JP2012185077A - Magnetic sensor adjustment method and magnetic sensor adjustment device - Google Patents

Magnetic sensor adjustment method and magnetic sensor adjustment device Download PDF

Info

Publication number
JP2012185077A
JP2012185077A JP2011049229A JP2011049229A JP2012185077A JP 2012185077 A JP2012185077 A JP 2012185077A JP 2011049229 A JP2011049229 A JP 2011049229A JP 2011049229 A JP2011049229 A JP 2011049229A JP 2012185077 A JP2012185077 A JP 2012185077A
Authority
JP
Japan
Prior art keywords
magnetic sensor
magnetic
output signal
conversion element
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011049229A
Other languages
Japanese (ja)
Other versions
JP5578115B2 (en
Inventor
Yasuhiro Kitaura
靖寛 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011049229A priority Critical patent/JP5578115B2/en
Publication of JP2012185077A publication Critical patent/JP2012185077A/en
Application granted granted Critical
Publication of JP5578115B2 publication Critical patent/JP5578115B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic sensor adjustment method and a magnetic sensor adjustment device reducing complicated magnetic sensor adjustment processes.SOLUTION: The magnetic sensor adjustment method is for adjusting output characteristics of a magnetic sensor (10) comprising a magnetoelectric transducer (20), a magnet (30), and a signal processing unit (43) that binarizes an output signal of the magnetoelectric transducer (20) based on a threshold voltage. There are measured a voltage value Va of a first output signal of the magnetoelectric transducer (20) when a distance between a magnetic material (70) and the magnetic sensor (10) is at a first distance, and a voltage value Vb of a second output signal of the magnetoelectric transducer (20) when the distance between the magnetic material (70) and the magnetic sensor (10) is at a second distance. A voltage level of the output signal of the magnetoelectric transducer (20) is adjusted such that, when factors related to the output characteristics of the magnetoelectric transducer (20) are represented as a and b, and the threshold voltage as Vth, Vth=a×ln(Vb-Va)+b+Va is satisfied.

Description

本発明は、磁電変換素子、該磁電変換素子の周囲に磁界を形成する磁石、及び、磁電変換素子の出力信号を閾値電圧に基づいて二値化する信号処理部を有し、回転体の回転状態を検出する磁気センサの出力特性を調整する磁気センサ調整方法、及び、磁気センサ調整装置に関するものである。   The present invention includes a magnetoelectric conversion element, a magnet that forms a magnetic field around the magnetoelectric conversion element, and a signal processing unit that binarizes an output signal of the magnetoelectric conversion element based on a threshold voltage, and rotates the rotating body. The present invention relates to a magnetic sensor adjustment method for adjusting output characteristics of a magnetic sensor for detecting a state, and a magnetic sensor adjustment device.

従来、例えば特許文献1に示されるように、マグネットと被検知体ユニットとの間に配置された磁界検出部と、該磁界検出部が出力する検出波形を閾値に基づいて二値化する波形処理部と、閾値を調整して設定する閾値調整・設定部と、を有する磁気センサの調整方法が提案されている。被検知体ユニットには、移動経路(回転方向)に沿って、磁気的に非等価な第一被検知部と第二被検知部とが交互に配置されており、第一被検知部(第二被検知部)と磁界検出部とが検知ギャップ長だけ離れている。この磁気センサの調整方法では、上記した検知ギャップ長を複数の設定値間で変更しつつ、それら検知ギャップ長の設定値毎に磁界検出部の検出波形を取得する。そして、取得した複数の検出波形を同相にて重ね合わせたときの波形間の交点が示す交点レベル値を算出し、算出した交点レベル値と一致するように閾値を調整する。   Conventionally, as shown, for example, in Patent Document 1, a magnetic field detection unit disposed between a magnet and a detection target unit, and waveform processing for binarizing a detection waveform output from the magnetic field detection unit based on a threshold value There has been proposed a method for adjusting a magnetic sensor, which includes a control unit and a threshold value adjustment / setting unit that adjusts and sets a threshold value. In the detected body unit, magnetically non-equivalent first detected parts and second detected parts are alternately arranged along the movement path (rotation direction). The two detection parts) and the magnetic field detection part are separated by a detection gap length. In this magnetic sensor adjustment method, the detection gap length is changed between a plurality of set values, and the detection waveform of the magnetic field detection unit is acquired for each set value of the detection gap lengths. Then, the intersection level value indicated by the intersection between the waveforms when the plurality of acquired detection waveforms are superimposed in the same phase is calculated, and the threshold value is adjusted so as to coincide with the calculated intersection level value.

検知ギャップ長が当初の設定値からずれた場合、得られる検出波形の振幅が変化し、二値化が変動することとなる。しかしながら、特許文献1の発明者によれば、検知ギャップ長の影響によって変化した波形を同相で重ね合わせると、検知ギャップ長とは無関係に、各検出波形が一点で交わることが判明した。この交点の電圧レベルは、検知ギャップ長に依存しない値である。したがって、上記したように、交点レベル値と一致するように閾値を調整することで、検知ギャップ長に依らずに二値化することができる。   When the detection gap length deviates from the initial set value, the amplitude of the obtained detection waveform changes and binarization changes. However, according to the inventor of Patent Document 1, it has been found that if the waveforms changed by the influence of the detection gap length are overlapped in phase, the detection waveforms intersect at one point regardless of the detection gap length. The voltage level at this intersection is a value that does not depend on the detection gap length. Therefore, as described above, binarization can be performed regardless of the detection gap length by adjusting the threshold value so as to coincide with the intersection level value.

特開2004−301645号公報JP 2004-301645 A

ところで、特許文献1に示される磁気センサの調整方法では、検知ギャップ長を複数の設定値間で変更するために、検知ギャップ長が一律となった被検知用の被検知体ユニットに代えて、検知ギャップ長の互いに異なる区間が混在した調整用の可変ギャップ被検知体ユニットを磁気センサに組み付けている。可変ギャップ被検知体ユニットは回転体なので、可変ギャップ被検知体ユニットと被調整対象となる磁気センサとを対向させるには、可変ギャップ被検知体ユニットの周方向に磁気センサを配置しなければならない。一個の磁気センサを調整対象とする場合、上記方法でも、磁気センサの調整が煩雑と成る可能性は少ない。しかしながら、例えば、千個の磁気センサを調整対象とする場合、それら磁気センサを周方向に順次並べなくてはならず、調整が煩雑となる虞がある。   By the way, in the magnetic sensor adjustment method disclosed in Patent Document 1, in order to change the detection gap length between a plurality of set values, instead of the detection target unit for detection in which the detection gap length is uniform, A variable gap detected body unit for adjustment in which sections having different detection gap lengths are mixed is assembled to a magnetic sensor. Since the variable gap detected body unit is a rotating body, in order to make the variable gap detected body unit and the magnetic sensor to be adjusted face each other, the magnetic sensor must be arranged in the circumferential direction of the variable gap detected body unit. . When one magnetic sensor is an adjustment target, there is little possibility that the adjustment of the magnetic sensor is complicated even with the above method. However, for example, when 1,000 magnetic sensors are to be adjusted, the magnetic sensors must be sequentially arranged in the circumferential direction, and adjustment may be complicated.

そこで、本発明は上記問題点に鑑み、磁気センサの調整が煩雑となることが抑制された磁気センサ調整方法、及び、磁気センサ調整装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a magnetic sensor adjustment method and a magnetic sensor adjustment device in which adjustment of the magnetic sensor is suppressed from being complicated.

上記した目的を達成するために、請求項1に記載の発明は、磁電変換素子(20)、該磁電変換素子(20)の周囲に磁界を形成する磁石(30)、及び、磁電変換素子(20)の出力信号を閾値電圧に基づいて二値化する信号処理部(43)を有し、回転体の回転状態を検出する磁気センサ(10)の出力特性を調整する磁気センサ調整方法であって、磁石(30)が形成する磁界を変動するための磁性体(70)と磁気センサ(10)とが、第1距離だけ離れているときに出力される磁電変換素子(20)の第1出力信号の電圧値Va、及び、磁性体(70)と磁気センサ(10)が、第1距離とは異なる第2距離だけ離れているときに出力される磁電変換素子(20)の第2出力信号の電圧値Vbを計測する計測工程と、該計測工程後、磁電変換素子(20)の出力特性に関わる係数をa,b、閾値電圧をVthとすると、下記式

Figure 2012185077
が成立するように、磁電変換素子(20)の出力信号の電圧レベルを調整する調整工程と、を有することを特徴とする。 In order to achieve the above object, the invention described in claim 1 includes a magnetoelectric conversion element (20), a magnet (30) that forms a magnetic field around the magnetoelectric conversion element (20), and a magnetoelectric conversion element ( The magnetic sensor adjustment method includes a signal processing unit (43) that binarizes the output signal of 20) based on a threshold voltage, and adjusts the output characteristics of the magnetic sensor (10) that detects the rotation state of the rotating body. The magnetic body (70) for changing the magnetic field formed by the magnet (30) and the magnetic sensor (10) are output by the first of the magnetoelectric transducer (20) output when the magnetic sensor (10) is separated by the first distance. The voltage value Va of the output signal and the second output of the magnetoelectric transducer (20) output when the magnetic body (70) and the magnetic sensor (10) are separated by a second distance different from the first distance. A measurement process for measuring the voltage value Vb of the signal, and after the measurement process The coefficients relating to the output characteristics of the magnetoelectric converting element (20) a, b, when the threshold voltage is Vth, the following formula
Figure 2012185077
And an adjustment step of adjusting the voltage level of the output signal of the magnetoelectric transducer (20) so as to hold.

本発明者が検討したところ、以下の点が判明した。回転体と磁電変換素子(20)との距離(検知ギャップ長)を複数の設定値間で変更し、これら検知ギャップ長の設定値毎に磁電変換素子(20)の出力信号(波形信号)を取得する。そして、取得した複数の波形信号を同相にて重ね合わせたときの信号間の交点の電圧値V0(検知ギャップ長に依存しない電圧値)を算出する。これを、複数の磁気センサ(10)で算出し、各磁気センサ(10)の出力感度(Vb−Va)との相関を示したデータ点を作成した。そして、そのデータ点を結ぶ近似式を作成したところ、V0=α×ln(Vb−Va)+β(α、βは実数)が成立することが判明した。これによれば、請求項1に記載のように、磁電変換素子(20)の波形信号ではなく、電圧値Va,Vbを計測した後、数式1が成立するように磁電変換素子(20)の出力信号の電圧レベルを調整することで、閾値電圧Vthの電圧レベルを、検知ギャップ長に依存しない電圧値に設定することができる。   As a result of investigation by the present inventor, the following points were found. The distance (detection gap length) between the rotating body and the magnetoelectric conversion element (20) is changed between a plurality of set values, and the output signal (waveform signal) of the magnetoelectric conversion element (20) is changed for each set value of the detection gap length. get. Then, a voltage value V0 (voltage value independent of the detection gap length) of the intersection point between the signals when the plurality of acquired waveform signals are superimposed in the same phase is calculated. This was calculated by a plurality of magnetic sensors (10), and data points indicating the correlation with the output sensitivity (Vb−Va) of each magnetic sensor (10) were created. Then, when an approximate expression connecting the data points was created, it was found that V0 = α × ln (Vb−Va) + β (α and β are real numbers). According to this, as described in claim 1, after measuring the voltage values Va and Vb instead of the waveform signal of the magnetoelectric conversion element (20), the magnetoelectric conversion element (20) By adjusting the voltage level of the output signal, the voltage level of the threshold voltage Vth can be set to a voltage value that does not depend on the detection gap length.

電圧値Va,Vbを取得するには、請求項1に記載のように、磁気センサ(10)と磁性体(70)との相対距離を二度変更するだけでよくなる。これによれば、磁性体(70)の形状として、円形ではなく、被調整対象となる複数の磁気センサ(10)との対向配置が容易となる形状を選択することができる。この結果、磁気センサ(10)の調整が煩雑となることが抑制される。   In order to obtain the voltage values Va and Vb, as described in claim 1, it is only necessary to change the relative distance between the magnetic sensor (10) and the magnetic body (70) twice. According to this, as the shape of the magnetic body (70), it is possible to select a shape that is easy to be opposed to the plurality of magnetic sensors (10) to be adjusted, instead of being circular. As a result, the adjustment of the magnetic sensor (10) is suppressed from becoming complicated.

請求項2に記載のように、磁気センサ(10)と磁性体(70)との対向方向に垂直な方向に、複数の磁気センサ(10)が磁性体(70)の主面と対向するように、列を成して並んでおり、計測工程を行う前に、複数の磁気センサ(10)の内の任意の一つを、磁電変換素子(20)の出力信号の電圧レベルを調整する調整部(80)と電気的に接続する接続工程を有し、該接続工程〜調整工程を全ての磁気センサ(10)で行う構成が好適である。   According to a second aspect of the present invention, the plurality of magnetic sensors (10) are opposed to the main surface of the magnetic body (70) in a direction perpendicular to the facing direction of the magnetic sensor (10) and the magnetic body (70). In addition, before performing the measurement process, any one of the plurality of magnetic sensors (10) is adjusted to adjust the voltage level of the output signal of the magnetoelectric transducer (20). It is preferable to have a connection step of electrically connecting the part (80) and performing the connection step to the adjustment step by all the magnetic sensors (10).

このように、被調整対象である複数の磁気センサ(10)が直線状に配置されるので、磁気センサ(10)が弧状に配置される構成と比べて、磁気センサ(10)の調整が煩雑となることが抑制される。また、磁気センサ(10)と調整部(80)との電気的な接続が制御されるので、各磁気センサに1つの調整部が設けられる構成と比べて、磁気センサ(10)を調整する装置(磁気センサ調整装置)の体格の増大が抑制される。   As described above, since the plurality of magnetic sensors (10) to be adjusted are linearly arranged, the adjustment of the magnetic sensor (10) is complicated compared to the configuration in which the magnetic sensors (10) are arranged in an arc. Is suppressed. In addition, since the electrical connection between the magnetic sensor (10) and the adjustment unit (80) is controlled, an apparatus for adjusting the magnetic sensor (10) as compared with a configuration in which one adjustment unit is provided for each magnetic sensor. An increase in the size of the (magnetic sensor adjustment device) is suppressed.

請求項3に記載のように、計測工程を行う前に、調整対象となる、複数の磁気センサ(10)の内から任意に一つの磁気センサ(10)を選択する選択工程と、該選択工程後、選択した磁気センサ(10)と回転状態の回転体とを対向させて、選択した磁気センサ(10)と回転体との相対距離を少なくとも2度変化させることで、各相対距離間での磁電変換素子(20)の出力信号を取得する第1取得工程と、該第1取得工程後、各相対距離間における磁電変換素子(20)の出力信号の位相を合わせて、各出力信号を重ねることで、各出力信号が交わる交点の電圧値V0を算出する第1算出工程と、該第1算出工程後、選択した磁気センサ(10)と磁性体(70)とを対向させて、磁性体(70)と磁気センサ(10)とが第3距離だけ離れているときに出力される磁電変換素子(20)の第3出力信号の電圧値Vc、及び、磁性体(70)と磁気センサ(10)とが第3距離とは異なる第4距離だけ離れているときに出力される磁電変換素子(20)の第4出力信号の電圧値Vdを取得する第2取得工程と、選択工程〜第2取得工程を複数回行うことで、第1算出工程にて算出した複数の交点の電圧値V0と、該交点の電圧値V0に対応する、第2取得工程にて取得した複数の電圧値の差分Vd−Vcとのデータ点を取得するデータ取得工程と、該データ取得工程後、データ点の関係を下記式

Figure 2012185077
で近似することで、係数a,bを算出する第2算出工程と、を有し、第2算出工程後、計測工程及び調整工程を、調整対象となる全ての磁気センサ(10)で行うのが良い。 A selection step of arbitrarily selecting one magnetic sensor (10) from among a plurality of magnetic sensors (10) to be adjusted before performing the measurement step, and the selection step Then, the selected magnetic sensor (10) and the rotating body in a rotating state are opposed to each other, and the relative distance between the selected magnetic sensor (10) and the rotating body is changed at least twice, so that the relative distance between the relative distances The first acquisition step of acquiring the output signal of the magnetoelectric conversion element (20) and the phase of the output signal of the magnetoelectric conversion element (20) between the relative distances after the first acquisition step are overlapped. Thus, the first calculation step for calculating the voltage value V0 at the intersection point where the output signals cross each other, and after the first calculation step, the selected magnetic sensor (10) and the magnetic body (70) are opposed to each other, so that the magnetic body (70) and magnetic sensor (10) are the third distance The voltage value Vc of the third output signal of the magnetoelectric conversion element (20) output when separated, and the magnetic body (70) and the magnetic sensor (10) are separated by a fourth distance different from the third distance. The second calculation step of acquiring the voltage value Vd of the fourth output signal of the magnetoelectric conversion element (20) that is output at the time and the selection step to the second acquisition step are performed a plurality of times, so that the first calculation step A data acquisition step of acquiring a data point between the voltage value V0 of the plurality of intersections calculated in the above and the difference Vd−Vc of the plurality of voltage values acquired in the second acquisition step corresponding to the voltage value V0 of the intersection; After the data acquisition process, the relationship between the data points is
Figure 2012185077
The second calculation step for calculating the coefficients a and b is performed by approximation, and after the second calculation step, the measurement step and the adjustment step are performed by all the magnetic sensors (10) to be adjusted. Is good.

これによれば、被調整対象である複数の磁気センサ(10)の調整(計測工程及び調整工程)を行う前に、係数a,bが算出される。   According to this, the coefficients a and b are calculated before the adjustment (measurement step and adjustment step) of the plurality of magnetic sensors (10) to be adjusted.

なお、詳しくは実施形態で説明するが、温度特性の補正を行うには、請求項4に記載のように、第1温度で選択工程〜第2算出工程を行うことで第1温度での係数a,bを算出し、第1温度とは異なる第2温度で選択工程〜第2算出工程を行うことで第2温度での係数a,bを算出する。そして、請求項5に記載のように、第1温度で計測工程及び調整工程を行った後、第2温度で計測工程及び調整工程を行う。これによれば、第1温度での計測工程及び調整工程にて、オフセットの補正(磁電変換素子(20)の出力信号の電圧レベルの調整)が為され、第2温度での計測工程及び調整工程にて、温度特性の補正が為される。   Although details will be described in the embodiment, in order to correct the temperature characteristic, the coefficient at the first temperature is performed by performing the selection step to the second calculation step at the first temperature as described in claim 4. a and b are calculated, and the coefficients a and b at the second temperature are calculated by performing the selection step to the second calculation step at a second temperature different from the first temperature. And as described in Claim 5, after performing a measurement process and an adjustment process at 1st temperature, a measurement process and an adjustment process are performed at 2nd temperature. According to this, in the measurement process and the adjustment process at the first temperature, offset correction (adjustment of the voltage level of the output signal of the magnetoelectric transducer (20)) is performed, and the measurement process and the adjustment at the second temperature. In the process, the temperature characteristic is corrected.

請求項6,7に記載の発明の作用効果は、請求項1,2に記載の発明の作用効果と同等なので、その記載を省略する。   Since the operational effects of the inventions according to claims 6 and 7 are the same as the operational effects of the inventions according to claims 1 and 2, the description thereof is omitted.

なお、請求項7に記載の制御部(90)としては、請求項8に記載のように、制御部(90)は、磁気センサ(10)と調整部(80)との間に配置された選択スイッチ(91)と、該選択スイッチ(91)の開閉を制御する開閉制御部(92)と、を有する構成を採用することができる。   In addition, as a control part (90) of Claim 7, as described in Claim 8, the control part (90) was arrange | positioned between the magnetic sensor (10) and the adjustment part (80). A configuration having a selection switch (91) and an opening / closing control unit (92) for controlling opening / closing of the selection switch (91) may be employed.

第1実施形態に係る磁気センサ調整装置の概略構成を示す上面図である。It is a top view which shows schematic structure of the magnetic sensor adjustment apparatus which concerns on 1st Embodiment. 磁気センサの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of a magnetic sensor. 図1に示す磁気センサ調整装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the magnetic sensor adjustment apparatus shown in FIG. 磁電変換素子の波形信号を示すグラフであり、(a)は室温、(b)は高温を示している。It is a graph which shows the waveform signal of a magnetoelectric conversion element, (a) has shown room temperature, (b) has shown high temperature. 交点の電圧値V0と電圧値の差分Vd−Vcとの関係を示すグラフであり、(a)は室温、(b)は高温を示している。It is a graph which shows the relationship between the voltage value V0 of an intersection, and the difference Vd-Vc of a voltage value, (a) has shown room temperature, (b) has shown high temperature. 磁気センサの変形例を示すブロック図である。It is a block diagram which shows the modification of a magnetic sensor.

以下、本発明の実施の形態を図に基づいて説明する。
(第1実施形態)
図1は、第1実施形態に係る磁気センサ調整装置の概略構成を示す上面図である。図2は、磁気センサの概略構成を示す断面図である。図3は、図1に示す磁気センサ調整装置の概略構成を示すブロック図である。図4は、磁電変換素子の波形信号を示すグラフであり、(a)は室温、(b)は高温を示している。図5は、交点の電圧値V0と電圧値の差分Vd−Vcとの関係を示すグラフであり、(a)は室温、(b)は高温を示している。なお、図4及び図5それぞれの縦軸と横軸の単位は任意単位である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a top view illustrating a schematic configuration of the magnetic sensor adjustment device according to the first embodiment. FIG. 2 is a cross-sectional view showing a schematic configuration of the magnetic sensor. FIG. 3 is a block diagram showing a schematic configuration of the magnetic sensor adjustment device shown in FIG. FIG. 4 is a graph showing the waveform signal of the magnetoelectric transducer, where (a) shows room temperature and (b) shows high temperature. FIG. 5 is a graph showing the relationship between the voltage value V0 at the intersection and the voltage value difference Vd−Vc, where (a) shows room temperature and (b) shows high temperature. The unit of the vertical axis and the horizontal axis in FIGS. 4 and 5 is an arbitrary unit.

図1に示すように、磁気センサ調整装置100は、要部として、磁気センサ10の磁石30が形成する磁界を変動するための磁性体70と、磁気センサ10及び磁性体70の少なくとも一方を移動させる移動部(図示略)と、磁気センサ10の出力特性を調整する調整部80と、を有する。本実施形態に係る磁気センサ調整装置100は、上記構成要素の他に、磁気センサ10と調整部80との電気的な接続を制御する制御部90を有する。   As shown in FIG. 1, the magnetic sensor adjustment device 100 moves, as a main part, a magnetic body 70 for changing the magnetic field formed by the magnet 30 of the magnetic sensor 10, and at least one of the magnetic sensor 10 and the magnetic body 70. A moving unit (not shown) for adjusting, and an adjusting unit 80 for adjusting the output characteristics of the magnetic sensor 10. The magnetic sensor adjustment device 100 according to the present embodiment includes a control unit 90 that controls electrical connection between the magnetic sensor 10 and the adjustment unit 80 in addition to the above components.

以下、磁気センサ調整装置100を説明する前に、被調整対象である磁気センサ10を図2及び図3に基づいて説明する。磁気センサ10は、表面に複数の歯が並んだ回転体(図示略)の回転状態を検出するものである。磁気センサ10は、磁気の変化を電気信号に変換する磁電変換素子20と、該磁電変換素子20の周囲に磁界を形成する磁石30と、磁電変換素子20の出力信号を処理する処理部40と、処理部40と外部とで電気信号を送受信するためのターミナル50と、ターミナル50がインサート成形され、磁電変換素子20及び処理部40が搭載された台座60と、を有する。本実施形態では、磁電変換素子20及び処理部40が、1枚のチップ11に搭載され、チップ11が台座60に搭載されている。   Hereinafter, before describing the magnetic sensor adjusting device 100, the magnetic sensor 10 to be adjusted will be described with reference to FIGS. The magnetic sensor 10 detects a rotation state of a rotating body (not shown) having a plurality of teeth arranged on the surface. The magnetic sensor 10 includes a magnetoelectric conversion element 20 that converts a magnetic change into an electric signal, a magnet 30 that forms a magnetic field around the magnetoelectric conversion element 20, and a processing unit 40 that processes an output signal of the magnetoelectric conversion element 20. The terminal 50 for transmitting and receiving electrical signals between the processing unit 40 and the outside, and the pedestal 60 on which the terminal 50 is insert-molded and the magnetoelectric transducer 20 and the processing unit 40 are mounted. In the present embodiment, the magnetoelectric conversion element 20 and the processing unit 40 are mounted on one chip 11, and the chip 11 is mounted on the pedestal 60.

磁電変換素子20は、磁気の印加方向に応じて抵抗が変化する磁気抵抗効果素子21を複数有する。図2に示すように、2つの磁気抵抗効果素子21がハの字に配置され、図3に示すように、これら2つの磁気抵抗効果素子21によってハーフブリッジ回路が構成されている。本実施形態では、上記したハーフブリッジ回路が2つ構成されており、これら2つのハーフブリッジ回路によってフルブリッジ回路が構成されている。これら2つのハーフブリッジ回路それぞれの中点が、処理部40のアンプ41に接続されている。   The magnetoelectric conversion element 20 has a plurality of magnetoresistive effect elements 21 whose resistance changes according to the direction of application of magnetism. As shown in FIG. 2, two magnetoresistive elements 21 are arranged in a letter C, and as shown in FIG. 3, the two magnetoresistive elements 21 constitute a half bridge circuit. In the present embodiment, two half-bridge circuits described above are configured, and a full-bridge circuit is configured by these two half-bridge circuits. The midpoint of each of these two half bridge circuits is connected to the amplifier 41 of the processing unit 40.

磁石30は、円筒磁石であり、磁性体70側の端部がN極、その反対側がS極に着磁されている。図2に示すように、磁石30の中空内に、磁電変換素子20及び処理部40が配置されており、磁電変換素子20が磁石30のN極によって囲まれている。一般に、円筒磁石の中空と外とでは、中空の方が磁界の安定度が高い。そのため、上記構成の場合、磁電変換素子20に印加される磁束が、急激に変動することが抑制される。   The magnet 30 is a cylindrical magnet, and the end on the magnetic body 70 side is magnetized to the N pole, and the opposite side is magnetized to the S pole. As shown in FIG. 2, the magnetoelectric conversion element 20 and the processing unit 40 are disposed in the hollow of the magnet 30, and the magnetoelectric conversion element 20 is surrounded by the N pole of the magnet 30. In general, the hollow magnet has a higher magnetic field stability than the hollow one. Therefore, in the case of the said structure, it is suppressed that the magnetic flux applied to the magnetoelectric conversion element 20 fluctuates rapidly.

処理部40は、図3に示すように、アンプ41、補正部42、コンパレータ43、及び、出力バッファ44を有する。アンプ41の入力端子に、2つのハーフブリッジ回路それぞれの中点が接続され、アンプ41の出力端子がコンパレータ43の入力端子に接続されている。そして、アンプ41とコンパレータ43とを接続する配線に、補正部42の入力端子が接続され、コンパレータ43の出力端子が出力バッファ44の入力端子に接続されている。最後に、出力バッファ44の出力端子が、チップ11の端子に接続され、外部(ターミナル50)に出力される構成となっている。   As illustrated in FIG. 3, the processing unit 40 includes an amplifier 41, a correction unit 42, a comparator 43, and an output buffer 44. The midpoints of the two half bridge circuits are connected to the input terminal of the amplifier 41, and the output terminal of the amplifier 41 is connected to the input terminal of the comparator 43. The input terminal of the correction unit 42 is connected to the wiring connecting the amplifier 41 and the comparator 43, and the output terminal of the comparator 43 is connected to the input terminal of the output buffer 44. Finally, the output terminal of the output buffer 44 is connected to the terminal of the chip 11 and is output to the outside (terminal 50).

上記接続構成により、アンプ41にて、磁電変換素子20の出力信号が差動増幅され、補正部42にて、差動増幅された出力信号のオフセット及び温度特性が補正される。そして、コンパレータ43にて、補正された出力信号が閾値電圧Vthに基づいて二値化処理され、二値化処理された出力信号が、出力バッファ44を介してターミナル50に出力される。コンパレータ43が、特許請求の範囲に記載の信号処理部に相当する。   With the above connection configuration, the amplifier 41 differentially amplifies the output signal of the magnetoelectric conversion element 20, and the correction unit 42 corrects the offset and temperature characteristics of the differentially amplified output signal. The corrected output signal is binarized by the comparator 43 based on the threshold voltage Vth, and the binarized output signal is output to the terminal 50 via the output buffer 44. The comparator 43 corresponds to the signal processing unit described in the claims.

なお、二値化処理とは、閾値電圧Vthよりも電圧値が大きいか小さいかによって、信号を2つの電圧レベル(LoレベルとHiレベル)に分けることである。そのため、磁気センサ10の出力特性とは、電圧レベルのことではなく、2つの電圧レベルの切り替わるタイミングを示している。すなわち、LoレベルからHiレベルへの信号の立ち上がりエッジ、及び、HiレベルからLoレベルへの信号の立ち下りエッジを示している。   The binarization processing is to divide a signal into two voltage levels (Lo level and Hi level) depending on whether the voltage value is larger or smaller than the threshold voltage Vth. Therefore, the output characteristics of the magnetic sensor 10 indicate not the voltage level but the timing at which the two voltage levels are switched. That is, the rising edge of the signal from the Lo level to the Hi level and the falling edge of the signal from the Hi level to the Lo level are shown.

図3に示すように、補正部42は、オフセット補正回路42aと、温度補正回路42bと、を有する。オフセット補正回路42aは、オフセット電圧Voffをアンプ41の出力信号に畳重し、温度補正回路42bは、温特電圧Vtをアンプ41の出力信号に畳重する。そうすることで、オフセットと温度特性とを補正する。なお、処理部40の構成要素41〜44の詳細な構成は、例えば特開2004−301645号公報に示されるように周知なので、その説明を本実施形態では割愛する。   As shown in FIG. 3, the correction unit 42 includes an offset correction circuit 42a and a temperature correction circuit 42b. The offset correction circuit 42 a convolves the offset voltage Voff with the output signal of the amplifier 41, and the temperature correction circuit 42 b convolves the temperature special voltage Vt with the output signal of the amplifier 41. By doing so, offset and temperature characteristics are corrected. In addition, since the detailed structure of the components 41-44 of the process part 40 is known as shown, for example in Unexamined-Japanese-Patent No. 2004-301645, the description is omitted in this embodiment.

ターミナル50は、グランドと電気的に接続される接地ターミナル51と、処理部40を介した磁電変換素子20の出力信号を外部に出力する出力ターミナル52と、電源と電気的に接続される電源ターミナル53と、を有する。   The terminal 50 includes a ground terminal 51 that is electrically connected to the ground, an output terminal 52 that outputs the output signal of the magnetoelectric transducer 20 via the processing unit 40 to the outside, and a power terminal that is electrically connected to the power source. 53.

台座60は、直方形状を成し、磁石30のN極側の端部にチップ11(磁電変換素子20及び処理部40)が搭載され、S極側の端部にターミナル50がインサート成形されている。図示しないが、チップ11の搭載面には配線パターンが形成されており、チップ11と配線パターン、及び、配線パターンとターミナル50それぞれは接続部材(図示略)を介して電気的に接続されている。台座60へのチップ11の搭載、及び、チップ11とターミナル50との電気的な接続終了後、台座60は磁石30の中空内に挿入され、台座60(磁電変換素子20)と磁石30との位置が決定される。   The pedestal 60 has a rectangular shape, the chip 11 (the magnetoelectric conversion element 20 and the processing unit 40) is mounted on the end of the magnet 30 on the N pole side, and the terminal 50 is insert-molded on the end of the S pole side. Yes. Although not shown, a wiring pattern is formed on the mounting surface of the chip 11, and the chip 11 and the wiring pattern, and the wiring pattern and the terminal 50 are electrically connected via a connecting member (not shown). . After the chip 11 is mounted on the pedestal 60 and the electrical connection between the chip 11 and the terminal 50 is completed, the pedestal 60 is inserted into the hollow of the magnet 30, and the pedestal 60 (magnetoelectric conversion element 20) and the magnet 30 are connected. The position is determined.

次に、磁気センサ調整装置100を説明する。上記したように、磁気センサ調整装置100は、磁性体70、移動部(図示略)、調整部80、及び、制御部90を有する。図1に示すように、磁性体70は、直方形状を成し、複数の磁気センサ10が磁性体70の主面と対向するように、磁気センサ10と磁性体70との対向方向に垂直な方向に、列を成して並んでいる。本実施形態では、移動部によって、磁性体70が対向方向に移動可能となっている。   Next, the magnetic sensor adjustment device 100 will be described. As described above, the magnetic sensor adjustment device 100 includes the magnetic body 70, the moving unit (not shown), the adjustment unit 80, and the control unit 90. As shown in FIG. 1, the magnetic body 70 has a rectangular shape and is perpendicular to the facing direction of the magnetic sensor 10 and the magnetic body 70 so that the plurality of magnetic sensors 10 face the main surface of the magnetic body 70. They are lined up in a direction. In the present embodiment, the magnetic body 70 is movable in the facing direction by the moving unit.

調整部80は、磁電変換素子20の出力信号を計測する計測部(図示略)と、後述する係数a,b、及び、閾値電圧Vthを記憶する記憶部(図示略)と、該記憶部から係数a,bを読み出して後述する数式4を演算し、その演算結果と閾値電圧Vthとの差を演算する演算部(図示略)と、該演算部の演算結果に基づいて、磁気センサ10のオフセット電圧Voff及び温特電圧Vtを書き換える書換部(図示略)と、を有する。   The adjustment unit 80 includes a measurement unit (not shown) that measures the output signal of the magnetoelectric conversion element 20, a storage unit (not shown) that stores coefficients a and b, which will be described later, and a threshold voltage Vth, and the storage unit. The coefficients a and b are read out, the following equation 4 is calculated, a calculation unit (not shown) for calculating the difference between the calculation result and the threshold voltage Vth, and based on the calculation result of the calculation unit, the magnetic sensor 10 A rewriting unit (not shown) for rewriting the offset voltage Voff and the temperature special voltage Vt.

制御部90は、磁気センサ10と調整部80との間に配置された選択スイッチ91と、該選択スイッチ91の開閉を制御する開閉制御部92と、を有する。開閉制御部92は、複数の選択スイッチ91の内、1つの選択スイッチ91を順次閉状態とすることで、1つの磁気センサ10と調整部80とを順次電気的に接続する。   The control unit 90 includes a selection switch 91 disposed between the magnetic sensor 10 and the adjustment unit 80, and an opening / closing control unit 92 that controls opening / closing of the selection switch 91. The opening / closing control unit 92 sequentially electrically connects one magnetic sensor 10 and the adjustment unit 80 by sequentially closing one selection switch 91 among the plurality of selection switches 91.

次に、本実施形態に係る磁気センサ調整方法を説明する。先ず、図1に示すように、被調整対象となる複数の磁気センサ10を、選択スイッチ91を介して調整部80と電気的に接続し、磁性体70と対向させる。そして、開閉制御部92によって、複数の磁気センサ10の内の任意の一つを調整部80と電気的に接続する。以上が接続工程である。   Next, a magnetic sensor adjustment method according to this embodiment will be described. First, as shown in FIG. 1, the plurality of magnetic sensors 10 to be adjusted are electrically connected to the adjustment unit 80 via the selection switch 91 and are opposed to the magnetic body 70. Then, any one of the plurality of magnetic sensors 10 is electrically connected to the adjustment unit 80 by the opening / closing control unit 92. The above is the connection process.

接続工程後、磁気センサ10と磁性体70との相対距離を、磁電変換素子20に印加される磁界が磁性体70によって変動する程度の距離(第1距離)とする。この第1距離における磁電変換素子20の出力信号(第1出力信号)の電圧値Vaを調整部80の計測部にて計測する。次いで、移動部によって磁性体70を磁気センサ10に近づけることで、磁気センサ10と磁性体70との相対距離を、第1距離よりも短い第2距離(図1で磁性体70を破線で示す位置)とする。この第2距離における磁電変換素子20の出力信号(第2出力信号)の電圧値Vbを計測部にて計測する。以上が、計測工程である。   After the connection process, the relative distance between the magnetic sensor 10 and the magnetic body 70 is set to a distance (first distance) to which the magnetic field applied to the magnetoelectric conversion element 20 varies depending on the magnetic body 70. The voltage value Va of the output signal (first output signal) of the magnetoelectric conversion element 20 at the first distance is measured by the measuring unit of the adjusting unit 80. Next, by moving the magnetic body 70 closer to the magnetic sensor 10 by the moving unit, the relative distance between the magnetic sensor 10 and the magnetic body 70 is a second distance shorter than the first distance (the magnetic body 70 is indicated by a broken line in FIG. 1). Position). The voltage value Vb of the output signal (second output signal) of the magnetoelectric transducer 20 at the second distance is measured by the measuring unit. The above is the measurement process.

該計測工程後、調整部80の演算部は、記憶部から係数a,bを読み出して、下記式を計算する。

Figure 2012185077
After the measurement process, the calculation unit of the adjustment unit 80 reads the coefficients a and b from the storage unit and calculates the following formula.
Figure 2012185077

次いで、演算部は、演算結果と閾値電圧Vthとの差を演算する。その差に基づいて、調整部80の書換部は、オフセット電圧Voff及び温特電圧Vtを書き換えることで、下記式

Figure 2012185077
が成立するように磁電変換素子20(アンプ41)の出力信号の電圧レベルを調整する。以上が、調整工程である。上記した接続工程〜調整工程を、全ての磁気センサ10にて行うことで、全ての磁気センサ10の調整が終了となる。 Next, the calculation unit calculates the difference between the calculation result and the threshold voltage Vth. Based on the difference, the rewrite unit of the adjustment unit 80 rewrites the offset voltage Voff and the temperature special voltage Vt to obtain the following formula:
Figure 2012185077
The voltage level of the output signal of the magnetoelectric conversion element 20 (amplifier 41) is adjusted so that is established. The above is the adjustment process. By performing the connection process to the adjustment process described above for all the magnetic sensors 10, the adjustment of all the magnetic sensors 10 is completed.

なお、本実施形態では、上記した接続工程〜調整工程を、温度の異なる雰囲気下、すなわち、室温と、室温よりも高い高温下で行う。こうすることで、オフセットの補正だけではなく温度特性の補正も行うが、そのことについては後述する。ちなみに、室温が、特許請求の範囲に記載の第1温度に相当し、高温が、特許請求の範囲に記載の第2温度に相当する。   In the present embodiment, the connection process to the adjustment process described above are performed in atmospheres having different temperatures, that is, room temperature and a temperature higher than room temperature. In this way, not only offset correction but also temperature characteristic correction is performed, which will be described later. Incidentally, the room temperature corresponds to the first temperature described in the claims, and the high temperature corresponds to the second temperature described in the claims.

上記した係数a,bは、下記工程を経ることで算出される。計測工程を行う前に、調整対象となる、複数の磁気センサ10の内から任意の一つの磁気センサ10を選択する。以上が、選択工程である。   The above-described coefficients a and b are calculated through the following steps. Before performing the measurement process, one arbitrary magnetic sensor 10 is selected from among the plurality of magnetic sensors 10 to be adjusted. The above is the selection process.

選択工程後、選択した磁気センサ10と回転状態の回転体とを対向させて、選択した磁気センサ10と回転体との相対距離を移動部によって少なくとも2度変化させる。そうすることで、各相対距離間での磁電変換素子20の出力信号(出力波形)を取得する。以上が、第1取得工程である。   After the selection step, the selected magnetic sensor 10 and the rotating rotator are opposed to each other, and the relative distance between the selected magnetic sensor 10 and the rotator is changed at least twice by the moving unit. By doing so, the output signal (output waveform) of the magnetoelectric conversion element 20 between each relative distance is acquired. The above is the first acquisition step.

第1取得工程後、図4に示すように、各相対距離間における磁電変換素子20の出力波形の位相を合わせて、各出力波形を重ねる。そうすることで、各出力波形が交わる交点の電圧値V0を算出する。以上が、第1算出工程である。なお、第1算出工程での電圧値V0の算出は、演算部にて行われる。図4の縦軸は磁電変換素子20の出力波形の電圧、横軸は出力波形の位相(回転体の回転角度)を示している。   After the first acquisition step, as shown in FIG. 4, the output waveforms of the magnetoelectric transducer 20 are matched to each other between the relative distances, and the output waveforms are overlapped. By doing so, the voltage value V0 of the intersection where each output waveform crosses is calculated. The above is the first calculation step. Note that the calculation of the voltage value V0 in the first calculation step is performed by the calculation unit. The vertical axis of FIG. 4 indicates the voltage of the output waveform of the magnetoelectric conversion element 20, and the horizontal axis indicates the phase of the output waveform (rotation angle of the rotating body).

第1算出工程後、選択した磁気センサ10と磁性体70とを対向させて、磁気センサ10と磁性体70との相対距離を第3距離とする。この第3距離における磁電変換素子20の出力信号(第3出力信号)の電圧値Vcを調整部80の計測部で取得する。次いで、移動部によって磁性体70を磁気センサ10に近づけることで、磁気センサ10と磁性体70との相対距離を、第3距離よりも短い第4距離とする。この第4距離における磁電変換素子20の出力信号(第4出力信号)の電圧値Vdを計測部にて取得する。以上が、第2取得工程である。   After the first calculation step, the selected magnetic sensor 10 and the magnetic body 70 are opposed to each other, and the relative distance between the magnetic sensor 10 and the magnetic body 70 is set as the third distance. The voltage value Vc of the output signal (third output signal) of the magnetoelectric transducer 20 at the third distance is acquired by the measuring unit of the adjusting unit 80. Next, the relative distance between the magnetic sensor 10 and the magnetic body 70 is set to a fourth distance shorter than the third distance by bringing the magnetic body 70 closer to the magnetic sensor 10 by the moving unit. The voltage value Vd of the output signal (fourth output signal) of the magnetoelectric transducer 20 at the fourth distance is acquired by the measurement unit. The above is the second acquisition step.

なお、本実施形態では、第3距離は第1距離に等しく、第4距離は第2距離に等しい。そして、第1距離と第2距離との差は、回転体の歯の長さに等しくなっている。   In the present embodiment, the third distance is equal to the first distance, and the fourth distance is equal to the second distance. The difference between the first distance and the second distance is equal to the tooth length of the rotating body.

上記した選択工程〜第2取得工程を複数回(例えば8回)行うことで、第1算出工程にて算出した複数の交点の電圧値V0と、該交点の電圧値V0に対応する、第2取得工程にて取得した複数の電圧値の差分Vd−Vcとのデータ点を取得する。以上が、データ取得工程である。   By performing the selection step to the second acquisition step a plurality of times (for example, 8 times), the voltage values V0 of the plurality of intersections calculated in the first calculation step and the voltage values V0 of the intersections corresponding to the second A data point with a difference Vd−Vc between a plurality of voltage values acquired in the acquisition step is acquired. The above is the data acquisition process.

データ取得工程後、図5に示すように、データ点の関係を下記式

Figure 2012185077
で近似することで、係数a,bを算出する。以上が、第2算出工程である。なお、データ取得工程でのデータ点の取得及び係数a,bの算出は、演算部にて行われ、算出された係数a,bは、記憶部に記憶される。図5の縦軸は交点の電圧値V0、横軸は電圧値の差分Vd−Vcを示している。 After the data acquisition process, as shown in FIG.
Figure 2012185077
To calculate the coefficients a and b. The above is the second calculation step. The acquisition of data points and the calculation of the coefficients a and b in the data acquisition process are performed by the calculation unit, and the calculated coefficients a and b are stored in the storage unit. In FIG. 5, the vertical axis represents the voltage value V0 at the intersection, and the horizontal axis represents the voltage value difference Vd−Vc.

以上の工程を経ることで、被調整対象である複数の磁気センサ10の調整(接続工程〜調整工程)を行う前に、係数a,bが算出される。   Through the above steps, the coefficients a and b are calculated before the adjustment (connection process to adjustment process) of the plurality of magnetic sensors 10 to be adjusted.

なお、本実施形態では、温度特性を補正するために、室温、及び、室温よりも温度の高い高温下それぞれにおいて、第1取得工程〜第2算出工程を行う。こうすることで、室温での係数a1,b1だけではなく、高温での係数a2,b2も算出する。   In the present embodiment, in order to correct the temperature characteristics, the first acquisition process to the second calculation process are performed at room temperature and at a high temperature higher than room temperature. By doing so, not only the coefficients a1 and b1 at room temperature but also the coefficients a2 and b2 at high temperature are calculated.

次に、磁電変換素子20(アンプ41)の出力信号の電圧レベルの調整について詳説する。上記した調整工程では、数式5が成立するように(閾値電圧Vthと数式4で示された電圧値の電圧レベルとが一致するように)磁電変換素子20(アンプ41)の出力信号の電圧レベルを調整する、と記載した。これを実現するためには、オフセット電圧Voffを調整する。また、温度特性を調整するには、温特電圧Vtを調整する。   Next, adjustment of the voltage level of the output signal of the magnetoelectric conversion element 20 (amplifier 41) will be described in detail. In the adjustment step described above, the voltage level of the output signal of the magnetoelectric conversion element 20 (amplifier 41) so that Formula 5 is satisfied (so that the threshold voltage Vth and the voltage level of the voltage value represented by Formula 4 match). Was adjusted. In order to realize this, the offset voltage Voff is adjusted. Further, in order to adjust the temperature characteristic, the temperature special voltage Vt is adjusted.

以下、オフセットの補正と温度特性の補正とを説明する。先ず、被調整対象である磁気センサ10のオフセット電圧Voff、温特電圧Vt、及び、閾値電圧Vthを適当な値に定めておく。そして、室温で電圧値Va1,Vb1を計測し、係数a1,b1に基づいて、数式4を計算する。ここで、適当に調整しておいた閾値電圧Vthと数式4によって算出した室温の電圧値との差分を取る。この差分に基づいて、オフセット電圧Voffが決定され、調整部80の書換部によってオフセット電圧Voffが書き換えられる(調整される)。この結果、室温にて、数式5が成立する。   Hereinafter, offset correction and temperature characteristic correction will be described. First, the offset voltage Voff, temperature characteristic voltage Vt, and threshold voltage Vth of the magnetic sensor 10 to be adjusted are set to appropriate values. And voltage value Va1, Vb1 is measured at room temperature, and Numerical formula 4 is calculated based on coefficient a1, b1. Here, the difference between the appropriately adjusted threshold voltage Vth and the room temperature voltage value calculated by Equation 4 is taken. Based on this difference, the offset voltage Voff is determined, and the offset voltage Voff is rewritten (adjusted) by the rewriting unit of the adjusting unit 80. As a result, Formula 5 is established at room temperature.

オフセット電圧Voffの調整後、高温で電圧値Va2,Vb2を計測し、係数a2,b2に基づいて、数式4を計算する。ここで、オフセット補正した閾値電圧Vthと数式4によって算出した高温の電圧値との差分を取る。この差分に基づいて、温特電圧Vtが決定され、調整部80の書換部によって温特電圧Vtが書き換えられる(調整される)。この結果、温度が変化した場合においても、数式5が成立する。   After adjusting the offset voltage Voff, the voltage values Va2 and Vb2 are measured at a high temperature, and Equation 4 is calculated based on the coefficients a2 and b2. Here, the difference between the offset-corrected threshold voltage Vth and the high-temperature voltage value calculated by Equation 4 is taken. Based on this difference, the temperature special voltage Vt is determined, and the temperature special voltage Vt is rewritten (adjusted) by the rewriting unit of the adjustment unit 80. As a result, Formula 5 holds even when the temperature changes.

次に、本実施形態に係る磁気センサ調整方法、及び、磁気センサ調整装置100の作用効果を説明する。本発明者が検討したところ、以下の点が判明した。回転体と磁電変換素子20との距離(検知ギャップ長)を複数の設定値間で変更し、これら検知ギャップ長の設定値毎に磁電変換素子20の出力信号(波形信号)を取得する。そして、取得した複数の波形信号を同相にて重ね合わせたときの信号間の交点の電圧値V0(検知ギャップ長に依存しない電圧値)を算出する。これを、複数の磁気センサ10で算出し、各磁気センサ10の出力感度(Vb−Va)との相関を示したデータ点を作成した。そして、そのデータ点を結ぶ近似式を作成したところ、V0=α×ln(Vb−Va)+β(α、βは実数)が成立することが判明した。これによれば、磁電変換素子20の波形信号ではなく、電圧値Va,Vbを計測した後、数式5が成立するように磁電変換素子の出力信号の電圧レベルを調整することで、閾値電圧Vthの電圧レベルを、検知ギャップ長に依存しない電圧値に設定することができる。   Next, the effect of the magnetic sensor adjustment method and the magnetic sensor adjustment device 100 according to the present embodiment will be described. As a result of investigation by the present inventor, the following points were found. The distance (detection gap length) between the rotating body and the magnetoelectric conversion element 20 is changed between a plurality of set values, and an output signal (waveform signal) of the magnetoelectric conversion element 20 is acquired for each set value of the detection gap length. Then, a voltage value V0 (voltage value independent of the detection gap length) of the intersection point between the signals when the plurality of acquired waveform signals are superimposed in the same phase is calculated. This was calculated by a plurality of magnetic sensors 10, and data points indicating the correlation with the output sensitivity (Vb-Va) of each magnetic sensor 10 were created. Then, when an approximate expression connecting the data points was created, it was found that V0 = α × ln (Vb−Va) + β (α and β are real numbers). According to this, after measuring the voltage values Va and Vb instead of the waveform signal of the magnetoelectric conversion element 20, the threshold voltage Vth is adjusted by adjusting the voltage level of the output signal of the magnetoelectric conversion element so that Formula 5 is satisfied. Can be set to a voltage value that does not depend on the detection gap length.

電圧値Va,Vbを取得するには、上記したように、磁気センサ10と磁性体70との相対距離を二度変更するだけでよくなる。これによれば、磁性体70の形状として、円形ではなく、被調整対象となる複数の磁気センサ10との対向配置が容易となる形状を選択することができる。この結果、磁気センサ10の調整が煩雑となることが抑制される。   In order to obtain the voltage values Va and Vb, it is only necessary to change the relative distance between the magnetic sensor 10 and the magnetic body 70 twice as described above. According to this, as the shape of the magnetic body 70, not a circle but a shape that facilitates the opposing arrangement with the plurality of magnetic sensors 10 to be adjusted can be selected. As a result, complicated adjustment of the magnetic sensor 10 is suppressed.

本実施形態では、磁性体70は直方形状を成し、磁気センサ10と磁性体70との対向方向に垂直な方向に、複数の磁気センサ10が磁性体70の主面と対向するように、列を成して並んでいる。このように、被調整対象である複数の磁気センサ10が直線状に配置されるので、複数の磁気センサ10が弧状に配置される構成と比べて、磁気センサ10の調整が煩雑となることが抑制される。   In the present embodiment, the magnetic body 70 has a rectangular shape, and the plurality of magnetic sensors 10 face the main surface of the magnetic body 70 in a direction perpendicular to the facing direction of the magnetic sensor 10 and the magnetic body 70. They are lined up in a row. As described above, since the plurality of magnetic sensors 10 to be adjusted are arranged in a straight line, the adjustment of the magnetic sensor 10 may be complicated compared to a configuration in which the plurality of magnetic sensors 10 are arranged in an arc. It is suppressed.

本実施形態では、接続工程にて、複数の磁気センサ10の内の任意の一つを調整部80と電気的に接続した後、計測工程及び調整工程を行う。このように、磁気センサ10と調整部80との電気的な接続が制御されるので、各磁気センサ10に1つの調整部80が設けられる構成と比べて、磁気センサ調整装置100の体格の増大が抑制される。   In the present embodiment, in the connection process, after any one of the plurality of magnetic sensors 10 is electrically connected to the adjustment unit 80, the measurement process and the adjustment process are performed. As described above, since the electrical connection between the magnetic sensor 10 and the adjusting unit 80 is controlled, the physique of the magnetic sensor adjusting device 100 is increased as compared with the configuration in which one adjusting unit 80 is provided in each magnetic sensor 10. Is suppressed.

以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本実施形態では、磁電変換素子20及び処理部40が、1枚のチップ11に搭載された例を示した。しかしながら、図6に示すように、磁電変換素子20及び処理部40それぞれが別のチップ12,13に搭載された構成と採用することもできる。図6は、磁気センサの変形例を示すブロック図である。   In the present embodiment, an example in which the magnetoelectric conversion element 20 and the processing unit 40 are mounted on one chip 11 is shown. However, as shown in FIG. 6, a configuration in which the magnetoelectric conversion element 20 and the processing unit 40 are mounted on different chips 12 and 13 may be employed. FIG. 6 is a block diagram showing a modification of the magnetic sensor.

本実施形態では、室温、及び、高温で各工程を行う例を示した。もちろんであるが、各工程を行う温度としては、上記例に限定されず、例えば、室温、及び、室温よりも低い低温で行っても良い。   In this embodiment, the example which performs each process at room temperature and high temperature was shown. Of course, the temperature at which each step is performed is not limited to the above example, and for example, it may be performed at room temperature or at a temperature lower than room temperature.

本実施形態では、磁性体70が移動部によって移動する例を示した。しかしながら、磁気センサ10と磁性体70との相対距離を変更するためには、上記例に限定されない。例えば、移動部によって磁気センサ10を移動しても良いし、磁性体70と磁気センサ10の両方を移動しても良い。   In this embodiment, the example which the magnetic body 70 moves by a moving part was shown. However, in order to change the relative distance between the magnetic sensor 10 and the magnetic body 70, the present invention is not limited to the above example. For example, the magnetic sensor 10 may be moved by the moving unit, or both the magnetic body 70 and the magnetic sensor 10 may be moved.

10・・・磁気センサ
20・・・磁電変換素子
21・・・磁気抵抗効果素子
30・・・磁石
40・・・調整部
42・・・補正部
43・・・コンパレータ
70・・・磁性体
80・・・調整部
90・・・制御部
100・・・磁気センサ調整装置
DESCRIPTION OF SYMBOLS 10 ... Magnetic sensor 20 ... Magnetoelectric conversion element 21 ... Magnetoresistive effect element 30 ... Magnet 40 ... Adjustment part 42 ... Correction | amendment part 43 ... Comparator 70 ... Magnetic body 80 ... Adjustment unit 90 ... Control unit 100 ... Magnetic sensor adjustment device

Claims (8)

磁電変換素子(20)、該磁電変換素子(20)の周囲に磁界を形成する磁石(30)、及び、前記磁電変換素子(20)の出力信号を閾値電圧に基づいて二値化する信号処理部(43)を有し、回転体の回転状態を検出する磁気センサ(10)の出力特性を調整する磁気センサ調整方法であって、
前記磁石(30)が形成する磁界を変動するための磁性体(70)と前記磁気センサ(10)とが、第1距離だけ離れているときに出力される前記磁電変換素子(20)の第1出力信号の電圧値Va、及び、前記磁性体(70)と前記磁気センサ(10)が、前記第1距離とは異なる第2距離だけ離れているときに出力される前記磁電変換素子(20)の第2出力信号の電圧値Vbを計測する計測工程と、
該計測工程後、前記磁電変換素子(20)の出力特性に関わる係数をa,b、前記閾値電圧をVthとすると、下記式
Figure 2012185077
が成立するように、前記磁電変換素子(20)の出力信号の電圧レベルを調整する調整工程と、を有することを特徴とする磁気センサ調整方法。
Signal processing for binarizing the output signal of the magnetoelectric conversion element (20), the magnet (30) that forms a magnetic field around the magnetoelectric conversion element (20), and the magnetoelectric conversion element (20) based on a threshold voltage A magnetic sensor adjustment method for adjusting an output characteristic of a magnetic sensor (10) having a section (43) and detecting a rotation state of a rotating body,
The magnetoelectric conversion element (20) output when the magnetic body (70) for changing the magnetic field formed by the magnet (30) and the magnetic sensor (10) are separated by a first distance. The voltage value Va of one output signal and the magnetoelectric conversion element (20) output when the magnetic body (70) and the magnetic sensor (10) are separated by a second distance different from the first distance. ) Measuring the voltage value Vb of the second output signal of
After the measurement step, if the coefficients relating to the output characteristics of the magnetoelectric conversion element (20) are a and b and the threshold voltage is Vth,
Figure 2012185077
And adjusting the voltage level of the output signal of the magnetoelectric conversion element (20) so that the above is established.
前記磁気センサ(10)と前記磁性体(70)との対向方向に垂直な方向に、複数の前記磁気センサ(10)が前記磁性体(70)の主面と対向するように、列を成して並んでおり、
前記計測工程を行う前に、複数の前記磁気センサ(10)の内の任意の一つを、前記磁電変換素子(20)の出力信号の電圧レベルを調整する調整部(80)と電気的に接続する接続工程を有し、
該接続工程〜前記調整工程を全ての磁気センサ(10)で行うことを特徴とする請求項1に記載の磁気センサ調整方法。
The magnetic sensor (10) and the magnetic body (70) are arranged in a row so that the plurality of magnetic sensors (10) face the main surface of the magnetic body (70) in a direction perpendicular to the facing direction of the magnetic body (70). Lined up,
Before performing the measurement step, an arbitrary one of the plurality of magnetic sensors (10) is electrically connected to an adjustment unit (80) that adjusts the voltage level of the output signal of the magnetoelectric transducer (20). Having a connection step to connect,
The magnetic sensor adjustment method according to claim 1, wherein the connection step to the adjustment step are performed by all the magnetic sensors.
前記計測工程を行う前に、調整対象となる、複数の前記磁気センサ(10)の内から任意に一つの磁気センサ(10)を選択する選択工程と、
該選択工程後、選択した磁気センサ(10)と回転状態の前記回転体とを対向させて、選択した磁気センサ(10)と前記回転体との相対距離を少なくとも2度変化させることで、各相対距離間での前記磁電変換素子(20)の出力信号を取得する第1取得工程と、
該第1取得工程後、各相対距離間における前記磁電変換素子(20)の出力信号の位相を合わせて、各出力信号を重ねることで、各出力信号が交わる交点の電圧値V0を算出する第1算出工程と、
該第1算出工程後、選択した磁気センサ(10)と前記磁性体(70)とを対向させて、前記磁性体(70)と前記磁気センサ(10)とが第3距離だけ離れているときに出力される前記磁電変換素子(20)の第3出力信号の電圧値Vc、及び、前記磁性体(70)と前記磁気センサ(10)とが前記第3距離とは異なる第4距離だけ離れているときに出力される前記磁電変換素子(20)の第4出力信号の電圧値Vdを取得する第2取得工程と、
前記選択工程〜前記第2取得工程を複数回行うことで、前記第1算出工程にて算出した複数の交点の電圧値V0と、該交点の電圧値V0に対応する、前記第2取得工程にて取得した複数の電圧値の差分Vd−Vcとのデータ点を取得するデータ取得工程と、
該データ取得工程後、前記データ点の関係を下記式
Figure 2012185077
で近似することで、前記係数a,bを算出する第2算出工程と、を有し、
前記第2算出工程後、前記計測工程及び前記調整工程を、調整対象となる全ての磁気センサ(10)で行うことを特徴とする請求項1又は請求項2に記載の磁気センサ調整方法。
Before performing the measurement step, a selection step of arbitrarily selecting one magnetic sensor (10) from among the plurality of magnetic sensors (10) to be adjusted;
After the selection step, the selected magnetic sensor (10) and the rotating body in a rotating state are opposed to each other, and the relative distance between the selected magnetic sensor (10) and the rotating body is changed at least twice, A first acquisition step of acquiring an output signal of the magnetoelectric transducer (20) between relative distances;
After the first acquisition step, the phase of the output signal of the magnetoelectric transducer (20) between the relative distances is matched and the output signals are overlapped to calculate the voltage value V0 at the intersection where the output signals intersect. 1 calculation step;
After the first calculation step, when the selected magnetic sensor (10) and the magnetic body (70) are opposed to each other, and the magnetic body (70) and the magnetic sensor (10) are separated by a third distance. The voltage value Vc of the third output signal of the magnetoelectric conversion element (20) outputted to the magnetic field and the magnetic body (70) and the magnetic sensor (10) are separated by a fourth distance different from the third distance. A second acquisition step of acquiring a voltage value Vd of the fourth output signal of the magnetoelectric transducer (20) output when
By performing the selection step to the second acquisition step a plurality of times, the voltage value V0 of the plurality of intersections calculated in the first calculation step and the second acquisition step corresponding to the voltage value V0 of the intersections A data acquisition step of acquiring a data point with the difference Vd−Vc of the plurality of voltage values acquired in
After the data acquisition step, the relationship between the data points is
Figure 2012185077
A second calculating step of calculating the coefficients a and b by approximating with
The magnetic sensor adjustment method according to claim 1 or 2, wherein after the second calculation step, the measurement step and the adjustment step are performed by all the magnetic sensors (10) to be adjusted.
第1温度で前記選択工程〜前記第2算出工程を行うことで前記第1温度での係数a,bを算出し、前記第1温度とは異なる第2温度で前記選択工程〜前記第2算出工程を行うことで前記第2温度での係数a,bを算出することを特徴とする請求項3に記載の磁気センサ調整方法。   The coefficients a and b at the first temperature are calculated by performing the selection step to the second calculation step at a first temperature, and the selection step to the second calculation at a second temperature different from the first temperature. The magnetic sensor adjustment method according to claim 3, wherein coefficients a and b at the second temperature are calculated by performing a step. 前記第1温度で前記計測工程及び前記調整工程を行った後、前記第2温度で前記計測工程及び前記調整工程を行うことを特徴とする請求項4に記載の磁気センサ調整方法。   The magnetic sensor adjustment method according to claim 4, wherein after the measurement step and the adjustment step are performed at the first temperature, the measurement step and the adjustment step are performed at the second temperature. 磁電変換素子(20)、該磁電変換素子(20)の周囲に磁界を形成する磁石(30)、及び、前記磁電変換素子(20)の出力信号を閾値電圧に基づいて二値化する信号処理部(43)を有し、回転体の回転状態を検出する磁気センサ(10)の出力特性を調整する磁気センサ調整装置であって、
前記磁石(30)が形成する磁界を変動するための磁性体(70)と、
該磁性体(70)及び前記磁気センサ(10)の少なくとも一方を移動させることで、前記磁性体(70)と前記磁気センサ(10)との相対距離を変動する移動部と、
前記磁性体(70)と前記磁気センサ(10)とが、第1距離だけ離れているときに出力される前記磁電変換素子(20)の第1出力信号の電圧値Va、及び、前記磁性体(70)と前記磁気センサ(10)とが、前記第1距離とは異なる第2距離だけ離れているときに出力される前記磁電変換素子(20)の第2出力信号の電圧値Vbに基づいて、前記磁電変換素子(20)の出力信号の電圧レベルを調整する調整部(80)と、を有し、
前記調整部(80)は、前記磁電変換素子(20)の出力特性に関わる係数をa,b、前記閾値電圧をVthとすると、下記式
Figure 2012185077
が成立するように、前記磁電変換素子(20)の出力信号の電圧レベルを調整することを特徴とする磁気センサ調整装置。
Signal processing for binarizing the output signal of the magnetoelectric conversion element (20), the magnet (30) that forms a magnetic field around the magnetoelectric conversion element (20), and the magnetoelectric conversion element (20) based on a threshold voltage A magnetic sensor adjusting device for adjusting an output characteristic of a magnetic sensor (10) having a portion (43) and detecting a rotation state of a rotating body,
A magnetic body (70) for varying the magnetic field formed by the magnet (30);
A moving unit that varies a relative distance between the magnetic body (70) and the magnetic sensor (10) by moving at least one of the magnetic body (70) and the magnetic sensor (10);
The voltage value Va of the first output signal of the magnetoelectric transducer (20) output when the magnetic body (70) and the magnetic sensor (10) are separated by a first distance, and the magnetic body (70) and the magnetic sensor (10) based on the voltage value Vb of the second output signal of the magnetoelectric transducer (20) output when the magnetic sensor (10) is separated by a second distance different from the first distance. And an adjustment unit (80) for adjusting the voltage level of the output signal of the magnetoelectric conversion element (20),
The adjustment unit (80) is represented by the following equation, where a and b are coefficients related to output characteristics of the magnetoelectric conversion element (20) and the threshold voltage is Vth.
Figure 2012185077
The magnetic sensor adjustment device is characterized in that the voltage level of the output signal of the magnetoelectric transducer (20) is adjusted so that
前記磁気センサ(10)と前記磁性体(70)との対向方向に垂直な方向に、複数の前記磁気センサ(10)が前記磁性体(70)の主面と対向するように、列を成して並んでおり、
前記磁気センサ(10)と前記調整部(80)との電気的な接続を制御する制御部(90)を有し、
前記制御部(90)によって、複数の前記磁気センサ(10)の内の任意の一つを前記調整部(80)と電気的に接続し、前記調整部(80)によって、選択した前記磁気センサ(10)のVa,Vb及び前記数式3に基づいて前記磁電変換素子(20)の出力信号の電圧レベルを調整することを、全ての前記磁気センサ(10)で行うことを特徴とする請求項6に記載の磁気センサ調整装置。
The magnetic sensor (10) and the magnetic body (70) are arranged in a row so that the plurality of magnetic sensors (10) face the main surface of the magnetic body (70) in a direction perpendicular to the facing direction of the magnetic body (70). Lined up,
A control unit (90) for controlling electrical connection between the magnetic sensor (10) and the adjustment unit (80);
The control unit (90) electrically connects any one of the plurality of magnetic sensors (10) to the adjustment unit (80), and the magnetic sensor selected by the adjustment unit (80). The adjustment of the voltage level of the output signal of the magnetoelectric conversion element (20) based on Va, Vb of (10) and the mathematical expression 3 is performed by all the magnetic sensors (10). 6. The magnetic sensor adjustment device according to 6.
前記制御部(90)は、前記磁気センサ(10)と前記調整部(80)との間に配置された選択スイッチ(91)と、該選択スイッチ(91)の開閉を制御する開閉制御部(92)と、を有することを特徴とする請求項7に記載の磁気センサ調整装置。   The control unit (90) includes a selection switch (91) disposed between the magnetic sensor (10) and the adjustment unit (80), and an opening / closing control unit for controlling opening / closing of the selection switch (91). 92). The magnetic sensor adjustment device according to claim 7, further comprising:
JP2011049229A 2011-03-07 2011-03-07 Magnetic sensor adjustment method and magnetic sensor adjustment device Expired - Fee Related JP5578115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011049229A JP5578115B2 (en) 2011-03-07 2011-03-07 Magnetic sensor adjustment method and magnetic sensor adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011049229A JP5578115B2 (en) 2011-03-07 2011-03-07 Magnetic sensor adjustment method and magnetic sensor adjustment device

Publications (2)

Publication Number Publication Date
JP2012185077A true JP2012185077A (en) 2012-09-27
JP5578115B2 JP5578115B2 (en) 2014-08-27

Family

ID=47015279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011049229A Expired - Fee Related JP5578115B2 (en) 2011-03-07 2011-03-07 Magnetic sensor adjustment method and magnetic sensor adjustment device

Country Status (1)

Country Link
JP (1) JP5578115B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016535845A (en) * 2013-10-21 2016-11-17 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Push-pull bridge type magnetic sensor for high intensity magnetic field
JP2017037066A (en) * 2015-08-13 2017-02-16 旭化成エレクトロニクス株式会社 Device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152036A (en) * 1997-08-04 1999-02-26 Murata Mfg Co Ltd Method and apparatus calibrating sensitivity of field detecting element
JP2004301645A (en) * 2003-03-31 2004-10-28 Denso Corp Magnetometric sensor, and method and apparatus for regulating the same
JP2006242637A (en) * 2005-03-01 2006-09-14 Denso Corp Rotation detector and its design method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152036A (en) * 1997-08-04 1999-02-26 Murata Mfg Co Ltd Method and apparatus calibrating sensitivity of field detecting element
JP2004301645A (en) * 2003-03-31 2004-10-28 Denso Corp Magnetometric sensor, and method and apparatus for regulating the same
JP2006242637A (en) * 2005-03-01 2006-09-14 Denso Corp Rotation detector and its design method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016535845A (en) * 2013-10-21 2016-11-17 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Push-pull bridge type magnetic sensor for high intensity magnetic field
JP2017037066A (en) * 2015-08-13 2017-02-16 旭化成エレクトロニクス株式会社 Device

Also Published As

Publication number Publication date
JP5578115B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP4550276B2 (en) Position detecting device having a correction function for a non-linear region of a sensor
EP2932286B1 (en) Circuits and methods for processing signals generated by a circular vertical hall (cvh) sensing element in the presence of a multi-pole magnet
JP5613839B2 (en) Method and apparatus for absolute positioning of a moving object
KR102481561B1 (en) Encoder and method of calculating rotational angle position
KR102521795B1 (en) Magnetic field sensor for angle detection with phase-locked loop
US8299783B2 (en) Circuits and methods for calibration of a motion detector
EP3611515B1 (en) Circuits and methods for generating a threshold signal used in a motion detector
US9140536B2 (en) Circuits and methods using a first cycle of a signal to generate a threshold signal used for comparing to a second later cycle of the signal
JP4044880B2 (en) Non-contact angle measuring device
JP6926209B2 (en) Distance sensor
KR101730431B1 (en) Method and device for determining the fine position value of a movable body
US20120249126A1 (en) Circuits and methods for motion detection
JP5896166B2 (en) Magnetic position sensor, moving body and moving body system
US20020180428A1 (en) Arrangement for angular measurement
US7615993B2 (en) Magnetic line-type position-angle detecting device
US10634546B2 (en) Liquid level detection device
CN105492872B (en) Method for the dynamical linearization of the sensor signal from magnetic stripe length measuring system
KR20150142322A (en) Apparatus and method for compensating for position error of resolver
US20200386575A1 (en) Magnetic field sensors and output signal formats for magnetic field sensors
JP5578115B2 (en) Magnetic sensor adjustment method and magnetic sensor adjustment device
WO2017209170A1 (en) Liquid level detecting device
JP2007520189A (en) Linear motor and transducer arrangement therefor
TW201435303A (en) Displacement sensor and displacement detection method
EP3211380B1 (en) Rotation detection device
JP5467472B2 (en) Shaft type linear motor position detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R151 Written notification of patent or utility model registration

Ref document number: 5578115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees