JP2009192275A - Method for evaluating laser irradiation resistance of organic optical crystal and evaluated organic optical crystal - Google Patents

Method for evaluating laser irradiation resistance of organic optical crystal and evaluated organic optical crystal Download PDF

Info

Publication number
JP2009192275A
JP2009192275A JP2008031123A JP2008031123A JP2009192275A JP 2009192275 A JP2009192275 A JP 2009192275A JP 2008031123 A JP2008031123 A JP 2008031123A JP 2008031123 A JP2008031123 A JP 2008031123A JP 2009192275 A JP2009192275 A JP 2009192275A
Authority
JP
Japan
Prior art keywords
crystal
laser irradiation
organic optical
optical crystal
irradiation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008031123A
Other languages
Japanese (ja)
Other versions
JP2009192275A5 (en
JP5166905B2 (en
Inventor
Hirohisa Uchida
裕久 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
Arkray Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray Inc filed Critical Arkray Inc
Priority to JP2008031123A priority Critical patent/JP5166905B2/en
Publication of JP2009192275A publication Critical patent/JP2009192275A/en
Publication of JP2009192275A5 publication Critical patent/JP2009192275A5/ja
Application granted granted Critical
Publication of JP5166905B2 publication Critical patent/JP5166905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To establish a method for preliminarily easily and simply evaluating the laser irradiation resistance of an organic optical crystal in a non-destructive manner in order to irradiate the organic optical crystal with a laser beam to continuously use it, and the organic optical crystal having laser irradiation resistance evaluated by the evaluation method. <P>SOLUTION: The evaluation method for determining the presence of the laser irradiation resistance of the organic optical crystal by the diffractive analyzing process before the organic optical crystal is irradiated with the laser beam. Further, the organic optical crystal having laser irradiation resistance evaluated by the evaluation method is easily and simply provided to a wide field in a non-destructive manner. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機光学結晶にレーザー光を照射した際のレーザー被照射耐性を評価する方法およびその評価方法によって評価された有機光学結晶、およびその応用に関する。   The present invention relates to a method for evaluating laser irradiation resistance when an organic optical crystal is irradiated with laser light, an organic optical crystal evaluated by the evaluation method, and an application thereof.

有機光学結晶として、スチルバゾリウム誘導体、およびスチルバゾリウム誘導体であるDAST(4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレート)結晶、DASC(4−ジメチルアミノ−N−メチル−4−スチルバゾリウム−p−クロロベンゼンスルホネート)結晶、MC−PTS(メロシアニン−p−トルエンスルホン酸)結晶、またMMONS(3−メチル−メトキシ−4’−ニトロスチルベン)結晶、DAD((−)4−(4’−ジメチルアミノフェニル)−3−(2’―ヒドロキシプロピルアミノ)シクロブテン−3,4−ジオン)結晶およびLAP(L−アルギニン ホスフェート モノ−ハイドレート)結晶、pNA(4−ニトロアニリン)、MNA(2−メチル−ニトロアニリン)結晶等の各種有機結晶が知られており、無機光学結晶と比較して高い非線形性を有し、光損傷のしきい値も高いため波長変換素子、光素子等への応用が期待されている。   As organic optical crystals, stilbazolium derivatives, and DAST (4-dimethylamino-N-methyl-4-stilbazolium tosylate) crystals which are stilbazolium derivatives, DASC (4-dimethylamino-N-methyl-4-stilbazolium-) p-chlorobenzenesulfonate) crystal, MC-PTS (merocyanine-p-toluenesulfonic acid) crystal, MMONS (3-methyl-methoxy-4′-nitrostilbene) crystal, DAD ((−) 4- (4′-dimethyl) Aminophenyl) -3- (2′-hydroxypropylamino) cyclobutene-3,4-dione) crystals and LAP (L-arginine phosphate mono-hydrate) crystals, pNA (4-nitroaniline), MNA (2-methyl) -Nitroaniline) and other organic crystals Are, has high nonlinearity as compared with inorganic optical crystal, the wavelength conversion element for threshold is high photodamage, application to optical elements is expected.

これら有機光学結晶のなかでも有機非線形光学結晶としてスチルバゾリウムカチオン誘導体であるDAST結晶、DASC結晶、MC−PTS結晶は、その非線形光学効果や電気光学効果を利用して、テラヘルツ波発生装置、テラヘルツ波検出素子および高感度電界センサー等への適用が期待されており、様々な研究開発が行われている。   Among these organic optical crystals, DAST crystal, DASC crystal, and MC-PTS crystal, which are stilbazolium cation derivatives, are used as organic nonlinear optical crystals by utilizing the nonlinear optical effect and electro-optical effect, Expected to be applied to terahertz wave detection elements, high-sensitivity electric field sensors, etc., various research and development have been conducted.

これまでに、DAST結晶においては欠陥のない均一な結晶を提供するものとして、結晶全体に亘って均一な電気光学的特性を有する結晶(特許文献1)、過飽和溶液から溶質を析出させる際、磁場を作用させ高密度に配向した結晶構造に成長させる磁場印加法(特許文献2)、またテラヘルツ波発生装置に使用した場合に、テラヘルツ波出力が減衰しない結晶として、結晶内部の劈開面上に直線状欠陥が存在しない結晶(特許文献3)が提案されている。   So far, in order to provide a uniform crystal free of defects in a DAST crystal, a crystal having uniform electro-optical characteristics over the entire crystal (Patent Document 1), a magnetic field when depositing a solute from a supersaturated solution. When applied to a magnetic field application method (Patent Document 2) for growing a crystal structure with a high density orientation by acting on a terahertz wave generator, the crystal does not attenuate the terahertz wave output. There has been proposed a crystal (Patent Document 3) in which no defect exists.

一般に、サブミリ波から遠赤外域を含む周波数領域(0.1〜100THz)はテラヘルツ電磁波領域と総称され、光波と電波の境界に位置する。このテラヘルツ波は、電磁波として情報通信分野だけでなく、その性質、例えばX線の1/100万のエネルギーを有し、人体に安全で、紙やプラスチック材料などをよく透過し、金属は透過しない性質により、隠匿物の非接触・非破壊で簡便に検査する必要のある安全・防犯分野、薬物や化合物の水分量の差に敏感に反応するので、生体分子や各種化合物の分析ツール、悪性腫瘍の早期発見、その他半導体LSIの内部構造の欠陥検査、ウエハーの物性評価などその応用は広範囲にわたるものである。   In general, a frequency region (0.1 to 100 THz) including a submillimeter wave to a far infrared region is collectively referred to as a terahertz electromagnetic wave region, and is located at a boundary between a light wave and a radio wave. This terahertz wave is not only used in the information and communication field as an electromagnetic wave, but also has properties such as energy that is 1/1 million of X-rays, is safe for the human body, penetrates paper and plastic materials, and does not penetrate metal. Because of its nature, it reacts sensitively to the difference in the water content of drugs and compounds that need to be inspected easily and without contact with non-contact, non-destructive materials, analysis tools for biomolecules and various compounds, malignant tumors Its application is wide-ranging, such as early detection of defects, defect inspection of internal structure of semiconductor LSI, and physical property evaluation of wafers.

テラヘルツ波発生装置は、レーザー照射器から照射されたレーザーにより二波長パラメトリック発振器において波長が異なる二つの電磁波が発生し、前記二つの電磁波が集光レンズを介して差周波発生素子に入射され、前記差周波発生素子から前記二つの電磁波の差周波に対応する電磁波(テラヘルツ波)が発生するという構成が一般的であり、前記差周波発生素子として、前記有機非線形光学結晶が使用される。   The terahertz wave generator generates two electromagnetic waves having different wavelengths in a two-wavelength parametric oscillator by a laser irradiated from a laser irradiator, and the two electromagnetic waves are incident on a difference frequency generating element through a condenser lens, A configuration in which an electromagnetic wave (terahertz wave) corresponding to a difference frequency between the two electromagnetic waves is generated from a difference frequency generating element is generally used, and the organic nonlinear optical crystal is used as the difference frequency generating element.

前記レーザー照射器から照射されたレーザーを有機非線形光学結晶に照射するが、この際に結晶内部に損傷が生じてしまう場合があり、結晶のレーザー耐性等の品質が問題となっている。さらに、損傷の発生パターンには結晶成長方法、成長時の条件などにより該結晶による個体差が生じてしまう。
このことは、テラヘルツ波発生装置においては、差周波発生素子として用いる有機非線形光学結晶を使用してみないとレーザー耐性がある結晶なのか、ないものか判断することができないという問題が生じていた。即ちレーザー照射前に確実に結晶のレーザー耐性等の品質を確認する必要が生じてきているが、これまでに、有機光学結晶のレーザー耐性の評価方法についての検討は全くされていなかった。
Although the organic nonlinear optical crystal is irradiated with the laser irradiated from the laser irradiator, the inside of the crystal may be damaged at this time, and the quality of the crystal such as laser resistance becomes a problem. Furthermore, individual differences due to the crystals occur in the damage generation pattern depending on the crystal growth method, growth conditions, and the like.
This means that the terahertz wave generator has a problem that it cannot be determined whether it is a laser-resistant crystal unless it uses an organic nonlinear optical crystal used as a difference frequency generating element. . In other words, it has become necessary to reliably confirm the quality of the crystal such as laser resistance before laser irradiation, but until now, no study has been made on the method for evaluating the laser resistance of organic optical crystals.

一方、近年のバイオテクノロジー分野の発展に伴い、生体高分子について、迅速且つ簡便に結晶構造を解析できる手法を開発する必要が高まってきている。生体高分子の結晶構造解析において、解析精度は用いる結晶の品質によって左右され、構造解析の際には、一般的に、高分解能データの得られる結晶が良質とみなされ、構造解析に付随する問題であるデータ量の削減と所要時間の短縮化のためには、いずれの結晶を解析に用いるかを決定するため、結晶品質の予備評価が不可欠である。そこで、生体高分子の結晶構造解析に用いる結晶の品質を迅速且つ簡便に評価する方法(特許文献4)も提案されている。
しかし、ここでは、あくまでも生体高分子の結晶構造解析に用いる結晶の品質を迅速且つ簡便に評価するものであって、有機光学結晶のレーザー照射耐性を評価することは何も示されていない。
特開2004−107104号公報 特開2004−205531号公報 特開2007−232936号公報 特開2005−3489号公報
On the other hand, with the recent development of the biotechnology field, there is an increasing need to develop a technique capable of analyzing the crystal structure of biopolymers quickly and easily. In the crystal structure analysis of biopolymers, the accuracy of analysis depends on the quality of the crystal used, and in the case of structure analysis, generally, the crystal from which high resolution data can be obtained is considered to be of good quality, and there are problems associated with structure analysis. In order to reduce the amount of data and the time required, preliminary evaluation of crystal quality is indispensable in order to determine which crystal is used for analysis. Therefore, a method (Patent Document 4) for quickly and easily evaluating the quality of a crystal used for crystal structure analysis of a biopolymer has also been proposed.
However, here, the quality of the crystal used for the analysis of the crystal structure of the biopolymer is evaluated quickly and simply, and nothing is shown to evaluate the laser irradiation resistance of the organic optical crystal.
JP 2004-107104 A JP 2004-205531 A JP 2007-232936 A Japanese Patent Laid-Open No. 2005-3489

本発明は、有機光学結晶にレーザー光を照射して連続的に使用するめに、あらかじめレーザー照射前に非破壊で有機光学結晶のレーザー被照射耐性を評価する方法を確立することを課題とし、またその評価方法によって評価されたレーザー被照射耐性を有する有機光学結晶およびその応用を提供することを課題とする。   An object of the present invention is to establish a method for evaluating the laser irradiation resistance of an organic optical crystal in a non-destructive manner prior to laser irradiation in order to continuously use the organic optical crystal by irradiating a laser beam. It is an object of the present invention to provide an organic optical crystal having laser irradiation resistance evaluated by the evaluation method and its application.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、有機光学結晶にレーザーを照射する前に回折解析工程により、有機光学結晶のレーザー被照射耐性の有無を評価する方法を発明するに至った。また当該有機光学結晶のレーザー被照射耐性の評価方法により、レーザー被照射耐性が評価された有機光学結晶およびその応用を発明するに至った。   As a result of intensive studies to solve the above problems, the present inventors have developed a method for evaluating the presence or absence of laser irradiation resistance of an organic optical crystal by a diffraction analysis step before irradiating the organic optical crystal with a laser. It came to invent. In addition, the present inventors have invented an organic optical crystal whose laser irradiation resistance has been evaluated by the method for evaluating laser irradiation resistance of the organic optical crystal and its application.

さらに本発明者らは、有機光学結晶にレーザーを照射する前にレーザー被照射耐性を有する標準結晶試料の回折解析データと該当評価対象である結晶試料の回折解析データとを比較する回折解析工程により、有機光学結晶のレーザー被照射耐性の有無を評価する有機光学結晶のレーザー被照射耐性の評価方法を発明するに至った。
また、有機光学結晶にレーザーを照射する前にレーザー被照射耐性を有する標準結晶試料の回折解析データにより求めた温度因子と該当評価対象である結晶試料の回折解析データにより求めた温度因子とを比較する工程により、有機光学結晶のレーザー被照射耐性の有無を評価する有機光学結晶のレーザー被照射耐性の評価方法を発明するに至った。
Furthermore, the present inventors have conducted a diffraction analysis process for comparing the diffraction analysis data of the standard crystal sample having laser irradiation resistance with the diffraction analysis data of the crystal sample to be evaluated before irradiating the organic optical crystal with laser. The inventors have invented a method for evaluating the laser irradiation resistance of an organic optical crystal, which evaluates the presence or absence of the laser irradiation resistance of the organic optical crystal.
Also, compare the temperature factor obtained from the diffraction analysis data of the standard crystal sample with laser irradiation resistance before irradiating the organic optical crystal with the laser to the temperature factor obtained from the diffraction analysis data of the crystal sample to be evaluated. As a result, the inventors have invented a method for evaluating the laser irradiation resistance of an organic optical crystal, which evaluates the presence or absence of the laser irradiation resistance of the organic optical crystal.

即ち、本発明は、
[1]有機光学結晶のレーザー被照射耐性の評価方法において、有機光学結晶にレーザーを照射する前に回折解析工程により、有機光学結晶のレーザー被照射耐性の有無を評価することを特徴とする有機光学結晶のレーザー被照射耐性の評価方法。
[2]前記回折解析工程が、レーザー被照射耐性を有する標準結晶試料の回折解析データと比較することにより、結晶のレーザー被照射耐性の有無を評価することを特徴とする[1]に記載の有機光学結晶のレーザー被照射耐性の評価方法。
[3]前記回折解析工程が、温度因子を測定する工程を含むことを特徴とする[1]または[2]に記載の有機光学結晶のレーザー被照射耐性の評価方法。
[4] 前記有機光学結晶が、スチルバゾリウム誘導体からなる結晶であることを特徴とする[1]〜[3]のいずれかに記載の有機光学結晶のレーザー被照射耐性の評価方法。
[5]前記有機光学結晶が、スチルバゾリウムカチオン誘導体であるDAST、DASCまたはMC−PTS結晶のいずれかから選択される少なくとも一つの結晶であることを特徴とする [1]〜[4]のいずれかに記載の有機光学結晶のレーザー被照射耐性の評価方法。
[6] [1]〜[5]のいずれかに記載されたレーザー被照射耐性の評価方法により、レーザー被照射耐性が評価された有機光学結晶。
[7][6]に記載された有機光学結晶を、構成材料として含むことを特徴とする電気光学素子。
[8]前記電気光学素子が、テラヘルツ波発生用、テラヘルツ波検出用、高感度電界センサー用、高速光変調器用、電界プローブ用、電気光学サンプリング用、2次元電界マッピング用あるいは空間電界検出用のいずれかである[7]に記載の電気光学素子。
That is, the present invention
[1] In the method for evaluating the laser irradiation resistance of an organic optical crystal, the organic optical crystal is evaluated for presence or absence of laser irradiation resistance by a diffraction analysis step before irradiating the organic optical crystal with laser. Evaluation method of laser irradiation resistance of optical crystal.
[2] The diffraction analysis step evaluates the presence or absence of laser irradiation resistance of the crystal by comparing with diffraction analysis data of a standard crystal sample having laser irradiation resistance. Evaluation method of laser irradiation resistance of organic optical crystal.
[3] The method for evaluating tolerance to laser irradiation of an organic optical crystal according to [1] or [2], wherein the diffraction analysis step includes a step of measuring a temperature factor.
[4] The method for evaluating resistance to laser irradiation of an organic optical crystal according to any one of [1] to [3], wherein the organic optical crystal is a crystal made of a stilbazolium derivative.
[5] The organic optical crystal is at least one crystal selected from any one of DAST, DASC and MC-PTS crystals which are stilbazolium cation derivatives. [1] to [4] The evaluation method of the laser irradiation tolerance of the organic optical crystal in any one of.
[6] An organic optical crystal whose laser irradiation resistance has been evaluated by the laser irradiation resistance evaluation method described in any one of [1] to [5].
[7] An electro-optical element comprising the organic optical crystal according to [6] as a constituent material.
[8] The electro-optic element is for terahertz wave generation, terahertz wave detection, high-sensitivity electric field sensor, high-speed optical modulator, electric field probe, electro-optic sampling, two-dimensional electric field mapping, or spatial electric field detection. The electro-optic element according to any one of [7].

本発明により、有機光学結晶にレーザーを照射する前にレーザー被照射耐性を有する標準結晶試料の回折解析データと比較するという簡単な回折解析工程により、あらかじめ非破壊かつ簡便な手法でレーザー被照射耐性を評価する方法を確立することができたので、使用前に有機光学結晶のレーザー被照射耐性等の品質を判断することができ、またその評価方法によって評価されたレーザー被照射耐性を有する有機光学結晶を非破壊で容易かつ簡便に提供することができる。   In accordance with the present invention, the laser irradiation tolerance is preliminarily determined in a simple and non-destructive manner through a simple diffraction analysis process that compares the diffraction analysis data of a standard crystal sample with laser irradiation resistance before irradiating the organic optical crystal with laser. As a result, it was possible to judge the quality of organic optical crystals such as laser irradiation resistance before use, and to evaluate organic optical crystals with laser irradiation resistance evaluated by the evaluation method. Crystals can be provided non-destructively and easily.

以下に、本発明を詳細に説明する。
本発明の有機光学結晶のレーザー被照射耐性の評価方法において評価しうる有機光学結晶には、下記式1に示すスチルバゾリウム誘導体結晶がある。このスチルバゾリウム誘導体は、−X、−YおよびZの組み合わせで各種誘導体が構成されている。またMMONS(3−メチル−メトキシ−4’−ニトロスチルベン)結晶、DAD((−)4−(4’−ジメチルアミノフェニル)−3−(2’―ヒドロキシプロピルアミノ)シクロブテン−3,4−ジオン)結晶およびLAP(L−アルギニン ホスヘート モノ−ハイドレード)結晶、pNA(4−ニトロアニリン)、MNA(2−メチル−ニトロアニリン)結晶等の各種有機結晶がある。
The present invention is described in detail below.
The organic optical crystal that can be evaluated in the method for evaluating the laser irradiation resistance of the organic optical crystal of the present invention includes a stilbazolium derivative crystal represented by the following formula 1. The stilbazolium derivatives, -X, -Y and Z - combined in various derivatives have been configured. MMONS (3-methyl-methoxy-4′-nitrostilbene) crystal, DAD ((−) 4- (4′-dimethylaminophenyl) -3- (2′-hydroxypropylamino) cyclobutene-3,4-dione ) Crystals and various organic crystals such as LAP (L-arginine phosphate mono-hydrate) crystals, pNA (4-nitroaniline), MNA (2-methyl-nitroaniline) crystals.

そのなかでも有機非線形光学結晶として有用な下記式1で示されるスチルバゾリウム誘導体からなる結晶を用いて評価することができる。
*誘導体分子中に少なからず1つ以上の重水素(D)が含まれている物質も含む。
Among them, it can be evaluated using a crystal composed of a stilbazolium derivative represented by the following formula 1 useful as an organic nonlinear optical crystal.
* Includes substances that contain at least one deuterium (D) in the derivative molecule.

特に、スチルバゾリウム誘導体結晶のなかでも上記X=9、Y=イ、Z=bであるDAST(4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレート)結晶、上記X=9、Y=イ、Z=cであるDASC(4−ジメチルアミノ−N−メチル−4−スチルバゾリウム−p−クロロベンゼンスルホネート)結晶、上記X=1、Y=イ、Z=bであるMC−PTS(メロシアニン−p−トルエンスルホン酸)の単結晶を評価するのが、幅広い用途に利用される有用な有機非線形光学結晶を評価できる点で最も好ましい。   In particular, among the stilbazolium derivative crystals, DAST (4-dimethylamino-N-methyl-4-stilbazolium tosylate) crystal in which X = 9, Y = i, and Z = b, X = 9, Y DASC (4-dimethylamino-N-methyl-4-stilbazolium-p-chlorobenzenesulfonate) crystal in which Z = c, MC-PTS (merocyanine- in which X = 1, Y = i, Z = b) It is most preferable to evaluate a single crystal of (p-toluenesulfonic acid) in that a useful organic nonlinear optical crystal used for a wide range of applications can be evaluated.

本発明の有機光学結晶のレーザー被照射耐性の評価方法において、特にテラヘルツ波発生用に使用するレーザーとしては、有機光学結晶に照射したときテラヘルツ波を発生させることができるものであればいかなるものでもかまわない。例えばレーザー光の光源にはNd;YAGレーザーを用いた波長1475nm、1493nm、パルス幅15ns/pulseのレーザーや、Nd;YAG/SHGレーザーを用いた波長532nm、パルス幅10ns/pulseのレーザーなどがある。   In the evaluation method of the laser irradiation resistance of the organic optical crystal of the present invention, any laser that can generate a terahertz wave when irradiated with the organic optical crystal is used as a laser for generating a terahertz wave. It doesn't matter. For example, laser light sources include Nd; YAG lasers with wavelengths of 1475 nm and 1493 nm and a pulse width of 15 ns / pulse, and Nd; YAG / SHG lasers with a wavelength of 532 nm and a pulse width of 10 ns / pulse. .

本発明の有機光学結晶のレーザー被照射耐性の評価方法において、有機光学結晶にレーザーを照射する前に行う評価方法で用いる回折解析工程とは、結晶構造の回折解析として知られているX線構造解析、中性子構造解析、電子線構造解析のいずれでもよく、結晶構造の平均構造、格子振動が解析できるものならばいずれでもよい。   In the evaluation method of the laser irradiation resistance of the organic optical crystal of the present invention, the diffraction analysis step used in the evaluation method performed before irradiating the organic optical crystal with the laser is an X-ray structure known as a diffraction analysis of the crystal structure. Any of analysis, neutron structure analysis, and electron beam structure analysis may be used as long as the average structure of crystal structure and lattice vibration can be analyzed.

本発明者らは、有機光学結晶のうちDAST結晶について中性子構造解析を行って結晶品質を評価したところ、中性子構造解析による水素原子情報が各種結晶に応じて異なることを見出した。特にDAST結晶中の水素原子位置を規則構造として特定し、各原子の熱振動を異方性温度因子として求めることができた。   The inventors of the present invention performed neutron structural analysis on DAST crystal among organic optical crystals and evaluated the crystal quality. As a result, they found that hydrogen atom information based on neutron structural analysis differs depending on various crystals. In particular, the hydrogen atom position in the DAST crystal was specified as a regular structure, and the thermal vibration of each atom could be obtained as an anisotropic temperature factor.

DASTにはメチル基が4つあるがC2部位のメチル基の水素原子は不協和(ディスオーダー)を起こしていたため、残る3つのメチル基の水素原子団をH1、H16、H17(式2参照)として中性子構造解析により温度因子データを求めた。なお、ここではDAST化学構造式2中、左上のメチル基の水素原子をH1、右端のメチル基の水素原子をH16、中間位のメチル基の水素原子をH17としている。
DAST has four methyl groups, but the hydrogen atom of the methyl group at the C2 site has been incongruent (disordered), so the remaining three hydrogen groups of methyl groups are H1, H16, and H17 (see Formula 2). The temperature factor data was obtained by neutron structure analysis. Here, in DAST chemical structural formula 2, the hydrogen atom of the upper left methyl group is H1, the hydrogen atom of the rightmost methyl group is H16, and the hydrogen atom of the intermediate methyl group is H17.

結晶中における原子は、現実には静止しているのではなく熱振動により動いている。そのため、特定の線源(中性子、X線、電子線)を用いた回折解析により得られた結晶構造因子F(h k l)は結晶中の熱振動の効果を含んでいる。熱振動を含めた構造因子は、
と表せる。ここで、Tは熱振動を示す。
熱振動が等方的とみなせる場合には
T=exp(−8πUsin2θ/λ)・・・(1.2)
であり、Uを等方性温度因子という。ただし、一般的には熱振動は方向ごとに異なるので、六つの変数を使って次のように表す。
T=exp{−2π2(U112a*2+U22k2b*2+U33l2c*2+2U12hkab+2U13hlac+2U23klbc)}・・・(1.3)
ここで、Uijを異方性温度因子と呼ぶ。なお計算の便宜上、次のように定義された温度因子を用いることもある。
T=exp(―Bsin2θ/λ2)
=exp{−(B11h+B22k+B33l+2B12hk+2B23kl +2B31lh)}・・・(1.4)
式(1.3)と(1.4)の比較により、等方性温度因子および異方性温度因子は
U=B/(8π)・・・(1.5)
ij=Bij/(2πai *aj *) (i,j=1,2,3)・・・(1.6)
の関係で結びつく。ここで、a1 ,a2 、a3 はそれぞれ逆格子定数a、b、cを示す。
このことから、本発明においては、特定の線源(中性子、X線、電子線)を用いた回折解析により得られる温度因子として等方性温度因子または異方性温度因子のいずれかの値を結晶の耐久性の指標として取り扱うことが可能である。
The atoms in the crystal are not stationary but actually move by thermal vibration. Therefore, the crystal structure factor F (hkl) obtained by diffraction analysis using a specific radiation source (neutron, X-ray, electron beam) includes the effect of thermal vibration in the crystal. Structural factors including thermal vibration are
It can be expressed. Here, T represents thermal vibration.
When thermal vibration can be regarded as isotropic, T = exp (−8π 2 Usin 2 θ / λ 2 ) (1.2)
U is called an isotropic temperature factor. However, in general, the thermal vibration differs for each direction, so it is expressed as follows using six variables.
T = exp {−2π 2 (U 11 h 2 a * 2 + U 22 k 2 b * 2 + U 33 l 2 c * 2 +2 U 12 hka * b * +2 U 13 hla * c * +2 U 23 klb * c * )} (1.3)
Here, Uij is called an anisotropic temperature factor. For convenience of calculation, a temperature factor defined as follows may be used.
T = exp (-Bsin2θ / λ2)
= Exp {- (B 11 h 2 + B 22 k 2 + B 33 l 2 + 2B 12 hk + 2B 23 kl + 2B 31 lh)} ··· (1.4)
From the comparison of the equations (1.3) and (1.4), the isotropic temperature factor and the anisotropic temperature factor are U = B / (8π 2 ) (1.5)
U ij = B ij / (2π 2 a i * a j * ) (i, j = 1,2,3) (1.6)
Connect with each other. Here, a 1 * , a 2 * , and a 3 * indicate reciprocal lattice constants a * , b * , and c * , respectively.
Therefore, in the present invention, the value of either an isotropic temperature factor or an anisotropic temperature factor is used as a temperature factor obtained by diffraction analysis using a specific radiation source (neutron, X-ray, electron beam). It can be handled as an index of crystal durability.

中性子構造解析装置は、ほぼ光速まで加速させた陽子を標的となる結晶の原子核に衝突させることにより、中性子等の二次粒子を発生させ、これらの粒子を利用して、原子や分子の構造・配列を解析することのできる装置である。大強度陽子加速器施設で発生した中性子を利用し回折中性子線を中性子検知器で検出することを、結晶に対して当てる中性子角度を変化させて繰り返し、収集した回折データを解析することで、水素原子位置を含めた結晶構造を決定することができる。   The neutron structure analyzer generates secondary particles such as neutrons by colliding the protons accelerated to almost the speed of light with the nucleus of the target crystal, and using these particles, the structure and structure of atoms and molecules It is a device that can analyze sequences. By using the neutrons generated at the high-intensity proton accelerator facility and detecting the diffracted neutron beam with the neutron detector, the neutron angle applied to the crystal is changed, and the collected diffraction data is analyzed to analyze the hydrogen atoms. The crystal structure including the position can be determined.

本発明者らは温度因子データを求めた結晶試料にテラヘルツ波発生用に使用するレーザー光を、レーザー照射により結晶に損傷が生じるまでレーザー照射を繰り返し、損傷が生じるピークパワー密度を調べて、中性子構造解析による温度因子データと対比したところ、レーザー被照射耐性のある結晶と、レーザー被照射耐性のない結晶即ち結晶に損傷がある結晶とを区別することが出来た。   The present inventors repeated laser irradiation with laser light used for generating terahertz waves on a crystal sample for which temperature factor data was obtained until the crystal was damaged by laser irradiation, investigated the peak power density at which the damage occurred, When compared with temperature factor data by structural analysis, it was possible to distinguish between crystals that were resistant to laser irradiation and crystals that were not resistant to laser irradiation, that is, crystals that were damaged.

このことは、有機光学結晶にレーザーを照射する前にレーザー被照射耐性を有する標準結晶試料の回折解析データと該当評価対象である結晶試料の回折解析データとを比較する回折解析工程により、有機光学結晶のレーザー被照射耐性の有無を評価する有機光学結晶のレーザー被照射耐性の評価方法が見出せたものである。
また、有機光学結晶にレーザーを照射する前にレーザー被照射耐性を有する標準結晶試料の回折解析データにより求めた温度因子と該当評価対象である結晶試料の回折解析データにより求めた温度因子とを比較する工程により、有機光学結晶のレーザー被照射耐性の有無を評価する有機光学結晶のレーザー被照射耐性の評価方法が見出せたものである。
This is due to the diffraction analysis process that compares the diffraction analysis data of the standard crystal sample that is resistant to laser irradiation with the diffraction analysis data of the crystal sample to be evaluated before irradiating the organic optical crystal with laser. An evaluation method for laser irradiation resistance of an organic optical crystal for evaluating the crystal irradiation resistance of a crystal can be found.
Also, compare the temperature factor obtained from the diffraction analysis data of the standard crystal sample with laser irradiation resistance before irradiating the organic optical crystal with the laser to the temperature factor obtained from the diffraction analysis data of the crystal sample to be evaluated. By this step, an evaluation method for the laser irradiation resistance of the organic optical crystal for evaluating the presence or absence of the laser irradiation resistance of the organic optical crystal can be found.

本明細書において、レーザー被照射耐性のある結晶とは、一定条件のレーザー照射を行ったときに得られるTHz波出力において、同測定時に観測された最大THz波出力を用いて各出力値を割ることで算出した値が、照射開始から5分間以内に、連続して20秒以上、0.5以下に減衰しない結晶である。
また、レーザー被照射耐性のない結晶とは、一定条件のレーザー照射を行ったときに得られるTHz波出力において、同測定時に観測された最大THz波出力を用いて各出力値を割ることで算出した値が、照射開始から5分間以内に、連続して20秒以上、0.5以下に減衰する結晶である。
ここで、0.1THz〜10THzの領域を1回分光するために要する測定時間は5分であり、実用性の観点から1測定以上可能な結晶を評価するためにレーザー照射時間を5分とした。
In this specification, a crystal with laser irradiation resistance is a THz wave output obtained when laser irradiation under a certain condition is performed, and each output value is divided using the maximum THz wave output observed at the same measurement. The value calculated in this way is a crystal that does not decay for 20 seconds or more and 0.5 or less continuously within 5 minutes from the start of irradiation.
In addition, a crystal with no laser irradiation resistance is calculated by dividing each output value using the maximum THz wave output observed during the same measurement in the THz wave output obtained when laser irradiation is performed under a certain condition. The value obtained is a crystal that decays continuously to 20 seconds or more and 0.5 or less within 5 minutes from the start of irradiation.
Here, the measurement time required for once splitting the region of 0.1 THz to 10 THz is 5 minutes, and the laser irradiation time is set to 5 minutes in order to evaluate a crystal capable of one or more measurements from the viewpoint of practicality. .

更に、本発明者らは、この中性子構造解析により求めた温度因子データとX線構造回折解析によって求めた温度因子との間にも相関関係があり、DAST結晶をX線構造解析することにより等方性を有するメチル基の平均的な配置が解析され、このX線回折解析結果により、レーザー被照射耐性のある結晶と、レーザー被照射耐性のない結晶即ち結晶に損傷がある結晶とを区別することが出来た。   Furthermore, the present inventors have a correlation between the temperature factor data obtained by the neutron structure analysis and the temperature factor obtained by the X-ray structure diffraction analysis, and the like by analyzing the DAST crystal by the X-ray structure analysis. The average arrangement of the methyl groups having anisotropy is analyzed, and the X-ray diffraction analysis results distinguish between crystals that are resistant to laser irradiation and crystals that are not resistant to laser irradiation, that is, crystals that are damaged. I was able to.

通常、X線、中性子線、電子線などを用いた結晶構造解析からは、温度因子と呼ばれる原子の平均位置からの平均二乗変位に相当する量が得られ、これを分子全体について解析することによって剛体振動、分子内部運動のような分子全体にわたっての動的状態を知ることができる。これまでは、有機光学結晶の品質評価はレーザー耐性の観点から検討されていなかったので、この結晶構造解析による温度因子を利用したレーザー耐性評価はなされていなかったものである。   Usually, from crystal structure analysis using X-rays, neutron beams, electron beams, etc., an amount equivalent to the mean square displacement from the average position of atoms called temperature factor is obtained, and by analyzing this for the whole molecule It is possible to know dynamic states throughout the molecule such as rigid body vibrations and internal molecular motion. Until now, quality evaluation of organic optical crystals has not been studied from the viewpoint of laser resistance, and thus laser resistance evaluation using a temperature factor by this crystal structure analysis has not been performed.

結晶構造解析により求められた原子の温度因子を用いて分子運動を解析する方法では、剛体振動解析の手法が用いられる。この方法は、個々の原子の異方性温度因子から分子全体もしくは部分の剛体振動を解析するものである。これにより、分子の回転運動、並進運動のパラメーターを得ることができる。   In the method of analyzing molecular motion using the temperature factor of atoms obtained by crystal structure analysis, a rigid body vibration analysis method is used. This method analyzes rigid vibrations of the whole molecule or a part from the anisotropic temperature factor of each atom. Thereby, the parameters of the rotation and translation of the molecule can be obtained.

ここで言う異方性温度因子とは、原子振動を座標軸であるx、y、z方向の成分を用いて表したものであり、数学的にはテンソルで表示され、楕円体として可視化することができる。中性子構造解析を行うことにより水素原子における異方性温度因子を精度よく得ることができる。これに対して、等方性温度因子は、x、y、z方向の成分の平均である振動の大きさに相当する量であり方向性を持たないものであり、特定の線源(中性子、X線、電子線)を用いた構造解析を行うことにより得ることができる。   The anisotropic temperature factor referred to here is an atomic vibration expressed using components in the x, y, and z directions that are coordinate axes, mathematically displayed as a tensor, and visualized as an ellipsoid. it can. By performing neutron structural analysis, the anisotropic temperature factor in hydrogen atoms can be obtained with high accuracy. On the other hand, the isotropic temperature factor is an amount corresponding to the magnitude of vibration that is an average of components in the x, y, and z directions and has no directionality, and a specific radiation source (neutron, It can be obtained by conducting a structural analysis using X-rays or electron beams.

本発明では、DAST結晶の異方性温度因子と等方性温度因子との間には相関関係があり、かつ温度因子と結晶の損傷関係にも相関関係があり、レーザー被照射耐性のある結晶と、レーザー被照射耐性のない結晶即ち結晶に損傷がある結晶とを区別することができるとの知見を得て、有機光学結晶のレーザー被照射耐性の評価方法を確立したものである。   In the present invention, there is a correlation between the anisotropic temperature factor and the isotropic temperature factor of the DAST crystal, and there is also a correlation between the temperature factor and the damage relationship of the crystal. And a crystal having no laser irradiation resistance, that is, a crystal having damage to the crystal, has been obtained, and a method for evaluating the laser irradiation resistance of an organic optical crystal has been established.

本発明において、X線回折法における測定条件は特に限定しない。例えば、対象となるDAST結晶における測定可能なブラッグ条件を満たす波長と、測定可能となる強度とをもち、扱いやすいX線が選択される。例えばCuKα線等を任意の強度で用いることができる。X線構造解析によって、DAST結晶構造は、空間群Cc.格子定数a[Å]=10.365、b[Å]=11.322、c[Å]=17.893、β[dcg.]=92.24、V[Å3]=2098.2、Z=4とされている。   In the present invention, the measurement conditions in the X-ray diffraction method are not particularly limited. For example, an easy-to-handle X-ray having a wavelength that satisfies the measurable Bragg condition in the target DAST crystal and an intensity that can be measured is selected. For example, CuKα rays or the like can be used at an arbitrary intensity. By X-ray structural analysis, the DAST crystal structure was found to be space group Cc. Lattice constants a [Å] = 10.365, b [Å] = 11.322, c [Å] = 17.893, β [dcg.] = 92.24, V [Å3] = 2098.2, and Z = 4.

X線回折法により測定した回折角と回折線の幅との関係より温度因子を算出する方法、および中性子回折法により測定した回折データを元にした構造解析から温度因子を算出する方法としては特に限定しないが、Wilson Plot法が挙げられる。   As a method of calculating the temperature factor from the relationship between the diffraction angle measured by the X-ray diffraction method and the width of the diffraction line, and a method of calculating the temperature factor from the structural analysis based on the diffraction data measured by the neutron diffraction method Although not limited, the Wilson Plot method can be mentioned.

本発明は、上記に記載されたいずれかのレーザー被照射耐性の評価方法により、レーザー被照射耐性が評価された有機光学結晶、及びレーザー被照射耐性が評価された有機光学結晶を、構成材料として含む電気光学素子にも関する。更に、電気光学素子が、テラヘルツ波発生用、テラヘルツ波検出用、高感度電界センサー用、高速光変調器用、電界プローブ用、電気光学サンプリング用、2次元電界マッピング用あるいは空間電界検出用のいずれかに使用できる有機光学素子にも関する。   The present invention uses, as a constituent material, an organic optical crystal whose laser irradiation resistance has been evaluated by any of the laser irradiation resistance evaluation methods described above, and an organic optical crystal whose laser irradiation resistance has been evaluated. The present invention also relates to an electro-optical element including the same. Furthermore, the electro-optic element is for terahertz wave generation, terahertz wave detection, high-sensitivity electric field sensor, high-speed optical modulator, electric field probe, electro-optic sampling, two-dimensional electric field mapping, or spatial electric field detection. The present invention also relates to an organic optical element that can be used for the above.

以下、実施例によって本発明を具体的に説明するが、本発明はそれに限定されるものではない。本発明の有機光学単結晶の代表例であるDAST結晶を用いて以下に説明する。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. This will be described below using a DAST crystal that is a typical example of the organic optical single crystal of the present invention.

[参考例1]
DAST単結晶の製造例を示す。
N−10、D−neu―2結晶の育成方法
(種結晶の作製)
DAST単結晶は、種結晶を育成することで得た。DAST種結晶は、市販のDAST粉末(純度99.0%以上 第一化学薬品社製)10.4gに400gのメタノールを加えDAST溶液を調整した。次いで、この溶液を55.0℃まで攪拌しつつ昇温し、10時間55.0℃を維持し、DAST粉末を完全に溶解させた。その後調整した溶液を40mLずつ分注し種結晶用溶液とした。調整した種結晶用溶液は再度55.0℃まで昇温し、10時間55.0℃を維持した後に、23.3℃まで降下させ種結晶を析出させた。
(単結晶の育成)
DAST単結晶の育成は、DAST粉末17.7gに400gのメタノールを加えDAST育成溶液を調整した。次いで、この溶液を55.0℃まで攪拌しつつ昇温し、10時間55.0℃を維持し、DAST粉末を完全に溶解させた。その後調整した溶液を280mLずつ分注し結晶育成用溶液とした。調整した結晶育成用溶液は再度55.0℃まで昇温し、10時間55.0℃を維持した。次いで、この溶液を44.8℃まで攪拌しつつ降下させ、その後30分維持し、支持体に付着させた種結晶を投入した。種結晶投入後、速やかに43.3℃まで降下させ、0.1℃/日の速度で溶液温度を降下させながら、40日間結晶を育成した。
[Reference Example 1]
A production example of a DAST single crystal is shown.
N-10, D-neu-2 crystal growth method (preparation of seed crystal)
A DAST single crystal was obtained by growing a seed crystal. The DAST seed crystal was prepared by adding 400 g of methanol to 10.4 g of commercially available DAST powder (purity: 99.0% or more, manufactured by Daiichi Chemicals Co., Ltd.) to prepare a DAST solution. Next, this solution was heated to 55.0 ° C. while being stirred, and maintained at 55.0 ° C. for 10 hours to completely dissolve the DAST powder. Thereafter, 40 mL of the prepared solution was dispensed to prepare a seed crystal solution. The prepared seed crystal solution was heated again to 55.0 ° C., maintained at 55.0 ° C. for 10 hours, and then lowered to 23.3 ° C. to precipitate seed crystals.
(Single crystal growth)
For growth of the DAST single crystal, 400 g of methanol was added to 17.7 g of DAST powder to prepare a DAST growth solution. Next, this solution was heated to 55.0 ° C. while being stirred, and maintained at 55.0 ° C. for 10 hours to completely dissolve the DAST powder. Thereafter, 280 mL of the prepared solution was dispensed to obtain a crystal growth solution. The adjusted crystal growth solution was again heated to 55.0 ° C. and maintained at 55.0 ° C. for 10 hours. Next, the solution was lowered to 44.8 ° C. while being stirred, and then maintained for 30 minutes, and seed crystals attached to the support were introduced. After introducing the seed crystal, the temperature was quickly lowered to 43.3 ° C., and the crystal was grown for 40 days while the solution temperature was lowered at a rate of 0.1 ° C./day.

N−11結晶の育成方法
(種結晶の作製)
前述の種結晶の作製方法に記載の各工程を、[100]方向が磁場方向と平行となるように5T(テスラ)の磁場を印加し種結晶を析出させた。
(単結晶の育成)
上記方法にて作製した磁場印加種晶を用い、前述の単結晶の育成方法と同じ方法で育成した。
N-11 crystal growth method (preparation of seed crystal)
In each step described in the seed crystal manufacturing method, a seed crystal was deposited by applying a magnetic field of 5 T (Tesla) so that the [100] direction was parallel to the magnetic field direction.
(Single crystal growth)
Using the magnetic field applied seed crystal produced by the above method, it was grown by the same method as the single crystal growth method described above.

上記で得たN−10、D−neu−2及びN−11結晶は、洗浄した後、実施例の中性子構造解析に用いた。   The N-10, D-neu-2 and N-11 crystals obtained above were washed and then used for neutron structure analysis of the examples.

参考例1により得られた各DAST単結晶のサイズは次のとおりである。
The size of each DAST single crystal obtained in Reference Example 1 is as follows.

[実施例1]
(中性子構造解析装置、実験条件)
中性子回折測定は、日本原子力研究開発機構保有のJRR−3内のBIX−3を用いて行った。結晶の方位を手動で変えながら、全部で3通りの方位について、1.5°の振動写真をそれぞれ120枚、60枚、60枚ずつ測定した。1枚当たりの露光時間は10分とし、測定時間は30時間であった。得られたデータを元にSHELXLを用いて構造解析を行った。
[Example 1]
(Neutron structure analyzer, experimental conditions)
The neutron diffraction measurement was performed using BIX-3 in JRR-3 owned by Japan Atomic Energy Agency. While changing the crystal orientation manually, 120, 60 and 60 1.5 ° vibration photographs were measured for all three orientations. The exposure time per sheet was 10 minutes, and the measurement time was 30 hours. Based on the obtained data, structural analysis was performed using SHELXL.

中性子構造解析により得られた結晶構造パラメーターは、空間群Cc.格子定数a[Å]=10.306、b[Å]=11.273、c[Å]=17.799、β[dcg.]=92.34、V[Å3]=2066.16、Z=4であった。その後DAST結晶中の水素原子位置を規則構造として特定し、各原子の熱振動を異方性温度因子として求めた。   The crystal structure parameters obtained by neutron structural analysis are the space group Cc. Lattice constants a [Å] = 10.306, b [Å] = 111.273, c [Å] = 17.799, β [dcg.] = 92.34, V [Å3] = 2066.16, and Z = 4. Thereafter, the hydrogen atom position in the DAST crystal was specified as a regular structure, and the thermal vibration of each atom was determined as an anisotropic temperature factor.

THz出力は焦電素子(DTGS(deuterium triglycine sulfate))により検出を行った。   The THz output was detected by a pyroelectric element (DTGS (deuterium triglycine sulfate)).

DAST単結晶のLotN-10及びLotN-11について、レーザー照射前の各メチル基水素原子における温度因子の平均値を求めた。その結果は表2に示す通りであった。   For the DAST single crystal LotN-10 and LotN-11, the average value of the temperature factor in each methyl group hydrogen atom before laser irradiation was determined. The results were as shown in Table 2.

次に、N−10、N−11に対して、DAST単結晶の透過性が良好な部位に、波長λ=1475nm、λ=1493nm、パルス幅15ns/pulse、繰り返し周波数50Hz、初回のビームパワー密度を480MW/cmに設定したレーザー光を照射した。 Next, the wavelength λ 1 = 1475 nm, λ 2 = 1493 nm, the pulse width 15 ns / pulse, the repetition frequency 50 Hz, and the initial beam at the site where the transmission of the DAST single crystal is good with respect to N-10 and N-11. Laser light with a power density set to 480 MW / cm 2 was irradiated.

図1に示すようにN−10に対して温度因子の小さかったN−11は、上記のレーザー光の照射によっても、1200秒(20分)間、THz出力の減衰が観察されなかった、その一方、N−10は、241秒から242秒の間に50%THz出力の減衰が観察された。   As shown in FIG. 1, N-11 having a small temperature factor with respect to N-10 was not observed to attenuate THz output for 1200 seconds (20 minutes) even by irradiation with the laser beam. On the other hand, for N-10, attenuation of 50% THz output was observed between 241 seconds and 242 seconds.

DAST単結晶のLotN−10について、レーザー照射前後の各メチル基水素原子における温度因子の平均値を表3に示す。   Table 3 shows the average value of the temperature factor of each methyl group hydrogen atom before and after laser irradiation for the DAST single crystal LotN-10.

表3に示すように、241秒〜242秒の間に、THz出力が50%減衰したN−10のレーザ照射後の温度因子は、照射前に比べて、増加していた。
以上より、各結晶固体におけるレーザー照射耐性と温度因子との間には相関関係があり、レーザー照射による耐性がないDAST結晶では、レーザー照射の前後で温度因子が増加することが観察された。
As shown in Table 3, the temperature factor after laser irradiation of N-10, in which the THz output was attenuated by 50%, was increased between 241 seconds and 242 seconds as compared with before irradiation.
From the above, it was observed that there is a correlation between the laser irradiation resistance and the temperature factor in each crystal solid, and in the DAST crystal that does not have the laser irradiation resistance, the temperature factor increases before and after the laser irradiation.

[実施例2]
実施例1のレーザー照射条件でN−11と同様に1200秒(20分)間、THz出力の減衰が観察されなかったD−neu−2の同一結晶固体について、照射するレーザー光を波長λ=1475nm、λ=1493nm、パルス幅15ns/pulse、繰り返し周波数50Hz、初回のビームパワー密度を1.5GW/cmにパワーアップして再度レーザー照射を行い、その後の温度因子を測定した。
[Example 2]
For the same crystalline solid of D-neu-2, in which the attenuation of THz output was not observed for 1200 seconds (20 minutes) under the laser irradiation conditions of Example 1 for 1200 seconds (20 minutes), the wavelength of the laser light to be irradiated was λ 1 = 1475 nm, λ 2 = 1493 nm, pulse width 15 ns / pulse, repetition frequency 50 Hz, initial beam power density was increased to 1.5 GW / cm 2 , laser irradiation was performed again, and the subsequent temperature factor was measured.

図2に示す通り、D−neu−2結晶は、2回目のレーザー照射であり、かつパワーアップしたレーザー光を照射しているにもかかわらず、1800秒(30分)間、THz出力を維持した。   As shown in FIG. 2, the D-neu-2 crystal maintains the THz output for 1800 seconds (30 minutes) despite the second laser irradiation and irradiation with the power-up laser light. did.

パワーアップしたレーザー照射後の温度因子の測定値を表4に示した。
Table 4 shows the measured values of the temperature factor after irradiation with the laser that was powered up.

レーザー照射後のD−neu−2の温度因子は、照射されたレーザーがパワーアップしているにもかかわらず、N−10の温度因子よりも小さい値であった。   The temperature factor of D-neu-2 after laser irradiation was smaller than the temperature factor of N-10 even though the irradiated laser was powered up.

実施例1,2に基づき、「5分間レーザー照射を行ったときに得られるTHz波出力において、同測定時に観測された最大THz波出力で各出力値を割ることで算出した値が、連続して20秒以上、50%以下に減衰しないこと」をレーザー耐性評価の規定値として、レーザー被照射耐性を評価するとDAST結晶のレーザー被照射耐性は、LotD-neu-2またはN-11では、ビームパワー密度を480MW/cm最大20分確保でき、D−neu−2ではさらにパワー密度1.5GW/cmで30分の耐久性があり、LotN-10に比べて十分耐レーザー性を有するものであると評価することができる。このことは、一般的に結晶品質がよく密な結晶は熱振動に基づく温度因子が、結晶品質が悪い結晶に比べて小さくなるものであり、DASTも同じ傾向であることが理解できた。
すなわち、ビームパワー密度を480MW/cm最大20分確保でき、パワー密度1.5GW/cmで30分の耐久性がある結晶(LotD-neu-2またはN-11)を耐性結晶(標準結晶試料)とし、480MW/cmにおいて規定値を充たすことができなかった結晶を損傷結晶として評価すると、温度因子は、損傷結晶>耐性結晶(標準結晶試料)になっている。
Based on Examples 1 and 2, “In the THz wave output obtained when laser irradiation is performed for 5 minutes, the value calculated by dividing each output value by the maximum THz wave output observed at the time of measurement is continuous. If the laser irradiation resistance is evaluated by setting the laser irradiation resistance as a specified value for laser resistance evaluation of “not decay to 50% or less for 20 seconds or longer”, the laser irradiation resistance of the DAST crystal is the beam for LotD-neu-2 or N-11. A power density of 480 MW / cm 2 can be secured for a maximum of 20 minutes, D-neu-2 has a durability of 30 minutes at a power density of 1.5 GW / cm 2 , and has sufficient laser resistance compared to LotN-10 Can be evaluated. This indicates that, in general, dense crystals with good crystal quality have a smaller temperature factor based on thermal vibration than crystals with poor crystal quality, and DAST has the same tendency.
That is, a crystal (LotD-neu-2 or N-11) having a beam power density of 480 MW / cm 2 for a maximum of 20 minutes and a durability of 30 minutes at a power density of 1.5 GW / cm 2 can be used as a resistant crystal (standard crystal). When the crystal that could not satisfy the specified value at 480 MW / cm 2 was evaluated as a damaged crystal, the temperature factor was damaged crystal> resistant crystal (standard crystal sample).

このことは、DAST結晶の温度因子を回折解析工程により求め、その温度因子に応じて、DAST結晶のレーザー被照射耐性の有無を評価することができるものである。即ち、レーザー被照射耐性を有する耐性結晶を標準結晶試料とし、あらかじめ中性子回折解析工程によりDAST結晶の温度因子を求めておき、今レーザー被照射耐性を有するか否かがわからない対象結晶試料の温度因子を回折解析工程で求め、標準結晶試料の温度因子より大きければ、損傷結晶として評価判断することができるものである。       This means that the temperature factor of the DAST crystal can be obtained by the diffraction analysis process, and the presence or absence of the laser irradiation resistance of the DAST crystal can be evaluated according to the temperature factor. That is, a temperature crystal of a target crystal sample whose resistance to laser irradiation is used is determined as a standard crystal sample, the temperature factor of the DAST crystal is obtained in advance by a neutron diffraction analysis process, and it is not known whether the laser irradiation resistance is present or not. Is obtained in the diffraction analysis step, and if it is larger than the temperature factor of the standard crystal sample, it can be evaluated as a damaged crystal.

特に、結晶構造の回折解析として知られているDAST結晶のX線回折解析に基づく温度因子と中性子回折解析に基づく温度因子との間にも、上記と同様な相関関係があることが測定の結果わかった。即ち、DAST結晶のX線回折解析に基づく温度因子を求めたところ、中性子回折解析工程によるDAST結晶の温度因子と同じことがいえた。       In particular, the measurement results show that there is a correlation similar to the above between the temperature factor based on the X-ray diffraction analysis of the DAST crystal known as the diffraction analysis of the crystal structure and the temperature factor based on the neutron diffraction analysis. all right. That is, when the temperature factor based on the X-ray diffraction analysis of the DAST crystal was determined, it was the same as the temperature factor of the DAST crystal in the neutron diffraction analysis process.

X線回折解析は中性子構造解析と異なり容易に解析することができるので、その温度因子データとレーザー被照射耐性を有する耐性結晶を標準結晶試料とし、あらかじめ中性子回折解析工程によりDAST結晶の温度因子を求めておき、今レーザー被照射耐性を有するか否かがわからない対象結晶試料の温度因子を回折解析工程で求め、標準結晶試料の温度因子より大きければ、損傷結晶として評価判断することができるものである。       X-ray diffraction analysis can be easily analyzed unlike neutron structural analysis. Therefore, the temperature factor data and the resistant crystal with resistance to laser irradiation are used as standard crystal samples, and the temperature factor of the DAST crystal is determined in advance by the neutron diffraction analysis process. The temperature factor of the target crystal sample for which it is not known whether or not it is currently resistant to laser irradiation is obtained in the diffraction analysis process, and if it is greater than the temperature factor of the standard crystal sample, it can be evaluated as a damaged crystal. is there.

温度因子と規定値は、レーザー耐性に関する所望の性能(出力値や照射時間等)に鑑みて、実験的に適宜設定することができる。また、この際、特定のメチル基を選択して規定することや各メチル基の平均値を用いるなども同様に選択して設定することが可能である。上記より、温度因子を測定することで、DASTのレーザー耐性を評価することができることがわかった。   The temperature factor and the specified value can be appropriately set experimentally in view of desired performance (output value, irradiation time, etc.) relating to laser resistance. At this time, it is possible to select and set a specific methyl group in a similar manner by selecting and defining a specific methyl group or using an average value of each methyl group. From the above, it was found that the laser resistance of DAST can be evaluated by measuring the temperature factor.

本発明によれば、有機光学結晶にレーザー光を照射して連続的に使用するために、あらかじめ非破壊で有機光学結晶のレーザー被照射耐性を評価することができ、またその評価方法によって評価されたレーザー被照射耐性を有する有機光学結晶を幅広い分野で利用可能にすることができる。
According to the present invention, since the organic optical crystal is continuously used by irradiating the laser light, it is possible to evaluate the laser irradiation resistance of the organic optical crystal in advance in a non-destructive manner, and the evaluation method is used. In addition, organic optical crystals having resistance to laser irradiation can be used in a wide range of fields.

本発明の結晶の損傷試験結果(ピークパワー密度480MW/cmDamage test result of the crystal of the present invention (peak power density 480 MW / cm 2 ) 本発明の結晶の損傷試験結果(パワー密度1.5GW/cmDamage test result of the crystal of the present invention (power density 1.5 GW / cm 2 )

Claims (8)

有機光学結晶のレーザー被照射耐性の評価方法において、有機光学結晶にレーザーを照射する前に回折解析工程により、有機光学結晶のレーザー被照射耐性の有無を評価することを特徴とする有機光学結晶のレーザー被照射耐性の評価方法。   In the method for evaluating the laser irradiation resistance of an organic optical crystal, the organic optical crystal is characterized by evaluating whether the organic optical crystal has laser irradiation resistance by a diffraction analysis step before irradiating the organic optical crystal with a laser. Evaluation method of laser irradiation resistance. 前記回折解析工程が、レーザー被照射耐性を有する標準結晶試料の回折解析データと比較することにより、結晶のレーザー被照射耐性の有無を評価することを特徴とする請求項1に記載の有機光学結晶のレーザー被照射耐性の評価方法。   2. The organic optical crystal according to claim 1, wherein the diffraction analysis step evaluates the presence or absence of laser irradiation resistance of the crystal by comparing with diffraction analysis data of a standard crystal sample having laser irradiation resistance. Evaluation method of laser irradiation resistance. 前記回折解析工程が、温度因子を測定する工程を含むことを特徴とする請求項1または請求項2に記載の有機光学結晶のレーザー被照射耐性の評価方法。   The said diffraction analysis process includes the process of measuring a temperature factor, The evaluation method of the laser irradiation tolerance of the organic optical crystal of Claim 1 or Claim 2 characterized by the above-mentioned. 前記有機光学結晶が、スチルバゾリウム誘導体からなる結晶であることを特徴とする請求項1〜3のいずれかに記載の有機光学結晶のレーザー被照射耐性の評価方法。   The method for evaluating resistance to laser irradiation of an organic optical crystal according to any one of claims 1 to 3, wherein the organic optical crystal is a crystal made of a stilbazolium derivative. 前記有機光学結晶が、スチルバゾリウムカチオン誘導体であるDAST、DASCまたはMC−PTS結晶のいずれかから選択される少なくとも一つの結晶であることを特徴とする請求項1〜4のいずれかに記載の有機光学結晶のレーザー被照射耐性の評価方法。   The organic optical crystal is at least one crystal selected from any one of DAST, DASC, and MC-PTS crystals that are stilbazolium cation derivatives. Evaluation method of laser irradiation resistance of organic optical crystals. 請求項1〜5のいずれかに記載されたレーザー被照射耐性の評価方法により、レーザー被照射耐性が評価された有機光学結晶。   An organic optical crystal whose laser irradiation resistance is evaluated by the method for evaluating laser irradiation resistance according to claim 1. 請求項6に記載された有機光学結晶を、構成材料として含むことを特徴とする電気光学素子。   An electro-optical element comprising the organic optical crystal according to claim 6 as a constituent material. 前記電気光学素子が、テラヘルツ波発生用、テラヘルツ波検出用、高感度電界センサー用、高速光変調器用、電界プローブ用、電気光学サンプリング用、2次元電界マッピング用あるいは空間電界検出用のいずれかである請求項7に記載の電気光学素子。   The electro-optic element is for terahertz wave generation, terahertz wave detection, high-sensitivity electric field sensor, high-speed optical modulator, electric field probe, electro-optic sampling, two-dimensional electric field mapping, or spatial electric field detection. The electro-optical element according to claim 7.
JP2008031123A 2008-02-12 2008-02-12 Evaluation method of laser irradiation resistance of organic optical crystal and evaluated organic optical crystal Active JP5166905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008031123A JP5166905B2 (en) 2008-02-12 2008-02-12 Evaluation method of laser irradiation resistance of organic optical crystal and evaluated organic optical crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031123A JP5166905B2 (en) 2008-02-12 2008-02-12 Evaluation method of laser irradiation resistance of organic optical crystal and evaluated organic optical crystal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012277340A Division JP2013076709A (en) 2012-12-19 2012-12-19 Method for evaluating laser irradiation resistance of organic optical crystal and evaluated organic optical crystal

Publications (3)

Publication Number Publication Date
JP2009192275A true JP2009192275A (en) 2009-08-27
JP2009192275A5 JP2009192275A5 (en) 2011-03-17
JP5166905B2 JP5166905B2 (en) 2013-03-21

Family

ID=41074435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031123A Active JP5166905B2 (en) 2008-02-12 2008-02-12 Evaluation method of laser irradiation resistance of organic optical crystal and evaluated organic optical crystal

Country Status (1)

Country Link
JP (1) JP5166905B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185081A (en) * 2011-03-07 2012-09-27 Josho Gakuen Nonlinear absorption measurement method of optical material
JP2017015703A (en) * 2015-06-29 2017-01-19 国立大学法人大阪大学 Electro-optical probe, electromagnetic wave measurement apparatus, and electromagnetic wave measurement method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020476A (en) * 2002-06-19 2004-01-22 Rigaku Corp Ion exchange membrane evaluating method, organic material evaluating method, and x-ray measurement device
JP2004107104A (en) * 2002-09-13 2004-04-08 Takatomo Sasaki Organic optical single crystal and electric field detecting device using the same
JP2004205531A (en) * 2002-11-05 2004-07-22 Japan Science & Technology Agency Method of manufacturing nonlinear optical crystal
JP2005003489A (en) * 2003-06-11 2005-01-06 Japan Space Forum Method of evaluating crystal quality of polymer
JP2005195353A (en) * 2003-12-26 2005-07-21 Tdk Corp Sample evaluation method, substrate for evaluation, and substrate forming method for evaluation
JP2006277918A (en) * 2005-03-03 2006-10-12 Sharp Corp Optical information recording medium, reproducing method using the same and optical information processing apparatus
JP2007232936A (en) * 2006-02-28 2007-09-13 Osaka Univ Organic optical crystal, differential frequency generating element, terahertz wave generating apparatus, linear defect generation preventing method of organic optical crystal and manufacturing method of organic optical crystal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020476A (en) * 2002-06-19 2004-01-22 Rigaku Corp Ion exchange membrane evaluating method, organic material evaluating method, and x-ray measurement device
JP2004107104A (en) * 2002-09-13 2004-04-08 Takatomo Sasaki Organic optical single crystal and electric field detecting device using the same
JP2004205531A (en) * 2002-11-05 2004-07-22 Japan Science & Technology Agency Method of manufacturing nonlinear optical crystal
JP2005003489A (en) * 2003-06-11 2005-01-06 Japan Space Forum Method of evaluating crystal quality of polymer
JP2005195353A (en) * 2003-12-26 2005-07-21 Tdk Corp Sample evaluation method, substrate for evaluation, and substrate forming method for evaluation
JP2006277918A (en) * 2005-03-03 2006-10-12 Sharp Corp Optical information recording medium, reproducing method using the same and optical information processing apparatus
JP2007232936A (en) * 2006-02-28 2007-09-13 Osaka Univ Organic optical crystal, differential frequency generating element, terahertz wave generating apparatus, linear defect generation preventing method of organic optical crystal and manufacturing method of organic optical crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185081A (en) * 2011-03-07 2012-09-27 Josho Gakuen Nonlinear absorption measurement method of optical material
JP2017015703A (en) * 2015-06-29 2017-01-19 国立大学法人大阪大学 Electro-optical probe, electromagnetic wave measurement apparatus, and electromagnetic wave measurement method
US10761126B2 (en) 2015-06-29 2020-09-01 Osaka University Electro-optic probe, electromagnetic wave measuring apparatus, and electromagnetic wave measuring method

Also Published As

Publication number Publication date
JP5166905B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
Fukasawa Terahertz imaging: Widespread industrial application in non-destructive inspection and chemical analysis
Wang et al. Imaging grain microstructure in a model ceramic energy material with optically generated coherent acoustic phonons
JP2002005828A (en) Apparatus and method for inspection of impurity concentration of semiconductor
Andreev et al. Structural characterization of pure and doped GaSe by nonlinear optical method
JPWO2006085403A1 (en) Real-time terahertz tomography equipment and spectroscopic imaging equipment
Sato-Tomita et al. Development of an X-ray fluorescence holographic measurement system for protein crystals
Vijayan et al. Bulk growth of ninhydrin single crystals by solvent evaporation method and its characterization for SHG and THG applications
Durvasula et al. Nature of the central-peak light scattering in potassium dihydrogen phosphate
Mullai et al. Synthesis, growth, thermal, mechanical and optical studies of piperazinium based cupric sulfate (PCS) single crystals: a third order nonlinear optical material
Stadnytskyi et al. Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer
Dyomin et al. Visualization of volumetric defects and dynamic processes in crystals by digital IR-holography
Donaldson et al. Ultrafast 2D-IR spectroscopy of intensely optically scattering pelleted solid catalysts
JP5166905B2 (en) Evaluation method of laser irradiation resistance of organic optical crystal and evaluated organic optical crystal
Shen et al. In situ observation of azobenzene isomerization along with photo-induced swelling of cross-linked vesicles by laser-trapping Raman spectroscopy
Yadav et al. THz super-resolution imaging in transmission technology by using butterfly and pattern device samples
Krishna et al. Phase matching, X-Ray topography, optical and thermal analysis of L-alanine cadmium chloride monohydrate: a nonlinear optical material
Chen et al. Three-dimensional photothermal microscopy of KDP crystals
JP2013076709A (en) Method for evaluating laser irradiation resistance of organic optical crystal and evaluated organic optical crystal
Albert et al. Synthesis, Structural, Spectroscopic, Fluorescence, and Dielectric Studies of Bis-(4-Aminopyridine)-Zinc (II) Acetate: A Metal–Organic Crystal
JP4558217B2 (en) Method and apparatus for optically measuring properties of metal samples
Chen et al. Terahertz pulse detection techniques and imaging applications
Karmakar et al. Terahertz Image Processing: A Boon to the Imaging Technology
Masters et al. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP
RU2491679C1 (en) Method of measuring local electromagnetic fields on surface of heterostructures
Park et al. Monitoring temporal evolution of the dehydration process of the caffeine hydrate with terahertz spectroscopy

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5166905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250