WO2017209170A1 - Liquid level detecting device - Google Patents

Liquid level detecting device Download PDF

Info

Publication number
WO2017209170A1
WO2017209170A1 PCT/JP2017/020203 JP2017020203W WO2017209170A1 WO 2017209170 A1 WO2017209170 A1 WO 2017209170A1 JP 2017020203 W JP2017020203 W JP 2017020203W WO 2017209170 A1 WO2017209170 A1 WO 2017209170A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
float
liquid level
magnetic field
output
Prior art date
Application number
PCT/JP2017/020203
Other languages
French (fr)
Japanese (ja)
Inventor
英楠 張
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017209170A1 publication Critical patent/WO2017209170A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/56Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using elements rigidly fixed to, and rectilinearly moving with, the floats as transmission elements
    • G01F23/62Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using elements rigidly fixed to, and rectilinearly moving with, the floats as transmission elements using magnetically actuated indicating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • G01F23/72Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using magnetically actuated indicating means

Definitions

  • the present invention relates to a liquid level detection device, and more specifically, a liquid level that is mounted on a tank that stores a liquid such as gasoline, engine oil, or urea water in an automobile and that detects the position of the liquid level using a magnet.
  • the present invention relates to a detection device.
  • liquid level detection device including a magnet and a magnetic sensor
  • liquid level detection that includes a float having a magnet that moves up and down in response to a change in the position of the liquid level and a magnetic sensor that detects the magnetic flux density of the magnet, and detects the position of the liquid level from the output signal of the magnetic sensor The device is known.
  • Patent Document 1 discloses a float 1, a cylindrical pipe 2 in which the float 1 is disposed, a magnetized body 3 fixed to one end of the float 1, and a magnetized body. 3 is disclosed, which includes a magnetoresistive element 4 arranged in the vicinity of 3 and detects the position of the liquid level based on the position of the magnetized body 3 corresponding to the float 1 (see Patent Document 1). FIG. 1 and FIG. 2).
  • the magnetized body 3 is magnetized along the moving direction of the float 1 in accordance with a predetermined magnetization pattern (SN, NS, SN, etc . Further, the magnetized body 3 protrudes outside the cylindrical pipe 2 from a through hole provided on the top surface of the cylindrical pipe 2.
  • the magnetoresistive element 4 is disposed outside the cylindrical pipe 2 and in the vicinity of the magnetized body 3.
  • the magnetoresistive element 4 includes eight resistance elements that constitute two bridge circuits.
  • Patent Document 2 a liquid level sensor 21, a liquid tank 18 in which the liquid level sensor 21 is disposed, a displacement magnet 24 provided at the upper end of a detection rod 23, and a double detection unit housing 20 are provided.
  • a liquid level detection device is disclosed that includes a detector main body 25 that is attached and includes a plurality of Hall elements 5 and 5 (see FIGS. 1 to 4 and 12 to 13 of Patent Document 2).
  • the detector main body 25 has a structure in which a plurality of Hall elements 5 are provided on the printed circuit board 6 on the same straight line at a required arrangement interval so as to be parallel to the moving direction of the displacement magnet 24. Each Hall element is provided such that the magnetosensitive surface 5 a is parallel to the magnetization direction of the displacement magnet 24.
  • the liquid level sensor 21 is suspended in the tank via a detection rod 23 by a tension spring 22 having an upper end attached to the lower surface of the detection unit housing 20, and the upper end of the detection rod 23 faces the detection unit housing 20. It is out.
  • the liquid level detection device detects the displacement of the upper end portion of the detection rod 23 in the detection unit housing 20 by the detector main body 25 as the displacement of the displacement magnet 24 and measures the liquid level.
  • the detector main body 25 calculates the position of the magnet from the output voltage of each Hall element via the control circuit 7 and further converts it into a liquid level value, and the liquid level value from the calculation circuit is displayed on the screen or the like. It is connected to an output device 9 for outputting.
  • the magnetized body 3 protrudes outside the cylindrical pipe 2 from a through hole provided in the top surface of the cylindrical pipe 2. For this reason, it is difficult to reduce the size, and depending on the device, it may be difficult to mount.
  • the detection rod 23 and the displacement magnet 24 protrude from the through hole provided on the top surface of the liquid tank 18 to the outside of the liquid tank 18. For this reason, similarly to the liquid level detection device described in Patent Document 1, it is difficult to reduce the size, and it may be difficult to mount depending on the device.
  • a liquid level detection device in which a magnet is arranged in a tank has been devised.
  • a float 23 a glass tube 21 in which the float 23 is disposed, magnets 22A and 22B fixed to two opposite ends of the float 23, and the glass tube 21 are adjacent to each other.
  • a liquid level detection device that includes sensor units 31A to 31E mounted on a sensor case 32 that is arranged in the manner described above and detects the position of the liquid level based on the positions of magnets 22A and 22B corresponding to the float 23. (See FIGS. 2 to 4 of Patent Document 3).
  • Magnets 22 ⁇ / b> A and 22 ⁇ / b> B are arranged at both ends in the movement direction of the float 23 so as to be NS and SN along the movement direction of the float 23.
  • the sensor units 31A to 31E are arranged along the moving direction of the float 23.
  • the sensor units 31A to 31E detect angle sensors 34A to 34E that detect magnetism by the first magnet 22A and the second magnet 22B according to the displacement of the float 23, and that the float 23 has reached the vicinity by magnetism.
  • Magnetic intensity sensors 35A to 35E are arranged at both ends in the movement direction of the float 23 so as to be NS and SN along the movement direction of the float 23.
  • the sensor units 31A to 31E are arranged along the moving direction of the float 23.
  • the sensor units 31A to 31E detect angle sensors 34A to 34E that detect magnetism by the first magnet 22A and the second magnet 22B according to the displacement of the float 23, and that the float 23 has reached
  • Patent Document 4 includes a magnet 3, a tank 2 in which the magnet 3 is disposed, a rod 4, a plurality of magnetic intensity sensors S [1] to S [4], and a control unit 10.
  • a liquid level detection device that detects the position of the liquid level based on the position of the magnet 3 is disclosed (see FIGS. 1, 4, and 5 of Patent Document 4).
  • the rod 4 has a long cylindrical shape and is disposed in the tank 2 so that the axial direction is parallel to the vertical direction (vertical direction).
  • the magnet 3 has an annular shape and is configured to float on the liquid level of the liquid stored in the tank 2.
  • the rod 4 is inserted through the magnet 3, and the magnet 3 is guided by the rod 4 in the state where it floats on the liquid surface of the liquid stored in the tank 2 and moves in the vertical direction.
  • the plurality of magnetic intensity sensors S [1] to S [4] are each embedded in the rod 4, and are arranged so as to be sequentially arranged at intervals from above to below.
  • the control unit 10 includes a difference value calculation unit 11 having a changeover switch 12 and a subtractor 13, and a microcomputer 20.
  • the changeover switch 12 has input terminals I11, I12, I13, I21, I22, I23, and output terminals O1, O2. Any one of the input terminals I11, I12, and I13 is connected to the output terminal O1 by switching the switch according to a control signal from the microcomputer 20. Any one of the input terminals I21, I22, and I23 is connected to the output terminal O2 by switch switching.
  • the input terminal I11 is connected to the magnetic intensity sensor S [1].
  • the input terminal I12 is connected to the magnetic intensity sensor S [2].
  • the input terminal I13 is connected to the magnetic intensity sensor S [3].
  • the input terminal I21 is connected to the magnetic intensity sensor S [2].
  • the input terminal I22 is connected to the magnetic intensity sensor S [3].
  • the input terminal I23 is connected to the magnetic intensity sensor S [4].
  • the changeover switch 12 (1) when the voltage signal of the magnetic intensity sensor S [1] is output from the output terminal O1, the voltage signal of the magnetic intensity sensor S [2] is output from the output terminal O2.
  • (2) When the voltage signal of the magnetic intensity sensor S [2] is output from the output terminal O1, the voltage signal of the magnetic intensity sensor S [3] is output from the output terminal O2, and (3) the magnetism is output from the output terminal O1.
  • the voltage signal of the intensity sensor S [3] is output, the voltage signal of the magnetic intensity sensor S [4] is output from the output terminal O2.
  • the subtractor 13 includes one input terminal to which the output terminal O1 is connected, the other input terminal to which the output terminal O2 is connected, and an output terminal that outputs a differential voltage signal.
  • the microcomputer 20 is connected to the changeover switch 12 and the subtractor 13.
  • the microcomputer 20 is a high level indicating the relationship between the difference value of the voltage signal (output value) of the magnetic strength sensor arranged adjacent to the position of the magnet 3 (that is, the liquid level of the liquid stored in the tank 2).
  • Precision liquid level detection reference information G [1] to G [3] standard precision liquid level detection reference information H [1] to H [3]
  • a ROM in which high-precision detection conditions for determining which of G [1] to G [3] and standard precision liquid level detection reference information H [1] to H [3] is used is stored in advance. ing.
  • the microcomputer 20 further includes a CPU.
  • the CPU includes a differential voltage signal from the subtractor 13, high-precision liquid level detection reference information G [1] to G [3], and standard precision liquid level detection reference information H [ 1] to H [3] and signal processing using high-precision detection conditions are performed to detect the position of the magnet 3, that is, the liquid level of the liquid stored in the tank 2.
  • Patent Document 5 a float 3, a tank in which the float 3 is arranged, a substantially ring-shaped permanent magnet 5 fixed in a concave groove 3 h of the float 3, and a hole in the float 3 are loosely inserted.
  • the permanent magnet 5 is uniformly magnetized with an N pole on the inner peripheral surface 5n side and an S pole on the outer peripheral surface 5g side.
  • the first hall element 21 and the second hall element 23 are fixedly spaced apart from each other in the vertical direction.
  • the drive control circuit 31 includes a first amplifier circuit 33 that amplifies the output voltage from the first Hall element 21 and a second amplifier circuit 35 that amplifies the output voltage from the second Hall element 23.
  • the first amplifier circuit 33 and the second amplifier circuit 35 exhibit similar amplification factors.
  • the output voltage of the first hall element 21 is amplified by the first amplifier circuit 33 at a predetermined rate.
  • the amplified output voltage is input to the output adjustment circuit 37 and the inverting amplification circuit 41, and a voltage corresponding to the liquid level is output from the output adjustment circuit 37 to the outside.
  • the output voltage of the second hall element 23 is amplified at a predetermined rate by the second amplifier circuit 35.
  • the amplified output voltage is input to the inverting amplifier circuit 41.
  • the inverting amplifier circuit 41 receives an output voltage obtained by combining the output voltage obtained by amplifying the output of the first Hall element 21 and the output voltage obtained by amplifying the output of the second Hall element 23. This is used for feedback control of driving of the elements 21 and 23. Thereby, the magnetic flux density, that is, the liquid level can be accurately measured regardless of the influence of the fluctuation of the liquid temperature and the variation of the characteristics of the permanent magnet 5.
  • Japanese Patent Laid-Open No. 1-222120 Japanese Patent Laid-Open No. 2002-22403 JP 2009-236615 A JP 2014-145714 A JP 2002-277308 A
  • the sensor units 31A to 31E include angle sensors 34A to 34E and magnetic intensity sensors 35A to 35E, respectively, and an output monitor circuit to which the angle sensors 34A to 34E are connected. Since it further includes the switching circuit 12 to which the magnetic intensity sensors 35A to 35E are connected, it is difficult to reduce the circuit configuration. Further, when the angle sensors 34A to 34E and the magnetic intensity sensors 35A to 35E are GMR elements, they can cope with a magnetic field intensity of 30 to 200G, but when a magnetic field larger than 200G is applied, the magnetic saturation occurs. It cannot be detected. For this reason, the freedom degree with respect to the kind and position of magnet 22A, 22B is low. In particular, the distance between the angle sensors 34A to 34E and the magnetic intensity sensors 35A to 35E and the magnets 22A and 22B cannot be shortened depending on the magnets 22A and 22B, and it is difficult to reduce the circuit configuration.
  • the liquid level detection device described in Patent Document 4 requires the selector switch 12, the subtractor 13, and the ROM of the microcomputer 20, which complicates the circuit configuration and is difficult to reduce in size.
  • the liquid level detection device described in Patent Document 5 the liquid level is detected only by the first hall element 21, and the second hole is used to correct the influence of fluctuations in liquid temperature and variations in the characteristics of the permanent magnet 5. Since a feedback control circuit including the element 23 and the inverting amplifier circuit 41 is required, the circuit configuration is complicated and downsizing is difficult.
  • an object of the present invention is to provide a liquid level detection device capable of simplifying and downsizing the circuit configuration.
  • a liquid level detection device includes a float that moves up and down following the liquid level, at least two magnets that are attached to the float and are disposed so that the same poles face each other, and guides the lift of the float
  • a plurality of magnetic sensors that are attached to the guide member, detect a magnetic flux density that changes according to the raising and lowering position of the magnet, and output an electrical signal corresponding to the magnetic flux density, and a plurality of magnetic sensors
  • a detection circuit for detecting the position of the float based on each output electric signal.
  • a first length is set between adjacent magnetic sensors in the ascending / descending direction.
  • the length of the magnet and the magnetic sensor in the horizontal direction perpendicular to the ascending / descending direction is set to a second length. The first length is longer than the second length.
  • the detection circuit detects the position of the float based on electrical signals output from two adjacent magnetic sensors among the plurality of magnetic sensors.
  • each magnetic sensor has a bias magnet that applies a bias magnetic field in the horizontal direction.
  • each magnetic sensor outputs an electrical signal based on a magnetic vector of magnetic lines of force generated by the magnet.
  • the detection circuit extracts an electric signal output from two adjacent magnetic sensors based on a comparison with an intermediate voltage among the electric signals output from the plurality of magnetic sensors.
  • the detection circuit calculates angle information when one of the two extracted electric signals is a sine wave and the other is a cosine wave, and detects the position of the float based on the calculated angle information.
  • each magnetic sensor includes first to fourth magnetoresistive elements to which a bias magnetic field vector generated by a bias magnet is applied, and resistance values of the first to fourth magnetoresistive elements based on a change in the bias magnetic field vector. And an output circuit that outputs an electrical signal corresponding to the change in the output.
  • a correction circuit for correcting the electrical signal output from the output circuit is further provided.
  • the correction circuit raises or raises the power of the output electric signal by a predetermined coefficient.
  • each magnetic sensor outputs linearly with respect to the magnetic field intensity, and is provided so that the polarity can be discriminated.
  • the liquid level detection device of the present invention can be simply and miniaturized in circuit configuration.
  • FIG. 1 is a circuit configuration diagram of a liquid level detection device 1 based on Embodiment 1.
  • FIG. 1 is a figure explaining the pattern of the magnetoresistive element of the magnetic sensor 5 based on Embodiment 1.
  • FIG. It is a figure explaining the detection principle of the magnetic sensor 5 based on Embodiment 1.
  • FIG. It is a figure explaining arrangement
  • FIG. 10 is an enlarged image view of a predetermined area in FIG. 9. It is a figure which illustrates typically the relationship between the magnetic sensor 5 and magnetic vector P based on Embodiment 1.
  • FIG. It is a figure explaining the precision of angle information theta based on Embodiment 1.
  • FIG. FIG. 6 is a circuit configuration diagram of a liquid level detection device 1 based on Embodiment 2. It is a figure explaining the signal before correction of magnetic sensors 5PA and 5PB, and after correction. It is a figure explaining the precision of angle information theta based on Embodiment 2.
  • FIG. It is a figure explaining the layout of the magnet attached to the float 20 and magnetic sensor 5PA, 5PB, 5PC based on another embodiment.
  • FIG. 1 is a diagram illustrating an external configuration of a liquid level detection device based on the first embodiment.
  • the liquid level detection device 1 includes a float 20 that moves up and down following the liquid level, a guide (guide member) 10, and a detection circuit 50.
  • the detection circuit 50 detects the position of the float 20 based on output signals detected from a plurality of magnetic sensors attached to the guide member 10.
  • FIG. 2 is a diagram illustrating a plurality of magnetic sensors 5 attached to the guide 10 based on the first embodiment.
  • the plurality of magnetic sensors 5 are arranged at predetermined intervals along the ascending / descending direction.
  • the magnet 20 is provided in the float 20. Specifically, magnets 2A and 2B are attached as magnet units. A magnet unit is composed of the magnets 2A and 2B.
  • the plurality of magnetic sensors 5 detect the magnetic flux density according to the lifting / lowering operation of the magnet 2 attached to the float 20 and output an electric signal corresponding to the magnetic flux density.
  • the configuration of the 4-pin magnetic sensor 5 will be described as an example.
  • the number of pins is not particularly limited to this, and those skilled in the art can appropriately change the design.
  • FIG. 3 is a circuit configuration diagram of the liquid level detection device 1 based on the first embodiment.
  • the liquid level detection device 1 based on the first embodiment includes a plurality of magnetic sensors 5 and a detection circuit 50.
  • a case where n magnetic sensors are provided is shown.
  • the detection circuit 50 includes an A / D circuit 60 that is an analog / digital conversion circuit, a P / S conversion circuit 30 that is a parallel / serial conversion circuit, and an MPU (Micro-processing unit) 40 that executes arithmetic processing. .
  • a / D circuit 60 that is an analog / digital conversion circuit
  • P / S conversion circuit 30 that is a parallel / serial conversion circuit
  • MPU Micro-processing unit
  • the A / D circuit 60 is connected to a plurality (n) of magnetic sensors 5 and converts an input analog signal into a digital signal.
  • the P / S conversion circuit 30 converts the digital signal input from the A / D circuit 60 input in parallel in synchronization with the clock CLK input from the MPU 40 in series and outputs it to the MPU 40.
  • the MPU 40 detects the position of the float 20 by performing arithmetic processing on signals from a plurality (n) of magnetic sensors 5 input from the P / S conversion circuit 30.
  • the MPU 40 in this example will be described with respect to the signal from the A / D circuit 60 that receives the output of the P / S conversion circuit 30 synchronized with the clock CLK. It is also possible to change to a configuration that receives a digital signal input from the / D circuit 60.
  • FIG. 4 is a diagram for explaining the pattern of the magnetoresistive element of the magnetic sensor 5 based on the first embodiment.
  • the magnetic sensor 5 includes four magnetoresistive elements MR1 to MR4 (also collectively referred to as magnetoresistive elements MR).
  • magnetoresistive elements MR are anisotropic magnetoresistive elements (AMR (Anisotropic Magneto Resistance) elements) and have a folded pattern structure.
  • the resistance value when the magnetic field of the magnetoresistive element MR is applied is minimized when a saturation magnetic field perpendicular (90 °) to the longitudinal direction of the folded pattern is applied, and a parallel (0 °) saturation magnetic field is applied. Sometimes it has the greatest characteristics.
  • MR magnetoresistive elements
  • MR1 and MR4 have the same longitudinal direction of the folded pattern.
  • MR2 and MR3 have the same longitudinal direction of the folded pattern.
  • the longitudinal directions of the folded pattern of MR1 (MR4) and MR2 (MR3) are different by 90 °.
  • these magnetoresistive elements MR constitute a bridge circuit between the power supply voltage Vcc and the ground GND.
  • the magnetic sensor 5 When a magnetic field is applied, the magnetic sensor 5 outputs signals V + and V ⁇ according to the resistance value change to the midpoint output portion of the bridge circuit due to the resistance value change of the magnetoresistive elements MR1 to MR4. The magnetic sensor 5 outputs a difference ⁇ V between the signals V + and V ⁇ .
  • the magnetic sensor 5 is provided with bias magnets 3A and 3B.
  • the bias magnets 3A and 3B are arranged so that a bias magnetic field is applied to the magnetoresistive elements MR1 to MR4 from the upper left to the lower right in FIG.
  • the magnetoresistive element MR of the magnetic sensor 5 of this example will be described as a folded pattern structure as an example.
  • the pattern structure is not limited to a folded shape, and those skilled in the art can improve the detection characteristics of the magnetic sensor 5. If so, the design can be changed as appropriate.
  • a bias magnetic field vector having an angle of 45 ° from the upper left to the lower right in FIG. 4 with respect to the longitudinal direction of the magnetoresistive element MR1.
  • the arrangement or angle of the magnetic sensor 5 can be changed as appropriate by those skilled in the art so as to enhance the detection characteristics of the magnetic sensor 5.
  • a configuration in which the bias magnetic field vector is applied based on the two bias magnets 3A and 3B will be described, but it is also possible to apply the bias magnetic field vector using one bias magnet instead of the two bias magnets.
  • a bias magnet may be disposed on the substrate on which the magnetoresistive elements MR1 to MR4 are provided, or a bias magnet may be disposed on the back surface of the base.
  • FIG. 5 is a diagram for explaining the detection principle of the magnetic sensor 5 based on the first embodiment.
  • FIG. 5A is a diagram for explaining a bias magnetic field vector that changes in accordance with an external magnetic field.
  • the bias magnetic field vector of the magnetic sensor 5 changes its vector direction according to the external magnetic field with respect to the ascending / descending direction.
  • the bias magnetic field vector V0 in the absence of an external magnetic field is indicated by a solid line.
  • the bias magnet is set so that the magnetic sensor 5 has a magnetic field intensity that reaches the saturation sensitivity region.
  • the bias magnetic field vector V0 changes to the bias magnetic field vector V1 according to the external magnetic field from right to left in FIG.
  • the bias magnetic field vector V0 changes to the bias magnetic field vector V2 according to the external magnetic field from the left to the right in FIG.
  • the bias magnetic field vector changes according to the change in magnetic flux density of the external magnetic field.
  • the magnetic sensor 5 detects a change in the bias magnetic field vector and outputs an output signal (potential difference ⁇ V) corresponding to the detection result.
  • FIG. 5B shows the change characteristic of the output signal of the magnetic sensor 5 according to the change of the magnetic flux density of the external magnetic field.
  • a predetermined magnetic flux density ST is applied based on the bias magnetic field according to the bias magnets 3A and 3B.
  • the output in this case is set to an intermediate value, and the potential difference ⁇ V changes according to the change in the direction of the magnetic field applied to the magnetic sensor 5.
  • the potential difference ⁇ V shifts to the ⁇ V1 side in accordance with the change in the magnetic flux density of the external magnetic field from right to left.
  • the potential difference ⁇ V shifts to the ⁇ V2 side in accordance with the change in the magnetic flux density of the external magnetic field from the left to the right.
  • the saturation magnetic field strength can be increased by changing the magnetic strength of the bias magnets 3A and 3B.
  • FIG. 6 is a view for explaining the arrangement of the magnets 2 attached to the float 20 based on the first embodiment.
  • FIG. 6 here, a diagram when the float 20 is viewed from above is shown.
  • the magnet unit formed by the magnets 2A and 2B is provided so as to face each other through the guide member.
  • the N poles of the magnets 2A and 2B are provided so as to face each other. It is also possible to arrange the south poles of the magnets 2A and 2B so as to face each other.
  • a magnetic sensor 5 is disposed between the opposing magnets 2A and 2B.
  • the direction of magnetic force is in the direction along the guide member (the up-and-down direction of the float 20), and the magnetic component in the direction perpendicular to the direction along the guide member is canceled.
  • the magnetic sensor 5 is arranged so that the center of the magnetic sensor 5, in other words, the center of the region where the magnetoresistive element MR is formed is located between the opposing magnets 2 ⁇ / b> A and 2 ⁇ / b> B. In this case, even if the float 20 rotates, there is almost no change in the direction of magnetic force and magnetic flux density, and the magnetic sensor 5 can accurately measure the amount of displacement of the magnetic flux density.
  • the magnets 2A and 2B may not be disposed so that the same poles face each other.
  • FIG. 7 is a view for explaining the layout of the magnets 2A and 2B attached to the float 20 and the plurality of magnetic sensors 5 according to the first embodiment.
  • magnets 2A and 2B form a set of magnet units.
  • the magnet units formed by the magnets 2A and 2B are arranged so that the N poles face each other.
  • magnetic sensors 5PA to 5PC are provided as the plurality of magnetic sensors 5 is shown.
  • the distance between the centers of the magnetic sensors 5 in the up and down direction is the first length. Further, the distance in the horizontal direction between the facing surface of the magnet 2A or the magnet 2B and the center of the magnetic sensor 5, in other words, half of the distance between the facing surfaces of the magnet 2A and the magnet 2B is set to the second length. To do. In this example, the first length is set longer than the second length.
  • the distance between the adjacent magnetic sensors 5 in the ascending / descending direction is set to an interval twice the distance a.
  • the other of the adjacent magnetic sensors 5 is set to be positioned at the center in the up-and-down direction of the magnet 2A. That is, the length of the magnet 2A and the magnet 2B in the ascending / descending direction is set to twice the distance between the centers of the adjacent magnetic sensors 5 in the ascending / descending direction, that is, four times the distance a.
  • the magnetic sensor 5 is attached to the guide member along the raising / lowering direction.
  • the case where the three magnetic sensors 5PA to 5PC are arranged to detect the position of the float 20 will be described, but the same applies to the case where a plurality of magnetic sensors are arranged.
  • the center in the ascending / descending direction of the magnet 2A and the magnet 2B is set as a reference position (center point).
  • the case where the magnetic sensor 5PB is located at the reference position (center point) is shown.
  • the three magnetic sensors 5PA to 5PC are arranged so that the bias magnetic field vectors of the magnetic sensors are parallel to the horizontal direction.
  • the direction of the bias magnetic field vector is the same as the horizontal direction from the magnet 2B to the magnet 2A.
  • the present invention is not limited to this and is the same as the horizontal direction from the magnet 2A to the magnet 2B. You may make it become a direction.
  • the white arrows in the horizontal direction of the paper shown in each of the magnetic sensors 5PA to 5PC indicate the maximum magnetic sensing direction of the magnetic sensor.
  • a horizontal arrow pointing downward in each of the magnetic sensors 5PA to 5PC indicates a magnetic field generated by a bias magnet. However, description up to rotation of the bias magnetic field by the magnetic field of the float magnet is omitted.
  • FIG. 8 is a diagram for explaining the relationship with the magnetic sensor when the position of the float 20 based on the first embodiment is changed by the lifting / lowering operation.
  • FIG. 8A shows a case where the float 20 moves up and approaches the magnetic sensor 5PA (state S0).
  • the magnetic sensor 5PA is affected by the magnetic field (lines of magnetic force) generated by the magnets 2A and 2B of the float 20. Specifically, the magnetic sensor 5PA is affected by a magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5PA changes to the bias magnetic field vector V1 side. The potential difference ⁇ V decreases as the bias magnetic field vector changes.
  • the other magnetic sensors 5PB and 5PC are also affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • FIG. 8 (B) shows the case where the float 20 has further increased by the distance 2a (state S1) from FIG. 8 (A).
  • the magnetic sensor 5PA is in a state of being positioned on the center line between the float 20 and the magnets 2A and 2B. In this example, this state is the initial state.
  • the magnetic sensor 5PB is affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5PB changes to the bias magnetic field vector V1 side. The potential difference ⁇ V decreases as the bias magnetic field vector changes.
  • the other magnetic sensor 5PC is also affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • FIG. 8 (C) shows the case where the float 20 has further increased by the distance 2a (state S2) from FIG. 8 (B).
  • the magnetic sensor 5PA is affected by the magnetic field (lines of magnetic force) generated by the magnets 2A and 2B. Specifically, the magnetic sensor 5PA is affected by a magnetic field from left to right as the magnetic lines of force of the magnets 2A and 2B. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5PA changes toward the bias magnetic field vector V2. The potential difference V increases as the bias magnetic field vector V2 changes.
  • the magnetic sensor 5PB is in a state of being located on the center line between the magnets 2A and 2B. Therefore, it is an initial state.
  • the magnetic sensor 5PC is affected by the magnetic field generated by the magnets 2A and 2B. Specifically, the magnetic sensor 5PC is affected by a magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B.
  • the potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • FIG. 8D shows the case where the float 20 has further increased the distance 2a from FIG. 8C (state S3).
  • the magnetic sensor 5PB is affected by the magnetic field (lines of magnetic force) generated by the magnets 2A and 2B. Specifically, the magnetic sensor 5PB is affected by a magnetic field from left to right as the magnetic lines of force of the magnets 2A and 2B. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5PB changes to the bias magnetic field vector V2. The potential difference ⁇ V increases as the bias magnetic field vector V2 changes.
  • the magnetic sensor 5PA is affected by the magnetic field from left to right as the magnetic lines of force of the magnets 2A and 2B. Since the influence of the magnetic field is small, the change toward the bias magnetic field vector V2 is small.
  • the magnetic sensor 5PC is in a state located on the center line between the magnets 2A and 2B. Therefore, it is an initial state.
  • FIG. 8 (E) shows the case where the float 20 has further increased by the distance 2a (state S4) from FIG. 8 (D).
  • the magnetic sensor 5PC is affected by the magnetic field (lines of magnetic force) generated by the magnets 2A and 2B. Specifically, the magnetic sensor 5PC is affected by a magnetic field from left to right as the magnetic lines of force of the magnets 2A and 2B.
  • the bias magnetic field vector V0 of the magnetic sensor 5PC changes to the bias magnetic field vector V2.
  • the potential difference ⁇ V increases as the bias magnetic field vector V2 changes.
  • the magnetic sensors 5PA and 5PB a case where a magnetic field is applied in the up-and-down direction by the magnetic field generated by the magnets 2A and 2B is shown. Specifically, the magnetic sensors 5PA and 5PB are affected by a magnetic field from left to right as a magnetic field (lines of magnetic force) generated by the magnets 2A and 2B. Since the influence of the magnetic field is reduced according to the distance, the change to the bias magnetic field vector V2 side is reduced.
  • FIG. 8 (F) shows a case where the float 20 further increases the distance 2a from FIG. 8 (E) (state S5).
  • a magnetic field is applied in the up and down direction by the magnetic field generated by the magnets 2A and 2B.
  • the magnetic sensors 5PA, 5PB, and 5PC are affected by a magnetic field from left to right as a magnetic field (lines of magnetic force) generated by the magnets 2A and 2B. Since the influence of the magnetic field is reduced according to the distance, the change to the bias magnetic field vector V2 side is reduced. The same applies thereafter.
  • FIG. 9 is a diagram for explaining output signal waveforms of a plurality of magnetic sensors following the lifting / lowering operation of the float 20 based on the first embodiment.
  • the positional relationship between the states S0 to S5 and the output signal relationship are shown. For example, focusing on the magnetic sensor 5PA, a signal corresponding to the magnetic flux density of the external magnetic field received by the magnetic sensor 5PA is output.
  • the magnetic sensor 5PA is affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5PA changes to the bias magnetic field vector V1 side. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • the other magnetic sensors 5PB and 5PC are also affected by the magnetic field from the right to the left as the magnetic lines of force of the magnets 2A and 2B, so that the potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • the magnetic sensor 5PA In the state S1, the magnetic sensor 5PA is in an initial state located on the center line between the magnets 2A and 2B.
  • the voltage of the output signal (potential difference ⁇ V) in the initial state is an intermediate value. (Intermediate voltage).
  • the magnetic sensor 5PA shows a case where the output signal (potential difference ⁇ V) decreases.
  • a waveform obtained by shifting the output signal of the magnetic sensor 5PA by a distance 2a is shown.
  • Focusing on the magnetic sensor 5PC a waveform obtained by shifting the output signal of the magnetic sensor 5PB by a distance 2a is shown.
  • FIG. 10 is an image view in which the predetermined area of FIG. 9 is enlarged. As shown in FIG. 10, here, output signal waveforms of a plurality of magnetic sensors 5PA and 5PB in the hatching area of FIG. 9 are shown as the predetermined area.
  • the output signal waveforms of the magnetic sensors 5PA and 5PB can be modeled (approximated) in the horizontal component (in the up-and-down direction) of the magnetic vector P of the external magnetic field that changes along a circle, which will be described later, when the intermediate voltage is used as a reference. Is possible.
  • one output signal (electric signal) can be represented by a sine wave (sin ⁇ ) and the other output signal (electric signal) can be represented by a cosine wave (cos ⁇ ). Then, the angle ⁇ of the magnetic vector P of the external magnetic field is calculated based on the two output signals (electric signals).
  • an electrical signal output from two adjacent magnetic sensors among the output signals of a plurality of magnetic sensors is detected to calculate the angle of the magnetic vector of the external magnetic field, and the calculated angle of the magnetic vector
  • the position of the float is detected based on the above.
  • FIG. 11 is a diagram schematically illustrating the relationship between the magnetic sensor 5 and the magnetic vector P based on the first embodiment.
  • FIG. 11 shows magnetic vectors with respect to the lifting / lowering direction of the float 20 with respect to the magnetic sensors 5PA and 5PB when the state S1 is shifted to the state S2.
  • the raising / lowering direction is a direction along the X-axis.
  • the magnetic vector P indicates the direction of the magnetic field lines of the magnetic field generated by the N pole of the magnet 2A.
  • the magnetic field lines of the magnetic field generated by the N pole of the magnet 2B are omitted, but the component perpendicular to the ascending / descending direction of the magnetic vector P is the magnetic field generated by the N pole of the magnet 2B. It is canceled out by the magnetic vector of the magnetic field lines. Therefore, the external magnetic field for the magnetic sensors 5PA and 5PB has only the up-down direction component. As described above, the bias magnetic field vector in each magnetic sensor 5 changes according to the external magnetic field.
  • the output signal detected by the magnetic sensor 5PA in the up-and-down direction is Psin ⁇
  • the output signal detected by the magnetic sensor 5PB Can be represented by -Pcos ⁇ . And it calculates as angle (theta) of the magnetic vector P based on two output signals (electrical signal).
  • tan ⁇ (Psin ⁇ /
  • the above process is a process executed by the detection circuit 50. Specifically, the calculation process is executed in the MPU 40.
  • the position of the float 20 changes by a distance 2a corresponding to a change of 0 ° to 90 ° as the angle information ⁇ of the magnetic vector.
  • the center in the ascending / descending direction of the magnets 2A and 2B is set as a reference position (center point) as an example.
  • the reference position (center point) of the float 20 shown in the state S1 in FIG. 8B is the same position as the position of the magnetic sensor 5PA.
  • the angle information ⁇ of the magnetic vector is calculated using the electrical signals of the magnetic sensor 5PA and the magnetic sensor 5PB, and the positional relationship is determined. For example, when the angle information ⁇ is calculated as 45 °, it is detected that the reference position (center point) of the float is at a position moved a distance a from the position of the magnetic sensor 5PA to the magnetic sensor 5PB side. Is possible.
  • the positional information from the magnetic sensor 5PA is determined by calculating the angle information ⁇ of the magnetic vector using the electrical signals of the magnetic sensors 5PA and 5PB has been described. It is also possible to determine the positional relationship from Of course, it is possible to determine the positional relationship from the magnetic sensor 5PB by calculating the angle information ⁇ of the magnetic vector using the electrical signals of the magnetic sensors 5PB and 5PC according to the same method. The same applies to other systems.
  • FIG. 12 is a diagram illustrating the accuracy of the angle information ⁇ based on the first embodiment.
  • FIG. 12A shows arctan ⁇ when one output signal (electrical signal) is set to Pcos ⁇ and the other output signal (electrical signal) is set to Psin ⁇ when the angle ⁇ is changed from 0 ° to 90 °. And a comparison with the reference value is shown.
  • FIG. 13 is a flowchart for explaining the detection method of the liquid level detection apparatus 1 based on the first embodiment.
  • two signals based on a predetermined combination of signal relationships are extracted (step SP2).
  • a signal (first signal) of a magnetic sensor that exceeds the intermediate voltage from the intermediate voltage or less and a signal of the adjacent magnetic sensor (second signal) that outputs a signal of the intermediate voltage or less at that time. ) are extracted.
  • the intermediate voltage is set to the voltage of the output signal in the initial state as an example. Specifically, as described with reference to FIG.
  • the magnetic sensor 5PA is intermediately measured by measuring the voltage in advance in the state where the magnetic sensor 5PA is positioned at the center of the magnet 2A or 2B (FIG. 8B). It is possible to set the voltage. There are various methods for setting the intermediate voltage, and the method is not limited to the method. For example, the intermediate voltage may be set to an intermediate value between the maximum value and the minimum value of the peak value.
  • step SP4 two electrical signals in the hatched area described with reference to FIG. 9 are extracted.
  • step SP4 the angle ⁇ of the magnetic vector is calculated based on the two extracted signals. Specifically, one output signal (electric signal) of the two electric signals is set to Pcos ⁇ , and the other output signal (electric signal) is set to Psin ⁇ , and magnetism is performed based on the two output signals (electric signals). The angle ⁇ of the vector is calculated. Then, tan ⁇ is calculated based on the two output signals (electrical signals), and the angle information ⁇ is calculated by calculating arctan ⁇ .
  • the position of the float 20 is calculated based on the angle ⁇ of the magnetic vector (step SP6).
  • the reference position (center point) of the float 20 is calculated from the position of the magnetic sensor. For example, when the angle information ⁇ is calculated as 45 ° as described above, the reference position (center point) of the float has moved to the magnetic sensor 5PB side by a distance a from the position of the magnetic sensor 5PA. It is possible to detect that it is in position.
  • the liquid level detection device 1 can detect the position of the float 20 with high accuracy based on two electrical signals. With this method, there is no need to provide a switching circuit for switching signals, the circuit configuration can be simplified, and the size can be reduced.
  • the output signal may change due to changes in the characteristics of the magnet or the magnetic sensor following the change in the environmental temperature.
  • tan ⁇ (Psin ⁇ / Pcos ⁇ ) of the two output signals is calculated. Therefore, the fluctuation amount according to the environmental temperature is canceled out, so that the error due to the influence of the environmental temperature is reduced, and the position detection with high accuracy is possible.
  • the distance in the horizontal direction (second length) between the magnet 2A and the magnetic sensor 5 is set to the distance a
  • the distance in the ascending / descending direction of the adjacent magnetic sensor 5 (first A case has been described in which the length) is set to be twice the distance a.
  • the magnetic sensor 5 can be detected by changing the magnetic force of the external magnetic field by adjusting the dimensions of the magnets 2A, 2B, etc. (the lengths of the magnets 2A, 2B in FIG. 7 in the horizontal direction and the depth direction). It is possible to appropriately change the design of the distance in the ascending / descending direction between the magnetic sensors 5 while improving the characteristics. Similarly, the lengths of the magnet 2A and the magnet 2B in the ascending / descending direction can be appropriately changed in design.
  • FIG. 14 is a circuit configuration diagram of the liquid level detection device 1 based on the second embodiment.
  • liquid level detection device 1 based on Embodiment 2 includes a plurality of magnetic sensors 5 and detection circuit 50 #. In this example, a case where n magnetic sensors are provided is shown.
  • the detection circuit 50 # includes an A / D circuit 60 that is an analog / digital conversion circuit, a P / S conversion circuit 30 that is a parallel / serial conversion circuit, and an MPU (Micro-processing unit) 40 # that executes arithmetic processing. including.
  • the MPU 40 # detects the position of the float 20 by performing arithmetic processing on signals from a plurality (n) of magnetic sensors 5 input from the P / S conversion circuit 30. Specifically, MPU 40 # further includes a correction unit 45.
  • the correction unit 45 corrects the signal from the magnetic sensor 5.
  • an electric signal output from two adjacent magnetic sensors among the corrected output signals of the plurality of magnetic sensors is detected to calculate the angle of the magnetic vector of the external magnetic field, and the calculated magnetic vector The position of the float is detected based on the angle.
  • FIG. 15 is a diagram illustrating signals before and after correction of the magnetic sensors 5PA and 5PB.
  • FIG. 15 (A) shows output signals detected by the magnetic sensors 5PA and 5PB before correction.
  • the output signal of the magnetic sensor 5PA is represented by Psin ⁇
  • the output signal of the magnetic sensor 5PB is represented by -Pcos ⁇ .
  • a signal obtained by inverting the output signal of the magnetic sensor 5PB is shown.
  • the ratio of the signal waveform of the output signal is the same as the ideal ratio of sin wave and cos wave, it is possible to detect the position without error, but the ratio of the signal waveform of the actual output signal and the ideal ratio Since there is a deviation between the ratio of the sine wave and the cos wave, the angular accuracy varies.
  • the distance in the up-and-down direction (first length) between the magnetic sensors 5 is set to be longer than the horizontal distance (second length) between the magnet 2A and the magnetic sensor 5. . Therefore, since the change in the magnetic vector P of the external magnetic field with respect to the moving distance becomes smaller as the distance in the vertical direction between the magnetic sensors 5 becomes longer than the horizontal distance between the magnet 2A and the magnetic sensor 5, an ideal sin wave is obtained. A concave signal waveform is detected below the ideal line of the cos wave.
  • FIG. 15B shows the output signals of the corrected magnetic sensors 5PA and 5PB.
  • the angle of the magnetic vector of the external magnetic field is calculated based on the corrected signal, and the position of the float is detected based on the calculated angle of the magnetic vector.
  • FIG. 16 is a diagram for explaining the accuracy of the angle information ⁇ based on the second embodiment.
  • FIG. 16A shows arctan ⁇ when one output signal (electrical signal) is set to Pcos ⁇ and the other output signal (electrical signal) is set to Psin ⁇ when the angle ⁇ is changed from 0 ° to 90 °. And a comparison with the reference value is shown.
  • the accuracy of the angle shows a case where there is only a deviation of ⁇ 2 ° from the reference value, and the position of the float 20 can be detected with higher accuracy.
  • the position of the float 20 can be detected with high accuracy, and the circuit configuration can be simplified. In addition, it is possible to reduce the size.
  • the angle accuracy can be improved by changing the magnets 2A and 2B and the magnetic sensor 5 from the positional relationship shown in FIG. Specifically, for example, the length of the magnet 2A and the magnet 2B in FIG. 7 is changed to a length that is smaller than twice the distance between the centers of adjacent magnetic sensors 5 in the lift direction. In addition, it is possible to improve the angle accuracy by executing the correction process.
  • correction processing has been described in which the root of the power is increased by a predetermined coefficient to correct the signal waveform.
  • the length of the magnet 2A and the magnet 2B in the vertical direction and the horizontal direction of the magnet 2A and the magnet 2B are described.
  • a correction process in which power is raised by a predetermined coefficient may be effective.
  • it is also possible to improve the angular accuracy by suppressing the deviation by executing a correction process of raising the output signals of the magnetic sensors (AMR) 5PA and 5PB by a predetermined coefficient.
  • the signal waveform ratio can be made close to the ideal ratio of the sin waveform and the cos waveform. Then, by using the above-described equation for the angle ⁇ , it is possible to derive an angle with improved accuracy.
  • FIG. 17 is a diagram illustrating a layout of magnets and magnetic sensors 5PA, 5PB, and 5PC attached to the float 20 according to another embodiment.
  • magnets 2E and 2F are provided as separate magnet units. Magnets 2E and 2F are arranged so that the south poles face each other. With this configuration, the position of the float 20 can be detected based on the same method as described above. Magnets 2A and 2E and magnets 2B and 2F may be formed separately or integrally.
  • the AMR element is disclosed, but the present invention is not limited thereto. Any magnetic sensor that outputs linearly with respect to the magnetic field intensity and can determine the polarity is applicable.
  • 1 liquid level detection device 2 magnets, 5, 5 PA to 5 PC magnetic sensor, 10 guide, 20 float, 30 P / S conversion circuit, 40, 40 # MPU, 45 correction unit, 50, 50 # detection circuit, 60 A / D circuit.

Abstract

This liquid surface detecting device is provided with: a float which rises and falls, following a liquid level; two ore more magnets which are attached to the float and are disposed with identical poles facing one another; a guiding member which guides the rising and falling of the float; a plurality of magnetic sensors which are attached to the guiding member, detect a magnetic flux density that varies in accordance with the rising and falling position of the magnets, and output an electrical signal corresponding to the magnetic flux density; and a detecting circuit which detects the position of the float on the basis of the electrical signals output by the plurality of magnetic sensors. The distance between adjacent magnetic sensors in the rising and falling direction is set to a first length. The distance between the magnets and the magnetic sensors in a horizontal direction that is perpendicular to the rising and falling direction is set to a second length. The first length is greater than the second length. The detecting circuit detects the position of the float on the basis of the electrical signals output by two adjacent magnetic sensors from among the plurality of magnetic sensors.

Description

液面検出装置Liquid level detector
 本発明は、液面検出装置に関し、具体的には、自動車等のガソリンやエンジンオイルや尿素水などの液体を貯蔵するタンクに搭載され、磁石を利用して液面の位置を検出する液面検出装置に関する。 The present invention relates to a liquid level detection device, and more specifically, a liquid level that is mounted on a tank that stores a liquid such as gasoline, engine oil, or urea water in an automobile and that detects the position of the liquid level using a magnet. The present invention relates to a detection device.
 従来より、磁石と磁気センサとを備える液面検出装置が知られている。例えば、液面の位置の変化に対応して昇降し、磁石を有する浮きと、磁石の磁束密度を検知する磁気センサとを備え、磁気センサの出力信号から液面の位置を検出する液面検出装置が知られている。 Conventionally, a liquid level detection device including a magnet and a magnetic sensor is known. For example, liquid level detection that includes a float having a magnet that moves up and down in response to a change in the position of the liquid level and a magnetic sensor that detects the magnetic flux density of the magnet, and detects the position of the liquid level from the output signal of the magnetic sensor The device is known.
 この点で、特許文献1には、浮き子1と、浮き子1が内部に配置されている円筒パイプ2と、浮き子1の一つの端部に固定されている着磁体3と、着磁体3の近傍に配置されている磁気抵抗素子4とを備え、浮き子1に対応する着磁体3の位置により液面の位置を検出する、液面検出装置が開示されている(特許文献1の第1図及び第2図参照)。 In this regard, Patent Document 1 discloses a float 1, a cylindrical pipe 2 in which the float 1 is disposed, a magnetized body 3 fixed to one end of the float 1, and a magnetized body. 3 is disclosed, which includes a magnetoresistive element 4 arranged in the vicinity of 3 and detects the position of the liquid level based on the position of the magnetized body 3 corresponding to the float 1 (see Patent Document 1). FIG. 1 and FIG. 2).
 また、着磁体3は、浮き子1の移動方向に沿って、所定の着磁パターンに従って(S-N、N-S、S-N、・・・)…となるように着磁されている。また、着磁体3は、円筒パイプ2の天面に設けられた貫通孔から円筒パイプ2の外部に突出している。磁気抵抗素子4は、円筒パイプ2の外側であって、着磁体3の近傍に配置されている。また、磁気抵抗素子4は、2つのブリッジ回路を構成する8つの抵抗要素を含む。 Further, the magnetized body 3 is magnetized along the moving direction of the float 1 in accordance with a predetermined magnetization pattern (SN, NS, SN,...). . Further, the magnetized body 3 protrudes outside the cylindrical pipe 2 from a through hole provided on the top surface of the cylindrical pipe 2. The magnetoresistive element 4 is disposed outside the cylindrical pipe 2 and in the vicinity of the magnetized body 3. The magnetoresistive element 4 includes eight resistance elements that constitute two bridge circuits.
 特許文献2には、液面感得体21と、液面感得体21が内部に配置されている液タンク18と、検出ロッド23の上端に設けられた変位磁石24と、複検出部ハウジング20に取り付けられており、複数のホール素子5、5を含む検出器本体25とを備える、液面検出装置が開示されている(特許文献2の図1~図4,図12~図13参照)。 In Patent Document 2, a liquid level sensor 21, a liquid tank 18 in which the liquid level sensor 21 is disposed, a displacement magnet 24 provided at the upper end of a detection rod 23, and a double detection unit housing 20 are provided. A liquid level detection device is disclosed that includes a detector main body 25 that is attached and includes a plurality of Hall elements 5 and 5 (see FIGS. 1 to 4 and 12 to 13 of Patent Document 2).
 検出器本体25は、変位磁石24の移動方向と平行となるように複数のホール素子5を同一直線上に所要の配設間隔でプリント基板6上に設けた構造を有する。各ホール素子は感磁面5aが変位磁石24の着磁方向と平行になるよう設けられている。液面感得体21は、検出部ハウジング20の下面に上端を取り付けた引張ばね22により検出ロッド23を介してタンク内に吊り下げられていて、検出ロッド23の上端は検出部ハウジング20内に臨んでいる。液面検出装置は、検出部ハウジング20内における検出ロッド23の上端部の変位を変位磁石24の変位として検出器本体25にて検出して液位を測定する。検出器本体25は制御回路7を介して、各ホール素子の出力電圧から磁石の位置を演算してさらに液位値に換算する演算回路8と、同演算回路からの液位値を画面等に出力する出力装置9に接続されている。 The detector main body 25 has a structure in which a plurality of Hall elements 5 are provided on the printed circuit board 6 on the same straight line at a required arrangement interval so as to be parallel to the moving direction of the displacement magnet 24. Each Hall element is provided such that the magnetosensitive surface 5 a is parallel to the magnetization direction of the displacement magnet 24. The liquid level sensor 21 is suspended in the tank via a detection rod 23 by a tension spring 22 having an upper end attached to the lower surface of the detection unit housing 20, and the upper end of the detection rod 23 faces the detection unit housing 20. It is out. The liquid level detection device detects the displacement of the upper end portion of the detection rod 23 in the detection unit housing 20 by the detector main body 25 as the displacement of the displacement magnet 24 and measures the liquid level. The detector main body 25 calculates the position of the magnet from the output voltage of each Hall element via the control circuit 7 and further converts it into a liquid level value, and the liquid level value from the calculation circuit is displayed on the screen or the like. It is connected to an output device 9 for outputting.
 特許文献1に記載の液面検出装置では、着磁体3は、円筒パイプ2の天面に設けられた貫通孔から円筒パイプ2の外部に突出している。このため、小型化が困難であるとともに、機器によっては搭載が困難となる可能性がある。 In the liquid level detection apparatus described in Patent Document 1, the magnetized body 3 protrudes outside the cylindrical pipe 2 from a through hole provided in the top surface of the cylindrical pipe 2. For this reason, it is difficult to reduce the size, and depending on the device, it may be difficult to mount.
 特許文献2に記載の液面検出装置では、検出ロッド23及び変位磁石24は、液タンク18の天面に設けられた貫通孔から液タンク18の外部に突出している。このため、特許文献1に記載の液面検出装置と同様に、小型化が困難であるとともに、機器によっては搭載が困難となる可能性がある。 In the liquid level detection device described in Patent Document 2, the detection rod 23 and the displacement magnet 24 protrude from the through hole provided on the top surface of the liquid tank 18 to the outside of the liquid tank 18. For this reason, similarly to the liquid level detection device described in Patent Document 1, it is difficult to reduce the size, and it may be difficult to mount depending on the device.
 一方で、タンク内に磁石を配置してなる液面検出装置も考案されている。
 特許文献3には、フロート23と、フロート23が内部に配置されているガラス管21と、フロート23の対向する2つの端部に固定されている磁石22A,22Bと、ガラス管21に隣接して配置されているセンサケース32に搭載されているセンサ部31A~31Eとを備え、フロート23に対応する磁石22A,22Bの位置により液面の位置を検出する、液面検出装置が開示されている(特許文献3の図2~図4参照)。
On the other hand, a liquid level detection device in which a magnet is arranged in a tank has been devised.
In Patent Document 3, a float 23, a glass tube 21 in which the float 23 is disposed, magnets 22A and 22B fixed to two opposite ends of the float 23, and the glass tube 21 are adjacent to each other. There is disclosed a liquid level detection device that includes sensor units 31A to 31E mounted on a sensor case 32 that is arranged in the manner described above and detects the position of the liquid level based on the positions of magnets 22A and 22B corresponding to the float 23. (See FIGS. 2 to 4 of Patent Document 3).
 磁石22A,22Bは、フロート23の移動方向の両端に、フロート23の移動方向に沿ってNS、SNとなるように配置されている。センサ部31A~31Eはフロート23の移動方向に沿って配置されている。センサ部31A~31Eは、フロート23の変位に応じた、第1の磁石22A及び第2の磁石22Bによる磁気を検知する角度センサ34A~34Eと、磁気により近傍にフロート23が到達したことを検知する磁気強度センサ35A~35Eとをそれぞれ備える。 Magnets 22 </ b> A and 22 </ b> B are arranged at both ends in the movement direction of the float 23 so as to be NS and SN along the movement direction of the float 23. The sensor units 31A to 31E are arranged along the moving direction of the float 23. The sensor units 31A to 31E detect angle sensors 34A to 34E that detect magnetism by the first magnet 22A and the second magnet 22B according to the displacement of the float 23, and that the float 23 has reached the vicinity by magnetism. Magnetic intensity sensors 35A to 35E.
 特許文献4には、マグネット3と、マグネット3が内部に配置されているタンク2と、ロッド4と、複数の磁気強度センサS[1]~S[4]と、制御部10とを備え、マグネット3の位置により液面の位置を検出する、液面検出装置が開示されている(特許文献4の図1、図4、図5参照)。 Patent Document 4 includes a magnet 3, a tank 2 in which the magnet 3 is disposed, a rod 4, a plurality of magnetic intensity sensors S [1] to S [4], and a control unit 10. A liquid level detection device that detects the position of the liquid level based on the position of the magnet 3 is disclosed (see FIGS. 1, 4, and 5 of Patent Document 4).
 ロッド4は、長尺の円柱状であり、軸方向が上下方向(鉛直方向)と平行になるようにタンク2内に配置されている。マグネット3は、円環状であり、タンク2内に貯蔵された液体の液面に浮かぶように構成されている。ロッド4はマグネット3に挿通されており、マグネット3はタンク2に貯蔵された液体の液面に浮かべられた状態において、ロッド4によって移動がガイドされて上下方向に移動する。複数の磁気強度センサS[1]~S[4]は、それぞれがロッド4に埋め込まれており、上方から下方に向けて互いに間隔をあけて順次並ぶように配置されている。 The rod 4 has a long cylindrical shape and is disposed in the tank 2 so that the axial direction is parallel to the vertical direction (vertical direction). The magnet 3 has an annular shape and is configured to float on the liquid level of the liquid stored in the tank 2. The rod 4 is inserted through the magnet 3, and the magnet 3 is guided by the rod 4 in the state where it floats on the liquid surface of the liquid stored in the tank 2 and moves in the vertical direction. The plurality of magnetic intensity sensors S [1] to S [4] are each embedded in the rod 4, and are arranged so as to be sequentially arranged at intervals from above to below.
 制御部10は、切替スイッチ12及び減算器13を有する差分値算出部11と、マイクロコンピュータ20とを有する。切替スイッチ12は、入力端子I11、I12、I13、I21、I22、I23、出力端子O1、O2を有する。マイクロコンピュータ20からの制御信号によるスイッチ切替により入力端子I11、I12、I13のいずれかが出力端子O1に接続される。入力端子I21、I22、I23のいずれかがスイッチ切替により出力端子O2に接続される。入力端子I11は磁気強度センサS[1]と接続されている。入力端子I12は磁気強度センサS[2]と接続されている。入力端子I13は磁気強度センサS[3]と接続されている。入力端子I21は磁気強度センサS[2]と接続されている。入力端子I22は磁気強度センサS[3]と接続されている。入力端子I23は磁気強度センサS[4]と接続されている。これにより、切替スイッチ12は、(1)出力端子O1から磁気強度センサS[1]の電圧信号が出力されているとき、出力端子O2から磁気強度センサS[2]の電圧信号が出力され、(2)出力端子O1から磁気強度センサS[2]の電圧信号が出力されているとき、出力端子O2から磁気強度センサS[3]の電圧信号が出力され、(3)出力端子O1から磁気強度センサS[3]の電圧信号が出力されているとき、出力端子O2から磁気強度センサS[4]の電圧信号が出力される。減算器13は、出力端子O1が接続される一方の入力端子と、出力端子O2が接続される他方の入力端子と、差分電圧信号を出力する出力端子とを備える。 The control unit 10 includes a difference value calculation unit 11 having a changeover switch 12 and a subtractor 13, and a microcomputer 20. The changeover switch 12 has input terminals I11, I12, I13, I21, I22, I23, and output terminals O1, O2. Any one of the input terminals I11, I12, and I13 is connected to the output terminal O1 by switching the switch according to a control signal from the microcomputer 20. Any one of the input terminals I21, I22, and I23 is connected to the output terminal O2 by switch switching. The input terminal I11 is connected to the magnetic intensity sensor S [1]. The input terminal I12 is connected to the magnetic intensity sensor S [2]. The input terminal I13 is connected to the magnetic intensity sensor S [3]. The input terminal I21 is connected to the magnetic intensity sensor S [2]. The input terminal I22 is connected to the magnetic intensity sensor S [3]. The input terminal I23 is connected to the magnetic intensity sensor S [4]. Thereby, the changeover switch 12 (1) when the voltage signal of the magnetic intensity sensor S [1] is output from the output terminal O1, the voltage signal of the magnetic intensity sensor S [2] is output from the output terminal O2. (2) When the voltage signal of the magnetic intensity sensor S [2] is output from the output terminal O1, the voltage signal of the magnetic intensity sensor S [3] is output from the output terminal O2, and (3) the magnetism is output from the output terminal O1. When the voltage signal of the intensity sensor S [3] is output, the voltage signal of the magnetic intensity sensor S [4] is output from the output terminal O2. The subtractor 13 includes one input terminal to which the output terminal O1 is connected, the other input terminal to which the output terminal O2 is connected, and an output terminal that outputs a differential voltage signal.
 マイクロコンピュータ20は、切替スイッチ12及び減算器13と接続されている。マイクロコンピュータ20は、隣接して配置された磁気強度センサの電圧信号(出力値)の差分値とマグネット3の位置(即ち、タンク2に貯蔵された液体の液面レベル)との関係を示す高精度液面レベル検出基準情報G[1]~G[3]と、標準精度液面レベル検出基準情報H[1]~H[3]、液面レベルの検出において高精度液面レベル検出基準情報G[1]~G[3]及び標準精度液面レベル検出基準情報H[1]~H[3]のいずれを用いるかを判定するための高精度検出条件が予め記憶されているROMを備えている。 The microcomputer 20 is connected to the changeover switch 12 and the subtractor 13. The microcomputer 20 is a high level indicating the relationship between the difference value of the voltage signal (output value) of the magnetic strength sensor arranged adjacent to the position of the magnet 3 (that is, the liquid level of the liquid stored in the tank 2). Precision liquid level detection reference information G [1] to G [3], standard precision liquid level detection reference information H [1] to H [3], high precision liquid level detection reference information for detecting the liquid level A ROM in which high-precision detection conditions for determining which of G [1] to G [3] and standard precision liquid level detection reference information H [1] to H [3] is used is stored in advance. ing.
 マイクロコンピュータ20はCPUをさらに備え、CPUは、減算器13の差分電圧信号と、高精度液面レベル検出基準情報G[1]~G[3]と、標準精度液面レベル検出基準情報H[1]~H[3]と、高精度検出条件を用いた信号処理を行い、マグネット3の位置、即ち、タンク2に貯蔵された液体の液面レベルを検出する。 The microcomputer 20 further includes a CPU. The CPU includes a differential voltage signal from the subtractor 13, high-precision liquid level detection reference information G [1] to G [3], and standard precision liquid level detection reference information H [ 1] to H [3] and signal processing using high-precision detection conditions are performed to detect the position of the magnet 3, that is, the liquid level of the liquid stored in the tank 2.
 特許文献5には、フロート3と、フロート3が内部に配置されているタンクと、フロート3の凹溝3h内に固着されている略リング状の永久磁石5と、フロート3の孔に遊挿された略円筒状のステム部13を有し、フロート3の昇降を案内する案内部材11と、ステム部13内に配置されている磁気センサである2つのホール素子(第1ホール素子21及び第2ホール素子23)と、液面レベルの検知出力を外部へ導くための駆動制御回路31とを備え、フロート3(=永久磁石5)の位置により液面の位置を検出する、液面検出装置が開示されている(特許文献5の図1、図2参照)。 In Patent Document 5, a float 3, a tank in which the float 3 is arranged, a substantially ring-shaped permanent magnet 5 fixed in a concave groove 3 h of the float 3, and a hole in the float 3 are loosely inserted. The guide member 11 has a substantially cylindrical stem portion 13 and guides the lifting and lowering of the float 3, and two Hall elements (first Hall element 21 and the first Hall element 21) that are magnetic sensors arranged in the stem portion 13. 2 level element 23) and a drive control circuit 31 for guiding the detection output of the liquid level to the outside, and detects the position of the liquid level from the position of the float 3 (= permanent magnet 5) Is disclosed (see FIGS. 1 and 2 of Patent Document 5).
 永久磁石5は、内周面5n側がN極、外周面5g側がS極に一様に着磁されている。第1ホール素子21及び第2ホール素子23は鉛直方向にそれぞれ離間して固着されている。第1,第2ホール素子21,23に駆動電圧を印加すると、液面に追従するフロート3に配置された永久磁石5の昇降位置に応じて変化する磁束密度を検知して、その磁束密度に対応する電気信号、より具体的には、その磁束密度にほぼ直線的に対応する電圧を出力する。駆動制御回路31は、第1ホール素子21からの出力電圧を増幅する第1増幅回路33と、第2ホール素子23からの出力電圧を増幅する第2増幅回路35を有する。第1増幅回路33と第2増幅回路35は同様の増幅率を示す。 The permanent magnet 5 is uniformly magnetized with an N pole on the inner peripheral surface 5n side and an S pole on the outer peripheral surface 5g side. The first hall element 21 and the second hall element 23 are fixedly spaced apart from each other in the vertical direction. When a driving voltage is applied to the first and second Hall elements 21 and 23, the magnetic flux density that changes in accordance with the ascending / descending position of the permanent magnet 5 disposed on the float 3 following the liquid surface is detected, and the magnetic flux density A corresponding electric signal, more specifically, a voltage corresponding to the magnetic flux density almost linearly is output. The drive control circuit 31 includes a first amplifier circuit 33 that amplifies the output voltage from the first Hall element 21 and a second amplifier circuit 35 that amplifies the output voltage from the second Hall element 23. The first amplifier circuit 33 and the second amplifier circuit 35 exhibit similar amplification factors.
 第1ホール素子21の出力電圧は、第1増幅回路33により所定の割合で増幅される。増幅された出力電圧は出力調整回路37と反転増幅回路41に入力され、出力調整回路37から液面レベルに対応した電圧が外部へ出力される。また、第2ホール素子23の出力電圧は、第2増幅回路35により所定の割合で増幅される。増幅された出力電圧は、反転増幅回路41に入力される。反転増幅回路41には第1ホール素子21の出力を増幅させた出力電圧と、第2ホール素子23の出力を増幅させた出力電圧とを合わせた出力電圧が入力され、第1,第2ホール素子21,23の駆動のフィードバック制御に用いられる。これにより、液温の変動や永久磁石5の特性のバラツキの影響に拘わらず、正確に磁束密度、即ち液面レベルを計測することができる。 The output voltage of the first hall element 21 is amplified by the first amplifier circuit 33 at a predetermined rate. The amplified output voltage is input to the output adjustment circuit 37 and the inverting amplification circuit 41, and a voltage corresponding to the liquid level is output from the output adjustment circuit 37 to the outside. The output voltage of the second hall element 23 is amplified at a predetermined rate by the second amplifier circuit 35. The amplified output voltage is input to the inverting amplifier circuit 41. The inverting amplifier circuit 41 receives an output voltage obtained by combining the output voltage obtained by amplifying the output of the first Hall element 21 and the output voltage obtained by amplifying the output of the second Hall element 23. This is used for feedback control of driving of the elements 21 and 23. Thereby, the magnetic flux density, that is, the liquid level can be accurately measured regardless of the influence of the fluctuation of the liquid temperature and the variation of the characteristics of the permanent magnet 5.
特開平1-221620号公報Japanese Patent Laid-Open No. 1-222120 特開2002-22403号公報Japanese Patent Laid-Open No. 2002-22403 特開2009-236615号公報JP 2009-236615 A 特開2014-145714号公報JP 2014-145714 A 特開2002-277308号公報JP 2002-277308 A
 しかしながら、特許文献3に記載の液面検出装置では、センサ部31A~31Eは角度センサ34A~34Eと磁気強度センサ35A~35Eとをそれぞれ備え、角度センサ34A~34Eが接続される出力モニタ回路と磁気強度センサ35A~35Eが接続される切替回路12とをさらに備えるため、回路構成の小型化が困難である。また、角度センサ34A~34Eと磁気強度センサ35A~35EがGMR素子である場合、30~200Gまでの磁界強度に対応することが出来るが、200Gよりも大きな磁界が印加されると磁気飽和してしまい検出できない。このため、磁石22A,22Bの種類や位置に対する自由度が低い。特に、磁石22A,22Bによっては角度センサ34A~34E及び磁気強度センサ35A~35Eと磁石22A,22Bとの距離を短くすることが出来ず、回路構成の小型化が困難である。 However, in the liquid level detection device described in Patent Document 3, the sensor units 31A to 31E include angle sensors 34A to 34E and magnetic intensity sensors 35A to 35E, respectively, and an output monitor circuit to which the angle sensors 34A to 34E are connected. Since it further includes the switching circuit 12 to which the magnetic intensity sensors 35A to 35E are connected, it is difficult to reduce the circuit configuration. Further, when the angle sensors 34A to 34E and the magnetic intensity sensors 35A to 35E are GMR elements, they can cope with a magnetic field intensity of 30 to 200G, but when a magnetic field larger than 200G is applied, the magnetic saturation occurs. It cannot be detected. For this reason, the freedom degree with respect to the kind and position of magnet 22A, 22B is low. In particular, the distance between the angle sensors 34A to 34E and the magnetic intensity sensors 35A to 35E and the magnets 22A and 22B cannot be shortened depending on the magnets 22A and 22B, and it is difficult to reduce the circuit configuration.
 特許文献4に記載の液面検出装置では、切替スイッチ12、減算器13、マイクロコンピュータ20のROMが必要であるため、回路構成が複雑化するとともに小型化が困難である。 The liquid level detection device described in Patent Document 4 requires the selector switch 12, the subtractor 13, and the ROM of the microcomputer 20, which complicates the circuit configuration and is difficult to reduce in size.
 特許文献5に記載の液面検出装置では、第1ホール素子21のみで液面を検知しており、液温の変動や永久磁石5の特性のバラツキの影響を補正するために、第2ホール素子23と反転増幅回路41を含むフィードバック制御回路が必要であるため、回路構成が複雑化するとともに小型化が困難である。 In the liquid level detection device described in Patent Document 5, the liquid level is detected only by the first hall element 21, and the second hole is used to correct the influence of fluctuations in liquid temperature and variations in the characteristics of the permanent magnet 5. Since a feedback control circuit including the element 23 and the inverting amplifier circuit 41 is required, the circuit configuration is complicated and downsizing is difficult.
 したがって、本発明は、上記の課題を解決するためになされたものであって、回路構成を簡易かつ小型化が可能な液面検出装置を提供することを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a liquid level detection device capable of simplifying and downsizing the circuit configuration.
 本発明のある局面に従う液面検出装置は、液面に追従して昇降するフロートと、フロートに取り付けられ、同極が対向して配置される少なくとも2つ以上の磁石と、フロートの昇降を案内する案内部材と、案内部材に取り付けられ、前記磁石の昇降位置に応じて変化する磁束密度を検知して、その磁束密度に対応する電気信号を出力する複数の磁気センサと、複数の磁気センサからそれぞれ出力される電気信号に基づいて前記フロートの位置を検出する検出回路とを備える。昇降方向における互いに隣接する磁気センサ間は第1の長さに設定される。昇降方向と垂直な水平方向における前記磁石と前記磁気センサとの長さは第2の長さに設定される。第1の長さは、第2の長さよりも長い。検出回路は、前記複数の磁気センサのうち隣接する2つの磁気センサから出力される電気信号に基づいて前記フロートの位置を検出する。 A liquid level detection device according to an aspect of the present invention includes a float that moves up and down following the liquid level, at least two magnets that are attached to the float and are disposed so that the same poles face each other, and guides the lift of the float A plurality of magnetic sensors that are attached to the guide member, detect a magnetic flux density that changes according to the raising and lowering position of the magnet, and output an electrical signal corresponding to the magnetic flux density, and a plurality of magnetic sensors And a detection circuit for detecting the position of the float based on each output electric signal. A first length is set between adjacent magnetic sensors in the ascending / descending direction. The length of the magnet and the magnetic sensor in the horizontal direction perpendicular to the ascending / descending direction is set to a second length. The first length is longer than the second length. The detection circuit detects the position of the float based on electrical signals output from two adjacent magnetic sensors among the plurality of magnetic sensors.
 好ましくは、各磁気センサは、水平方向にバイアス磁界を印加するバイアス磁石を有する。 Preferably, each magnetic sensor has a bias magnet that applies a bias magnetic field in the horizontal direction.
 好ましくは、各磁気センサは、前記磁石により生じる磁力線の磁気ベクトルに基づく電気信号を出力する。 Preferably, each magnetic sensor outputs an electrical signal based on a magnetic vector of magnetic lines of force generated by the magnet.
 好ましくは、検出回路は、前記複数の磁気センサからそれぞれ出力される電気信号のうち中間電圧との比較に基づいて隣接する2つの磁気センサから出力される電気信号を抽出する。 Preferably, the detection circuit extracts an electric signal output from two adjacent magnetic sensors based on a comparison with an intermediate voltage among the electric signals output from the plurality of magnetic sensors.
 好ましくは、検出回路は、抽出した2つの電気信号の一方を正弦波、他方を余弦波とした場合の角度情報を算出し、算出した角度情報に基づいて前記フロートの位置を検出する。 Preferably, the detection circuit calculates angle information when one of the two extracted electric signals is a sine wave and the other is a cosine wave, and detects the position of the float based on the calculated angle information.
 好ましくは、各磁気センサは、バイアス磁石により生じるバイアス磁界ベクトルが印加される第1~第4の磁気抵抗素子と、バイアス磁界ベクトルの変化に基づく前記第1~第4の磁気抵抗素子の抵抗値の変化に応じた電気信号を出力する出力回路とを含む。 Preferably, each magnetic sensor includes first to fourth magnetoresistive elements to which a bias magnetic field vector generated by a bias magnet is applied, and resistance values of the first to fourth magnetoresistive elements based on a change in the bias magnetic field vector. And an output circuit that outputs an electrical signal corresponding to the change in the output.
 好ましくは、出力回路から出力された電気信号を補正する補正回路をさらに備える。
 好ましくは、補正回路は、前記出力された電気信号に対して所定の係数で累乗根あるいは累乗する。
Preferably, a correction circuit for correcting the electrical signal output from the output circuit is further provided.
Preferably, the correction circuit raises or raises the power of the output electric signal by a predetermined coefficient.
 好ましくは、各磁気センサは、磁界強度に対して線形に出力し、極性を判別可能に設けられる。 Preferably, each magnetic sensor outputs linearly with respect to the magnetic field intensity, and is provided so that the polarity can be discriminated.
 本発明の液面検出装置は、回路構成を簡易かつ小型化が可能である。 The liquid level detection device of the present invention can be simply and miniaturized in circuit configuration.
実施形態1に基づく液面検出装置の外観構成を説明する図である。It is a figure explaining the external appearance structure of the liquid level detection apparatus based on Embodiment 1. FIG. 実施形態1に基づくガイド10に取り付けられた複数の磁気センサ5を説明する図である。It is a figure explaining the some magnetic sensor 5 attached to the guide 10 based on Embodiment 1. FIG. 実施形態1に基づく液面検出装置1の回路構成図である。1 is a circuit configuration diagram of a liquid level detection device 1 based on Embodiment 1. FIG. 実施形態1に基づく磁気センサ5の磁気抵抗素子のパターンを説明する図である。It is a figure explaining the pattern of the magnetoresistive element of the magnetic sensor 5 based on Embodiment 1. FIG. 実施形態1に基づく磁気センサ5の検出原理を説明する図である。It is a figure explaining the detection principle of the magnetic sensor 5 based on Embodiment 1. FIG. 実施形態1に基づくフロート20に取り付けられた磁石2の配置を説明する図である。It is a figure explaining arrangement | positioning of the magnet 2 attached to the float 20 based on Embodiment 1. FIG. 実施形態1に基づくフロート20に取り付けられた磁石2A,2Bと、複数の磁気センサ5とのレイアウトを説明する図である。It is a figure explaining the layout of magnet 2A, 2B attached to the float 20 based on Embodiment 1, and the several magnetic sensor 5. FIG. 実施形態1に基づくフロート20が昇降動作によりその位置が変化した場合の磁気センサとの関係を説明する図である。It is a figure explaining the relationship with the magnetic sensor when the float 20 based on Embodiment 1 changes the position by raising / lowering operation | movement. 実施形態1に基づくフロート20の昇降動作に従う複数の磁気センサの出力信号波形を説明する図である。It is a figure explaining the output signal waveform of the some magnetic sensor according to the raising / lowering operation | movement of the float 20 based on Embodiment 1. FIG. 図9の所定領域を拡大したイメージ図である。FIG. 10 is an enlarged image view of a predetermined area in FIG. 9. 実施形態1に基づく磁気センサ5と磁気ベクトルPとの関係を模式的に説明する図である。It is a figure which illustrates typically the relationship between the magnetic sensor 5 and magnetic vector P based on Embodiment 1. FIG. 実施形態1に基づく角度情報θの精度を説明する図である。It is a figure explaining the precision of angle information theta based on Embodiment 1. FIG. 実施形態1に基づく液面検出装置1の検出方式を説明するフロー図である。It is a flowchart explaining the detection system of the liquid level detection apparatus 1 based on Embodiment 1. FIG. 実施形態2に基づく液面検出装置1の回路構成図である。FIG. 6 is a circuit configuration diagram of a liquid level detection device 1 based on Embodiment 2. 磁気センサ5PAおよび5PBの補正前および補正後の信号を説明する図である。It is a figure explaining the signal before correction of magnetic sensors 5PA and 5PB, and after correction. 実施形態2に基づく角度情報θの精度を説明する図である。It is a figure explaining the precision of angle information theta based on Embodiment 2. FIG. 別の実施形態に基づくフロート20に取り付けられた磁石と磁気センサ5PA,5PB,5PCとのレイアウトを説明する図である。It is a figure explaining the layout of the magnet attached to the float 20 and magnetic sensor 5PA, 5PB, 5PC based on another embodiment.
 この実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。 This embodiment will be described in detail with reference to the drawings. Note that the same or corresponding parts in the drawings are denoted by the same reference numerals and description thereof will not be repeated.
 (実施形態1)
 図1は、実施形態1に基づく液面検出装置の外観構成を説明する図である。
(Embodiment 1)
FIG. 1 is a diagram illustrating an external configuration of a liquid level detection device based on the first embodiment.
 図1に示されるように、液面検出装置1は、液面に追従して昇降するフロート20と、ガイド(案内部材)10と、検出回路50とを含む。 As shown in FIG. 1, the liquid level detection device 1 includes a float 20 that moves up and down following the liquid level, a guide (guide member) 10, and a detection circuit 50.
 検出回路50は、案内部材10に取り付けられた複数の磁気センサから検出される出力信号に基づいてフロート20の位置を検出する。 The detection circuit 50 detects the position of the float 20 based on output signals detected from a plurality of magnetic sensors attached to the guide member 10.
 図2は、実施形態1に基づくガイド10に取り付けられた複数の磁気センサ5を説明する図である。 FIG. 2 is a diagram illustrating a plurality of magnetic sensors 5 attached to the guide 10 based on the first embodiment.
 図2に示されるように、複数の磁気センサ5は、昇降方向に沿って所定間隔に配置されている。 As shown in FIG. 2, the plurality of magnetic sensors 5 are arranged at predetermined intervals along the ascending / descending direction.
 フロート20には、磁石2が設けられている。具体的には、磁石ユニットとして磁石2A,2Bが取り付けられている。磁石2A,2Bで磁石ユニットを構成する。 The magnet 20 is provided in the float 20. Specifically, magnets 2A and 2B are attached as magnet units. A magnet unit is composed of the magnets 2A and 2B.
 複数の磁気センサ5は、フロート20に取り付けられた磁石2の昇降動作に従う磁束密度を検知して、その磁束密度に対応する電気信号を出力する。なお、本例においては、4ピンの磁気センサ5の構成について一例として説明するが、特にピン数はこれに限られず当業者であるならば適宜設計変更することが可能である。 The plurality of magnetic sensors 5 detect the magnetic flux density according to the lifting / lowering operation of the magnet 2 attached to the float 20 and output an electric signal corresponding to the magnetic flux density. In this example, the configuration of the 4-pin magnetic sensor 5 will be described as an example. However, the number of pins is not particularly limited to this, and those skilled in the art can appropriately change the design.
 図3は、実施形態1に基づく液面検出装置1の回路構成図である。
 図3に示されるように、実施形態1に基づく液面検出装置1は、複数の磁気センサ5と、検出回路50とを含む。本例においては、n個の磁気センサが設けられている場合が示されている。
FIG. 3 is a circuit configuration diagram of the liquid level detection device 1 based on the first embodiment.
As shown in FIG. 3, the liquid level detection device 1 based on the first embodiment includes a plurality of magnetic sensors 5 and a detection circuit 50. In this example, a case where n magnetic sensors are provided is shown.
 検出回路50は、アナログ/デジタル変換回路であるA/D回路60と、パラレル/シリアル変換回路であるP/S変換回路30と、演算処理を実行するMPU(Micro-processing unit)40とを含む。 The detection circuit 50 includes an A / D circuit 60 that is an analog / digital conversion circuit, a P / S conversion circuit 30 that is a parallel / serial conversion circuit, and an MPU (Micro-processing unit) 40 that executes arithmetic processing. .
 A/D回路60は、複数(n個)の磁気センサ5と接続されて、入力されたアナログ信号をデジタル信号に変換する。 The A / D circuit 60 is connected to a plurality (n) of magnetic sensors 5 and converts an input analog signal into a digital signal.
 P/S変換回路30は、MPU40から入力されるクロックCLKに同期して並列的に入力されるA/D回路60から入力されたデジタル信号を直列的に信号変換してMPU40に出力する。 The P / S conversion circuit 30 converts the digital signal input from the A / D circuit 60 input in parallel in synchronization with the clock CLK input from the MPU 40 in series and outputs it to the MPU 40.
 MPU40は、P/S変換回路30から入力される複数(n個)の磁気センサ5からの信号を演算処理してフロート20の位置を検出する。 The MPU 40 detects the position of the float 20 by performing arithmetic processing on signals from a plurality (n) of magnetic sensors 5 input from the P / S conversion circuit 30.
 なお、本例におけるMPU40は、A/D回路60からの信号に関して、クロックCLKに同期したP/S変換回路30の出力を受ける構成について説明するが、特に当該構成に限られずマルチプレクサを介してA/D回路60からデジタル信号の入力を受ける構成に変更することも可能である。 Note that the MPU 40 in this example will be described with respect to the signal from the A / D circuit 60 that receives the output of the P / S conversion circuit 30 synchronized with the clock CLK. It is also possible to change to a configuration that receives a digital signal input from the / D circuit 60.
 図4は、実施形態1に基づく磁気センサ5の磁気抵抗素子のパターンを説明する図である。 FIG. 4 is a diagram for explaining the pattern of the magnetoresistive element of the magnetic sensor 5 based on the first embodiment.
 図4に示されるように、ここでは、磁気センサ5は、4つの磁気抵抗素子MR1~MR4(総称して磁気抵抗素子MRとも称する)からなる。 As shown in FIG. 4, here, the magnetic sensor 5 includes four magnetoresistive elements MR1 to MR4 (also collectively referred to as magnetoresistive elements MR).
 これらの磁気抵抗素子MRは異方性磁気抵抗素子(AMR(Anisotropic Magneto Resistance)素子)であり、折り返し形状のパターン構造を持つ。 These magnetoresistive elements MR are anisotropic magnetoresistive elements (AMR (Anisotropic Magneto Resistance) elements) and have a folded pattern structure.
 磁気抵抗素子MRの磁界印加時の抵抗値は、折り返し形状パターンの長手方向に対して垂直(90°)の飽和磁界が印加された時に最小となり、平行(0°)な飽和磁界が印加されたときに最大となる特性を有する。 The resistance value when the magnetic field of the magnetoresistive element MR is applied is minimized when a saturation magnetic field perpendicular (90 °) to the longitudinal direction of the folded pattern is applied, and a parallel (0 °) saturation magnetic field is applied. Sometimes it has the greatest characteristics.
 図4に示されるように、これらの磁気抵抗素子MRは、MR1とMR4は折り返し形状パターンの長手方向が同じである。MR2とMR3は折り返し形状パターンの長手方向が同じである。MR1(MR4)とMR2(MR3)の折り返し形状パターンの長手方向は、90°異なっている。 As shown in FIG. 4, in these magnetoresistive elements MR, MR1 and MR4 have the same longitudinal direction of the folded pattern. MR2 and MR3 have the same longitudinal direction of the folded pattern. The longitudinal directions of the folded pattern of MR1 (MR4) and MR2 (MR3) are different by 90 °.
 そして図4に示されるように、電源電圧Vccと接地GND間に、これらの磁気抵抗素子MRが、ブリッジ回路を構成する。 Then, as shown in FIG. 4, these magnetoresistive elements MR constitute a bridge circuit between the power supply voltage Vcc and the ground GND.
 磁気センサ5は、磁界が印加されると、磁気抵抗素子MR1~MR4の抵抗値変化により、ブリッジ回路の中点出力部に、抵抗値変化に応じた信号V+,V-を出力する。磁気センサ5は、信号V+,V-の差分ΔVを出力する。 When a magnetic field is applied, the magnetic sensor 5 outputs signals V + and V− according to the resistance value change to the midpoint output portion of the bridge circuit due to the resistance value change of the magnetoresistive elements MR1 to MR4. The magnetic sensor 5 outputs a difference ΔV between the signals V + and V−.
 また、磁気センサ5には、バイアス磁石3A,3Bが設けられている。バイアス磁石3A,3Bは、磁気抵抗素子MR1~MR4に対して図4の左上から右下の方向にバイアス磁界がかかるように配置されている。 The magnetic sensor 5 is provided with bias magnets 3A and 3B. The bias magnets 3A and 3B are arranged so that a bias magnetic field is applied to the magnetoresistive elements MR1 to MR4 from the upper left to the lower right in FIG.
 なお、本例の磁気センサ5の磁気抵抗素子MRは、一例として折り返し形状のパターン構造として説明するが、特に折り返し形状に限られずそのパターン構造は、磁気センサ5の検出特性を高めるように当業者であるならば適宜設計変更することが可能である。また、バイアス磁石3A,3Bの配置(向き)に関しても本例においては一例として、磁気抵抗素子MR1の長手方向に対して、図4の左上から右下の方向に45°の角度のバイアス磁界ベクトルがかかるように配置した構成が示されているが、当該配置あるいは角度も磁気センサ5の検出特性を高めるように当業者であるならば適宜設計変更することが可能である。 The magnetoresistive element MR of the magnetic sensor 5 of this example will be described as a folded pattern structure as an example. However, the pattern structure is not limited to a folded shape, and those skilled in the art can improve the detection characteristics of the magnetic sensor 5. If so, the design can be changed as appropriate. In addition, regarding the arrangement (orientation) of the bias magnets 3A and 3B as an example in this example, a bias magnetic field vector having an angle of 45 ° from the upper left to the lower right in FIG. 4 with respect to the longitudinal direction of the magnetoresistive element MR1. However, the arrangement or angle of the magnetic sensor 5 can be changed as appropriate by those skilled in the art so as to enhance the detection characteristics of the magnetic sensor 5.
 また、本例においては、2つのバイアス磁石3A,3Bに基づいてバイアス磁界ベクトルをかける構成について説明するが、2つのバイアス磁石ではなく1つのバイアス磁石を用いてバイアス磁界ベクトルをかけることも可能である。たとえば、磁気抵抗素子MR1~MR4が設けられている基板上にバイアス磁石を配置しても良いし、基盤の裏面にバイアス磁石を配置する構成とするようにしても良い。 In this example, a configuration in which the bias magnetic field vector is applied based on the two bias magnets 3A and 3B will be described, but it is also possible to apply the bias magnetic field vector using one bias magnet instead of the two bias magnets. is there. For example, a bias magnet may be disposed on the substrate on which the magnetoresistive elements MR1 to MR4 are provided, or a bias magnet may be disposed on the back surface of the base.
 図5は、実施形態1に基づく磁気センサ5の検出原理を説明する図である。
 図5(A)は、外部磁界に従って変化するバイアス磁界ベクトルを説明する図である。
FIG. 5 is a diagram for explaining the detection principle of the magnetic sensor 5 based on the first embodiment.
FIG. 5A is a diagram for explaining a bias magnetic field vector that changes in accordance with an external magnetic field.
 図5(A)に示されるように、磁気センサ5のバイアス磁界ベクトルは、昇降方向に対する外部磁界に従ってそのベクトル方向を変化させる。本例においては、外部磁界が無い状態のバイアス磁界ベクトルV0が実線で示されている。なお、バイアス磁石は、磁気センサ5が飽和感度領域に達する磁界強度となるように設定する。 As shown in FIG. 5 (A), the bias magnetic field vector of the magnetic sensor 5 changes its vector direction according to the external magnetic field with respect to the ascending / descending direction. In this example, the bias magnetic field vector V0 in the absence of an external magnetic field is indicated by a solid line. The bias magnet is set so that the magnetic sensor 5 has a magnetic field intensity that reaches the saturation sensitivity region.
 バイアス磁界ベクトルV0は、図5(A)における右から左方向の外部磁界に従ってバイアス磁界ベクトルV1に変化する。 The bias magnetic field vector V0 changes to the bias magnetic field vector V1 according to the external magnetic field from right to left in FIG.
 一方で、バイアス磁界ベクトルV0は、図5(A)における左から右方向への外部磁界に従ってバイアス磁界ベクトルV2に変化する。 On the other hand, the bias magnetic field vector V0 changes to the bias magnetic field vector V2 according to the external magnetic field from the left to the right in FIG.
 外部磁界の磁束密度の変化に従いバイアス磁界ベクトルが変化する。磁気センサ5は、バイアス磁界ベクトルの変化を検出して、当該検出結果に応じた出力信号(電位差ΔV)を出力する。 The bias magnetic field vector changes according to the change in magnetic flux density of the external magnetic field. The magnetic sensor 5 detects a change in the bias magnetic field vector and outputs an output signal (potential difference ΔV) corresponding to the detection result.
 図5(B)には、外部磁界の磁束密度の変化に従う磁気センサ5の出力信号の変化特性が示されている。 FIG. 5B shows the change characteristic of the output signal of the magnetic sensor 5 according to the change of the magnetic flux density of the external magnetic field.
 図5(B)に示されるように、バイアス磁石3A,3Bに従うバイアス磁界に基づいて所定の磁束密度STがかかっている。この場合の出力は中間値に設定されており、磁気センサ5に印加される磁界の方向の変化に従い電位差ΔVが変化する。 As shown in FIG. 5B, a predetermined magnetic flux density ST is applied based on the bias magnetic field according to the bias magnets 3A and 3B. The output in this case is set to an intermediate value, and the potential difference ΔV changes according to the change in the direction of the magnetic field applied to the magnetic sensor 5.
 外部磁界として、右から左方向の外部磁界の磁束密度の変化に従い電位差ΔVは、ΔV1側にシフトする。 As the external magnetic field, the potential difference ΔV shifts to the ΔV1 side in accordance with the change in the magnetic flux density of the external magnetic field from right to left.
 一方、外部磁界として、左から右方向の外部磁界の磁束密度の変化に従い電位差ΔVは、ΔV2側にシフトする。 On the other hand, as the external magnetic field, the potential difference ΔV shifts to the ΔV2 side in accordance with the change in the magnetic flux density of the external magnetic field from the left to the right.
 中間値からの電位差ΔVの増減に従って磁気センサ5に印加される磁界の極性(どの向きからの磁界か)を検知することが可能である。また、バイアス磁石3A,3Bの磁力強度を変更することにより飽和磁界強度も高めることが可能である。 It is possible to detect the polarity (from which direction) of the magnetic field applied to the magnetic sensor 5 according to the increase / decrease of the potential difference ΔV from the intermediate value. Also, the saturation magnetic field strength can be increased by changing the magnetic strength of the bias magnets 3A and 3B.
 後述するが外部磁界の磁束密度の変化に応じた信号波形(電位差ΔV)に基づいてフロート20の位置を検出することが可能である。 As will be described later, it is possible to detect the position of the float 20 based on a signal waveform (potential difference ΔV) corresponding to a change in the magnetic flux density of the external magnetic field.
 図6は、実施形態1に基づくフロート20に取り付けられた磁石2の配置を説明する図である。 FIG. 6 is a view for explaining the arrangement of the magnets 2 attached to the float 20 based on the first embodiment.
 図6に示されるように、ここでは、フロート20を上視した場合の図が示されている。また、磁石2A,2Bで形成される磁石ユニットは、ガイド部材を介して互いに向き合うように対向して設けられている。本例においては、磁石2A,2BのN極が互いに向き合うように対向して設けられている。なお、磁石2A,2BのS極を互いに向き合うように対向して配置することも可能である。対抗する磁石2A,2Bの中間に磁気センサ5が配置される。 As shown in FIG. 6, here, a diagram when the float 20 is viewed from above is shown. Moreover, the magnet unit formed by the magnets 2A and 2B is provided so as to face each other through the guide member. In this example, the N poles of the magnets 2A and 2B are provided so as to face each other. It is also possible to arrange the south poles of the magnets 2A and 2B so as to face each other. A magnetic sensor 5 is disposed between the opposing magnets 2A and 2B.
 当該配置により、磁力方向は、ガイド部材に沿う方向(フロート20の昇降方向)となり、ガイド部材に沿う方向と垂直な方向の磁力成分は打ち消される。好ましくは、磁気センサ5の中心が、言い換えれば、磁気抵抗素子MRが形成されている領域の中心が、対向する磁石2A、2Bの中間に位置する様に、磁気センサ5が配置される。この場合、また、フロート20が回転した場合であっても磁力方向や磁束密度にほとんど変化はなく、磁気センサ5は磁束密度の変位量を精度よく測定することが可能である。 With this arrangement, the direction of magnetic force is in the direction along the guide member (the up-and-down direction of the float 20), and the magnetic component in the direction perpendicular to the direction along the guide member is canceled. Preferably, the magnetic sensor 5 is arranged so that the center of the magnetic sensor 5, in other words, the center of the region where the magnetoresistive element MR is formed is located between the opposing magnets 2 </ b> A and 2 </ b> B. In this case, even if the float 20 rotates, there is almost no change in the direction of magnetic force and magnetic flux density, and the magnetic sensor 5 can accurately measure the amount of displacement of the magnetic flux density.
 なお、磁気センサ5が配列された線上に平行な磁界が印加できれば、磁石2A,2Bは、同極を対向する配置としなくても良い。 In addition, as long as a parallel magnetic field can be applied to the line on which the magnetic sensors 5 are arranged, the magnets 2A and 2B may not be disposed so that the same poles face each other.
 図7は、実施形態1に基づくフロート20に取り付けられた磁石2A,2Bと、複数の磁気センサ5とのレイアウトを説明する図である。 FIG. 7 is a view for explaining the layout of the magnets 2A and 2B attached to the float 20 and the plurality of magnetic sensors 5 according to the first embodiment.
 図7に示されるように、磁石2A,2Bは、1組の磁石ユニットを形成する。
 磁石2A,2Bで形成される磁石ユニットは、互いにN極が向き合うように配置されている。
As shown in FIG. 7, magnets 2A and 2B form a set of magnet units.
The magnet units formed by the magnets 2A and 2B are arranged so that the N poles face each other.
 本例においては、複数の磁気センサ5として、3つの磁気センサ5PA~5PC(総称して磁気センサ5と称する)が設けられる場合が示されている。 In this example, a case where three magnetic sensors 5PA to 5PC (collectively referred to as magnetic sensors 5) are provided as the plurality of magnetic sensors 5 is shown.
 ここで、昇降方向における磁気センサ5の中心同士の距離を第1の長さとする。また、磁石2Aあるいは磁石2Bの対向面と磁気センサ5の中心との水平方向の距離、言い換えれば、磁石2Aと磁石2Bの対向面の間の距離の2分の1、を第2の長さとする。本例においては、第1の長さを第2の長さよりも長く設定する。 Here, the distance between the centers of the magnetic sensors 5 in the up and down direction is the first length. Further, the distance in the horizontal direction between the facing surface of the magnet 2A or the magnet 2B and the center of the magnetic sensor 5, in other words, half of the distance between the facing surfaces of the magnet 2A and the magnet 2B is set to the second length. To do. In this example, the first length is set longer than the second length.
 具体的には、水平方向の距離を距離aとした場合に、昇降方向における隣接する磁気センサ5間の距離を、距離aの2倍の間隔に設定する。 Specifically, when the distance in the horizontal direction is the distance a, the distance between the adjacent magnetic sensors 5 in the ascending / descending direction is set to an interval twice the distance a.
 また、2つの隣接する磁気センサ5の一方が、磁石2Aの昇降方向の端に位置した場合、隣接する磁気センサ5の他方が、磁石2Aの昇降方向の中央に位置するように設定する。すなわち、磁石2Aと磁石2Bの昇降方向の長さを、昇降方向における隣接する磁気センサ5の中心同士の距離の2倍、すなわち距離aの4倍の長さとする。 Also, when one of the two adjacent magnetic sensors 5 is positioned at the end of the magnet 2A in the up-and-down direction, the other of the adjacent magnetic sensors 5 is set to be positioned at the center in the up-and-down direction of the magnet 2A. That is, the length of the magnet 2A and the magnet 2B in the ascending / descending direction is set to twice the distance between the centers of the adjacent magnetic sensors 5 in the ascending / descending direction, that is, four times the distance a.
 磁気センサ5は、昇降方向に沿ってガイド部材に取り付けられる。
 なお、本例においては、3つの磁気センサ5PA~5PCが配置されて、フロート20の位置を検出する場合について説明するが、さらに複数の磁気センサが配置される場合についても同様である。
The magnetic sensor 5 is attached to the guide member along the raising / lowering direction.
In this example, the case where the three magnetic sensors 5PA to 5PC are arranged to detect the position of the float 20 will be described, but the same applies to the case where a plurality of magnetic sensors are arranged.
 なお、本例において、例えば、フロート20の位置として、一例として磁石2Aと磁石2Bの昇降方向における中心を基準位置(中心点)とする。この場合、基準位置(中心点)に磁気センサ5PBが位置している場合が示されている。 In this example, for example, as the position of the float 20, the center in the ascending / descending direction of the magnet 2A and the magnet 2B is set as a reference position (center point). In this case, the case where the magnetic sensor 5PB is located at the reference position (center point) is shown.
 また、3つの磁気センサ5PA~5PCは、各磁気センサのバイアス磁界ベクトルが水平方向と平行となるように配置されている。なお、本例においては、バイアス磁界ベクトルの向きは、磁石2Bから磁石2Aに向かう水平方向と同じ方向となる場合について説明するが、特にこれに限られず磁石2Aから磁石2Bに向かう水平方向と同じ方向となるようにしても良い。 The three magnetic sensors 5PA to 5PC are arranged so that the bias magnetic field vectors of the magnetic sensors are parallel to the horizontal direction. In this example, the case where the direction of the bias magnetic field vector is the same as the horizontal direction from the magnet 2B to the magnet 2A will be described. However, the present invention is not limited to this and is the same as the horizontal direction from the magnet 2A to the magnet 2B. You may make it become a direction.
 磁気センサ5PA~5PCの各々に示される、昇降方向の紙面左右方向の白抜き矢印は、この方向が磁気センサの最大感磁方向を示す。また、磁気センサ5PA~5PCの各々に示される、水平方向の紙面下向きの矢印は、バイアス磁石による磁界を示す。但し、フロート磁石の磁界によるバイアス磁界の回転までの記載は省略する。 The white arrows in the horizontal direction of the paper shown in each of the magnetic sensors 5PA to 5PC indicate the maximum magnetic sensing direction of the magnetic sensor. In addition, a horizontal arrow pointing downward in each of the magnetic sensors 5PA to 5PC indicates a magnetic field generated by a bias magnet. However, description up to rotation of the bias magnetic field by the magnetic field of the float magnet is omitted.
 図8は、実施形態1に基づくフロート20が昇降動作によりその位置が変化した場合の磁気センサとの関係を説明する図である。 FIG. 8 is a diagram for explaining the relationship with the magnetic sensor when the position of the float 20 based on the first embodiment is changed by the lifting / lowering operation.
 本例においては、フロート20が図8の右から左方向(一例として昇方向)に変化した場合について説明する。なお、図8において、バイアス磁界ベクトルV0のV1側やV2側への変化の図示は省略する。 In this example, a case where the float 20 changes from the right to the left in FIG. 8 (ascending direction as an example) will be described. In FIG. 8, the illustration of the change of the bias magnetic field vector V0 to the V1 side or the V2 side is omitted.
 図8(A)においては、フロート20が上昇して磁気センサ5PAに近づいてきた場合(状態S0)が示されている。 FIG. 8A shows a case where the float 20 moves up and approaches the magnetic sensor 5PA (state S0).
 磁気センサ5PAは、フロート20の磁石2A,2Bにより生じる磁界(磁力線)の影響を受ける。具体的には、磁気センサ5PAは、磁石2A,2Bの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5PAのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルの変化に従い電位差ΔVは減少する。他の磁気センサ5PB,5PCについても、磁石2A,2Bの磁力線として右から左への磁界の影響を受ける。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。 The magnetic sensor 5PA is affected by the magnetic field (lines of magnetic force) generated by the magnets 2A and 2B of the float 20. Specifically, the magnetic sensor 5PA is affected by a magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5PA changes to the bias magnetic field vector V1 side. The potential difference ΔV decreases as the bias magnetic field vector changes. The other magnetic sensors 5PB and 5PC are also affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B. The potential difference ΔV decreases as the bias magnetic field vector V1 changes.
 図8(B)においては、図8(A)からフロート20がさらに距離2a上昇した場合(状態S1)が示されている。 FIG. 8 (B) shows the case where the float 20 has further increased by the distance 2a (state S1) from FIG. 8 (A).
 磁気センサ5PAは、フロート20の磁石2A,2Bとの間の中心線上に位置する状態である。本例においては、当該状態を初期状態とする。 The magnetic sensor 5PA is in a state of being positioned on the center line between the float 20 and the magnets 2A and 2B. In this example, this state is the initial state.
 磁気センサ5PBは、磁石2A,2Bの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5PBのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルの変化に従い電位差ΔVは減少する。他の磁気センサ5PCについても、磁石2A,2Bの磁力線として右から左への磁界の影響を受ける。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。 The magnetic sensor 5PB is affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5PB changes to the bias magnetic field vector V1 side. The potential difference ΔV decreases as the bias magnetic field vector changes. The other magnetic sensor 5PC is also affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B. The potential difference ΔV decreases as the bias magnetic field vector V1 changes.
 図8(C)においては、図8(B)からフロート20がさらに距離2a上昇した場合(状態S2)が示されている。 FIG. 8 (C) shows the case where the float 20 has further increased by the distance 2a (state S2) from FIG. 8 (B).
 磁気センサ5PAは、磁石2A,2Bにより生じる磁界(磁力線)の影響を受ける。具体的には、磁気センサ5PAは、磁石2A,2Bの磁力線として左から右への磁界の影響を受ける。したがって、磁気センサ5PAのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV2側に変化する。当該バイアス磁界ベクトルV2側への変化に従い電位差Vは増加する。 The magnetic sensor 5PA is affected by the magnetic field (lines of magnetic force) generated by the magnets 2A and 2B. Specifically, the magnetic sensor 5PA is affected by a magnetic field from left to right as the magnetic lines of force of the magnets 2A and 2B. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5PA changes toward the bias magnetic field vector V2. The potential difference V increases as the bias magnetic field vector V2 changes.
 磁気センサ5PBは、磁石2A,2Bとの間の中心線上に位置する状態である。したがって、初期状態である。 The magnetic sensor 5PB is in a state of being located on the center line between the magnets 2A and 2B. Therefore, it is an initial state.
 磁気センサ5PCは、磁石2A,2Bにより生じる磁界の影響を受ける。具体的には、磁気センサ5PCは、磁石2A,2Bの磁力線として右から左への磁界の影響を受ける。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。 The magnetic sensor 5PC is affected by the magnetic field generated by the magnets 2A and 2B. Specifically, the magnetic sensor 5PC is affected by a magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B. The potential difference ΔV decreases as the bias magnetic field vector V1 changes.
 図8(D)においては、図8(C)からフロート20がさらに距離2a上昇した場合(状態S3)が示されている。 FIG. 8D shows the case where the float 20 has further increased the distance 2a from FIG. 8C (state S3).
 磁気センサ5PBは、磁石2A,2Bにより生じる磁界(磁力線)の影響を受ける。具体的には、磁気センサ5PBは、磁石2A,2Bの磁力線として左から右への磁界の影響を受ける。したがって、磁気センサ5PBのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV2側に変化する。当該バイアス磁界ベクトルV2側への変化に従い電位差ΔVは増加する。 The magnetic sensor 5PB is affected by the magnetic field (lines of magnetic force) generated by the magnets 2A and 2B. Specifically, the magnetic sensor 5PB is affected by a magnetic field from left to right as the magnetic lines of force of the magnets 2A and 2B. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5PB changes to the bias magnetic field vector V2. The potential difference ΔV increases as the bias magnetic field vector V2 changes.
 磁気センサ5PAは、磁石2A,2Bの磁力線として左から右への磁界の影響を受ける。磁界の影響は小さくなるため当該バイアス磁界ベクトルV2側への変化は小さくなる。 The magnetic sensor 5PA is affected by the magnetic field from left to right as the magnetic lines of force of the magnets 2A and 2B. Since the influence of the magnetic field is small, the change toward the bias magnetic field vector V2 is small.
 磁気センサ5PCは、磁石2A,2Bとの間の中心線上に位置する状態である。したがって、初期状態である。 The magnetic sensor 5PC is in a state located on the center line between the magnets 2A and 2B. Therefore, it is an initial state.
 図8(E)においては、図8(D)からフロート20がさらに距離2a上昇した場合(状態S4)が示されている。 FIG. 8 (E) shows the case where the float 20 has further increased by the distance 2a (state S4) from FIG. 8 (D).
 磁気センサ5PCは、磁石2A,2Bにより生じる磁界(磁力線)の影響を受ける。具体的には、磁気センサ5PCは、磁石2A,2Bの磁力線として左から右への磁界の影響を受ける。 The magnetic sensor 5PC is affected by the magnetic field (lines of magnetic force) generated by the magnets 2A and 2B. Specifically, the magnetic sensor 5PC is affected by a magnetic field from left to right as the magnetic lines of force of the magnets 2A and 2B.
 したがって、磁気センサ5PCのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV2側に変化する。当該バイアス磁界ベクトルV2側への変化に従い電位差ΔVは増加する。 Therefore, the bias magnetic field vector V0 of the magnetic sensor 5PC changes to the bias magnetic field vector V2. The potential difference ΔV increases as the bias magnetic field vector V2 changes.
 磁気センサ5PA,5PBは、磁石2A,2Bにより生じる磁界により昇降方向に磁界がかかる場合が示されている。具体的には、磁気センサ5PA,5PBは、磁石2A,2Bにより生じる磁界(磁力線)として左から右への磁界の影響を受ける。距離に従って磁界の影響は小さくなるため当該バイアス磁界ベクトルV2側への変化は小さくなる。 In the magnetic sensors 5PA and 5PB, a case where a magnetic field is applied in the up-and-down direction by the magnetic field generated by the magnets 2A and 2B is shown. Specifically, the magnetic sensors 5PA and 5PB are affected by a magnetic field from left to right as a magnetic field (lines of magnetic force) generated by the magnets 2A and 2B. Since the influence of the magnetic field is reduced according to the distance, the change to the bias magnetic field vector V2 side is reduced.
 図8(F)においては、図8(E)からフロート20がさらに距離2a上昇した場合(状態S5)が示されている。 FIG. 8 (F) shows a case where the float 20 further increases the distance 2a from FIG. 8 (E) (state S5).
 磁気センサ5PA,5PB,5PCは、磁石2A,2Bにより生じる磁界により昇降方向に磁界がかかる場合が示されている。具体的には、磁気センサ5PA,5PB,5PCは、磁石2A,2Bにより生じる磁界(磁力線)として左から右への磁界の影響を受ける。距離に従って磁界の影響は小さくなるため当該バイアス磁界ベクトルV2側への変化は小さくなる。以降同様である。 In the magnetic sensors 5PA, 5PB, and 5PC, a magnetic field is applied in the up and down direction by the magnetic field generated by the magnets 2A and 2B. Specifically, the magnetic sensors 5PA, 5PB, and 5PC are affected by a magnetic field from left to right as a magnetic field (lines of magnetic force) generated by the magnets 2A and 2B. Since the influence of the magnetic field is reduced according to the distance, the change to the bias magnetic field vector V2 side is reduced. The same applies thereafter.
 図9は、実施形態1に基づくフロート20の昇降動作に従う複数の磁気センサの出力信号波形を説明する図である。 FIG. 9 is a diagram for explaining output signal waveforms of a plurality of magnetic sensors following the lifting / lowering operation of the float 20 based on the first embodiment.
 図9に示されるように、状態S0~S5の位置関係と出力信号関係とが示されている。
 例えば、磁気センサ5PAに着目すると、磁気センサ5PAで受けた外部磁界の磁束密度に応じた信号が出力されている。
As shown in FIG. 9, the positional relationship between the states S0 to S5 and the output signal relationship are shown.
For example, focusing on the magnetic sensor 5PA, a signal corresponding to the magnetic flux density of the external magnetic field received by the magnetic sensor 5PA is output.
 フロート20が磁気センサ5PAに近づくに従って磁気センサ5PAは、磁石2A,2Bの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5PAのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。他の磁気センサ5PB,5PCについても、磁石2A,2Bの磁力線として右から左への磁界の影響を受けるためバイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。 As the float 20 approaches the magnetic sensor 5PA, the magnetic sensor 5PA is affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5PA changes to the bias magnetic field vector V1 side. The potential difference ΔV decreases as the bias magnetic field vector V1 changes. The other magnetic sensors 5PB and 5PC are also affected by the magnetic field from the right to the left as the magnetic lines of force of the magnets 2A and 2B, so that the potential difference ΔV decreases as the bias magnetic field vector V1 changes.
 状態S0においては、磁気センサ5PAで受けた外部磁界に従ってバイアス磁界ベクトルが変化して出力信号(電位差ΔV)として最小となった場合が示されている。 In the state S0, the case where the bias magnetic field vector changes according to the external magnetic field received by the magnetic sensor 5PA and becomes the minimum as an output signal (potential difference ΔV) is shown.
 状態S1においては、磁気センサ5PAは、磁石2A,2Bとの間の中心線上に位置する初期状態であり、本例においては、初期状態である場合の出力信号(電位差ΔV)の電圧を中間値(中間電圧)とする。 In the state S1, the magnetic sensor 5PA is in an initial state located on the center line between the magnets 2A and 2B. In this example, the voltage of the output signal (potential difference ΔV) in the initial state is an intermediate value. (Intermediate voltage).
 状態S2においては、磁気センサ5PAのバイアス磁界ベクトルがバイアス磁界ベクトルV2側に変化した場合に出力信号が最大となった場合が示されている。 In the state S2, the case where the output signal becomes maximum when the bias magnetic field vector of the magnetic sensor 5PA changes to the bias magnetic field vector V2 side is shown.
 状態S3においては、磁気センサ5PAは、出力信号(電位差ΔV)が低下する場合が示されている。 In the state S3, the magnetic sensor 5PA shows a case where the output signal (potential difference ΔV) decreases.
 状態S4以降においては、距離に応じて変化する外部磁界に基づいて磁気センサ5PAの出力信号が変化する場合が示されている。 After the state S4, the case where the output signal of the magnetic sensor 5PA changes based on the external magnetic field that changes according to the distance is shown.
 また、磁気センサ5PBに着目すると、磁気センサ5PAの出力信号を距離2aずらした波形が示されている。磁気センサ5PCに着目すると、磁気センサ5PBの出力信号を距離2aずらした波形が示されている。 Further, focusing on the magnetic sensor 5PB, a waveform obtained by shifting the output signal of the magnetic sensor 5PA by a distance 2a is shown. Focusing on the magnetic sensor 5PC, a waveform obtained by shifting the output signal of the magnetic sensor 5PB by a distance 2a is shown.
 図10は、図9の所定領域を拡大したイメージ図である。
 図10に示されるように、ここでは、所定領域として図9のハッチング領域の複数の磁気センサ5PA、5PBの出力信号波形が示されている。
FIG. 10 is an image view in which the predetermined area of FIG. 9 is enlarged.
As shown in FIG. 10, here, output signal waveforms of a plurality of magnetic sensors 5PA and 5PB in the hatching area of FIG. 9 are shown as the predetermined area.
 磁気センサ5PA,5PBの出力信号波形は、中間電圧を基準とした場合、後述する円状に沿って変化する外部磁界の磁気ベクトルPの水平成分(昇降方向)に模式化(近似)することが可能である。 The output signal waveforms of the magnetic sensors 5PA and 5PB can be modeled (approximated) in the horizontal component (in the up-and-down direction) of the magnetic vector P of the external magnetic field that changes along a circle, which will be described later, when the intermediate voltage is used as a reference. Is possible.
 具体的には、隣接する2つの磁気センサから出力される電気信号として位相が90°ずれた信号波形を検出することが可能である。 Specifically, it is possible to detect a signal waveform whose phase is shifted by 90 ° as an electrical signal output from two adjacent magnetic sensors.
 本例においては、位相が90°ずれているため一方の出力信号(電気信号)を正弦波(sinθ)、他方の出力信号(電気信号)を余弦波(cosθ)で表わすことが可能である。そして、2つの出力信号(電気信号)に基づいて外部磁界の磁気ベクトルPの角度θを算出する。 In this example, since the phase is shifted by 90 °, one output signal (electric signal) can be represented by a sine wave (sin θ) and the other output signal (electric signal) can be represented by a cosine wave (cos θ). Then, the angle θ of the magnetic vector P of the external magnetic field is calculated based on the two output signals (electric signals).
 本実施形態においては、複数の磁気センサの出力信号のうち隣接する2つの磁気センサから出力される電気信号を検出して外部磁界の磁気ベクトルの角度を算出し、当該算出された磁気ベクトルの角度に基づいてフロートの位置を検出する。 In the present embodiment, an electrical signal output from two adjacent magnetic sensors among the output signals of a plurality of magnetic sensors is detected to calculate the angle of the magnetic vector of the external magnetic field, and the calculated angle of the magnetic vector The position of the float is detected based on the above.
 図11は、実施形態1に基づく磁気センサ5と磁気ベクトルPとの関係を模式的に説明する図である。 FIG. 11 is a diagram schematically illustrating the relationship between the magnetic sensor 5 and the magnetic vector P based on the first embodiment.
 図11には、状態S1から状態S2に移行する場合において磁気センサ5PA,5PBに対するフロート20の昇降方向に対する磁気ベクトルが示されている。ここでは、昇降方向はX軸に沿う方向である。磁気ベクトルPは、一例として磁石2AのN極により生じる磁界の磁力線の方向を指す。 FIG. 11 shows magnetic vectors with respect to the lifting / lowering direction of the float 20 with respect to the magnetic sensors 5PA and 5PB when the state S1 is shifted to the state S2. Here, the raising / lowering direction is a direction along the X-axis. As an example, the magnetic vector P indicates the direction of the magnetic field lines of the magnetic field generated by the N pole of the magnet 2A.
 なお、説明を簡易にするために磁石2BのN極により生じる磁界の磁力線については省略しているが、磁気ベクトルPの昇降方向と垂直な成分については、当該磁石2BのN極により生じる磁界の磁力線の磁気ベクトルにより打ち消される。したがって、磁気センサ5PA,5PBに対する外部磁界としては、昇降方向成分のみとなる。上記したように当該外部磁界に従って各磁気センサ5におけるバイアス磁界ベクトルが変化する。 In order to simplify the explanation, the magnetic field lines of the magnetic field generated by the N pole of the magnet 2B are omitted, but the component perpendicular to the ascending / descending direction of the magnetic vector P is the magnetic field generated by the N pole of the magnet 2B. It is canceled out by the magnetic vector of the magnetic field lines. Therefore, the external magnetic field for the magnetic sensors 5PA and 5PB has only the up-down direction component. As described above, the bias magnetic field vector in each magnetic sensor 5 changes according to the external magnetic field.
 一例として、外部磁界である磁気ベクトルの大きさと磁束密度(電位差ΔV)とは相関関係にあるため、昇降方向に対する磁気センサ5PAで検出される出力信号はPsinθ、磁気センサ5PBで検出される出力信号は-Pcosθで表わすことが可能である。そして、2つの出力信号(電気信号)に基づいて磁気ベクトルPの角度θとして算出する。 As an example, since the magnitude of the magnetic vector that is an external magnetic field and the magnetic flux density (potential difference ΔV) are correlated, the output signal detected by the magnetic sensor 5PA in the up-and-down direction is Psinθ, and the output signal detected by the magnetic sensor 5PB Can be represented by -Pcosθ. And it calculates as angle (theta) of the magnetic vector P based on two output signals (electrical signal).
 具体的には、2つの出力信号(電気信号)に基づいてtanθ(Psinθ/|-Pcosθ|)を算出し、arctanθを計算することにより角度情報θを算出する。 Specifically, tan θ (Psin θ / | −P cos θ |) is calculated based on two output signals (electrical signals), and angle information θ is calculated by calculating arctan θ.
 なお、正弦波Psinθ、余弦波Pcosθの振幅値Pはtanθを算出することにより打ち消される。 Note that the amplitude value P of the sine wave Psinθ and the cosine wave Pcosθ is canceled by calculating tanθ.
 上記処理は、検出回路50で実行される処理である。具体的には、MPU40において上記算出処理が実行される。 The above process is a process executed by the detection circuit 50. Specifically, the calculation process is executed in the MPU 40.
 磁気ベクトルの角度情報θとして0°~90°の変化に対応してフロート20の位置は距離2a変化する。 The position of the float 20 changes by a distance 2a corresponding to a change of 0 ° to 90 ° as the angle information θ of the magnetic vector.
 例えば、フロート20の位置として、一例として磁石2A,2Bの昇降方向における中心を基準位置(中心点)とする。この場合、図8(B)の状態S1に示されるフロート20の基準位置(中心点)は、磁気センサ5PAの位置と同じ位置である。 For example, as a position of the float 20, the center in the ascending / descending direction of the magnets 2A and 2B is set as a reference position (center point) as an example. In this case, the reference position (center point) of the float 20 shown in the state S1 in FIG. 8B is the same position as the position of the magnetic sensor 5PA.
 本例においては、磁気センサ5PAと、磁気センサ5PBとの電気信号を利用して、磁気ベクトルの角度情報θを算出して、その位置関係を決定する。例えば、角度情報θが45°として算出された場合には、フロートの基準位置(中心点)は、磁気センサ5PAの位置から磁気センサ5PBの側にaの距離移動した位置にあると検出することが可能である。 In this example, the angle information θ of the magnetic vector is calculated using the electrical signals of the magnetic sensor 5PA and the magnetic sensor 5PB, and the positional relationship is determined. For example, when the angle information θ is calculated as 45 °, it is detected that the reference position (center point) of the float is at a position moved a distance a from the position of the magnetic sensor 5PA to the magnetic sensor 5PB side. Is possible.
 なお、本例においては、磁気センサ5PA,5PBの電気信号を利用して、磁気ベクトルの角度情報θを算出して、磁気センサ5PAからの位置関係を決定する場合について説明したが、磁気センサ5PBからの位置関係を決定することも可能である。同様の方式に従って、磁気センサ5PB、5PCの電気信号を利用して、磁気ベクトルの角度情報θを算出して、磁気センサ5PBからの位置関係を決定することも当然に可能である。他の方式についても同様である。 In the present example, the case where the positional information from the magnetic sensor 5PA is determined by calculating the angle information θ of the magnetic vector using the electrical signals of the magnetic sensors 5PA and 5PB has been described. It is also possible to determine the positional relationship from Of course, it is possible to determine the positional relationship from the magnetic sensor 5PB by calculating the angle information θ of the magnetic vector using the electrical signals of the magnetic sensors 5PB and 5PC according to the same method. The same applies to other systems.
 図12は、実施形態1に基づく角度情報θの精度を説明する図である。
 図12(A)には、角度θを0°~90°まで変化させた場合における、一方の出力信号(電気信号)をPcosθ、他方の出力信号(電気信号)をPsinθに設定した場合におけるarctanθと基準値との比較が示されている。
FIG. 12 is a diagram illustrating the accuracy of the angle information θ based on the first embodiment.
FIG. 12A shows arctan θ when one output signal (electrical signal) is set to Pcosθ and the other output signal (electrical signal) is set to Psinθ when the angle θ is changed from 0 ° to 90 °. And a comparison with the reference value is shown.
 シミュレーション結果として、基準値とはほとんど相違しない。
 また、基準値からのシミュレーション結果の差として求められる角度の精度としても、図12(B)に示されるように基準値に対して±10°のずれしかない場合が示されており、精度の高いフロート20の位置検出が可能である。
As a result of simulation, there is almost no difference from the reference value.
Also, as the accuracy of the angle obtained as the difference between the simulation results from the reference value, there is shown a case where there is only a deviation of ± 10 ° with respect to the reference value as shown in FIG. The position of the high float 20 can be detected.
 図13は、実施形態1に基づく液面検出装置1の検出方式を説明するフロー図である。
 図13に示されるように、所定の信号関係の組み合わせに基づく2本の信号を抽出する(ステップSP2)。本例においては、中間電圧以下から中間電圧を超えた磁気センサの信号(第1の信号)と、その時に中間電圧以下の信号を出力している、隣接する磁気センサの信号(第2の信号)の2つの信号を抽出する。なお、中間電圧は、本例においては、一例として初期状態である場合の出力信号の電圧に設定する。具体的には、図8で説明したように例えば、磁気センサ5PAが磁石2Aや磁石2Bの昇降方向の中央に位置する状態(図8(B))で、予め電圧を測定することにより、中間電圧を設定することが可能である。なお、当該中間電圧の設定の方式としては種々の方式があり、当該方式に限られず、例えば、ピーク値の最大値と最小値との間の中間値に設定するようにしても良い。
FIG. 13 is a flowchart for explaining the detection method of the liquid level detection apparatus 1 based on the first embodiment.
As shown in FIG. 13, two signals based on a predetermined combination of signal relationships are extracted (step SP2). In this example, a signal (first signal) of a magnetic sensor that exceeds the intermediate voltage from the intermediate voltage or less and a signal of the adjacent magnetic sensor (second signal) that outputs a signal of the intermediate voltage or less at that time. ) Are extracted. In this example, the intermediate voltage is set to the voltage of the output signal in the initial state as an example. Specifically, as described with reference to FIG. 8, for example, the magnetic sensor 5PA is intermediately measured by measuring the voltage in advance in the state where the magnetic sensor 5PA is positioned at the center of the magnet 2A or 2B (FIG. 8B). It is possible to set the voltage. There are various methods for setting the intermediate voltage, and the method is not limited to the method. For example, the intermediate voltage may be set to an intermediate value between the maximum value and the minimum value of the peak value.
 そして、図9で説明したハッチング領域における2本の電気信号を抽出する。
 次に、抽出した2本の信号に基づいて磁気ベクトルの角度θを計算する(ステップSP4)。具体的には、2本の電気信号のうちの一方の出力信号(電気信号)をPcosθ、他方の出力信号(電気信号)をPsinθに設定し、2つの出力信号(電気信号)に基づいて磁気ベクトルの角度θを算出する。そして、2つの出力信号(電気信号)に基づいてtanθを算出し、arctanθを計算することにより角度情報θを算出する。
Then, two electrical signals in the hatched area described with reference to FIG. 9 are extracted.
Next, the angle θ of the magnetic vector is calculated based on the two extracted signals (step SP4). Specifically, one output signal (electric signal) of the two electric signals is set to Pcosθ, and the other output signal (electric signal) is set to Psinθ, and magnetism is performed based on the two output signals (electric signals). The angle θ of the vector is calculated. Then, tan θ is calculated based on the two output signals (electrical signals), and the angle information θ is calculated by calculating arctan θ.
 次に、磁気ベクトルの角度θに基づいてフロート20の位置を算出する(ステップSP6)。算出された角度情報θに基づいてフロート20の基準位置(中心点)を磁気センサの位置から算出する。例えば、上記で説明したように角度情報θが45°として算出された場合には、フロートの基準位置(中心点)は、磁気センサ5PAの位置よりもaの距離、磁気センサ5PB側に移動した位置にあると検出することが可能である。 Next, the position of the float 20 is calculated based on the angle θ of the magnetic vector (step SP6). Based on the calculated angle information θ, the reference position (center point) of the float 20 is calculated from the position of the magnetic sensor. For example, when the angle information θ is calculated as 45 ° as described above, the reference position (center point) of the float has moved to the magnetic sensor 5PB side by a distance a from the position of the magnetic sensor 5PA. It is possible to detect that it is in position.
 そして、処理を終了する(エンド)。
 実施形態1に基づく液面検出装置1により、2つの電気信号に基づいてフロート20の精度の高い位置検出が可能である。当該方式により、信号を切り替える切替回路等を設ける必要がなく、回路構成を簡易にすることが可能であるとともに、小型化を図ることが可能である。
Then, the process ends (END).
The liquid level detection device 1 according to the first embodiment can detect the position of the float 20 with high accuracy based on two electrical signals. With this method, there is no need to provide a switching circuit for switching signals, the circuit configuration can be simplified, and the size can be reduced.
 また、環境温度の変化に追従して、磁石や磁気センサの特性が変化して出力信号が変化する可能性があるが、角度計算において2つの出力信号のtanθ(Psinθ/Pcosθ)を算出しているため環境温度に従う変動量が相殺されるため環境温度の影響による誤差を縮小し、精度の高い位置検出が可能である。 In addition, the output signal may change due to changes in the characteristics of the magnet or the magnetic sensor following the change in the environmental temperature. In the angle calculation, tanθ (Psinθ / Pcosθ) of the two output signals is calculated. Therefore, the fluctuation amount according to the environmental temperature is canceled out, so that the error due to the influence of the environmental temperature is reduced, and the position detection with high accuracy is possible.
 なお、本例においては、磁石2Aと磁気センサ5との水平方向の距離(第2の長さ)について、距離aの間隔に設定し、隣接する磁気センサ5の昇降方向の距離(第1の長さ)について距離aの2倍の間隔に設定する場合について説明した。しかし、磁石2A、2B等の寸法(図7における磁石2A、2Bの水平方向の長さや奥行き方向の長さ)を調整する等して、外部磁界の磁力を変えることにより、磁気センサ5の検出特性を高めつつ磁気センサ5間の昇降方向の距離について、適宜設計変更することが可能である。同様に、磁石2Aと磁石2Bの昇降方向の長さも、適宜設計変更することが可能である。 In this example, the distance in the horizontal direction (second length) between the magnet 2A and the magnetic sensor 5 is set to the distance a, and the distance in the ascending / descending direction of the adjacent magnetic sensor 5 (first A case has been described in which the length) is set to be twice the distance a. However, the magnetic sensor 5 can be detected by changing the magnetic force of the external magnetic field by adjusting the dimensions of the magnets 2A, 2B, etc. (the lengths of the magnets 2A, 2B in FIG. 7 in the horizontal direction and the depth direction). It is possible to appropriately change the design of the distance in the ascending / descending direction between the magnetic sensors 5 while improving the characteristics. Similarly, the lengths of the magnet 2A and the magnet 2B in the ascending / descending direction can be appropriately changed in design.
 磁気センサ5の昇降方向の距離を拡げることによりガイド部材に取り付ける磁気センサ5の個数を減らすことが可能となり(但し、磁気センサの最低個数は2個)、回路構成を簡易かつ小型化することが可能である。また、液面検出装置のコストも低減することが可能である。 It is possible to reduce the number of magnetic sensors 5 attached to the guide member by extending the distance in the up-and-down direction of the magnetic sensor 5 (however, the minimum number of magnetic sensors is two), and the circuit configuration can be simplified and miniaturized. Is possible. In addition, the cost of the liquid level detection device can be reduced.
 (実施形態2)
 実施形態2においては、精度の高いフロート20の位置を検出する液面検出装置1の構成について説明する。
(Embodiment 2)
In the second embodiment, the configuration of the liquid level detection device 1 that detects the position of the float 20 with high accuracy will be described.
 図14は、実施形態2に基づく液面検出装置1の回路構成図である。
 図14に示されるように、実施形態2に基づく液面検出装置1は、複数の磁気センサ5と、検出回路50#とを含む。本例においては、n個の磁気センサが設けられている場合が示されている。
FIG. 14 is a circuit configuration diagram of the liquid level detection device 1 based on the second embodiment.
As shown in FIG. 14, liquid level detection device 1 based on Embodiment 2 includes a plurality of magnetic sensors 5 and detection circuit 50 #. In this example, a case where n magnetic sensors are provided is shown.
 検出回路50#は、アナログ/デジタル変換回路であるA/D回路60と、パラレル/シリアル変換回路であるP/S変換回路30と、演算処理を実行するMPU(Micro-processing unit)40#とを含む。 The detection circuit 50 # includes an A / D circuit 60 that is an analog / digital conversion circuit, a P / S conversion circuit 30 that is a parallel / serial conversion circuit, and an MPU (Micro-processing unit) 40 # that executes arithmetic processing. including.
 MPU40#は、P/S変換回路30から入力される複数(n個)の磁気センサ5からの信号を演算処理してフロート20の位置を検出する。具体的には、MPU40#は、補正部45をさらに含む。 The MPU 40 # detects the position of the float 20 by performing arithmetic processing on signals from a plurality (n) of magnetic sensors 5 input from the P / S conversion circuit 30. Specifically, MPU 40 # further includes a correction unit 45.
 補正部45は、磁気センサ5からの信号を補正処理する。
 本例においては、補正した複数の磁気センサの出力信号のうち隣接する2つの磁気センサから出力される電気信号を検出して外部磁界の磁気ベクトルの角度を算出し、当該算出された磁気ベクトルの角度に基づいてフロートの位置を検出する。
The correction unit 45 corrects the signal from the magnetic sensor 5.
In this example, an electric signal output from two adjacent magnetic sensors among the corrected output signals of the plurality of magnetic sensors is detected to calculate the angle of the magnetic vector of the external magnetic field, and the calculated magnetic vector The position of the float is detected based on the angle.
 図15は、磁気センサ5PAおよび5PBの補正前および補正後の信号を説明する図である。 FIG. 15 is a diagram illustrating signals before and after correction of the magnetic sensors 5PA and 5PB.
 図15(A)には、補正前の磁気センサ5PA,5PBでそれぞれ検出された出力信号が示されている。上記で説明したように磁気センサ5PAの出力信号はPsinθ、磁気センサ5PBの出力信号は-Pcosθで表わされる。ここでは、磁気センサ5PBの出力信号を反転させた信号が示されている。 FIG. 15 (A) shows output signals detected by the magnetic sensors 5PA and 5PB before correction. As described above, the output signal of the magnetic sensor 5PA is represented by Psinθ, and the output signal of the magnetic sensor 5PB is represented by -Pcosθ. Here, a signal obtained by inverting the output signal of the magnetic sensor 5PB is shown.
 出力信号の信号波形の比が理想的なsin波とcos波の比と同じである場合には誤差なく位置検出することが可能であるが、実際の出力信号の信号波形の比と理想的なsin波とcos波の比との間にずれが生じているため角度精度にばらつきが生じることになる。 If the ratio of the signal waveform of the output signal is the same as the ideal ratio of sin wave and cos wave, it is possible to detect the position without error, but the ratio of the signal waveform of the actual output signal and the ideal ratio Since there is a deviation between the ratio of the sine wave and the cos wave, the angular accuracy varies.
 本例においては、出力信号に対して所定の係数で累乗根する補正処理を実行することによりずれを抑制して角度精度を高めることが可能である。 In this example, it is possible to suppress the deviation and improve the angle accuracy by executing a correction process that powers the output signal with a predetermined coefficient.
 本例においては、磁石2Aと磁気センサ5との水平方向の距離(第2の長さ)よりも磁気センサ5間の昇降方向の距離(第1の長さ)の方が長く設定されている。したがって、磁気センサ5間の昇降方向の距離が磁石2Aと磁気センサ5との水平方向の距離よりも長くなればなるほど移動距離に対する外部磁界の磁気ベクトルPの変化が小さくなるため理想的なsin波およびcos波の理想線よりも下に凹の信号波形が検出される。 In this example, the distance in the up-and-down direction (first length) between the magnetic sensors 5 is set to be longer than the horizontal distance (second length) between the magnet 2A and the magnetic sensor 5. . Therefore, since the change in the magnetic vector P of the external magnetic field with respect to the moving distance becomes smaller as the distance in the vertical direction between the magnetic sensors 5 becomes longer than the horizontal distance between the magnet 2A and the magnetic sensor 5, an ideal sin wave is obtained. A concave signal waveform is detected below the ideal line of the cos wave.
 したがって、下に凹の信号波形を補正するために所定の係数で累乗根する補正処理を実行する。 Therefore, in order to correct the signal waveform that is concave downward, a correction process that performs a power root with a predetermined coefficient is executed.
 図15の(B)には、補正後の磁気センサ5PA,5PBの出力信号が示されている。
 当該補正した信号に基づいて外部磁界の磁気ベクトルの角度を算出し、当該算出された磁気ベクトルの角度に基づいてフロートの位置を検出する。
FIG. 15B shows the output signals of the corrected magnetic sensors 5PA and 5PB.
The angle of the magnetic vector of the external magnetic field is calculated based on the corrected signal, and the position of the float is detected based on the calculated angle of the magnetic vector.
 図16は、実施形態2に基づく角度情報θの精度を説明する図である。
 図16(A)には、角度θを0°~90°まで変化させた場合における、一方の出力信号(電気信号)をPcosθ、他方の出力信号(電気信号)をPsinθに設定した場合におけるarctanθと基準値との比較が示されている。
FIG. 16 is a diagram for explaining the accuracy of the angle information θ based on the second embodiment.
FIG. 16A shows arctanθ when one output signal (electrical signal) is set to Pcosθ and the other output signal (electrical signal) is set to Psinθ when the angle θ is changed from 0 ° to 90 °. And a comparison with the reference value is shown.
 シミューレーション結果として、基準値とはほとんど相違しない。
 また、角度の精度としても図16(B)に示されるように基準値に対して±2°のずれしかない場合が示されており、さらに精度の高いフロート20の位置検出が可能である。
As a result of the simulation, there is almost no difference from the reference value.
Further, as shown in FIG. 16B, the accuracy of the angle shows a case where there is only a deviation of ± 2 ° from the reference value, and the position of the float 20 can be detected with higher accuracy.
 実施形態2に基づく液面検出装置1により、磁気センサ5から出力された出力信号を補正することによりフロート20の位置について精度の高い検出が可能であり、回路構成を簡易にすることが可能であるとともに、小型化を図ることが可能である。 By correcting the output signal output from the magnetic sensor 5 by the liquid level detection device 1 according to the second embodiment, the position of the float 20 can be detected with high accuracy, and the circuit configuration can be simplified. In addition, it is possible to reduce the size.
 すなわち、磁石2A、2Bと磁気センサ5を図7に示す位置関係から変更し、それによって大きくなったずれ量を、上記補正方法を実行することにより、角度精度を高めることも可能である。具体的には、例えば、図7における磁石2Aと磁石2Bの昇降方向の長さを、昇降方向における隣接する磁気センサ5の中心同士の距離の2倍の長さより小さくしたものに変更し、これに上記補正処理を実行することにより、角度精度を高めることが可能である。 That is, the angle accuracy can be improved by changing the magnets 2A and 2B and the magnetic sensor 5 from the positional relationship shown in FIG. Specifically, for example, the length of the magnet 2A and the magnet 2B in FIG. 7 is changed to a length that is smaller than twice the distance between the centers of adjacent magnetic sensors 5 in the lift direction. In addition, it is possible to improve the angle accuracy by executing the correction process.
 なお、上記補正処理においては、信号波形を補正するために所定の係数で累乗根する補正処理について説明したが、磁石2Aと磁石2Bの昇降方向の長さと、磁石2Aと磁石2Bの水平方向の長さの関係によっては、所定の係数で累乗する補正処理が有効である場合ももある。その場合は、磁気センサ(AMR)5PA,5PBの出力信号に対して所定の係数で累乗する補正処理を実行することによりずれを抑制して角度精度を高めることも可能である。すなわち、AMR出力の値を、所定の係数で累乗することにより、信号波形の比を理想的なsin波形とcos波形の比に近づけることが可能である。そして、上述した角度θの式を用いることにより、精度を高めた角度を導出することが可能となる。 In the above correction processing, correction processing has been described in which the root of the power is increased by a predetermined coefficient to correct the signal waveform. However, the length of the magnet 2A and the magnet 2B in the vertical direction and the horizontal direction of the magnet 2A and the magnet 2B are described. Depending on the relationship between the lengths, a correction process in which power is raised by a predetermined coefficient may be effective. In that case, it is also possible to improve the angular accuracy by suppressing the deviation by executing a correction process of raising the output signals of the magnetic sensors (AMR) 5PA and 5PB by a predetermined coefficient. That is, by raising the value of the AMR output by a predetermined coefficient, the signal waveform ratio can be made close to the ideal ratio of the sin waveform and the cos waveform. Then, by using the above-described equation for the angle θ, it is possible to derive an angle with improved accuracy.
 図17は、別の実施形態に基づくフロート20に取り付けられた磁石と磁気センサ5PA,5PB,5PCとのレイアウトを説明する図である。 FIG. 17 is a diagram illustrating a layout of magnets and magnetic sensors 5PA, 5PB, and 5PC attached to the float 20 according to another embodiment.
 図17に示されるように、磁石2A,2Bとは別の磁石ユニットを設ける。本例においては、別の磁石ユニットとして、磁石2E,2Fを設ける。磁石2E,2Fは、互いにS極が向き合うように配置される。当該構成についても上記と同様の方式に基づく、フロート20の位置検出が可能である。なお、磁石2A,2Eと磁石2B,2Fは、別体としてあるいは一体として形成されていても良い。 As shown in FIG. 17, a magnet unit different from the magnets 2A and 2B is provided. In this example, magnets 2E and 2F are provided as separate magnet units. Magnets 2E and 2F are arranged so that the south poles face each other. With this configuration, the position of the float 20 can be detected based on the same method as described above. Magnets 2A and 2E and magnets 2B and 2F may be formed separately or integrally.
 本実施例ではAMR素子で開示しているが、これに限らない。磁界強度に対して線形に出力し、極性を判別できる磁気センサであれば適用可能である。 In this embodiment, the AMR element is disclosed, but the present invention is not limited thereto. Any magnetic sensor that outputs linearly with respect to the magnetic field intensity and can determine the polarity is applicable.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present disclosure is shown not by the above description but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 1 液面検出装置、2 磁石、5,5PA~5PC 磁気センサ、10 ガイド、20 フロート、30 P/S変換回路、40,40# MPU、45 補正部、50,50# 検出回路、60 A/D回路。 1 liquid level detection device, 2 magnets, 5, 5 PA to 5 PC magnetic sensor, 10 guide, 20 float, 30 P / S conversion circuit, 40, 40 # MPU, 45 correction unit, 50, 50 # detection circuit, 60 A / D circuit.

Claims (9)

  1.  液面に追従して昇降するフロートと、
     前記フロートに取り付けられ、同極が対向して配置される少なくとも2つ以上の磁石と、
     前記フロートの昇降を案内する案内部材と、
     前記案内部材に取り付けられ、前記磁石の昇降位置に応じて変化する磁束密度を検知して、その磁束密度に対応する電気信号を出力する複数の磁気センサと、
     前記複数の磁気センサからそれぞれ出力される電気信号に基づいて前記フロートの位置を検出する検出回路とを備え、
     昇降方向における互いに隣接する磁気センサ間は第1の長さに設定され、
     前記昇降方向と垂直な水平方向における前記磁石と前記磁気センサとの長さは第2の長さに設定され、
     前記第1の長さは、前記第2の長さよりも長く、
     前記検出回路は、前記複数の磁気センサのうち隣接する2つの磁気センサから出力される電気信号に基づいて前記フロートの位置を検出する、液面検出装置。
    A float that moves up and down following the liquid level;
    At least two magnets attached to the float and having the same poles disposed opposite to each other;
    A guide member that guides the raising and lowering of the float;
    A plurality of magnetic sensors that are attached to the guide member, detect a magnetic flux density that changes in accordance with an elevation position of the magnet, and output an electrical signal corresponding to the magnetic flux density;
    A detection circuit that detects the position of the float based on electrical signals output from the plurality of magnetic sensors,
    A distance between adjacent magnetic sensors in the ascending / descending direction is set to a first length,
    The length of the magnet and the magnetic sensor in the horizontal direction perpendicular to the elevation direction is set to a second length,
    The first length is longer than the second length,
    The said detection circuit is a liquid level detection apparatus which detects the position of the said float based on the electrical signal output from two adjacent magnetic sensors among these magnetic sensors.
  2.  各磁気センサは、前記水平方向にバイアス磁界を印加するバイアス磁石を有する、請求項1記載の液面検出装置。 2. The liquid level detection device according to claim 1, wherein each magnetic sensor includes a bias magnet that applies a bias magnetic field in the horizontal direction.
  3.  各前記磁気センサは、前記磁石により生じる磁力線の磁気ベクトルに基づく電気信号を出力する、請求項1記載の液面検出装置。 The liquid level detection device according to claim 1, wherein each of the magnetic sensors outputs an electric signal based on a magnetic vector of a magnetic force line generated by the magnet.
  4.  前記検出回路は、前記複数の磁気センサからそれぞれ出力される電気信号のうち中間電圧との比較に基づいて隣接する2つの磁気センサから出力される電気信号を抽出する、請求項1記載の液面検出装置。 2. The liquid surface according to claim 1, wherein the detection circuit extracts an electrical signal output from two adjacent magnetic sensors based on a comparison with an intermediate voltage among electrical signals output from the plurality of magnetic sensors. Detection device.
  5.  前記検出回路は、
     前記抽出した2つの電気信号の一方を正弦波、他方を余弦波とした場合の角度情報を算出し、
     算出した角度情報に基づいて前記フロートの位置を検出する、請求項4記載の液面検出装置。
    The detection circuit includes:
    Calculate angle information when one of the two extracted electrical signals is a sine wave and the other is a cosine wave,
    The liquid level detection apparatus according to claim 4, wherein the position of the float is detected based on the calculated angle information.
  6.  各磁気センサは、
     前記バイアス磁石により生じるバイアス磁界ベクトルが印加される第1~第4の磁気抵抗素子と、
     前記バイアス磁界ベクトルの変化に基づく前記第1~第4の磁気抵抗素子の抵抗値の変化に応じた電気信号を出力する出力回路とを含む、請求項2記載の液面検出装置。
    Each magnetic sensor
    First to fourth magnetoresistive elements to which a bias magnetic field vector generated by the bias magnet is applied;
    3. The liquid level detection apparatus according to claim 2, further comprising: an output circuit that outputs an electrical signal corresponding to a change in resistance value of the first to fourth magnetoresistive elements based on a change in the bias magnetic field vector.
  7.  前記出力回路から出力された電気信号を補正する補正回路をさらに備える、請求項6記載の液面検出装置。 The liquid level detection device according to claim 6, further comprising a correction circuit for correcting an electric signal output from the output circuit.
  8.  前記補正回路は、前記出力回路から出力された電気信号に対して所定の係数で累乗根あるいは累乗する、請求項7記載の液面検出装置。 The liquid level detection device according to claim 7, wherein the correction circuit raises the electric signal output from the output circuit to a power root or a power with a predetermined coefficient.
  9.  各前記磁気センサは、磁界強度に対して線形に出力し、極性を判別可能に設けられる、請求項1~8のいずれか1項に記載の液面検出装置。 The liquid level detection device according to any one of claims 1 to 8, wherein each of the magnetic sensors is provided so as to output linearly with respect to a magnetic field intensity so that the polarity can be discriminated.
PCT/JP2017/020203 2016-06-03 2017-05-31 Liquid level detecting device WO2017209170A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-111659 2016-06-03
JP2016111659 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017209170A1 true WO2017209170A1 (en) 2017-12-07

Family

ID=60478723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020203 WO2017209170A1 (en) 2016-06-03 2017-05-31 Liquid level detecting device

Country Status (2)

Country Link
CN (1) CN107462304B (en)
WO (1) WO2017209170A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020112218A1 (en) * 2018-11-30 2020-06-04 Carrier Corporation Adaptable suppression tank level sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112268035A (en) * 2020-10-22 2021-01-26 江苏徐工工程机械研究院有限公司 Hydraulic cylinder elongation detection device
CN113701615A (en) * 2021-08-23 2021-11-26 上海米尔圣传感器有限公司 Position sensor and position detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976146A (en) * 1988-10-19 1990-12-11 Senghaas Karl A Liquid level measuring apparatus
JPH06160157A (en) * 1992-11-16 1994-06-07 Sanyo Electric Co Ltd Liquid level detecting device
JP2002511571A (en) * 1998-04-14 2002-04-16 ハネウエル・インコーポレーテッド Position detecting device having correction function for non-linear region of sensor
JP2002250652A (en) * 2001-02-27 2002-09-06 Ngk Spark Plug Co Ltd Liquid-level detector
JP2011220795A (en) * 2010-04-08 2011-11-04 Denso Corp Stroke quantity detecting apparatus
WO2016163171A1 (en) * 2015-04-06 2016-10-13 株式会社村田製作所 Liquid surface detection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB811417A (en) * 1957-07-16 1959-04-02 Gen Electric Co Ltd Improvements in or relating to liquid level indicators
CN2440691Y (en) * 2000-09-04 2001-08-01 陈学理 Magnetic induced sensor for automotive fuel gauge
CN2837801Y (en) * 2005-10-28 2006-11-15 北京联合大学 Liquid level detector
US8539828B2 (en) * 2009-01-06 2013-09-24 Veeder-Root Company Magnetostrictive liquid density detector
EP2995962A4 (en) * 2013-05-10 2017-01-18 Murata Manufacturing Co., Ltd. Magnetic current sensor and current measurement method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976146A (en) * 1988-10-19 1990-12-11 Senghaas Karl A Liquid level measuring apparatus
JPH06160157A (en) * 1992-11-16 1994-06-07 Sanyo Electric Co Ltd Liquid level detecting device
JP2002511571A (en) * 1998-04-14 2002-04-16 ハネウエル・インコーポレーテッド Position detecting device having correction function for non-linear region of sensor
JP2002250652A (en) * 2001-02-27 2002-09-06 Ngk Spark Plug Co Ltd Liquid-level detector
JP2011220795A (en) * 2010-04-08 2011-11-04 Denso Corp Stroke quantity detecting apparatus
WO2016163171A1 (en) * 2015-04-06 2016-10-13 株式会社村田製作所 Liquid surface detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020112218A1 (en) * 2018-11-30 2020-06-04 Carrier Corporation Adaptable suppression tank level sensor
CN112352140A (en) * 2018-11-30 2021-02-09 开利公司 Adaptable suppression jar level sensor

Also Published As

Publication number Publication date
CN107462304A (en) 2017-12-12
CN107462304B (en) 2020-09-11

Similar Documents

Publication Publication Date Title
JP6508332B2 (en) Liquid level detection device
EP3084456B1 (en) Magnetic field sensor and method for sensing relative location of the magnetic field sensor and a target object along a movement line
JP6116061B2 (en) Current sensor
US10508897B2 (en) Magnet device and position sensing system
JP6926209B2 (en) Distance sensor
CN105785290B (en) Magnetic field sensor
WO2017209170A1 (en) Liquid level detecting device
JP2019002835A (en) Position sensor
US7677108B2 (en) Accurate pressure sensor
WO2018043118A1 (en) Liquid-surface detection device
US8203406B2 (en) Magnetic having linear magnetic flux density
WO2019049652A1 (en) Displacement detecting device
JP4521808B2 (en) Encoder
JP2018204973A (en) Liquid level detection device
KR20140016738A (en) Linear displacement sensor and linear displacement detecting system using electromagnetic induction
JP2021105604A (en) Position detecting signal correction method and position detecting device
JP5959686B1 (en) Magnetic detector
JP2014095656A (en) Magnetic sensor device
WO2015019534A1 (en) Magnetic sensor and electrical current sensor using said magnetic sensor
JP6226091B2 (en) Current sensor
JP2009139253A (en) Position sensor
JP5012654B2 (en) Magnetic rotation sensor
KR20090011266U (en) Performance improvement of Magnetic Position Sensor And The Method
JP2007178162A (en) Magnetic line type position sensor
KR20040062912A (en) Robust Dual Electric Compass to External Magnetic Field Interference

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP