja)
Other versions
JP5673948B2 (en
Inventor
Tomozumi Kamimura
共住 神村
Yoshiyuki Harada
義之 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Josho Gakuen Educational Foundation
Original Assignee
Josho Gakuen Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Josho Gakuen Educational Foundation filed Critical Josho Gakuen Educational Foundation
Priority to JP2011049299A priority Critical patent/JP5673948B2/en
Publication of JP2012185081A publication Critical patent/JP2012185081A/en
Application granted granted Critical
Publication of JP5673948B2 publication Critical patent/JP5673948B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of eliminating influence of fluorescent emission in a thickness direction, measuring two-photon absorption, and evaluating laser damage resistance of an optical material with respect to the optical material associated with the fluorescent emission.SOLUTION: A method for measuring a two-photon absorption coefficient in a measurement region inside an optical material includes: [1] a measuring step for generating the two-photon absorption at a focal point position by irradiating pulse laser beams focused on at least two measurement regions with different depths from a surface of the material respectively while sequentially changing incident light intensity, and measuring a transmission coefficient and a total emission amount of fluorescent emission for each incident light intensity when the two-photon absorption is generated; [2] a transmission coefficient correction step for correcting the measured transmission coefficient based on measured values with respect to each incident light intensity; and [3] a two-photon absorption coefficient computing step for obtaining the two-photon absorption coefficient in the measurement region based on change in the transmission coefficient after the correction to change in the incident light intensity.

Description

本発明は、蛍光発光を伴う光学材料の非線形吸収(2光子吸収)を測定する方法に関し、特に、厚みを有する光学材料において、光学材料の厚さ方向における蛍光発光の寄与を補正することによって、2光子吸収係数を精度良く測定する方法に関する。本発明は更に、蛍光発光を伴う光学材料のレーザー損傷耐性を評価する方法に関する。   The present invention relates to a method for measuring nonlinear absorption (two-photon absorption) of an optical material accompanied by fluorescence emission, and particularly in an optical material having a thickness, by correcting the contribution of fluorescence emission in the thickness direction of the optical material, The present invention relates to a method for accurately measuring a two-photon absorption coefficient. The invention further relates to a method for evaluating the laser damage resistance of an optical material with fluorescent emission.

レーザー光を用いたレーザーシステムは、情報通信、超微細加工、医療等の幅広い産業分野で利用されている。レーザーシステムにおいて、レーザー光の波長変換、集光、反射および増幅素子の構成要素として光学結晶等の光学材料が用いられているが、それらの光学材料は高エネルギー密度のレーザー光にさらされるため、光学材料の良否がシステムの性能や信頼性を左右する。   Laser systems using laser light are used in a wide range of industrial fields such as information communication, ultrafine processing, and medical treatment. In a laser system, optical materials such as optical crystals are used as components of wavelength conversion, condensing, reflecting, and amplifying elements of laser light. However, since these optical materials are exposed to high energy density laser light, The quality of the optical material determines the performance and reliability of the system.

これらのシステムに用いられる光学材料としては、主にレンズ、ミラー基板、窓材等に用いる石英に代表されるガラス材料、主にレーザー発振に用いるNd:YAG、Yb:YAG等の単結晶材料、主に波長変換に用いるCLBO(CsLiB10)、LBO(Li)、BBO(BaB)、KTP(KTiOPO)等の単結晶材料、主にレンズに用いるCaF、MgF等の単結晶材料、主に窓材として用いる透光性セラミックスなどが挙げられる。これらの光学材料は製造方法や使用原料によって得られる品質が異なるので、いかにして品質評価・品質保証を行うかが重要となる。特に、レーザー損傷耐性の評価は極めて重要である。 As optical materials used in these systems, glass materials represented by quartz mainly used for lenses, mirror substrates, window materials, etc., single crystal materials such as Nd: YAG, Yb: YAG mainly used for laser oscillation, Single crystal materials such as CLBO (CsLiB 6 O 10 ), LBO (Li 2 B 2 O 4 ), BBO (BaB 2 O 4 ), KTP (KTiOPO 4 ) mainly used for wavelength conversion, CaF 2 mainly used for lenses And single crystal materials such as MgF 2 and translucent ceramics mainly used as window materials. Since these optical materials have different qualities obtained depending on the manufacturing method and raw materials used, it is important how quality evaluation and quality assurance are performed. In particular, the evaluation of laser damage resistance is extremely important.

そこで、本発明者らは、光学材料のレーザー損傷耐性を非破壊かつ非接触で評価する方法を開発した(特許文献1および2)。この方法は、パルスレーザー光を光学材料に照射して、光学材料内部の多数の位置において2光子吸収係数に起因する透過率低下を測定し、その結果に基づいて光学材料内部の各領域におけるレーザー損傷耐性を評価するものである。これらの成果を応用することで光学材料のレーザー損傷耐性を非破壊で3次元イメージング可能な技術が実証可能となった。   Accordingly, the present inventors have developed a method for nondestructively and noncontactly evaluating the laser damage resistance of an optical material (Patent Documents 1 and 2). This method irradiates an optical material with pulsed laser light, measures a decrease in transmittance due to a two-photon absorption coefficient at a number of positions inside the optical material, and based on the result, a laser in each region inside the optical material. This is to evaluate damage resistance. By applying these results, it has become possible to demonstrate a technology capable of non-destructive three-dimensional imaging of laser damage resistance of optical materials.

特許第4528075号公報Japanese Patent No. 4528075 特開2009−36706号公報JP 2009-36706 A

特許文献1に記載の方法により、非線形吸収を利用した光学材料のレーザー損傷耐性の評価が実現でき、照射したレーザー光の焦点付近の領域におけるレーザー損傷耐性を非線形吸収量から非破壊で高精度に求めることができた。照射するレーザー光の焦点位置を光学材料内部で垂直、水平面内に移動させることによって、面内の均質性のイメージング評価も可能となった。一方、光学材料の中には、強いレーザー光を照射すると非線形吸収の過程で強い蛍光発光を伴うものが存在している。蛍光発光を伴う光学材料にレーザー光を照射すると、透過率は非線形吸収によって低下するだけでなく蛍光発光によっても低下する。蛍光発光に起因する透過率低下の程度は非線形吸収に起因する透過率低下の程度に比べて非常に大きいので、蛍光発光を伴う光学材料の厚さ方向において、透過率の低下の程度に基づいて焦点付近の領域における2光子吸収量を正確に求めることができず、従って、非線形吸収量とレーザー損傷耐性との相関をとることができない。このため、蛍光発光を伴う光学材料における非線形吸収によるレーザー損傷耐性の評価は、現在のところ光学材料表面から3mm程度を基準として±0.5mmの領域までしか可能でなく、特に厚みのあるレンズ材料では、本来目指している3次元イメージングをうまく行うことができなかった(図1(a))。また、従来の一般的な非線形吸収計測技術においては、厚さ方向における蛍光発光の影響を最小限にするために薄板試料が用いられており、厚みを有する光学材料内部の評価、解析は行われていない。   According to the method described in Patent Document 1, it is possible to evaluate the laser damage resistance of an optical material using nonlinear absorption, and the laser damage resistance in a region near the focal point of the irradiated laser light can be nondestructively and highly accurately determined from the nonlinear absorption amount. I was able to ask. By moving the focal position of the laser beam to irradiate vertically and horizontally within the optical material, imaging evaluation of in-plane homogeneity has become possible. On the other hand, some optical materials are accompanied by strong fluorescent light emission in the process of nonlinear absorption when irradiated with strong laser light. When an optical material with fluorescent emission is irradiated with laser light, the transmittance is not only reduced by nonlinear absorption but also reduced by fluorescent emission. Since the degree of transmittance decrease due to fluorescence emission is very large compared to the degree of transmittance decrease due to nonlinear absorption, based on the degree of transmittance decrease in the thickness direction of the optical material accompanied by fluorescence emission. The two-photon absorption amount in the region near the focal point cannot be accurately obtained, and therefore, the correlation between the nonlinear absorption amount and the laser damage resistance cannot be obtained. For this reason, the evaluation of laser damage resistance due to nonlinear absorption in an optical material with fluorescent emission is currently only possible up to an area of ± 0.5 mm from the surface of the optical material with a reference of about 3 mm, and particularly a thick lens material. Then, the originally aimed three-dimensional imaging could not be performed well (FIG. 1 (a)). Moreover, in the conventional general non-linear absorption measurement technique, a thin plate sample is used in order to minimize the influence of fluorescence emission in the thickness direction, and the evaluation and analysis inside the optical material having a thickness is performed. Not.

そこで、本発明は第1に、蛍光発光を伴い厚みを有する光学材料に関して、表面近傍だけでなく材料内部においても2光子吸収係数を精度良く測定することができる方法を提供することを目的とする。本発明は第2に、蛍光発光を伴い厚みを有する光学材料において、測定した2光子吸収係数を用いて光学材料内部のレーザー損傷耐性を評価することができる方法を提供することを目的とする。本発明は第3に、蛍光発光を伴い厚みを有する光学材料の内部におけるレーザー損傷耐性を高精度で3次元イメージングし得る方法を提供することを目的とする(図1(b))。   In view of the above, the first object of the present invention is to provide a method capable of accurately measuring the two-photon absorption coefficient not only in the vicinity of the surface but also in the interior of an optical material having a thickness accompanied with fluorescence. . A second object of the present invention is to provide a method capable of evaluating laser damage resistance inside an optical material using a measured two-photon absorption coefficient in an optical material having a thickness accompanied with fluorescence. The third object of the present invention is to provide a method capable of three-dimensional imaging with high accuracy of laser damage resistance inside an optical material having a thickness accompanied with fluorescence (FIG. 1B).

上記課題を解決するために、本発明者らは、蛍光発光を伴う光学材料において、2光子吸収に起因するエネルギー減衰と蛍光発光に起因するエネルギー減衰とを詳細に解析した結果、光学材料内部において、厚さ方向における蛍光発光の寄与を取り除く補正を行って2光子吸収係数を精度良く測定する方法を発見するに至った。   In order to solve the above-mentioned problems, the present inventors have analyzed in detail the energy attenuation due to two-photon absorption and the energy attenuation due to fluorescence emission in an optical material with fluorescence emission. The inventors have discovered a method for accurately measuring the two-photon absorption coefficient by performing correction to remove the contribution of fluorescence emission in the thickness direction.

即ち、本発明に係る2光子吸収係数測定方法は、
厚さがLである光学材料内部にある測定領域における2光子吸収係数を測定する方法であって、
[1]光学材料表面からの深さの異なる少なくとも2つの測定領域のそれぞれについて、各測定領域にある各測定箇所に焦点を合わせたパルスレーザー光を照射して、各焦点位置において入射光強度を順次変化させながら2光子吸収を生じさせ、
(i)前記少なくとも2つの測定領域のうちの光学材料表面に近い一方の測定領域において2光子吸収が生じたときの、光学材料表面から該一方の測定領域までの領域で生じる蛍光発光の総発光量を、参照総発光量として各入射光強度についてそれぞれ測定し、
(ii)他方の測定領域において2光子吸収が生じたときの、透過率と光学材料表面から該他方の測定領域までの領域で生じる蛍光発光の総発光量とを各入射光強度についてそれぞれ測定する測定ステップと、
[2]各入射光強度に対して、前記他方の測定領域において測定した透過率をそれぞれ、各入射光強度における前記一方の測定領域で測定した参照総発光量と、前記他方の測定領域において測定した総発光量と、前記参照総発光量に対する前記総発光量の比とに基づいてそれぞれ補正する透過率補正ステップと、
[3]入射光強度の変化に対する前記補正後の透過率の変化と、前記光学材料の厚さLとに基づいて前記他方の測定領域における2光子吸収係数を求める2光子吸収係数演算ステップと、
を含むことを特徴とするものである。
That is, the two-photon absorption coefficient measuring method according to the present invention is:
A method for measuring a two-photon absorption coefficient in a measurement region inside an optical material having a thickness L, comprising:
[1] For each of at least two measurement regions having different depths from the surface of the optical material, a pulsed laser beam focused on each measurement location in each measurement region is irradiated, and the incident light intensity at each focus position is determined. Two-photon absorption is caused while changing sequentially,
(I) When two-photon absorption occurs in one measurement region close to the optical material surface of the at least two measurement regions, the total emission of fluorescence emitted in the region from the optical material surface to the one measurement region Measure the amount of each incident light intensity as a reference total emission amount,
(Ii) When two-photon absorption occurs in the other measurement region, the transmittance and the total emission amount of the fluorescence emission generated in the region from the optical material surface to the other measurement region are measured for each incident light intensity. Measuring steps;
[2] The transmittance measured in the other measurement region for each incident light intensity is measured in the reference total light emission amount measured in the one measurement region for each incident light intensity and in the other measurement region. And a transmittance correction step for correcting based on the total light emission amount and the ratio of the total light emission amount to the reference total light emission amount,
[3] A two-photon absorption coefficient calculating step for obtaining a two-photon absorption coefficient in the other measurement region based on the change in the corrected transmittance with respect to the change in incident light intensity and the thickness L of the optical material;
It is characterized by including.

本発明の測定方法においては、前記一方の測定領域を、光学材料表面の近傍に設定することが好ましい。このようにすると、より精度の高い2光子吸収係数を得ることができる。   In the measurement method of the present invention, it is preferable to set the one measurement region in the vicinity of the surface of the optical material. In this way, a more accurate two-photon absorption coefficient can be obtained.

また、前記[1]測定ステップにおいて、前記一方の測定領域にて透過率を各入射光強度についてそれぞれ測定し、前記[2]透過率補正ステップにおいて、当該測定した透過率に基づいて、該測定した透過率をそれぞれ補正し、前記[3]2光子吸収係数演算ステップにおいて、前記一方の測定領域における2光子吸収係数を求めてもよい。このようにすることで、前記一方の測定領域においても2光子吸収係数を測定することができる。   Further, in the [1] measurement step, the transmittance is measured for each incident light intensity in the one measurement region, and the measurement is performed based on the measured transmittance in the [2] transmittance correction step. Each of the transmitted transmittances may be corrected, and the two-photon absorption coefficient in the one measurement region may be obtained in the [3] two-photon absorption coefficient calculation step. By doing so, the two-photon absorption coefficient can be measured also in the one measurement region.

また、本発明の測定方法は、前記[1]測定ステップにおいて、
前記少なくとも2つの測定領域を結ぶ直線上にありかつ前記少なくとも2つの測定領域とは異なる深さにある少なくとも1つの第3測定領域に、当該第3測定領域にある測定箇所に焦点を合わせたパルスレーザー光を、前記少なくとも2つの測定領域と同様に入射光強度を順次変化させながら照射して、焦点位置においてそれぞれ2光子吸収を生じさせ、各入射光強度において、光学材料表面から該第3測定領域までの領域で生じる蛍光発光の総発光量を測定することを更に含み、
前記[2]透過率補正ステップにおいて、
前記各入射光強度において、それぞれ前記各測定領域の光学材料表面からの深さと各測定領域で測定した総発光量とに基づいて、一次以上の関数による近似直線または近似曲線を、その近似直線または近似曲線と測定した総発光量との距離が最小になるようにあてはめ、焦点深さがゼロであるときの前記近似直線または近似曲線上の外挿値を前記参照総発光量とし、それぞれの前記他方の測定領域の光学材料表面からの深さにおける前記近似直線または近似曲線上の値を、あらためて光学材料表面から当該各測定領域までの総発光量として用いて、前記他方の測定領域において測定した透過率を補正するものであってもよい。このようにすると、2光子吸収係数をより高い精度で測定することができる。
Moreover, the measurement method of the present invention includes the [1] measurement step,
A pulse focused on at least one third measurement region on a straight line connecting the at least two measurement regions and at a depth different from that of the at least two measurement regions. Similarly to the at least two measurement regions, laser light is irradiated while sequentially changing the incident light intensity to cause two-photon absorption at the focal position, and at each incident light intensity, the third measurement is performed from the surface of the optical material. Further comprising measuring the total amount of fluorescence emitted in the region up to the region,
In the [2] transmittance correction step,
Based on the depth from the surface of the optical material of each measurement region and the total amount of light emission measured in each measurement region at each incident light intensity, an approximate straight line or an approximate curve based on a linear function or higher is obtained. The distance between the approximate curve and the measured total light emission amount is set to be minimum, and the extrapolated value on the approximate line or the approximate curve when the depth of focus is zero is set as the reference total light emission amount. The value on the approximate line or the approximate curve at the depth from the optical material surface of the other measurement region was again used as the total light emission amount from the optical material surface to each measurement region, and measured in the other measurement region. The transmittance may be corrected. In this way, the two-photon absorption coefficient can be measured with higher accuracy.

この場合、
前記[1]測定ステップにおいて更に、前記一方の測定領域および前記第3測定領域について、透過率を各入射光強度に対してそれぞれ測定し、
前記[2]透過率補正ステップにおいて、前記一方の測定領域および前記第3測定領域の光学材料表面からの深さにおける前記近似直線または近似曲線上の値を、光学材料表面から前記一方の測定領域および前記第3測定領域までの総発光量として、前記一方の測定領域および前記第3測定領域において測定した透過率を補正し、
前記[3]2光子吸収係数演算ステップにおいて、前記一方の測定領域および前記第3測定領域における2光子吸収係数を求めてもよい。このようにすると、前記一方の測定領域および前記第3測定領域においても2光子吸収係数を測定することができる。
in this case,
In the [1] measurement step, the transmittance is measured with respect to each incident light intensity for the one measurement region and the third measurement region,
In the [2] transmittance correction step, the values on the approximate straight line or the approximate curve in the depths of the one measurement region and the third measurement region from the optical material surface are changed from the optical material surface to the one measurement region. And, as a total light emission amount to the third measurement region, correct the transmittance measured in the one measurement region and the third measurement region,
In the [3] two-photon absorption coefficient calculation step, a two-photon absorption coefficient in the one measurement region and the third measurement region may be obtained. In this way, the two-photon absorption coefficient can be measured also in the one measurement region and the third measurement region.

前記関数は、2次以上の関数であることが好ましい。このようにすると、2光子吸収係数をより一層高い精度で測定することができる。   The function is preferably a function of second order or higher. In this way, the two-photon absorption coefficient can be measured with higher accuracy.

更に、前記直線上にある前記少なくとも2つの測定領域および前記第3領域における2光子吸収係数を測定する上述のいずれかの方法を、前記直線と平行でかつ前記直線とは異なる1またはそれ以上の直線について繰り返すことにより、光学材料内部の3次元方向の各領域において2光子吸収係数を測定することができる。   Further, any one of the above-described methods for measuring the two-photon absorption coefficient in the at least two measurement regions and the third region on the straight line may be one or more different from the straight line and parallel to the straight line. By repeating for a straight line, the two-photon absorption coefficient can be measured in each region in the three-dimensional direction inside the optical material.

上述のいずれかの方法によって得られた2光子吸収係数の値を、各測定領域の位置情報と関連付けて記憶し、2光子吸収係数とレーザー損傷耐性との相関関係を記憶したデータベースを参照して、各測定領域におけるレーザー損傷耐性を評価することにより、光学材料の各測定領域におけるレーザー損傷耐性を評価することができる。   The value of the two-photon absorption coefficient obtained by any of the above methods is stored in association with the position information of each measurement region, and the database storing the correlation between the two-photon absorption coefficient and the laser damage resistance is referred to By evaluating the laser damage resistance in each measurement region, it is possible to evaluate the laser damage resistance in each measurement region of the optical material.

更に、均質でかつレーザー損傷耐性が既知である第1光学材料の複数の測定領域について、上述のいずれかの2光子吸収係数測定方法を用いて2光子吸収係数を求め、
前記2光子吸収係数を各測定領域の位置情報に関係づけてそれぞれ記憶し、
前記第1光学材料と同じ種類でかつレーザー損傷耐性が未知である第2光学材料の複数の測定領域について、上述のいずれかの2光子吸収係数測定方法を用いて2光子吸収係数を求め、
前記第2光学材料の各測定領域について求められた2光子吸収係数をそれぞれ前記第1光学材料の対応する測定領域について求められた2光子吸収係数と比較し、
前記比較結果および第1光学材料の各領域における2光子吸収係数とレーザー損傷耐性との相関関係を記憶したデータベースに基づいて、第2光学材料のレーザー損傷耐性を評価することにより、光学材料の各測定領域におけるレーザー損傷耐性を評価することができる。
Further, for a plurality of measurement regions of the first optical material that are homogeneous and have known laser damage resistance, the two-photon absorption coefficient is obtained using any one of the two-photon absorption coefficient measurement methods described above,
Storing the two-photon absorption coefficient in relation to the position information of each measurement region,
For a plurality of measurement regions of the second optical material that is the same type as the first optical material and whose laser damage resistance is unknown, a two-photon absorption coefficient is obtained using any one of the two-photon absorption coefficient measurement methods described above,
Comparing the two-photon absorption coefficient determined for each measurement region of the second optical material with the two-photon absorption coefficient determined for the corresponding measurement region of the first optical material,
By evaluating the laser damage resistance of the second optical material based on the comparison result and the database storing the correlation between the two-photon absorption coefficient and the laser damage resistance in each region of the first optical material, The laser damage resistance in the measurement area can be evaluated.

本発明の方法を用いると、従来技術では表面から3mm±0.5mm程度の狭い範囲でしか2光子吸収係数を測定できなかった、蛍光発光を伴い厚みを有する光学材料について、材料内部の全範囲にわたって2光子吸収係数を精度良く測定することが可能となる。更に、蛍光発光を伴い厚みを有する光学材料について、材料内部におけるレーザー損傷耐性を精度良く評価することが可能となり、材料内部のレーザー損傷耐性の3次元イメージングを行うことが可能となる。   When the method of the present invention is used, the two-photon absorption coefficient can be measured only in a narrow range of about 3 mm ± 0.5 mm from the surface in the prior art. It is possible to accurately measure the two-photon absorption coefficient. Furthermore, it becomes possible to accurately evaluate the laser damage resistance inside the material of the optical material having a thickness accompanied with the fluorescence emission, and three-dimensional imaging of the laser damage resistance inside the material can be performed.

図1は、従来技術と本発明とを概念的に比較する図である。FIG. 1 is a diagram conceptually comparing the prior art with the present invention. 図2は、本発明の測定方法の理論を示すモデル図である。FIG. 2 is a model diagram showing the theory of the measurement method of the present invention. 図3は、入射光強度と透過率の逆数との関係を示す概念図である。FIG. 3 is a conceptual diagram showing the relationship between the incident light intensity and the reciprocal of the transmittance. 図4は、焦点深さと総発光量との関係を示す概念図である。FIG. 4 is a conceptual diagram showing the relationship between the depth of focus and the total light emission amount. 図5は、本発明の測定方法に用いられる測定装置の構成の一例を示すブロック図である。FIG. 5 is a block diagram showing an example of the configuration of a measuring apparatus used in the measuring method of the present invention. 図6は、本発明の測定方法に用いられる測定装置におけるレーザー光照射方法の別の構成例を模式的に示す図である。FIG. 6 is a diagram schematically illustrating another configuration example of the laser beam irradiation method in the measurement apparatus used in the measurement method of the present invention. 図7は、実施例において測定した補正前の透過率の逆数を入射光強度に対してプロットしたグラフである。FIG. 7 is a graph in which the reciprocal of the transmittance before correction measured in the example is plotted with respect to the incident light intensity. 図8は、実施例において測定した総発光量を焦点深さに対してプロットしたデータと、そのデータに実施例の例1〜3の各近似直線および近似曲線を当てはめた結果とを示すグラフである。FIG. 8 is a graph showing data obtained by plotting the total light emission amount measured in the example with respect to the focal depth, and the result obtained by fitting each approximate line and approximate curve of Examples 1 to 3 of the example to the data. is there. 図9は、実施例の例3に関して、補正後の透過率の逆数を入射光強度に対してプロットしたグラフである。FIG. 9 is a graph in which the reciprocal of the corrected transmittance is plotted against the incident light intensity in Example 3 of the example. 図10は、実施例の各例に関して、2光子吸収係数の計算結果を焦点深さに対してプロットしたグラフである。FIG. 10 is a graph in which the calculation results of the two-photon absorption coefficient are plotted with respect to the depth of focus for each example of the example. 図11は、実施例において、補正前の透過率に基づいてレーザー損傷耐性を評価した結果と、補正後の透過率に基づいてレーザー損傷耐性を評価した結果とを比較した図である。FIG. 11 is a diagram comparing the result of evaluating laser damage resistance based on the transmittance before correction and the result of evaluating laser damage resistance based on the corrected transmittance in the example.

以下に、本発明の2光子吸収係数測定方法の理論について図面を参照しながら説明する。   The theory of the two-photon absorption coefficient measurement method of the present invention will be described below with reference to the drawings.

[理論]
図2(a)に示すように、蛍光発光を伴う厚さLの光学材料にレーザー光を照射して、光学材料内部のA、BおよびCの各点における2光子吸収係数を測定する系を考える。入射側の光学材料表面(以下、単に光学材料表面とも呼ぶ)からのA、BおよびC点の距離を各々a、bおよびcとする。
A点に焦点を合わせた強度Iinのレーザー光を光学材料表面に照射して、焦点付近の測定領域において2光子吸収を発生させる。このとき、強度IAoutの透過光と、光学材料表面から測定領域までの領域において生じる蛍光発光の総発光量(以下、単に総発光量ともよぶ)PLとが測定される。ここで、総発光量とは、光学材料にレーザー光を照射する際に生じる蛍光発光の発光強度を、光学材料表面から焦点位置まで積分して得られる値を意味する。このとき、光学材料表面から焦点位置までの距離(以下、この距離を焦点深さとも呼ぶ)はaである。このような系において、光学材料内部で非線形吸収と蛍光発光とに起因して入射光が減衰する様子は、図2(b)に示すモデル図に基づいて説明することができる。
[theory]
As shown in FIG. 2 (a), a system for measuring a two-photon absorption coefficient at each of points A, B, and C inside an optical material by irradiating an optical material having a thickness L accompanied by fluorescence with laser light. Think. The distances of points A, B and C from the optical material surface on the incident side (hereinafter also simply referred to as the optical material surface) are a, b and c, respectively.
The surface of the optical material is irradiated with a laser beam having an intensity I in focused on the point A, and two-photon absorption is generated in the measurement region near the focus. In this case, the transmitted light intensity IA out, the total emission amount of fluorescence occurring in the region of an optical material surface to measurement area (hereinafter, simply referred to as a total light emission amount) and PL A is measured. Here, the total light emission amount means a value obtained by integrating the light emission intensity of the fluorescent light generated when the optical material is irradiated with laser light from the optical material surface to the focal position. At this time, a distance from the surface of the optical material to the focal position (hereinafter, this distance is also referred to as a focal depth) is a. In such a system, how the incident light attenuates due to nonlinear absorption and fluorescence emission inside the optical material can be described based on the model diagram shown in FIG.

まず、強度Iinの入射光が材料の表面付近で強く吸収されることにより蛍光発光が生じ、それにより急激な光強度の減少(光エネルギーの損失)が起こる(1−1)。その後、光強度は徐々に減少し、A点において光強度はIAinとなる。A点付近における2光子吸収(非線形吸収)によって光強度が更に急激に減少して(1−2)、光強度IAoutとなる。2光子吸収が生じた後、光強度は極めて弱くなることからその強度に依存する蛍光発光量も無視できるほど小さくなると考えられる。この仮定に従って、光はその後、蛍光発光に伴う吸収は無視でき、近似的にほぼ同じ強度で進み(1−3)、強度IAoutの透過光として光学材料の裏面から出ていく。 First, the incident light having the intensity I in is strongly absorbed near the surface of the material, so that fluorescent emission is generated, thereby causing a sharp decrease in light intensity (loss of light energy) (1-1). Thereafter, the light intensity gradually decreases, and at point A, the light intensity becomes IA in . The two-photon absorption near the point A (non-linear absorption) further reduces the light intensity more rapidly (1-2), resulting in the light intensity IA out . After the two-photon absorption occurs, the light intensity becomes very weak, so the amount of fluorescence emission depending on the intensity is considered to be negligibly small. Following this assumption, the light can then be neglected in absorption due to fluorescence emission, proceeding at approximately the same intensity (1-3), and exiting the back surface of the optical material as transmitted light of intensity IA out .

このとき、実際に測定可能な透過率T~(記号「~(チルダ)」は正式には「T」の上部に記載されるべきものである。以下同様)の逆数T~-1は下記式で表される。

Figure 2012185081
A点と焦点深さの異なるB点およびC点についても同様に、透過率の逆数T~−1およびT~−1が下記式で表される。
Figure 2012185081
Figure 2012185081
一方、測定対象の光学材料が蛍光発光を伴わない場合、2光子吸収係数は、透過率の逆数を入射光強度に対してプロットしたグラフの傾きから下記式
Figure 2012185081
を用いて計算することができる。 At this time, the reciprocal number T A −1 of the transmittance T A ˜ (symbol “˜ (tilde)” which should be formally described at the top of “T”, and so on) is actually measurable. It is represented by the following formula.
Figure 2012185081
Similarly, for points B and C having different focal depths from point A, the reciprocal transmittances T B −1 and T C −1 are expressed by the following equations.
Figure 2012185081
Figure 2012185081
On the other hand, when the optical material to be measured does not emit fluorescence, the two-photon absorption coefficient is expressed by the following equation from the slope of the graph in which the reciprocal of the transmittance is plotted against the incident light intensity:
Figure 2012185081
Can be used to calculate.

式(4)を用いて2光子吸収係数を求めるためには、蛍光発光に起因する光強度の減衰の寄与を、測定した透過率から排除する必要がある。
蛍光発光の寄与が排除された場合には、蛍光発光に起因する光強度の減衰は起こらず、2光子吸収に起因する光強度の減衰のみが起こると考えられる。このように、2光子吸収のみに起因して光強度の減衰が生じる場合のA点における透過率の逆数T −1は、以下のように表すことができる。

Figure 2012185081
B点およびC点においても同様に、透過率の逆数T −1およびT −1を下記式で表すことができる。
Figure 2012185081
Figure 2012185081
蛍光発光の寄与が排除された上記の透過率の逆数T −1、T −1およびT −1を求めることができれば、式(4)を用いて2光子吸収係数を算出することができる。 In order to obtain the two-photon absorption coefficient using Equation (4), it is necessary to exclude the contribution of light intensity attenuation caused by fluorescence emission from the measured transmittance.
When the contribution of fluorescence emission is eliminated, it is considered that the light intensity attenuation due to fluorescence emission does not occur and only the light intensity attenuation due to two-photon absorption occurs. Thus, the reciprocal T A −1 of the transmittance at the point A when the light intensity is attenuated due to the two-photon absorption alone can be expressed as follows.
Figure 2012185081
Similarly, at points B and C, the reciprocal transmittances T B -1 and T C -1 can be expressed by the following equations.
Figure 2012185081
Figure 2012185081
If the reciprocal numbers T A −1 , T B −1 and T C −1 of the above-described transmittance from which the contribution of fluorescence is excluded can be obtained, the two-photon absorption coefficient can be calculated using Equation (4). it can.

以下に、測定した透過率の逆数T~−1、T~−1およびT~−1を、T −1、T −1およびT −1へと補正する方法を説明する。
まず、B点に関して、T~−1およびT −1を入射光強度に対してプロットした概念図を図3に示す。蛍光発光の寄与がある場合、図2からわかるようにIin>IBinであるので、実際に測定される透過率の逆数T~−1は求めるべき透過率の逆数T −1より大きな値となる。また、表面での光の反射がないと仮定すると、グラフの切片は本来1となるはずであるが、蛍光発光の寄与がある場合には切片T −1>1となる。従って、測定される透過率の逆数T~−1から蛍光発光の寄与を取り除いて、目的とする透過率の逆数T −1へと補正する必要があることがわかる。
Below, inverse T A ~ -1 of the measured transmittance, the T B ~ -1 and T C ~ -1, T A -1 , illustrating a method of correcting to T B -1 and T C -1 .
First, for point B , FIG. 3 shows a conceptual diagram in which T B −1 and T B −1 are plotted against the incident light intensity. When there is a contribution of fluorescence, since I in > IB in as can be seen from FIG. 2, the reciprocal number T B −1 of the actually measured transmittance is larger than the reciprocal number T B −1 of the transmittance to be obtained. Value. Assuming that there is no reflection of light on the surface, the intercept of the graph should be 1 originally, but when there is a contribution of fluorescence, intercept T 0 −1 > 1. Therefore, it can be seen that it is necessary to remove the contribution of fluorescence emission from the reciprocal number T B −1 of the measured transmittance and correct it to the reciprocal number T B −1 of the target transmittance.

次に、A点、B点およびC点に焦点を合わせたレーザー光を光学材料に照射した際に、光学材料表面から焦点位置までの総発光量を、焦点深さに対してプロットしたグラフを図4に示す。総発光量は光の吸収量に比例し、蛍光発光に伴う吸収の増大は入射光エネルギーの損失となって光強度の減少という形で現れると考えられる。従って、A点における発光に伴う光強度の減少量はIin−IAinである。B点でも同様にIin−IBinである。光強度の減少量の比は総発光量の比に等しいと考えられるので、

Figure 2012185081
と表すことができる。この総発光量の比を発光増大比γABとする。
同様に、A点に対するC点の発光増大比γACは、下記式
Figure 2012185081
で表すことができる。
(8)式を変形すると、
Figure 2012185081

となり、両辺をIBoutで割ると、求めるべきT −1
Figure 2012185081

と表すことができる。C点についても同様に、T −1は、(9)式を変形して
Figure 2012185081

と表すことができる。 Next, when the optical material is irradiated with the laser light focused on the points A, B, and C, a graph in which the total light emission amount from the optical material surface to the focal position is plotted with respect to the focal depth. As shown in FIG. The total light emission amount is proportional to the light absorption amount, and the increase in absorption due to the fluorescence emission is considered to be a loss of incident light energy and appear in the form of a decrease in light intensity. Therefore, the amount of decrease in light intensity associated with light emission at point A is I in -IA in . Similarly at point B, I in −IB in . Since the ratio of the decrease in light intensity is considered to be equal to the ratio of the total light emission,
Figure 2012185081
It can be expressed as. The ratio of the total light emission amount is defined as a light emission increase ratio γ AB .
Similarly, the emission increase ratio γ AC of point C to point A is given by the following equation:
Figure 2012185081
Can be expressed as
When formula (8) is transformed,
Figure 2012185081

When both sides are divided by IB out , T B −1 to be obtained is
Figure 2012185081

It can be expressed as. Similarly for point C , TC -1 is obtained by modifying equation (9).
Figure 2012185081

It can be expressed as.

続いて、T −1およびT −1を測定可能な量で表すために、以下の変形を行う。まず、図3において、切片T −1は、光学材料表面付近における蛍光発光による光強度の減少(即ち図2の(1−1))を意味していると考えられる。従って、入射光強度から光学材料表面付近における蛍光発光による光強度の減衰量を差し引いた値IOinを下記式で定義することができる。

Figure 2012185081

A点が光学材料表面近傍に存在する場合、IAinをIOinで近似して差し支えないと考えられる。即ち、IAin/IinをIOin/Iinで置き換えることが可能である。式(13)を用いて式(11)および式(12)を書き直すと、
Figure 2012185081

Figure 2012185081

となる。更に、T −1については以下のように表すことができる。
Figure 2012185081

ここで、T~−1、T~−1およびT~−1は透過率測定から直接得られる値であり、γAB、γACおよびTは、測定可能な値を用いて求めることができる値である。 Subsequently, in order to express T B −1 and T C −1 by measurable quantities, the following modifications are performed. First, in FIG. 3, the intercept T 0 -1 is considered to mean a decrease in light intensity due to fluorescence emission in the vicinity of the surface of the optical material (that is, (1-1) in FIG. 2). Therefore, the value IO in obtained by subtracting the attenuation amount of the light intensity due to the fluorescence emission near the surface of the optical material from the incident light intensity can be defined by the following equation.
Figure 2012185081

When the point A exists in the vicinity of the optical material surface, it is considered that IA in may be approximated by IO in . That is, IA in / I in can be replaced with IO in / I in . When Expression (11) and Expression (12) are rewritten using Expression (13),
Figure 2012185081

Figure 2012185081

It becomes. Furthermore, T A -1 can be expressed as follows.
Figure 2012185081

Here, T A to −1 , T B to −1 and T C to −1 are values obtained directly from the transmittance measurement, and γ AB , γ AC and T 0 are obtained using measurable values. Is a value that can be.

以上の理論を適用することより、測定した透過率から蛍光発光の寄与を取り除く補正を行うことができ、補正後の透過率の逆数および式(4)を用いて2光子吸収係数を求めることができる。   By applying the above theory, it is possible to perform correction to remove the contribution of fluorescence emission from the measured transmittance, and to obtain the two-photon absorption coefficient using the reciprocal of the corrected transmittance and Equation (4). it can.

[光学材料]
本発明の方法で測定可能な光学材料は、例えば、主にレンズ、ミラー基板、窓材等に用いられる石英に代表されるガラス材料、主にレーザー発振に用いられるNd:YAG、Yb:YAG等の単結晶材料、主に波長変換に用いられるCLBO(CsLiB10)、LBO(Li)、KTP(KTiOPO)等の単結晶材料、主にレンズに用いられるCaF、MgF等の単結晶材料、主に窓材として用いられる透光性セラミックス等が挙げられる。
本発明の方法で測定可能な光学材料の厚さは材料の種類によって異なる。蛍光発光が比較的小さい光学材料の場合、30mm程度までの厚さの光学材料を本発明の方法で測定することが可能である。蛍光発光の著しい光学材料であっても、20mm程度までの厚さの光学材料を本発明の方法で測定することが可能である。光学材料の厚さが上述の値より大きいと、蛍光発光による透過率の減衰が極めて大きくなり、僅かな非線形吸収による透過率の減衰の判別が困難になるのであるので好ましくない。
[Optical materials]
Examples of optical materials that can be measured by the method of the present invention include glass materials typified by quartz used mainly for lenses, mirror substrates, window materials, etc., Nd: YAG, Yb: YAG used mainly for laser oscillation, and the like. Single crystal materials such as CLBO (CsLiB 6 O 10 ), LBO (Li 2 B 2 O 4 ), KTP (KTiOPO 4 ) and the like mainly used for wavelength conversion, CaF 2 mainly used for lenses, Examples thereof include single crystal materials such as MgF 2 and translucent ceramics mainly used as window materials.
The thickness of the optical material that can be measured by the method of the present invention varies depending on the type of material. In the case of an optical material having a relatively small fluorescence emission, an optical material having a thickness of up to about 30 mm can be measured by the method of the present invention. Even an optical material having a remarkable fluorescence emission can measure an optical material having a thickness of up to about 20 mm by the method of the present invention. If the thickness of the optical material is larger than the above value, the attenuation of the transmittance due to the fluorescence emission becomes extremely large, and it becomes difficult to determine the attenuation of the transmittance due to the slight nonlinear absorption, which is not preferable.

[測定装置]
本発明の測定方法において使用可能な測定装置の一例を以下に説明する。この例は発明を限定するものでなく、他の装置を用いて測定を行うことも可能である。
[measuring device]
An example of a measuring apparatus that can be used in the measuring method of the present invention will be described below. This example does not limit the invention, and the measurement can be performed using another device.

本発明に係る測定装置の構成の一例を図5に示す。この例において、測定装置は
(a)レーザー光を出射するレーザー光源1、
(b)レーザー光源1から出射されたレーザー光を2つに分割して、分割した一方の光をモニター用レーザー光としてパワーモニタ5に入射し、他方の光を測定用レーザー光として集光レンズユニット2に入射するビームスプリッタ6、
(c)入射される測定用レーザー光を集光して光学材料7に入射する集光レンズユニット2、
(d)光学材料7を透過した測定用レーザー光の透過光強度を検出する透過光検出器3、
(e)レーザー光の強度をモニターするパワーモニタ5、および
(f)光学材料7の蛍光発光を検出する発光検出器4
で構成される。
An example of the configuration of the measuring apparatus according to the present invention is shown in FIG. In this example, the measuring device is: (a) a laser light source 1 that emits laser light;
(B) The laser light emitted from the laser light source 1 is divided into two, one of the divided light is incident on the power monitor 5 as a monitoring laser light, and the other light is used as a measuring laser light and a condensing lens A beam splitter 6 incident on the unit 2;
(C) A condensing lens unit 2 that condenses incident measurement laser light and enters the optical material 7;
(D) a transmitted light detector 3 for detecting the transmitted light intensity of the measurement laser light transmitted through the optical material 7;
(E) a power monitor 5 for monitoring the intensity of the laser beam; and (f) a light emission detector 4 for detecting the fluorescence emission of the optical material 7.
Consists of.

この光学測定装置は光学測定制御部によって制御され、測定データが出力される。また、光学測定装置は、図示はしていないが、測定対象である光学材料7または集光レンズユニット2を移動させる移動ステージを有している。移動ステージで光学材料7または集光レンズユニット2を移動させることにより、光学材料内部のレーザー光の焦点位置を変更することができる。   The optical measurement device is controlled by an optical measurement control unit, and measurement data is output. Although not shown, the optical measuring device has a moving stage that moves the optical material 7 or the condenser lens unit 2 to be measured. By moving the optical material 7 or the condenser lens unit 2 on the moving stage, the focal position of the laser light inside the optical material can be changed.

[光学測定制御部]
光学測定制御部は、
(1)入射レーザー光が各測定領域において焦点を結ぶように光学系を調整する光学系制御部、
(2)各測定領域において、レーザー光の入射エネルギー強度を順次変化させて試料に入射して、各入射エネルギー強度に対する透過率と総発光量とを測定する測定制御部、および
(3)光学材料の全領域における透過率が測定されるように測定領域の位置を順次移動させる走査制御部
を有する。
[Optical measurement controller]
The optical measurement controller
(1) an optical system controller that adjusts the optical system so that the incident laser beam is focused in each measurement region;
(2) In each measurement region, a measurement control unit that sequentially changes the incident energy intensity of laser light and enters the sample to measure the transmittance and the total light emission amount for each incident energy intensity, and (3) optical material A scanning control unit that sequentially moves the position of the measurement region so that the transmittance in the entire region is measured.

[測定条件]
本発明の測定方法の測定条件を以下に説明する。
[Measurement condition]
Measurement conditions of the measurement method of the present invention will be described below.

本発明の方法を用いて2光子吸収係数を測定し得る光学材料の測定可能範囲は、パルスレーザー光の入射エネルギーを増加させながら透過率を測定すると、入射エネルギーが増加するにつれて、透過率が線形吸収に起因して減少し、その後、透過率の減少が非線形的な減少へと変化し、更に入射エネルギーが増加すると光学材料が破壊され、その非線形的な透過率の減少が、パルスレーザー光の焦点位置における2光子吸収に起因するものであると判断される範囲である。   The measurable range of the optical material that can measure the two-photon absorption coefficient using the method of the present invention is that the transmittance is linear as the incident energy increases when the transmittance is measured while increasing the incident energy of the pulse laser beam. It decreases due to absorption, and then the decrease in transmittance changes to a non-linear decrease, and when the incident energy increases, the optical material is destroyed. This is a range determined to be caused by two-photon absorption at the focal position.

一方、光学材料表面付近の領域は、光学材料内部と比較して構造的に弱いので、その領域に焦点を合わせてパルスレーザー光を照射すると、光学材料表面に過大なエネルギーが加わり、光学材料表面が破壊されてしまい、2光子吸収係数を測定することはできない。光学材料表面付近の領域におけるレーザー損傷耐性の弱さは、光学材料表面において欠陥密度が高いことに起因する。例えば、光学材料が単結晶である場合、光学材料表面において結晶構造が不連続であることにより、表面における欠陥密度が高くなっている。また、研磨により研磨剤が光学材料表面に付着する等の不純物の存在、及びその仕上がり状態も、材料表面の構造的弱さの原因となり得る。光学材料表面付近光学材料固有のレーザー損傷耐性が高い場合には、光学材料を破壊することなく2光子吸収係数を測定し得る焦点位置は光学材料表面に近付き、従って、測定可能範囲が広くなる。対して、光学材料固有のレーザー損傷耐性が低い場合には、光学材料を破壊することなく2光子吸収係数を測定し得る焦点位置は光学材料表面から遠ざかり、従って、測定可能範囲が狭くなる。例えば石英の場合、光学材料の測定可能範囲は、光学材料表面から好ましくは1mm以上離れた範囲であり、より好ましくは2mm以上離れた範囲である。   On the other hand, the region near the surface of the optical material is structurally weak compared to the inside of the optical material. Therefore, when focused on the region and irradiated with pulsed laser light, excessive energy is applied to the surface of the optical material, and the surface of the optical material Is destroyed and the two-photon absorption coefficient cannot be measured. The weak laser damage resistance in the region near the optical material surface is due to the high defect density on the optical material surface. For example, when the optical material is a single crystal, the defect density on the surface is high due to the discontinuous crystal structure on the surface of the optical material. In addition, the presence of impurities such as adhesion of the polishing agent to the surface of the optical material by polishing and the finished state thereof can also cause structural weakness of the material surface. When the laser damage resistance inherent to the optical material near the optical material surface is high, the focal position at which the two-photon absorption coefficient can be measured without destroying the optical material approaches the optical material surface, and thus the measurable range is widened. On the other hand, when the laser damage resistance inherent to the optical material is low, the focal position at which the two-photon absorption coefficient can be measured without destroying the optical material is far from the surface of the optical material, and thus the measurable range is narrowed. For example, in the case of quartz, the measurable range of the optical material is preferably in the range of 1 mm or more from the optical material surface, and more preferably in the range of 2 mm or more.

本発明の方法を用いて2光子吸収係数を測定し得るパルスレーザー光の種類は、測定対象の光学材料の種類によって異なり、上述の測定可能範囲に照射して入射エネルギーを増加させながら透過率を測定すると、透過率が非線形的に減少し、その非線形的な透過率の減少がパルスレーザー光の焦点位置における2光子吸収に起因するものであるように、適切に選択する必要がある。パルスレーザー光の波長が光学材料の透過限界波長よりも短い場合には、パルスレーザー光の透過が極めて小さくなるので、透過率低下によるレーザー損傷耐力の評価が困難となる。パルスレーザー光の波長が長すぎる場合には二光子吸収の発生が少なくなり、効果的な光学材料のレーザー損傷評価方法が困難となる。また、パルスレーザー光のパルス幅が10−16sより短いものは現在の技術では達成が困難であり、パルスレーザー光のパルス幅が10−6sより長くなると、パルスレーザー光照射によるレーザー損傷が発生するおそれがでてくる。
入射レーザー光強度は、最小の光強度から所定の上昇ステップで強度を増大させながら最大の光強度に達するように変化させる。入射レーザー光強度が大きすぎると、また、ビームを絞りすぎると、エネルギー密度の増加により材料が破壊されてしまう。また、光強度が小さすぎると、焦点付近の領域で2光子吸収を生じさせるのに十分なエネルギーを得ることができない。
The type of pulsed laser beam that can measure the two-photon absorption coefficient using the method of the present invention varies depending on the type of optical material to be measured. When measured, it is necessary to select appropriately so that the transmittance decreases nonlinearly and the decrease in the nonlinear transmittance is caused by the two-photon absorption at the focal position of the pulse laser beam. When the wavelength of the pulsed laser beam is shorter than the transmission limit wavelength of the optical material, the transmission of the pulsed laser beam becomes extremely small, making it difficult to evaluate the laser damage resistance due to a decrease in transmittance. When the wavelength of the pulse laser beam is too long, the occurrence of two-photon absorption is reduced, and an effective laser damage evaluation method for an optical material becomes difficult. In addition, it is difficult to achieve a pulse laser beam with a pulse width shorter than 10 −16 s with the current technology. If the pulse width of the pulse laser beam is longer than 10 −6 s, laser damage due to irradiation with the pulse laser beam may occur. It may occur.
The incident laser light intensity is changed from the minimum light intensity to reach the maximum light intensity while increasing the intensity at a predetermined rising step. If the incident laser light intensity is too high or the beam is too narrow, the material will be destroyed due to an increase in energy density. If the light intensity is too low, sufficient energy cannot be obtained to cause two-photon absorption in the region near the focal point.

本発明の測定方法において、図5に示す構成以外にも、図6に示すように、2つのレーザー光を測定領域で重ね合わせるようにして、測定領域における2光子吸収に起因する非線形吸収量を増加させ、その測定領域外では2つのレーザー光が重ならないようにレーザーパルス幅およびタイミングを調整して、測定領域外での蛍光発光量を抑制するようにしてもよい。
即ち、図6に示す構成は、2つのレーザー光源と2つの透過光検出器3a、3bを備え、各レーザー光源から出射した2つのレーザー光La、Lbが、それぞれ対応する集光レンズユニット(図示せず)を介して異なる方向から光学材料7に入射する。この構成において、2つのレーザー光源は、光源から出射した光が光学材料中の測定領域に至るまでの光路長を考慮して、2つのレーザーパルスが測定領域において重なるように、パルスの発生タイミングが光学測定制御部によって制御され、各レーザー光La、Lbに対応して設けられた透過光検出器3a、3bが、パルスの発生タイミングに合わせて、各レーザー光La、Lbに対する透過率を検出する。
なお、この図6に示す構成において、測定領域は、照射するパルスレーザーのパルス幅および集光レンズユニットによって集光されるビーム径に基づいて決定される。
この構成においては、パルス周期およびデューティ比を同一に設定して、同一測定領域において複数回レーザーパルスを照射し、それぞれ透過率を測定することが好ましく、これによってより精度の高い透過率測定が可能になる。
以上のように光学測定部が構成された測定装置を用いると、測定領域以外の場所での蛍光発光の影響をかなり低減させて、より高い精度で透過率を測定することができ、それにより、高い精度で2光子吸収係数を求めることができる。
In the measurement method of the present invention, in addition to the configuration shown in FIG. 5, as shown in FIG. 6, two laser beams are overlapped in the measurement region, and the nonlinear absorption amount due to the two-photon absorption in the measurement region is reduced. The amount of fluorescence emission outside the measurement region may be suppressed by adjusting the laser pulse width and timing so that the two laser beams do not overlap outside the measurement region.
That is, the configuration shown in FIG. 6 includes two laser light sources and two transmitted light detectors 3a and 3b, and the two laser beams La and Lb emitted from the laser light sources respectively correspond to the corresponding condensing lens units (FIG. It enters the optical material 7 from a different direction via a not-shown). In this configuration, the two laser light sources have pulse generation timings so that the two laser pulses overlap in the measurement region in consideration of the optical path length until the light emitted from the light sources reaches the measurement region in the optical material. Transmitted light detectors 3a and 3b, which are controlled by the optical measurement control unit and are provided corresponding to the respective laser beams La and Lb, detect the transmittance with respect to the respective laser beams La and Lb in accordance with the pulse generation timing. .
In the configuration shown in FIG. 6, the measurement region is determined based on the pulse width of the pulse laser to be irradiated and the beam diameter collected by the condenser lens unit.
In this configuration, it is preferable to set the pulse period and duty ratio to be the same, irradiate the laser pulse multiple times in the same measurement area, and measure the transmittance respectively, thereby enabling more accurate transmittance measurement become.
As described above, when using a measuring device in which the optical measuring unit is configured, it is possible to significantly reduce the influence of fluorescence emission in places other than the measurement region, and to measure the transmittance with higher accuracy, The two-photon absorption coefficient can be obtained with high accuracy.

[測定方法]
本発明の2光子吸収係数測定方法の第1の態様を以下に説明する。
[Measuring method]
The first aspect of the two-photon absorption coefficient measuring method of the present invention will be described below.

[1]測定ステップ
厚さがLである光学材料において複数の測定領域を設定する。
各測定領域のそれぞれについて、各測定領域にある各測定箇所に焦点を合わせたパルスレーザー光を照射して、各焦点位置において入射光強度を順次変化させながら2光子吸収を生じさせ、各測定領域において2光子吸収が生じたときの、透過率と光学材料表面から各測定領域までの領域で生じる蛍光発光の総発光量とを測定する。測定した透過率と総発光量とを、その測定領域の位置情報に関連付けて出力する。
その後、移動ステージを所定量だけ移動させて、パルスレーザー光の焦点位置を次の測定領域内に合わせる。上述の測定および測定値の出力を繰り返す。
[1] Measurement step A plurality of measurement regions are set in the optical material having a thickness L.
Each measurement region is irradiated with a pulsed laser beam focused on each measurement location in each measurement region, and two-photon absorption is generated while sequentially changing the incident light intensity at each focus position. When two-photon absorption occurs in FIG. 2, the transmittance and the total emission amount of the fluorescence emission generated in the region from the optical material surface to each measurement region are measured. The measured transmittance and the total light emission amount are output in association with the position information of the measurement region.
Thereafter, the moving stage is moved by a predetermined amount, and the focal position of the pulse laser beam is adjusted within the next measurement area. The above measurement and measurement value output are repeated.

[2]透過率補正ステップ
各測定領域について、各入射光強度において測定した透過率T~と総発光量PLとを呼び出す。
各測定領域について、測定した透過率の逆数T~−1を入射光強度に対してプロットし、得られる直線の切片T −1をそれぞれ求める。
各入射光強度について、各測定領域のうち表面に最も近い測定領域において測定した総発光量を各入射光強度における参照総発光量PLとして下記の(17)式に代入し、前記表面に最も近い測定領域を除く各測定領域において測定した各総発光量PLを下記の(17)式のPLに代入して、各入射光強度について、前記表面に最も近い測定領域を除く各測定領域における発光強度比γを求める。

Figure 2012185081

前記表面に最も近い測定領域を除く各測定領域において、各入射光強度に対して、測定した透過率の逆数T~−1、前記切片T −1の逆数Tおよび発光増大比γを下記式
Figure 2012185081

に代入して、測定した透過率を補正する。
更に、前記表面に最も近い測定領域において、各入射光強度に対して、測定した透過率の逆数T~−1、前記切片T −1の逆数Tを(16)式に代入することにより、前記表面に最も近い測定領域において測定した透過率を補正することができる。 [2] Transmittance correction step For each measurement region, the transmittance T ~ measured at each incident light intensity and the total light emission amount PL are called.
For each measurement region, the reciprocal T ~ -1 of the measured transmittance is plotted against the incident light intensity, and the obtained straight line intercept T 0 -1 is obtained.
For each incident light intensity, the total light emission amount measured in the measurement region closest to the surface among the measurement regions is substituted into the following equation (17) as the reference total light emission amount PL 0 at each incident light intensity, and is the most on the surface. By substituting each total light emission amount PL measured in each measurement region excluding the near measurement region into PL of the following equation (17), for each incident light intensity, light emission in each measurement region excluding the measurement region closest to the surface The intensity ratio γ is obtained.
Figure 2012185081

In each measurement area, except the nearest measurement region to the surface, for each incident light intensity, inverse T ~ -1 of the measured transmittance, the reciprocal T 0 and emission increase ratio γ of the sections T 0 -1 below formula
Figure 2012185081

And the measured transmittance is corrected.
Furthermore, the closest measurement region to the surface, for each incident light intensity, the inverse of the measured transmittance T ~ -1, by substituting the inverse T 0 of the sections T 0 -1 to (16) The transmittance measured in the measurement region closest to the surface can be corrected.

[3]2光子吸収係数演算ステップ
各測定領域において、このようにして補正した透過率の逆数T−1を入射光強度に対してプロットし、得られる直線の傾きから、上述の(4)式を用いて、各測定領域における2光子吸収係数を算出する。
[3] Two-photon absorption coefficient calculation step In each measurement region, the reciprocal T −1 of the transmittance corrected in this way is plotted against the incident light intensity, and the above equation (4) is calculated from the slope of the obtained straight line. Is used to calculate the two-photon absorption coefficient in each measurement region.

本発明の2光子吸収係数測定方法の第2の態様は、一直線上にあり光学材料表面からの深さの異なる3またはそれ以上の測定領域を設定して前記[1]測定ステップを行い、上述の第1の態様における前記[2]透過率補正ステップに代えて、以下に説明する[2’]透過率補正ステップを行い、その後、前記[3]2光子吸収係数演算ステップを行う。   According to a second aspect of the two-photon absorption coefficient measuring method of the present invention, three or more measuring regions that are in a straight line and have different depths from the surface of the optical material are set and the [1] measuring step is performed. Instead of the [2] transmittance correction step in the first aspect, the [2 ′] transmittance correction step described below is performed, and then the [3] two-photon absorption coefficient calculation step is performed.

[2’]透過率補正ステップ
各測定領域について、各入射光強度において測定した透過率T~と総発光量PLとを呼び出す。
各測定領域について、測定した透過率の逆数T~−1を入射光強度に対してプロットし、得られる直線の切片T −1をそれぞれ求める。
[2 ′] Transmittance Correction Step For each measurement region, the transmittance T˜ and the total light emission amount PL measured at each incident light intensity are called up.
For each measurement region, the reciprocal T ~ -1 of the measured transmittance is plotted against the incident light intensity, and the obtained straight line intercept T 0 -1 is obtained.

各入射光強度に対して、各測定領域における総発光量を、各測定領域の焦点深さに対してプロットし、一次以上の関数による近似直線または近似曲線を、その近似直線または近似曲線と測定した総発光量との距離が最小になるようにあてはめる。   For each incident light intensity, plot the total light emission amount in each measurement area against the focal depth of each measurement area, and measure the approximate straight line or approximate curve by a linear function or higher. It is applied so that the distance from the total light emission amount is minimized.

近似直線または近似曲線は、好ましくは2次以上の関数であり、より好ましくは、下記式

Figure 2012185081

で表される2次関数である。2光子吸収による入射光の吸収量は入射光強度の2乗に比例するので、2次の項を含む関数を用いると近似曲線を精度良く当てはめることができる。 入射光強度が更に大きくなると、3光子吸収等の多光子吸収が起こる確率が高くなる。従って、そのような場合、3次以上の項を含む関数を用いると、近似曲線をより高い精度で当てはめることができる。 The approximate straight line or the approximate curve is preferably a quadratic or higher function, and more preferably the following formula:
Figure 2012185081

Is a quadratic function. Since the amount of incident light absorbed by two-photon absorption is proportional to the square of the incident light intensity, an approximate curve can be accurately applied using a function including a quadratic term. When the incident light intensity is further increased, the probability that multiphoton absorption such as three-photon absorption occurs will increase. Therefore, in such a case, the approximate curve can be applied with higher accuracy by using a function including a third-order term or more.

各入射光強度に対して、焦点深さがゼロであるときの前記近似直線または近似曲線上の外挿値を前記参照総発光量PLとし、各測定領域の表面からの深さにおける前記近似直線または近似曲線上の値を、あらためて当該各測定領域における総発光量PLとする。各入射光強度について、各測定領域において、こうして得られるPLおよびPLを(17)式に代入して、各入射光強度について、各測定領域における発光強度比γを求める。
各測定領域において、各入射光強度に対して、測定した透過率の逆数T~−1、前記切片T −1の逆数Tおよび発光増大比γを(18)式に代入して、測定した透過率を補正する。
For each incident light intensity, an extrapolated value on the approximate line or approximate curve when the depth of focus is zero is the reference total light emission amount PL 0, and the approximation at the depth from the surface of each measurement region The value on the straight line or the approximate curve is again referred to as the total light emission amount PL in each measurement region. For each incident light intensity, PL 0 and PL thus obtained in each measurement region are substituted into the equation (17), and the emission intensity ratio γ in each measurement region is obtained for each incident light intensity.
In each measurement area, for each incident light intensity, inverse T ~ -1 of the measured transmittance, the sections T 0 -1 inverse T 0 and the emission increase ratio γ (18) are substituted into equation measurement Correct the transmittance.

更に、前記直線と平行でかつ前記直線とは異なる1またはそれ以上の直線上にあり光学材料表面からの深さの異なる3またはそれ以上の測定領域を設定し、前記第2の態様における上述の[1]測定ステップ、[2’]透過率補正ステップおよび[3]2光子吸収係数演算ステップを同様に実施することにより、光学材料内部の3次元方向の各領域において2光子吸収係数を測定することができる。   Further, three or more measurement regions which are parallel to the straight line and which are on one or more straight lines different from the straight line and have different depths from the surface of the optical material are set, and the above-described second aspect is described above. The [1] measurement step, the [2 ′] transmittance correction step, and the [3] two-photon absorption coefficient calculation step are similarly performed to measure the two-photon absorption coefficient in each region in the three-dimensional direction inside the optical material. be able to.

上述のいずれかの方法によって得られた2光子吸収係数の値を、各測定領域の位置情報と関連付けて記憶し、2光子吸収係数とレーザー損傷耐性との相関関係を記憶したデータベースを参照して、各測定領域におけるレーザー損傷耐性を評価することにより、光学材料の各測定領域におけるレーザー損傷耐性を評価することができる。   The value of the two-photon absorption coefficient obtained by any of the above methods is stored in association with the position information of each measurement region, and the database storing the correlation between the two-photon absorption coefficient and the laser damage resistance is referred to By evaluating the laser damage resistance in each measurement region, it is possible to evaluate the laser damage resistance in each measurement region of the optical material.

本発明の方法を使用することによって、レーザー損傷耐性の評価が極めて困難であった蛍光発光を伴う光学材料について、2光子吸収係数とレーザー損傷耐性との相関関係を示すデータベースを構築することも可能である。そのデータベースを利用することにより、均質でない光学材料内部におけるレーザー損傷耐性を評価することができる。
例えば、更に、均質でかつレーザー損傷耐性が既知である第1光学材料の複数の測定領域について、上述のいずれかの方法を用いて2光子吸収係数を求め、前記2光子吸収係数を各測定領域の位置情報に関係づけてそれぞれ記憶する。前記第1光学材料と同じ種類でかつレーザー損傷耐性が未知である第2光学材料の複数の測定領域について、上述のいずれかの方法を用いて2光子吸収係数を求め、前記第2光学材料の各測定領域について求められた2光子吸収係数をそれぞれ前記第1光学材料の対応する測定領域について求められた2光子吸収係数と比較する。前記比較結果および第1光学材料の各領域における2光子吸収係数とレーザー損傷耐性との相関関係を記憶したデータベースに基づいて、第2光学材料のレーザー損傷耐性を評価することにより、光学材料の各測定領域におけるレーザー損傷耐性を評価することができる。このような方法を利用することにより、光学材料内部におけるレーザー損傷耐性の3次元イメージングを行うことができる。
By using the method of the present invention, it is also possible to construct a database showing the correlation between the two-photon absorption coefficient and the laser damage resistance for optical materials with fluorescent emission whose laser damage resistance has been extremely difficult to evaluate. It is. By utilizing the database, it is possible to evaluate the laser damage resistance inside the non-homogeneous optical material.
For example, for a plurality of measurement regions of the first optical material that are homogeneous and have known laser damage resistance, a two-photon absorption coefficient is obtained using any of the methods described above, and the two-photon absorption coefficient is calculated for each measurement region. Are stored in relation to the position information. For a plurality of measurement regions of a second optical material that is the same type as the first optical material and whose laser damage resistance is unknown, a two-photon absorption coefficient is obtained using any of the methods described above, and the second optical material The two-photon absorption coefficient obtained for each measurement region is compared with the two-photon absorption coefficient obtained for the corresponding measurement region of the first optical material. By evaluating the laser damage resistance of the second optical material based on the comparison result and the database storing the correlation between the two-photon absorption coefficient and the laser damage resistance in each region of the first optical material, The laser damage resistance in the measurement area can be evaluated. By utilizing such a method, three-dimensional imaging of laser damage resistance inside the optical material can be performed.

なお、本明細書において「均質な」光学材料とは、材料内部の全領域にわたって非線形吸収量が一定であり、従って2光子吸収係数が一定である光学材料を意味する。反対に、「均質でない」光学材料とは、材料内部の各領域においてレーザー損傷耐性が異なることで2光子吸収係数が一定でない光学材料を意味する。   In the present specification, the “homogeneous” optical material means an optical material in which the nonlinear absorption amount is constant over the entire region inside the material, and thus the two-photon absorption coefficient is constant. In contrast, an “inhomogeneous” optical material means an optical material with a non-constant two-photon absorption coefficient due to different laser damage resistance in each region within the material.

非常に強い蛍光を発する厚さ20mmの均質なCaF結晶について、本発明の方法を用いて2光子吸収係数を求めた。波長213nm以下のパルスレーザー光をCaF結晶に照射して、A〜D点の各焦点位置において2光子吸収を生じさせ、入射光エネルギー強度を0.054〜2.921GW/cmの間で増加させながら、透過光T~〜T~と、結晶表面から焦点位置までの領域で生じる蛍光発光の総発光量PL〜PLとを測定した。結晶表面から焦点位置までの距離(焦点深さ)は以下の通りであった。
焦点深さ:A点(5mm)、B点(9mm)、C点(12mm)、D点(18mm)
The two-photon absorption coefficient was determined using the method of the present invention for a homogeneous CaF 2 crystal having a thickness of 20 mm that emits very strong fluorescence. A CaF 2 crystal is irradiated with pulsed laser light having a wavelength of 213 nm or less to cause two-photon absorption at each focal point of points A to D, and the incident light energy intensity is between 0.054 and 2.921 GW / cm 2 . While increasing, the transmitted light T A ˜T D ˜ and the total emission amounts PL A ˜PL D of the fluorescence emitted in the region from the crystal surface to the focal position were measured. The distance (focus depth) from the crystal surface to the focal position was as follows.
Depth of focus: Point A (5 mm), Point B (9 mm), Point C (12 mm), Point D (18 mm)

測定した透過率の逆数を入射光強度に対してプロットしたグラフを図7に示す。図7から分かるように、焦点深さが大きくなるほど透過率の逆数の値が見かけ上大きくなっている。焦点深さが大きくなるほど、焦点深さ5mmにおける結果からのずれが大きくなった。   A graph in which the reciprocal of the measured transmittance is plotted against the incident light intensity is shown in FIG. As can be seen from FIG. 7, the reciprocal value of the transmittance apparently increases as the depth of focus increases. The deviation from the result at a focal depth of 5 mm increased as the focal depth increased.

下記の例1〜3の方法を用いて測定した透過率の補正を行い、2光子吸収係数を算出した。   The two-photon absorption coefficient was calculated by correcting the transmittance measured using the methods of Examples 1 to 3 below.

[例1]
A〜D点の各測定領域について、図7のプロットを直線で近似して切片を求め、その切片の平均値をT −1とした。計算の結果、T −1は1.15であった。
[Example 1]
For each measurement area of A~D point, determine the sections were approximated by a straight line plot of FIG. 7, and the average value of the intercept and T 0 -1. As a result of the calculation, T 0 −1 was 1.15.

各入射光強度について、以下に説明する手順で透過率の補正を行った。
一定の入射光強度について、PL、PL、PLおよびPLを焦点深さに対してプロットし、下記の(20)式

Figure 2012185081

で表される線形関数を当てはめた。焦点深さがゼロであるときの近似直線上の外挿値を参照総発光量PLとし、さらにA〜D点における近似直線上の値をあらためてA〜D点における総発光量PL、PL、PLおよびPLとした。PLと、PL、PL、PLまたはPLとを(17)式に代入して、A〜Dの各点について発光強度比γを求めた。A〜Dの各点について、測定した透過率、発光強度比およびT −1を(18)式に代入して、測定した透過率の値を補正し、補正後の透過率の逆数T −1、T −1、T −1およびT −1を得た。他の入射光強度についても同様の補正を行った。 For each incident light intensity, the transmittance was corrected by the procedure described below.
For certain incident light intensity, plotted PL A, PL B, a PL C and PL D with respect to the focal depth, the following equation (20)
Figure 2012185081

A linear function represented by The extrapolated value on the approximate line when the depth of focus is zero is set as the reference total light emission amount PL 0, and the values on the approximate line at the points A to D are re-established and the total light emission amounts PL A and PL at the points A to D are obtained. B, was PL C and PL D. And PL 0, by substituting PL A, PL B, and a PL C or PL D in equation (17) to determine the emission intensity ratio γ for each point of the to D. For each of points A to D, the measured transmittance, emission intensity ratio, and T 0 −1 are substituted into the equation (18) to correct the measured transmittance value, and the inverse number T A of the corrected transmittance T A −1 , T B −1 , T C −1 and T D −1 were obtained. Similar corrections were made for other incident light intensities.

各測定領域について、補正後の透過率の値を入射光強度に対してプロットし、得られる直線の傾きから(4)式を用いて2光子吸収係数を算出した。   For each measurement region, the corrected transmittance value was plotted against the incident light intensity, and the two-photon absorption coefficient was calculated from the slope of the obtained straight line using equation (4).

[例2]
(20)式の代わりに下記の(21)式

Figure 2012185081

で表される2次関数を当てはめて、焦点深さがゼロであるときの近似曲線上の外挿値を参照総発光量PLとし、A〜D点における近似曲線上の値をあらためてA〜D点における総発光量PL、PL、PLおよびPLとして補正を行う以外は例1と同様の方法で、2光子吸収係数を算出した。 [Example 2]
The following formula (21) instead of formula (20)
Figure 2012185081

And the extrapolated value on the approximate curve when the depth of focus is zero is taken as the reference total light emission amount PL 0, and the values on the approximate curve at points A to D are anew. the total emission amount PL a at point D, by PL B, the same way as example 1 except that corrects a PL C and PL D, was calculated two-photon absorption coefficient.

[例3]
(21)式の代わりに(19)式を用いる以外は例2と同様の方法で、2光子吸収係数を算出した。
[Example 3]
A two-photon absorption coefficient was calculated in the same manner as in Example 2 except that the equation (19) was used instead of the equation (21).

例1〜例3の関数を当てはめた結果を図8に示す。更に、例3について補正後の透過率の逆数を入射光強度に対してプロットしたグラフを図9に示す。図9から分かるように、(19)式を用いて補正を行ったことにより、焦点深さによらず全てのデータがほぼ同一直線上にまとまった。   The result of fitting the functions of Examples 1 to 3 is shown in FIG. Further, FIG. 9 is a graph in which the reciprocal of the corrected transmittance for Example 3 is plotted against the incident light intensity. As can be seen from FIG. 9, by performing the correction using the equation (19), all the data are collected on substantially the same straight line regardless of the focal depth.

例1〜3において算出した2光子吸収係数を表1および図10に示す。表1および図9より、例3の関数当てはめを行った場合に、焦点深さによる値のばらつきが最も小さくなり、従って最も精度良く2光子吸収係数を求めることができることが分かった。   The two-photon absorption coefficients calculated in Examples 1 to 3 are shown in Table 1 and FIG. From Table 1 and FIG. 9, it was found that when the function fitting of Example 3 was performed, the variation in the value depending on the focal depth was the smallest, and therefore the two-photon absorption coefficient could be obtained with the highest accuracy.

Figure 2012185081
Figure 2012185081

補正前の透過率に基づいて計算した2光子吸収係数および例3の補正後の透過率に基づいて計算した2光子吸収係数を各々用いて、2光子吸収係数とレーザー損傷耐性との相関関係を記憶したデータベースを参照して、各測定領域におけるレーザー損傷耐性のイメージングを行った。結果を図11に示す。補正前の透過率に基づいてレーザー損傷耐性のイメージングを行ったところ、実際には均質な材料であるにもかかわらず、焦点深さが大きくなるに従って、レーザー損傷耐性の値が焦点深さ5mmにおける値からずれ、レーザー損傷耐性を実際よりも低く評価してしまった。一方、補正後の透過率に基づいてレーザー損傷耐性のイメージングを行ったところ、焦点深さが大きくなっても、焦点深さ5mmにおけるレーザー損傷耐性とほぼ同じレーザー損傷耐性を示し、レーザー損傷耐性を正確に評価することができた。   Using the two-photon absorption coefficient calculated based on the transmittance before correction and the two-photon absorption coefficient calculated based on the corrected transmittance in Example 3, respectively, the correlation between the two-photon absorption coefficient and the laser damage resistance is calculated. With reference to the stored database, imaging of laser damage resistance in each measurement region was performed. The results are shown in FIG. When imaging of laser damage resistance was performed based on the transmittance before correction, the value of laser damage resistance increased at a focal depth of 5 mm as the depth of focus increased even though it was actually a homogeneous material. Deviated from the value and evaluated laser damage resistance lower than actual. On the other hand, when imaging of laser damage resistance was performed based on the corrected transmittance, laser damage resistance was shown to be almost the same as laser damage resistance at a focal depth of 5 mm even when the depth of focus increased. It was possible to evaluate accurately.

本発明の解析方法によって、蛍光発光を伴う光学材料についても非破壊で精度良くレーザー損傷耐性を評価することが可能となり、従って光学材料の品質保証を直接行うことが可能となる。   According to the analysis method of the present invention, it is possible to accurately evaluate the laser damage resistance of non-destructive optical materials with fluorescence emission, and therefore it is possible to directly guarantee the quality of the optical materials.

1 レーザー光源
2 集光レンズユニット
3 透過光検出器
4 発光検出器
5 パワーモニタ
6 ビームスプリッタ
7 光学材料
DESCRIPTION OF SYMBOLS 1 Laser light source 2 Condensing lens unit 3 Transmitted light detector 4 Luminescence detector 5 Power monitor 6 Beam splitter 7 Optical material

Claims (9)

厚さがLである光学材料内部にある測定領域における2光子吸収係数を測定する方法であって、
[1]光学材料表面からの深さの異なる少なくとも2つの測定領域のそれぞれについて、各測定領域にある各測定箇所に焦点を合わせたパルスレーザー光を照射して、各焦点位置において入射光強度を順次変化させながら2光子吸収を生じさせ、
(i)前記少なくとも2つの測定領域のうちの光学材料表面に近い一方の測定領域において2光子吸収が生じたときの、光学材料表面から該一方の測定領域までの領域で生じる蛍光発光の総発光量を、参照総発光量として各入射光強度についてそれぞれ測定し、
(ii)他方の測定領域において2光子吸収が生じたときの、透過率と光学材料表面から該他方の測定領域までの領域で生じる蛍光発光の総発光量とを各入射光強度についてそれぞれ測定する測定ステップと、
[2]各入射光強度に対して、前記他方の測定領域において測定した透過率をそれぞれ、各入射光強度における前記一方の測定領域で測定した参照総発光量と、前記他方の測定領域において測定した総発光量と、前記参照総発光量に対する前記総発光量の比とに基づいてそれぞれ補正する透過率補正ステップと、
[3]入射光強度の変化に対する前記補正後の透過率の変化と、前記光学材料の厚さLとに基づいて前記他方の測定領域における2光子吸収係数を求める2光子吸収係数演算ステップと、
を含むことを特徴とする、2光子吸収係数測定方法。
A method for measuring a two-photon absorption coefficient in a measurement region inside an optical material having a thickness L, comprising:
[1] For each of at least two measurement regions having different depths from the surface of the optical material, a pulsed laser beam focused on each measurement location in each measurement region is irradiated, and the incident light intensity at each focus position is determined. Two-photon absorption is caused while changing sequentially,
(I) When two-photon absorption occurs in one measurement region close to the optical material surface of the at least two measurement regions, the total emission of fluorescence emitted in the region from the optical material surface to the one measurement region Measure the amount of each incident light intensity as a reference total emission amount,
(Ii) When two-photon absorption occurs in the other measurement region, the transmittance and the total emission amount of the fluorescence emission generated in the region from the optical material surface to the other measurement region are measured for each incident light intensity. Measuring steps;
[2] The transmittance measured in the other measurement region for each incident light intensity is measured in the reference total light emission amount measured in the one measurement region for each incident light intensity and in the other measurement region. And a transmittance correction step for correcting based on the total light emission amount and the ratio of the total light emission amount to the reference total light emission amount,
[3] A two-photon absorption coefficient calculating step for obtaining a two-photon absorption coefficient in the other measurement region based on the change in the corrected transmittance with respect to the change in incident light intensity and the thickness L of the optical material;
A two-photon absorption coefficient measuring method.
前記一方の測定領域を、光学材料表面の近傍に設定する、請求項1に記載の2光子吸収係数測定方法。   The two-photon absorption coefficient measuring method according to claim 1, wherein the one measurement region is set in the vicinity of the surface of the optical material. 前記[1]測定ステップにおいて、前記一方の測定領域にて透過率を各入射光強度についてそれぞれ測定することを更に含み、
前記[2]透過率補正ステップにおいて、当該測定した透過率に基づいて、該測定した透過率をそれぞれ補正し、
前記[3]2光子吸収係数演算ステップにおいて、前記一方の測定領域における2光子吸収係数を求める、請求項1または2に記載の2光子吸収係数測定方法。
[1] In the measurement step, the method further includes measuring the transmittance for each incident light intensity in the one measurement region,
In the [2] transmittance correction step, the measured transmittance is corrected based on the measured transmittance,
The two-photon absorption coefficient measuring method according to claim 1 or 2, wherein, in the [3] two-photon absorption coefficient calculation step, a two-photon absorption coefficient in the one measurement region is obtained.
前記[1]測定ステップにおいて、
前記少なくとも2つの測定領域を結ぶ直線上にありかつ前記少なくとも2つの測定領域とは異なる深さにある少なくとも1つの第3測定領域に、当該第3測定領域にある測定箇所に焦点を合わせたパルスレーザー光を、前記少なくとも2つの測定領域と同様に入射光強度を順次変化させながら照射して、焦点位置においてそれぞれ2光子吸収を生じさせ、各入射光強度において、光学材料表面から該第3測定領域までの領域で生じる蛍光発光の総発光量を測定することを更に含み、
前記[2]透過率補正ステップにおいて、
前記各入射光強度において、それぞれ前記各測定領域の光学材料表面からの深さと各測定領域で測定した総発光量とに基づいて、一次以上の関数による近似直線または近似曲線を、その近似直線または近似曲線と測定した総発光量との距離が最小になるようにあてはめ、焦点深さがゼロであるときの前記近似直線または近似曲線上の外挿値を前記参照総発光量とし、それぞれの前記他方の測定領域光学材料表面からの深さにおける前記近似直線または近似曲線上の値を、あらためて光学材料表面から当該各測定領域までの総発光量として用いて、前記他方の測定領域において測定した透過率を補正する、請求項1〜3のいずれか1項に記載の2光子吸収係数測定方法。
In the [1] measurement step,
A pulse focused on at least one third measurement region on a straight line connecting the at least two measurement regions and at a depth different from that of the at least two measurement regions. Similarly to the at least two measurement regions, laser light is irradiated while sequentially changing the incident light intensity to cause two-photon absorption at the focal position, and at each incident light intensity, the third measurement is performed from the surface of the optical material. Further comprising measuring the total amount of fluorescence emitted in the region up to the region,
In the [2] transmittance correction step,
Based on the depth from the surface of the optical material of each measurement region and the total amount of light emission measured in each measurement region at each incident light intensity, an approximate straight line or an approximate curve based on a linear function or higher is obtained. The distance between the approximate curve and the measured total light emission amount is set to be minimum, and the extrapolated value on the approximate line or the approximate curve when the depth of focus is zero is set as the reference total light emission amount. Transmission value measured in the other measurement region using the value on the approximate line or the approximate curve at the depth from the surface of the other measurement region as the total light emission amount from the surface of the optical material to each measurement region. The two-photon absorption coefficient measuring method according to claim 1, wherein the rate is corrected.
前記[1]測定ステップにおいて、前記一方の測定領域および前記第3測定領域について、透過率を各入射光強度に対してそれぞれ測定することを更に含み、
前記[2]透過率補正ステップにおいて、前記一方の測定領域および前記第3測定領域の光学材料表面からの深さにおける前記近似直線または近似曲線上の値を、光学材料表面から前記一方の測定領域および前記第3測定領域までの総発光量として、前記一方の測定領域および前記第3測定領域において測定した透過率を補正し、
前記[3]2光子吸収係数演算ステップにおいて、前記一方の測定領域および前記第3測定領域における2光子吸収係数を求める、請求項4に記載の2光子吸収係数測定方法。
In the [1] measurement step, the method further includes measuring the transmittance with respect to each incident light intensity for the one measurement region and the third measurement region,
In the [2] transmittance correction step, the values on the approximate straight line or the approximate curve in the depths of the one measurement region and the third measurement region from the optical material surface are changed from the optical material surface to the one measurement region. And, as a total light emission amount to the third measurement region, correct the transmittance measured in the one measurement region and the third measurement region,
5. The two-photon absorption coefficient measurement method according to claim 4, wherein, in the [3] two-photon absorption coefficient calculation step, a two-photon absorption coefficient in the one measurement region and the third measurement region is obtained.
前記関数は、2次以上の関数である、請求項4または5に記載の2光子吸収係数測定方法。   The two-photon absorption coefficient measuring method according to claim 4 or 5, wherein the function is a function of second order or higher. 請求項4〜6のいずれか1項に記載の2光子吸収係数測定方法を、前記直線と平行でかつ前記直線とは異なる1またはそれ以上の直線について繰り返すことを含む、2光子吸収係数測定方法。   A two-photon absorption coefficient measurement method comprising repeating the two-photon absorption coefficient measurement method according to any one of claims 4 to 6 for one or more straight lines that are parallel to the straight line and different from the straight line. . 請求項4〜7のいずれか1項に記載の方法によって得られた2光子吸収係数の値を、各測定領域の位置情報と関連付けて記憶することと、2光子吸収係数とレーザー損傷耐性との相関関係を記憶したデータベースを参照して、各測定領域におけるレーザー損傷耐性を評価することを含む、レーザー損傷耐性評価方法。   The value of the two-photon absorption coefficient obtained by the method according to any one of claims 4 to 7 is stored in association with the position information of each measurement region, and the two-photon absorption coefficient and the laser damage resistance A laser damage resistance evaluation method including evaluating laser damage resistance in each measurement region with reference to a database storing correlations. 均質でかつレーザー損傷耐性が既知である第1光学材料の複数の測定領域について、請求項4〜7のいずれか1項に記載の2光子吸収係数測定方法を用いて2光子吸収係数を求めることと、
前記2光子吸収係数を各測定領域の位置情報に関係づけてそれぞれ記憶することと、
前記第1光学材料と同一組成でかつ同一形状の第2光学材料の、前記複数の測定領域と同一位置の測定領域について、請求項4〜7のいずれか1項に記載の2光子吸収係数測定方法を用いて2光子吸収係数を求めることと、
前記第2光学材料の各測定領域について求められた2光子吸収係数をそれぞれ前記第1光学材料の対応する測定領域について求められた2光子吸収係数と比較することと、
前記比較結果および第1光学材料の各領域における2光子吸収係数とレーザー損傷耐性との相関関係を記憶したデータベースに基づいて、第2光学材料のレーザー損傷耐性を評価することを含むことを特徴とする、レーザー損傷耐性評価方法。
The two-photon absorption coefficient is obtained using the two-photon absorption coefficient measuring method according to any one of claims 4 to 7 for a plurality of measurement regions of the first optical material that are homogeneous and have known laser damage resistance. When,
Storing the two-photon absorption coefficient in relation to the position information of each measurement region,
The two-photon absorption coefficient measurement according to any one of claims 4 to 7, wherein the second optical material has the same composition and the same shape as the first optical material, and the measurement region is located at the same position as the plurality of measurement regions. Using a method to determine a two-photon absorption coefficient;
Comparing the two-photon absorption coefficient determined for each measurement region of the second optical material with the two-photon absorption coefficient determined for the corresponding measurement region of the first optical material;
And evaluating the laser damage resistance of the second optical material based on the comparison result and a database storing the correlation between the two-photon absorption coefficient and the laser damage resistance in each region of the first optical material. Laser damage resistance evaluation method.
JP2011049299A 2011-03-07 2011-03-07 Nonlinear absorption measurement method for optical materials Expired - Fee Related JP5673948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011049299A JP5673948B2 (en) 2011-03-07 2011-03-07 Nonlinear absorption measurement method for optical materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011049299A JP5673948B2 (en) 2011-03-07 2011-03-07 Nonlinear absorption measurement method for optical materials

Publications (2)

Publication Number Publication Date
JP2012185081A true JP2012185081A (en) 2012-09-27
JP5673948B2 JP5673948B2 (en) 2015-02-18

Family

ID=47015282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011049299A Expired - Fee Related JP5673948B2 (en) 2011-03-07 2011-03-07 Nonlinear absorption measurement method for optical materials

Country Status (1)

Country Link
JP (1) JP5673948B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238486A (en) * 2017-05-24 2017-10-10 西安应用光学研究所 A kind of absorption coefficient of light measurement apparatus and method
CN108519218A (en) * 2018-03-19 2018-09-11 中国科学院上海光学精密机械研究所 Optical element multiwavelength laser damage measure and analysis system
CN109406453A (en) * 2018-09-11 2019-03-01 江苏大学 A kind of improved Z scanning survey method
JP7567920B2 (en) 2020-09-09 2024-10-16 信越化学工業株式会社 Laser damage resistance evaluation method for paramagnetic garnet-type transparent ceramics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419547A (en) * 1990-04-27 1992-01-23 Toshiba Corp Method for measuring damage of nonlinear optical crystal and damage recovering device
JP2001039791A (en) * 1999-05-22 2001-02-13 Japan Science & Technology Corp Method and device for growing high quality single crystal
JP2007071831A (en) * 2005-09-09 2007-03-22 Tokuyama Corp Method and device for evaluating optical material
JP2009036706A (en) * 2007-08-03 2009-02-19 Josho Gakuen Method and device for estimating laser damage resistance of optical material
JP2009192275A (en) * 2008-02-12 2009-08-27 Arkray Inc Method for evaluating laser irradiation resistance of organic optical crystal and evaluated organic optical crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419547A (en) * 1990-04-27 1992-01-23 Toshiba Corp Method for measuring damage of nonlinear optical crystal and damage recovering device
JP2001039791A (en) * 1999-05-22 2001-02-13 Japan Science & Technology Corp Method and device for growing high quality single crystal
JP2007071831A (en) * 2005-09-09 2007-03-22 Tokuyama Corp Method and device for evaluating optical material
JP2009036706A (en) * 2007-08-03 2009-02-19 Josho Gakuen Method and device for estimating laser damage resistance of optical material
JP2009192275A (en) * 2008-02-12 2009-08-27 Arkray Inc Method for evaluating laser irradiation resistance of organic optical crystal and evaluated organic optical crystal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238486A (en) * 2017-05-24 2017-10-10 西安应用光学研究所 A kind of absorption coefficient of light measurement apparatus and method
CN107238486B (en) * 2017-05-24 2019-05-03 西安应用光学研究所 A kind of absorption coefficient of light measuring device and method
CN108519218A (en) * 2018-03-19 2018-09-11 中国科学院上海光学精密机械研究所 Optical element multiwavelength laser damage measure and analysis system
CN108519218B (en) * 2018-03-19 2019-10-18 中国科学院上海光学精密机械研究所 Optical element multiwavelength laser damage measure and analysis system
CN109406453A (en) * 2018-09-11 2019-03-01 江苏大学 A kind of improved Z scanning survey method
CN109406453B (en) * 2018-09-11 2021-04-20 江苏大学 Z scanning measurement method for automatically determining optimal incident light intensity
JP7567920B2 (en) 2020-09-09 2024-10-16 信越化学工業株式会社 Laser damage resistance evaluation method for paramagnetic garnet-type transparent ceramics

Also Published As

Publication number Publication date
JP5673948B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP4528075B2 (en) Laser damage evaluation method for optical materials
Laurence et al. Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm 2)
Wu et al. Femtosecond laser absorption in fused silica: Numerical and experimental investigation
JP5673948B2 (en) Nonlinear absorption measurement method for optical materials
JP6052536B2 (en) Photoinduced carrier lifetime measuring apparatus and photoinduced carrier lifetime measuring method
EP2952861A1 (en) Apparatus and method for single shot measurement of the m2 parameter of a laser beam
JP4637934B2 (en) Laser damage evaluation method for optical materials
CN107121395A (en) A kind of photo-thermal common path interference module and its method for measuring crystal defect
CN106248636B (en) A method of measurement material nonlinearity absorption curve
Sei et al. Observation of terahertz coherent edge radiation amplified by infrared free-electron laser oscillations
JP2007071831A (en) Method and device for evaluating optical material
Veinhard et al. Effect of non-linear amplification of phase and amplitude modulations on laser-induced damage of thick fused silica optics with large beams at 351 nm
US20130209926A1 (en) Controllable transmission and phase compensation of transparent material
Garmatina et al. Vacuum-free femtosecond fiber laser microplasma X-ray source for radiography
KR20160127461A (en) Laser apparatus and method of manufacturing the same
CN114486190A (en) Testing device and testing method for laser damage threshold of rear surface of optical element
JP5026186B2 (en) Laser damage resistance estimation method and laser damage resistance estimation apparatus for optical material
CN112051248A (en) Laser excitation-based scintillation material light yield nonlinear measurement method and system
CN102854134B (en) A kind of optical system of the enhancing optical excitation ripple signal based on energy recovery principle
Barna et al. Active stabilization of the beam pointing of a high-power KrF laser system
Williams et al. Extreme laser pulse-energy measurements by means of photon momentum
Zhang et al. Elimination of X-rays irradiated defects in fused silica by laser conditioning
Vlasova et al. Measurement of absorption in ultrapure crystalline quartz under conditions of influence of ambient air absorption using time-resolved photothermal common-path interferometry
Melninkaitis et al. Automated test station for characterization of optical resistance with ultrashort pulses at multi kilohertz repetition rates
CN112197712B (en) Beam waist radius measuring method and system based on Z scanning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141216

R150 Certificate of patent or registration of utility model

Ref document number: 5673948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees