JP2012184784A - Continuously variable transmission - Google Patents

Continuously variable transmission Download PDF

Info

Publication number
JP2012184784A
JP2012184784A JP2011046734A JP2011046734A JP2012184784A JP 2012184784 A JP2012184784 A JP 2012184784A JP 2011046734 A JP2011046734 A JP 2011046734A JP 2011046734 A JP2011046734 A JP 2011046734A JP 2012184784 A JP2012184784 A JP 2012184784A
Authority
JP
Japan
Prior art keywords
lubricating oil
oil
ring
continuously variable
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011046734A
Other languages
Japanese (ja)
Other versions
JP5626032B2 (en
Inventor
Toshishige Sano
敏成 佐野
Masashi Yamamoto
真史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011046734A priority Critical patent/JP5626032B2/en
Publication of JP2012184784A publication Critical patent/JP2012184784A/en
Application granted granted Critical
Publication of JP5626032B2 publication Critical patent/JP5626032B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress lowering of power transmission efficiency while securing a supply amount of lubricating oil.SOLUTION: This continuously variable transmission includes: an input shaft 11; an output shaft 12; an input cone 21; an output cone 22; a ring 31; a ring support device 40 moving together with the ring 31 when changing a shift ratio; and an oil guide member 51 which extends from the inside of the lubricating oil in a rotating direction of the ring 31 so that an end part is located on an upper side of an oil surface of the lubricating oil in an oil reservoir part 91 while covering an outer peripheral surface and a side surface of the ring 31 with a gap C and guides the lubricating oil entering into the gap C toward an exhaust port 52 of the end part.

Description

本発明は、トルクの入力側と出力側とに各々配置された2つの円錐状の回転体(コーン)と、一方の回転体が挿入され、且つ、各回転体の夫々の傾斜面で外周面と内周面とが挟まれた環状体(リング)と、を備え、その環状体を軸線方向に移動させることで変速比を無段階に変化させる無段変速機に関する。   In the present invention, two conical rotators (cones) arranged on the torque input side and the output side, respectively, one of the rotators is inserted, and an outer peripheral surface is provided on each inclined surface of each rotator. And an annular body (ring) sandwiched between the inner circumferential surface and the inner peripheral surface, and a continuously variable transmission that continuously changes the gear ratio by moving the annular body in the axial direction.

従来、2つの円錐状の回転体(コーン)と環状体(リング)とで変速比を無段階に変化させる所謂コーンリング式の無段変速機が知られている。例えば、この種の無段変速機は、下記の特許文献1及び2に記載されている。特許文献1の無段変速機には、夫々の回転体の下部において各々の外形(傾斜面)に概ね沿うガイド(流動媒体供給体)が設けられており、回転体や環状体で潤滑油を掻き上げることで潤滑油の供給を行う技術が開示されている。また、特許文献2の無段変速機には、夫々の回転体と環状体とを収納する筐体内に潤滑油を充満させ、これにより回転体と環状体との接触部の潤滑性能と冷却性能の向上を図る技術が開示されている。   2. Description of the Related Art Conventionally, a so-called cone ring type continuously variable transmission is known in which a gear ratio is continuously changed between two conical rotating bodies (cones) and an annular body (ring). For example, this type of continuously variable transmission is described in Patent Documents 1 and 2 below. The continuously variable transmission of Patent Document 1 is provided with a guide (fluid medium supply body) that generally follows each outer shape (inclined surface) at the lower part of each rotating body. A technique for supplying lubricating oil by scraping is disclosed. Further, the continuously variable transmission of Patent Document 2 is filled with a lubricating oil in a casing that accommodates each rotating body and annular body, whereby the lubricating performance and cooling performance of the contact portion between the rotating body and the annular body are filled. A technique for improving the above is disclosed.

尚、下記の特許文献3には、歯車を収納する歯車箱に潤滑油を戻す構造であって、その歯車のリム側面の近傍に排油穴出口を設け、その排油穴出口を歯車の回転により負圧にすることで歯車箱に潤滑油を戻す技術が開示されている。   In Patent Document 3 below, the lubricating oil is returned to the gear box that houses the gear, and an oil drain hole outlet is provided in the vicinity of the rim side surface of the gear, and the oil hole outlet is used to rotate the gear. Discloses a technique for returning the lubricating oil to the gearbox by using a negative pressure.

特表2009−506279号公報Special table 2009-506279 gazette 特開2007−315599号公報JP 2007-315599 A 特開平9−152020号公報Japanese Patent Laid-Open No. 9-152020

しかしながら、特許文献1の無段変速機においては、夫々の回転体の下部側の傾斜面が軸線方向に渡って概ねガイドで覆われており、各回転体の傾斜面とガイドの壁面とが広範囲に渡って対向している。従って、この無段変速機では、その対向している傾斜面と壁面とに接触する潤滑油によって大きな引き摺り抵抗が発生し、動力伝達効率を大きく低下させてしまう虞がある。また、特許文献2の無段変速機においては、回転体や環状体等の筐体内における回転部材の全体が潤滑油で満たされているので、その全体で潤滑油による引き摺り抵抗が発生し、動力伝達効率を大きく低下させてしまう虞がある。   However, in the continuously variable transmission of Patent Document 1, the inclined surface on the lower side of each rotating body is substantially covered with a guide in the axial direction, and the inclined surface of each rotating body and the wall surface of the guide are in a wide range. Facing each other. Therefore, in this continuously variable transmission, there is a possibility that a large drag resistance is generated by the lubricating oil contacting the opposed inclined surfaces and wall surfaces, and the power transmission efficiency is greatly reduced. Further, in the continuously variable transmission of Patent Document 2, since the entire rotating member in the casing such as the rotating body or the annular body is filled with the lubricating oil, drag resistance due to the lubricating oil is generated in the whole, and the power There is a possibility that the transmission efficiency is greatly reduced.

そこで、本発明は、かかる従来例の有する不都合を改善し、動力伝達効率の低下抑制の為の潤滑構造を備えた無段変速機の提供を、その目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a continuously variable transmission having a lubrication structure for improving the disadvantages of the conventional example and suppressing a decrease in power transmission efficiency.

上記目的を達成する為、本発明は、入力軸又は出力軸の内の一方として筐体内に配置する第1回転軸と、前記入力軸又は前記出力軸の内の他方として前記筐体内に配置すると共に、前記第1回転軸と平行に配置した第2回転軸と、前記第1回転軸に同心状に配置し、且つ、前記筐体内の油貯留部の潤滑油に下部側を浸漬させた円錐状の第1回転体と、前記第2回転軸に同心状に配置した円錐状の第2回転体と、前記第1回転体の外周面の軸線方向の一部を内周面側で覆うよう当該第1回転体に対して偏心させて配置すると共に、互いに回転する前記第1回転体と前記第2回転体とに挟まれた状態で配置し、これらとの間の摩擦力により回転しながら当該第1回転体と当該第2回転体との間の動力伝達を行う環状体と、該環状体を相対回転自在に支持し、該環状体と共に軸線方向で且つ当該環状体を前記第1回転体及び前記第2回転体の夫々の傾斜面に沿わせる方向へと移動可能な環状体支持装置と、間隙を空けて前記環状体の外周面及び側面を覆いつつ、端部が前記油貯留部の潤滑油の油面よりも上方に位置するよう当該潤滑油内から前記環状体の回転方向に向けて延設し、前記間隙に入り込んだ潤滑油を前記端部の排出口に向けて案内する油案内部材と、を備えることを特徴としている。   In order to achieve the above object, the present invention provides a first rotating shaft disposed in the housing as one of the input shaft or the output shaft, and the other in the housing as the other of the input shaft or the output shaft. And a second rotating shaft arranged in parallel with the first rotating shaft, a cone arranged concentrically with the first rotating shaft, and a lower side immersed in the lubricating oil of the oil reservoir in the housing A first rotating body having a shape, a conical second rotating body disposed concentrically with the second rotating shaft, and a portion of the outer peripheral surface of the first rotating body in the axial direction so as to cover the inner peripheral surface side. While being arranged eccentrically with respect to the first rotating body, it is arranged in a state sandwiched between the first rotating body and the second rotating body that rotate with each other, while rotating by frictional force between them. An annular body that transmits power between the first rotating body and the second rotating body, and the annular body can be relatively rotated. An annular body support device that supports the annular body together with the annular body and is movable in an axial direction and along the inclined surfaces of the first rotating body and the second rotating body. Covering the outer peripheral surface and side surfaces of the annular body, extending from the lubricating oil toward the rotational direction of the annular body so that the end portion is located above the oil surface of the lubricating oil of the oil reservoir, And an oil guide member that guides the lubricating oil that has entered the gap toward the discharge port of the end portion.

ここで、前記油案内部材は、前記間隙に連通する開口を前記油貯留部の潤滑油内に有することが望ましい。   Here, it is desirable that the oil guide member has an opening communicating with the gap in the lubricating oil of the oil reservoir.

また、前記排出口の面積は、前記間隙の面積よりも狭くすることが望ましい。   In addition, it is preferable that the area of the discharge port is narrower than the area of the gap.

本発明に係る無段変速機においては、環状体と油案内部材との間の潤滑油が当該環状体の回転に伴い排出口に送られた後排出され、第1回転体及び第2回転体と環状体との接触部分に供給される。そして、この無段変速機においては、その潤滑油の供給の際に、環状体の回転のみで潤滑油を接触部分に向けて送出させることができるので、第1回転体等で掻き上げて供給するよりも潤滑油による引き摺り抵抗が軽減される。また、この無段変速機に依れば、少なくとも第1回転体の下部側を油貯留部の潤滑油に浸漬させておくことで、その環状体の回転による潤滑油の供給が可能になるので、第1回転体の全体を潤滑油に浸漬させるよりも引き摺り抵抗が軽減される。このように、本発明に係る無段変速機は、第1回転体及び第2回転体と環状体との接触部分における動力伝達性能、潤滑性能や冷却性能を確保しつつ、潤滑油による引き摺り抵抗の軽減によって動力伝達効率の低下を抑制することができる。   In the continuously variable transmission according to the present invention, the lubricating oil between the annular body and the oil guide member is sent to the outlet along with the rotation of the annular body and then discharged, and the first rotating body and the second rotating body. Supplied to the contact portion between the ring and the annular body. In this continuously variable transmission, when the lubricating oil is supplied, the lubricating oil can be sent out toward the contact portion only by the rotation of the annular body. Rather than dragging, drag resistance due to lubricating oil is reduced. Further, according to this continuously variable transmission, it is possible to supply the lubricating oil by rotating the annular body by immersing at least the lower side of the first rotating body in the lubricating oil of the oil reservoir. The drag resistance is reduced as compared with the case where the entire first rotating body is immersed in the lubricating oil. As described above, the continuously variable transmission according to the present invention has drag resistance due to lubricating oil while ensuring power transmission performance, lubrication performance, and cooling performance at the contact portion between the first rotating body and the second rotating body and the annular body. The reduction in power transmission efficiency can be suppressed by reducing this.

図1は、入力軸と出力軸を同一平面上に置いて上方から観た無段変速機の要部の概略図である。FIG. 1 is a schematic view of a main part of a continuously variable transmission as viewed from above with an input shaft and an output shaft placed on the same plane. 図2は、図1のX−X線で切った無段変速機の断面図であって、その使用状態における配置を示す図である。FIG. 2 is a cross-sectional view of the continuously variable transmission cut along the line XX in FIG. 1 and is a diagram illustrating an arrangement in a use state. 図3は、リング、リング支持装置及び潤滑油案内装置を示す斜視図である。FIG. 3 is a perspective view showing a ring, a ring support device, and a lubricant guide device. 図4は、図2の潤滑油案内装置の近傍を拡大した図である。FIG. 4 is an enlarged view of the vicinity of the lubricant guide device of FIG.

本発明に係る無段変速機は、トルクの入力側と出力側とに各々配置された2つの円錐状の回転体(コーン)と、一方の回転体が挿入され、且つ、各回転体の夫々の傾斜面で外周面と内周面とが挟まれた環状体(リング)と、を備え、その環状体を軸線方向に移動させることで変速比を無段階に変化させる所謂コーンリング式と云われるものである。   In the continuously variable transmission according to the present invention, two conical rotating bodies (cones) arranged on the torque input side and the output side, respectively, one rotating body is inserted, and each of the rotating bodies is inserted. An annular body (ring) sandwiched between the outer peripheral surface and the inner peripheral surface by an inclined surface, and a so-called cone ring type in which the gear ratio is continuously changed by moving the annular body in the axial direction. It is what is said.

従って、この無段変速機は、入力軸又は出力軸の内の一方として筐体内に配置された第1回転軸と、その内の他方として筐体内に配置された第2回転軸と、を有する。その第2回転軸は、第1回転軸と平行で、且つ、使用状態(つまり車両用の無段変速機であれば車載状態)で地面から観て当該第1回転軸と同じ高さ、この第1回転軸よりも上方又は当該第1回転軸よりも下方に配置される。   Therefore, this continuously variable transmission has the 1st rotating shaft arrange | positioned in a housing | casing as one of an input shaft or an output shaft, and the 2nd rotating shaft arrange | positioned in a housing | casing as the other of them. . The second rotating shaft is parallel to the first rotating shaft, and is the same height as the first rotating shaft when viewed from the ground in use (that is, in a vehicle-mounted state if it is a continuously variable transmission for a vehicle). It arrange | positions above the 1st rotating shaft or below the said 1st rotating shaft.

また、この無段変速機には、第1回転軸に同心状に配置し、且つ、筐体内の油貯留部の潤滑油に下部を浸漬させた円錐状の第1回転体と、第2回転軸に同心状に配置した円錐状の第2回転体と、第1回転体の外周面の軸線方向の一部を内周面側で覆うよう当該第1回転体に対して偏心させて配置すると共に、互いに回転する第1回転体と第2回転体とに挟まれた状態で配置し、これらとの間の摩擦力により回転しながら当該第1回転体と当該第2回転体との間の動力伝達を行う環状体と、が設けられている。第1回転体は、その小径側の傾斜面を第2回転体の大径側の傾斜面に近接させ、且つ、大径側の傾斜面を第2回転体の小径側の傾斜面に近接させて配置する。つまり、第1回転体と第2回転体とは、軸線方向にて逆向きに配置されている。   The continuously variable transmission also includes a conical first rotating body that is concentrically arranged on the first rotating shaft and has a lower part immersed in the lubricating oil in the oil reservoir in the housing, and a second rotation. The conical second rotating body arranged concentrically with the shaft and the first rotating body are arranged eccentrically with respect to the first rotating body so as to cover a part of the outer circumferential surface of the first rotating body in the axial direction. And arranged between the first rotating body and the second rotating body that rotate between each other, and rotating between the first rotating body and the second rotating body while being rotated by the frictional force between them. And an annular body for transmitting power. The first rotating body has an inclined surface on the small diameter side close to the inclined surface on the large diameter side of the second rotating body, and an inclined surface on the large diameter side is close to the inclined surface on the small diameter side of the second rotating body. Arrange. That is, the first rotating body and the second rotating body are arranged in the opposite directions in the axial direction.

更に、この無段変速機には、その環状体を相対回転自在に支持し、この環状体と共に軸線方向で且つ当該環状体を第1回転体及び第2回転体の夫々の傾斜面に沿わせる方向へと移動可能な環状体支持装置が設けられている。この無段変速機は、その環状体支持装置の移動に伴い環状体を同一方向へと移動させ、これにより第1回転体と第2回転体とにおける環状体との接触部分の外径比を変化させることで、変速比(第1回転体と第2回転体との間の回転比)を無段階に変化させる。   Further, the continuously variable transmission supports the annular body so as to be relatively rotatable, and causes the annular body along the inclined surfaces of the first rotating body and the second rotating body together with the annular body in the axial direction. An annular support device is provided that is movable in the direction. This continuously variable transmission moves the annular body in the same direction with the movement of the annular body support device, whereby the outer diameter ratio of the contact portion between the first rotating body and the second rotating body with the annular body is increased. By changing the speed ratio, the gear ratio (the rotation ratio between the first rotating body and the second rotating body) is changed steplessly.

ここで、この無段変速機は、間隙を空けて環状体の外周面及び側面を覆いつつ、端部が油貯留部の潤滑油の油面よりも上方に位置するよう当該潤滑油内から環状体の回転方向に向けて延設し、その間隙に入り込んだ潤滑油を前記端部の排出口に向けて案内する油案内部材を備えており、その油案内部材によって油貯留部の潤滑油を第1及び第2の回転体と環状体との接触部分に供給する。   Here, the continuously variable transmission has an annular shape from the inside of the lubricating oil so as to cover the outer peripheral surface and the side surface of the annular body with a gap, and the end portion is positioned above the oil surface of the lubricating oil in the oil reservoir. An oil guide member that extends in the direction of rotation of the body and guides the lubricating oil that has entered the gap toward the discharge port of the end, and the lubricating oil in the oil reservoir is provided by the oil guide member. It supplies to the contact part of a 1st and 2nd rotary body and an annular body.

以下に、本発明に係る無段変速機の実施例を図面に基づいて詳細に説明する。尚、この実施例によりこの発明が限定されるものではない。   Embodiments of a continuously variable transmission according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the embodiments.

[実施例]
本発明に係る無段変速機の実施例を図1から図4に基づいて説明する。
[Example]
An embodiment of a continuously variable transmission according to the present invention will be described with reference to FIGS.

図1及び図2の符号1は、本実施例の無段変速機を示す。尚、図1及び図2は、無段変速機1の要部を表している。図1は、入力軸と出力軸を同一平面上に置いて上方から観た図である。図2は、その図1のX−X線で切った断面図であるが、説明の便宜上、無段変速機1の使用状態(この例示では車載状態)を表している。ここでは、第1回転軸と第1回転体を入力側、第2回転軸と第2回転体を出力側として例示する。図2の矢印Aは、後述する動力源からの動力が伝達された際の入力コーン21やリング31の回転方向を表しており、また、図2の矢印Bは、後述する動力源からの動力が伝達された際の出力コーン22の回転方向を表している。   Reference numeral 1 in FIGS. 1 and 2 represents a continuously variable transmission according to the present embodiment. 1 and 2 show a main part of the continuously variable transmission 1. FIG. FIG. 1 shows the input shaft and the output shaft on the same plane as viewed from above. FIG. 2 is a cross-sectional view taken along the line XX of FIG. 1, and shows a use state of the continuously variable transmission 1 (in this example, a vehicle-mounted state) for convenience of explanation. Here, the first rotating shaft and the first rotating body are illustrated as the input side, and the second rotating shaft and the second rotating body are illustrated as the output side. An arrow A in FIG. 2 represents the rotation direction of the input cone 21 and the ring 31 when power from a power source described later is transmitted, and an arrow B in FIG. 2 represents power from a power source described later. Represents the rotation direction of the output cone 22 when is transmitted.

この無段変速機1は、第1回転軸としての入力軸11と、第2回転軸としての出力軸12と、第1回転体としての入力コーン21と、第2回転体としての出力コーン22と、環状体としてのリング31と、を筐体90の内部に備える。この例示では、その入力軸11と出力軸12とが各々軸受(図示略)を介して筐体90に取り付けられている。また、この例示では、入力コーン21が入力軸11に一体となって回転し得るよう取り付けられており、更に出力コーン22が出力軸12に一体となって回転し得るよう取り付けられている。   The continuously variable transmission 1 includes an input shaft 11 as a first rotating shaft, an output shaft 12 as a second rotating shaft, an input cone 21 as a first rotating body, and an output cone 22 as a second rotating body. And a ring 31 as an annular body is provided inside the housing 90. In this example, the input shaft 11 and the output shaft 12 are each attached to the housing 90 via bearings (not shown). In this example, the input cone 21 is attached so as to rotate integrally with the input shaft 11, and the output cone 22 is attached so as to rotate integrally with the output shaft 12.

この例示の出力軸12は、使用状態において入力軸11よりも高い位置に配置している。また、この例示では、入力コーン21と出力コーン22とを同一の円錐形状に成形している。故に、この例示の出力コーン22の使用状態における下端部は、入力コーン21の使用状態における下端部よりも高い位置にくる。また、入力コーン21と出力コーン22は、各々の傾斜面を対向させ、その間に所定の隙間(リング31の肉厚分)を空けて配置している。従って、その隙間は、図1に示すように、一定の間隔で入力コーン21及び出力コーン22の小径側から大径側まで続いている。   The illustrated output shaft 12 is disposed at a position higher than the input shaft 11 in the use state. In this example, the input cone 21 and the output cone 22 are formed in the same conical shape. Therefore, the lower end portion in the use state of the illustrated output cone 22 is positioned higher than the lower end portion in the use state of the input cone 21. Further, the input cone 21 and the output cone 22 are arranged with their inclined surfaces facing each other, with a predetermined gap (a thickness corresponding to the thickness of the ring 31) therebetween. Accordingly, as shown in FIG. 1, the gap continues from the small diameter side to the large diameter side of the input cone 21 and the output cone 22 at regular intervals.

リング31は、その内径が例えば入力コーン21の最大外径よりも大きくなるように成形されている。そして、このリング31は、軸線方向を一致させて挿入された入力コーン21の傾斜面と、出力コーン22の傾斜面と、によって挟持されている。また、このリング31は、その幅(換言するならば軸線方向の高さ)が入力コーン21や出力コーン22の軸線方向の長さよりも短くなっている。この無段変速機1は、このリング31を軸線方向で且つ入力コーン21及び出力コーン22の夫々の傾斜面に沿って移動させることで、入力コーン21と出力コーン22との間の回転比を変化させ、これにより変速比を変える。その際、リング31は、上記の入力コーン21と出力コーン22との間の隙間に沿って移動する。従って、リング31の内周面は、入力コーン21の傾斜面の軸線方向に対する傾斜角と同等の軸線方向に対する傾斜角を有する傾斜面になっている。同様に、リング31の外周面は、出力コーン22の傾斜面の軸線方向に対する傾斜角と同等の軸線方向に対する傾斜角を有する傾斜面になっている。   The ring 31 is formed so that its inner diameter is larger than, for example, the maximum outer diameter of the input cone 21. The ring 31 is sandwiched between the inclined surface of the input cone 21 and the inclined surface of the output cone 22 that are inserted with their axial directions aligned. The ring 31 has a width (in other words, an axial height) that is shorter than the axial lengths of the input cone 21 and the output cone 22. The continuously variable transmission 1 moves the ring 31 in the axial direction and along the inclined surfaces of the input cone 21 and the output cone 22 so that the rotation ratio between the input cone 21 and the output cone 22 is increased. To change the gear ratio. At that time, the ring 31 moves along the gap between the input cone 21 and the output cone 22 described above. Therefore, the inner peripheral surface of the ring 31 is an inclined surface having an inclination angle with respect to the axial direction equivalent to the inclination angle with respect to the axial direction of the inclined surface of the input cone 21. Similarly, the outer peripheral surface of the ring 31 is an inclined surface having an inclination angle with respect to the axial direction equivalent to the inclination angle with respect to the axial direction of the inclined surface of the output cone 22.

このリング31は、環状体支持装置としてのリング支持装置40に支持されている(図2及び図3)。そのリング支持装置40は、内径がリング31の最大外径よりも大きく、且つ、幅がリング31の幅よりも広い円弧状の主体41を備える。この例示の主体41は、略180度の円弧状の部材であり、使用状態にて一端が上方に位置し且つ下端が下方に位置するようリング31と同心状に配置する。尚、この主体41は、必ずしもリング31と同心の円弧状の部材である必要はなく、また、リング31と同心状に配置された部材に限定するものでもない。例えば、この主体41は、その円弧状の部材をリング31に対し偏心させて配置してもよく、また、楕円状の部材であってもよい。また、このリング支持装置40には、リング31を双方の側面から支持する支持部材42が設けられている。その支持部材42は、円筒状又は円柱状に成形し、その軸線方向をリング31の回転中心軸と直交させるよう主体41に配置する。ここでは、主体41の両端に2つずつ支持部材42が配設されており、その2つずつの支持部材42によってリング31の双方の側面から挟み込む。支持部材42は、主体41に対して自らの軸線を中心にして回転できるよう取り付けられており、リング31の回転と共に当該リング31の側面上を転動することができる。   The ring 31 is supported by a ring support device 40 as an annular body support device (FIGS. 2 and 3). The ring support device 40 includes an arcuate main body 41 whose inner diameter is larger than the maximum outer diameter of the ring 31 and whose width is wider than the width of the ring 31. The illustrated main body 41 is an arc-shaped member of approximately 180 degrees, and is arranged concentrically with the ring 31 so that one end is located above and the lower end is located below in the used state. The main body 41 is not necessarily an arc-shaped member concentric with the ring 31, and is not limited to a member arranged concentrically with the ring 31. For example, the main body 41 may be arranged with its arcuate member eccentric with respect to the ring 31 or may be an elliptical member. The ring support device 40 is provided with a support member 42 that supports the ring 31 from both sides. The support member 42 is formed into a cylindrical shape or a columnar shape, and is disposed on the main body 41 so that the axial direction thereof is orthogonal to the rotation center axis of the ring 31. Here, two support members 42 are disposed at both ends of the main body 41, and are sandwiched from both side surfaces of the ring 31 by the two support members 42. The support member 42 is attached to the main body 41 so as to be rotatable about its own axis, and can roll on the side surface of the ring 31 as the ring 31 rotates.

リング支持装置40は、図示しない駆動部によって、軸線方向で且つ入力コーン21及び出力コーン22の夫々の傾斜面に沿って往復移動できるように筐体90に対して保持されている。その駆動部は、例えば、電動モータ等の駆動源の動力により主体41を往復移動させることで、リング支持装置40と共にリング31も往復移動させる。   The ring support device 40 is held with respect to the housing 90 so as to reciprocate in the axial direction and along the inclined surfaces of the input cone 21 and the output cone 22 by a drive unit (not shown). The drive unit reciprocates the ring 31 together with the ring support device 40 by reciprocating the main body 41 with the power of a drive source such as an electric motor.

この無段変速機1は、例えば車両に搭載され、入力軸11をエンジンや電動モータ等の動力源(図示略)に繋ぐと共に、出力軸12を駆動輪側(図示略)に繋ぐ。この無段変速機1においては、その動力源の動力が入力軸11に入力されると、その入力トルクが入力コーン21に伝わり、入力コーン21の傾斜面との間の潤滑油の油膜を介してリング31の内周面に伝達される。そのリング31は、入力コーン21の傾斜面との間の摩擦力(トラクション力)により回転し、外周面との間の潤滑油の油膜を介してトルクを出力コーン22の傾斜面に伝える。その出力コーン22は、リング31の外周面との間の摩擦力により回転する。この出力コーン22のトルクは、出力軸12に伝わり、駆動輪側へと伝達される。   The continuously variable transmission 1 is mounted on a vehicle, for example, and connects an input shaft 11 to a power source (not shown) such as an engine or an electric motor, and connects an output shaft 12 to a drive wheel side (not shown). In this continuously variable transmission 1, when the power of the power source is input to the input shaft 11, the input torque is transmitted to the input cone 21, and through an oil film of lubricating oil between the inclined surface of the input cone 21. Is transmitted to the inner peripheral surface of the ring 31. The ring 31 is rotated by a frictional force (traction force) between the input cone 21 and the inclined surface of the input cone 21, and transmits torque to the inclined surface of the output cone 22 via an oil film of lubricating oil between the ring 31 and the outer peripheral surface. The output cone 22 is rotated by a frictional force with the outer peripheral surface of the ring 31. The torque of the output cone 22 is transmitted to the output shaft 12 and transmitted to the drive wheel side.

このように、この無段変速機1は、潤滑油のせん断応力によって動力伝達を行う変速機であり、その潤滑油(所謂トラクション油)を入力コーン21及び出力コーン22とリング31との接触部分(以下、「動力伝達部」と云う。)に供給する必要がある。これが為、この無段変速機1の筐体90には、その潤滑油を貯留する為の油貯留部91が使用状態における下部に形成されている。その油貯留部91の潤滑油には、入力コーン21を浸漬させる一方、出力コーン22を浸漬させない。この油貯留部91の潤滑油の油面の位置により、出力コーン22においては、油貯留部91の潤滑油による引き摺り抵抗が発生しない。従って、この無段変速機1は、出力コーン22におけるトルクの伝達効率の低下を抑えることができる。   As described above, the continuously variable transmission 1 is a transmission that transmits power by the shear stress of the lubricating oil. The lubricating oil (so-called traction oil) is used as the contact portion between the input cone 21 and the output cone 22 and the ring 31. (Hereinafter referred to as “power transmission unit”). For this reason, the housing 90 of the continuously variable transmission 1 is formed with an oil storage portion 91 for storing the lubricating oil at a lower portion in the use state. While the input cone 21 is immersed in the lubricating oil in the oil reservoir 91, the output cone 22 is not immersed. Due to the position of the oil surface of the lubricating oil in the oil reservoir 91, drag resistance due to the lubricating oil in the oil reservoir 91 does not occur in the output cone 22. Therefore, the continuously variable transmission 1 can suppress a decrease in torque transmission efficiency in the output cone 22.

この無段変速機1においては、入力コーン21やリング31の回転に伴い油貯留部91の潤滑油を上方へと掻き上げることが可能である。しかしながら、この無段変速機1は、リング31の幅が狭いので、リング31の回転に伴う油貯留部91の潤滑油による引き摺り抵抗を軽減できる反面、動力伝達部に対して、動力伝達、潤滑や冷却に必要な量の潤滑油が供給され難くなっている可能性がある。   In the continuously variable transmission 1, it is possible to scoop up the lubricating oil in the oil reservoir 91 upward as the input cone 21 and the ring 31 rotate. However, since the continuously variable transmission 1 can reduce the drag resistance due to the lubricating oil of the oil reservoir 91 accompanying the rotation of the ring 31 because the ring 31 has a narrow width, power transmission and lubrication to the power transmission unit are possible. There is a possibility that it is difficult to supply the amount of lubricating oil necessary for cooling.

そこで、この無段変速機1には、その動力伝達部に対して油貯留部91の潤滑油を案内する潤滑油案内装置が設けられている。   Therefore, the continuously variable transmission 1 is provided with a lubricating oil guide device that guides the lubricating oil in the oil reservoir 91 to the power transmission unit.

この例示の潤滑油案内装置は、油案内部材51を備える(図2−図4)。その油案内部材51は、間隙Cを空けてリング31の外周面と夫々の側面とを覆いつつ、一方の端部が油貯留部91の潤滑油の油面よりも上方に位置するよう当該潤滑油内からリング31の回転方向に向けて延設したものであって、そのリング31との間隙Cに入り込んだ潤滑油を当該リング31の回転と共に上記の端部の排出口52に向けて案内する部材である。尚、その間隙Cについては、リング31の外周面と油案内部材51の内周面との間の大きさに、リング31の側面と油案内部材51の側面との間の大きさを一致させてもよく、その夫々の大きさを変えてもよい。   This exemplary lubricant guide device includes an oil guide member 51 (FIGS. 2 to 4). The oil guide member 51 covers the outer circumferential surface and the respective side surfaces of the ring 31 with a gap C therebetween, and the lubrication oil 51 is lubricated so that one end is positioned above the oil surface of the lubricating oil in the oil reservoir 91. Lubricating oil that extends from the oil in the direction of rotation of the ring 31 and that has entered the gap C between the ring 31 and the rotation of the ring 31 is guided toward the discharge port 52 at the end. It is a member to do. For the gap C, the size between the outer peripheral surface of the ring 31 and the inner peripheral surface of the oil guide member 51 is matched with the size between the side surface of the ring 31 and the side surface of the oil guide member 51. You may change the size of each.

その端部に案内された潤滑油は、リング31と油案内部材51との間に形成された排出口52から排出される。この潤滑油案内装置は、その排出された潤滑油を動力伝達部に供給するものでもある。その為に、排出口52(つまり油案内部材51の一方の端部)は、その排出された潤滑油が動力伝達部に届く高さに設ける。その高さは、リング31の外径や回転数、リング31と油案内部材51との間の間隙Cの大きさ、潤滑油の粘度等の様々な要件により決まるものであり、無段変速機1の仕様や搭載対象の車両の仕様等に応じた実験やシミュレーションにより設定する。例えば、排出口52の高さは、入力コーン21の回転中心軸よりも下部側に設けることが好ましい。これにより、この無段変速機1においては、この排出口52の高さよりも低い位置に油貯留部91の潤滑油の油面高さが調整されるので、その潤滑油に入力コーン21の下部側のみを浸漬させることができる。従って、この無段変速機1は、入力コーン21の全体が油貯留部91の潤滑油に浸かっている訳ではないので、入力コーン21やリング31の回転に伴う油貯留部91の潤滑油による引き摺り抵抗を可能な限り軽減できる。ここで、この例示の排出口52は、リング31が入力コーン21の大径側に位置しているときに、地面から起算して最も高くなっている。これが為、排出口52の高さと油貯留部91の潤滑油の油面の高さは、リング31が入力コーン21の大径側に位置しているときを基準にして設定することが好ましい。   The lubricating oil guided to the end portion is discharged from a discharge port 52 formed between the ring 31 and the oil guide member 51. This lubricating oil guide device also supplies the discharged lubricating oil to the power transmission unit. Therefore, the discharge port 52 (that is, one end portion of the oil guide member 51) is provided at a height at which the discharged lubricating oil reaches the power transmission unit. The height is determined by various requirements such as the outer diameter and rotation speed of the ring 31, the size of the gap C between the ring 31 and the oil guide member 51, the viscosity of the lubricating oil, and the like. It is set by experiment or simulation according to the specification of 1 or the specification of the vehicle to be mounted. For example, the height of the discharge port 52 is preferably provided below the rotation center axis of the input cone 21. Thereby, in this continuously variable transmission 1, since the oil level of the lubricating oil in the oil reservoir 91 is adjusted to a position lower than the height of the discharge port 52, the lower part of the input cone 21 is added to the lubricating oil. Only the side can be immersed. Therefore, the continuously variable transmission 1 does not mean that the entire input cone 21 is immersed in the lubricating oil in the oil reservoir 91, so the oil is stored in the oil reservoir 91 due to the rotation of the input cone 21 and the ring 31. Drag resistance can be reduced as much as possible. Here, when the ring 31 is located on the large-diameter side of the input cone 21, the illustrated discharge port 52 is highest from the ground. For this reason, it is preferable to set the height of the discharge port 52 and the height of the oil surface of the lubricating oil in the oil reservoir 91 with reference to the time when the ring 31 is located on the large diameter side of the input cone 21.

この例示において、油案内部材51は、その他方の端部(油貯留部91の潤滑油に浸漬している端部)をリング支持装置40に取り付けている。故に、この油案内部材51は、リング31やリング支持装置40と共に移動することができる。   In this illustration, the oil guide member 51 has the other end (the end immersed in the lubricating oil of the oil reservoir 91) attached to the ring support device 40. Therefore, the oil guide member 51 can move together with the ring 31 and the ring support device 40.

さて、リング31と油案内部材51との間の間隙Cは、その隙間が大きければ潤滑油が直接入り込み易いが、その反面、その隙間が大き過ぎると、間隙Cの潤滑油の油量が多くなり、リング31の回転に伴う間隙Cの潤滑油による引き摺り抵抗が大きくなる。一方、この間隙Cは、その隙間が小さければ、間隙Cの潤滑油の油量が少なく、リング31の回転に伴う間隙Cの潤滑油による引き摺り抵抗が小さくなるが、その反面、その隙間が小さ過ぎると、潤滑油が直接入り込み難いものとなる。   The gap C between the ring 31 and the oil guide member 51 is easy to directly enter the lubricating oil if the gap is large. On the other hand, if the gap is too large, the amount of lubricating oil in the gap C is large. Thus, drag resistance due to the lubricating oil in the gap C accompanying the rotation of the ring 31 increases. On the other hand, if the gap C is small, the amount of lubricating oil in the gap C is small, and the drag resistance due to the lubricating oil in the gap C accompanying the rotation of the ring 31 is small, but on the other hand, the gap is small. If it is too long, it will be difficult for the lubricating oil to enter directly.

そこで、本実施例においては、先ず、その間隙Cの潤滑油による引き摺り抵抗を軽減させるべく、間隙Cの大きさが小さくなるように油案内部材51を成形する。そして、その間隙Cへの潤滑油の流入性については、油案内部材51に形成した開口53によって対応する(図2−図4)。   Therefore, in this embodiment, first, the oil guide member 51 is formed so that the size of the gap C is reduced in order to reduce drag resistance due to the lubricating oil in the gap C. And the inflow property of the lubricating oil into the gap C corresponds to the opening 53 formed in the oil guide member 51 (FIGS. 2 to 4).

その開口53は、油貯留部91の潤滑油をリング31と油案内部材51との間の間隙Cに導く為の潤滑油の供給口である。この開口53は、油案内部材51の外周面において潤滑油に浸漬している部分に形成し、その油案内部材51における外周面側と内周面側(間隙C側)とを連通させる。この例示では、リング支持装置40との接続側に形成している。   The opening 53 is a lubricant supply port for guiding the lubricant in the oil reservoir 91 to the gap C between the ring 31 and the oil guide member 51. The opening 53 is formed in a portion immersed in the lubricating oil on the outer peripheral surface of the oil guide member 51, and the outer peripheral surface side and the inner peripheral surface side (gap C side) of the oil guide member 51 are communicated. In this example, the ring support device 40 is formed on the connection side.

この開口53は、リング31の回転によって発生した負圧を利用して、間隙C内に油貯留部91の潤滑油を導入するものである。従って、油案内部材51の内周面において開口53が形成されている部分には、リング31の外周面に向けて突出させた突起部54を設ける(図2及び図4)。これにより、その突起部54とリング31の外周面との間隔が狭くなるので、リング31が回転しているときには、その間で潤滑油の流速が増加し、開口53の間隙C側で負圧が発生する。油貯留部91の潤滑油は、そのリング31の回転による負圧に導かれて開口53から間隙C内へと吸い込まれる。吸い込まれた潤滑油は、リング31の回転によって排出口52に向けて吸い上げられる。ここで、突起部54は、負圧の発生を目的にして設けるものなので、開口53の部分が最も突出量の多い山型等の形状にすればよく、これにより最も突出量の多い部分以外の潤滑油の流動が妨げられ難くなる。   The opening 53 is for introducing the lubricating oil in the oil reservoir 91 into the gap C by using the negative pressure generated by the rotation of the ring 31. Therefore, a protrusion 54 that protrudes toward the outer peripheral surface of the ring 31 is provided in a portion where the opening 53 is formed on the inner peripheral surface of the oil guide member 51 (FIGS. 2 and 4). As a result, the gap between the projection 54 and the outer peripheral surface of the ring 31 is narrowed. Therefore, when the ring 31 is rotating, the flow rate of the lubricating oil increases between them, and negative pressure is generated on the gap C side of the opening 53. appear. The lubricating oil in the oil reservoir 91 is guided by the negative pressure due to the rotation of the ring 31 and is sucked into the gap C from the opening 53. The sucked lubricating oil is sucked up toward the discharge port 52 by the rotation of the ring 31. Here, since the projection 54 is provided for the purpose of generating negative pressure, the portion of the opening 53 may be formed in a mountain shape or the like having the largest amount of protrusion. The flow of the lubricating oil is difficult to be hindered.

ところで、上述したように、この無段変速機1においては、排出された潤滑油が動力伝達部へと供給されるように、排出口52の高さを設定している。これが為、この無段変速機1では、リング31が低回転の場合も考慮に入れて排出口52の高さが設定される。つまり、リング31が低回転の場合、間隙C内の潤滑油の流速が低く、その動力伝達部に潤滑油が届かない可能性があるので、排出口52の高さは、その点を考慮して、高めに設定しておく必要がある。しかしながら、排出口52を高い位置に設けた場合は、油貯留部91の潤滑油の油面を上方へと上げておくことが排出口52への潤滑油の流動を誘う上では好ましいのだが、これにより、油貯留部91の潤滑油への入力コーン21やリング31の浸漬量が増えるので、引き摺り抵抗の増加を招き好ましくない。   By the way, as described above, in the continuously variable transmission 1, the height of the discharge port 52 is set so that the discharged lubricating oil is supplied to the power transmission unit. For this reason, in the continuously variable transmission 1, the height of the discharge port 52 is set in consideration of the case where the ring 31 rotates at a low speed. That is, when the ring 31 is rotating at a low speed, the flow rate of the lubricating oil in the gap C is low, and there is a possibility that the lubricating oil may not reach the power transmission portion. It is necessary to set it higher. However, when the discharge port 52 is provided at a high position, it is preferable to raise the oil level of the lubricating oil in the oil reservoir 91 in order to invite the flow of the lubricating oil to the discharge port 52. As a result, the amount of the input cone 21 and the ring 31 immersed in the lubricating oil of the oil storage unit 91 increases, which causes an increase in drag resistance, which is not preferable.

そこで、この無段変速機1においては、排出口52の面積を間隙Cの面積よりも狭め、この排出口52から排出される潤滑油の流速を上昇させることで、排出された潤滑油の飛翔距離を増加させる。これにより、この無段変速機1では、排出口52の面積を狭める前と比較して、排出口52から排出された潤滑油が動力伝達部に届き易くなる。従って、この無段変速機1は、リング31が低回転の場合でも、その動力伝達部に対して潤滑油を確実に供給することができるようになる。また、この無段変速機1は、リング31が低回転の場合の動力伝達部への潤滑油の供給量を確保した上で、排出口52の高さを下げることもできるので、油貯留部91の潤滑油の油面の低下による引き摺り抵抗の軽減を図ることも可能である。尚、排出口52の面積や間隙Cの面積とは、例えば径方向(リング31や油案内部材51の径方向)に切った断面の面積のことを云う。   Therefore, in the continuously variable transmission 1, the area of the discharge port 52 is narrower than the area of the gap C, and the flow rate of the lubricant discharged from the discharge port 52 is increased, so that the discharged lubricant oil flies. Increase distance. Thereby, in this continuously variable transmission 1, the lubricating oil discharged | emitted from the discharge port 52 becomes easy to reach a power transmission part compared with before narrowing the area of the discharge port 52. FIG. Therefore, the continuously variable transmission 1 can reliably supply the lubricating oil to the power transmission portion even when the ring 31 is rotating at a low speed. Further, the continuously variable transmission 1 can reduce the height of the discharge port 52 after securing the amount of lubricating oil supplied to the power transmission unit when the ring 31 is rotating at a low speed. It is also possible to reduce drag resistance due to a decrease in the oil level of the 91 lubricant. The area of the discharge port 52 and the area of the gap C are, for example, the area of a cross section cut in the radial direction (the radial direction of the ring 31 and the oil guide member 51).

ここで、その排出口52の縮小は、例えば、油案内部材51の排出口52側の端部をリング31の外周面側に傾倒させたり、その端部の内周面にリング31の外周面に向けた突出部を設けたりすることで絞り部を形成し、これにより実現させればよい。   Here, the reduction of the discharge port 52 is, for example, tilting the end portion of the oil guide member 51 on the discharge port 52 side toward the outer peripheral surface side of the ring 31, or the outer peripheral surface of the ring 31 on the inner peripheral surface of the end portion. For example, a narrowed portion may be formed by providing a protruding portion toward the surface, and this may be realized.

以上示したように、この無段変速機1は、潤滑油案内装置の油案内部材51によって、油貯留部91の潤滑油をリング31の回転に伴う負圧で開口53から当該リング31との間の間隙Cに流入させ、その間隙Cの潤滑油を排出口52から動力伝達部に送ることができる。更に、この無段変速機1においては、排出口52を絞って潤滑油の流速を上げているので、リング31が低回転のときも、排出口52から排出された潤滑油を動力伝達部に供給することができる。従って、この無段変速機1は、その動力伝達部における動力伝達性能、潤滑性能や冷却性能を得ることができる。   As described above, the continuously variable transmission 1 is configured such that the oil guide member 51 of the lubricant guide device causes the oil in the oil reservoir 91 to flow from the opening 53 to the ring 31 with a negative pressure accompanying the rotation of the ring 31. The lubricating oil in the gap C can be sent from the discharge port 52 to the power transmission unit. Further, in the continuously variable transmission 1, since the flow rate of the lubricating oil is increased by narrowing the discharge port 52, the lubricating oil discharged from the discharge port 52 is used as a power transmission unit even when the ring 31 is rotating at a low speed. Can be supplied. Therefore, this continuously variable transmission 1 can obtain power transmission performance, lubrication performance and cooling performance in the power transmission section.

また、この無段変速機1においては、負圧を利用して間隙Cに潤滑油を吸い入れることができるので、その間隙Cに過剰な油量の潤滑油を溜めておく必要が無く、この間隙Cの潤滑油による引き摺り抵抗の軽減が可能になる。その際には、リング31の回転のみで潤滑油を間隙Cに引き入れ、且つ、排出口52に導いて動力伝達部へと送ることができるので、潤滑油を入力コーン21等の掻き上げにより送るよりも引き摺り抵抗が軽減されている。従って、油案内部材51は、リング31だけを覆えばよいので、その小型化も可能になる。また更に、この無段変速機1においては、排出口52の絞り部による潤滑油の飛翔距離の増加に伴い、油貯留部91の潤滑油の油面を低下させることができるので、その油貯留部91の潤滑油の油量の低減が可能になる。そして、更に、この無段変速機1は、その油面の低下に伴い、入力コーン21やリング31の下部側のみを油貯留部91の潤滑油に浸漬させればよく、その潤滑油に出力コーン22を浸漬させずとも済むので、油貯留部91の潤滑油による引き摺り抵抗が軽減される。   Further, in the continuously variable transmission 1, since the lubricating oil can be sucked into the gap C using negative pressure, it is not necessary to store an excessive amount of lubricating oil in the gap C. The drag resistance due to the lubricating oil in the gap C can be reduced. At that time, the lubricating oil can be drawn into the gap C only by the rotation of the ring 31 and can be guided to the discharge port 52 and sent to the power transmission unit, so that the lubricating oil is sent by scraping the input cone 21 and the like. Drag resistance is reduced more than. Accordingly, the oil guide member 51 only needs to cover the ring 31, and thus the size thereof can be reduced. Furthermore, in this continuously variable transmission 1, the oil level of the lubricating oil in the oil reservoir 91 can be lowered as the flying distance of the lubricating oil by the throttle portion of the discharge port 52 increases, so that the oil storage The amount of lubricating oil in the portion 91 can be reduced. Further, the continuously variable transmission 1 only needs to immerse only the lower side of the input cone 21 and the ring 31 in the lubricating oil in the oil reservoir 91 as the oil level decreases, and outputs to the lubricating oil. Since it is not necessary to immerse the cone 22, drag resistance due to the lubricating oil in the oil reservoir 91 is reduced.

このように、本実施例の無段変速機1は、動力伝達部における動力伝達性能、潤滑性能や冷却性能を確保しつつ、潤滑油による引き摺り抵抗の軽減によって動力伝達効率の低下を抑制することができる。   As described above, the continuously variable transmission 1 according to the present embodiment suppresses a decrease in power transmission efficiency by reducing drag resistance due to lubricating oil while ensuring power transmission performance, lubrication performance, and cooling performance in the power transmission section. Can do.

1 無段変速機
11 入力軸
12 出力軸
21 入力コーン
22 出力コーン
31 リング
40 リング支持装置
51 油案内部材
52 排出口
53 開口
54 突起部
90 筐体
91 油貯留部
C 間隙
DESCRIPTION OF SYMBOLS 1 Continuously variable transmission 11 Input shaft 12 Output shaft 21 Input cone 22 Output cone 31 Ring 40 Ring support device 51 Oil guide member 52 Discharge port 53 Opening 54 Protruding part 90 Housing 91 Oil storage part C Gap

Claims (3)

入力軸又は出力軸の内の一方として筐体内に配置する第1回転軸と、
前記入力軸又は前記出力軸の内の他方として前記筐体内に配置すると共に、前記第1回転軸と平行に配置した第2回転軸と、
前記第1回転軸に同心状に配置し、且つ、前記筐体内の油貯留部の潤滑油に下部側を浸漬させた円錐状の第1回転体と、
前記第2回転軸に同心状に配置した円錐状の第2回転体と、
前記第1回転体の外周面の軸線方向の一部を内周面側で覆うよう当該第1回転体に対して偏心させて配置すると共に、互いに回転する前記第1回転体と前記第2回転体とに挟まれた状態で配置し、これらとの間の摩擦力により回転しながら当該第1回転体と当該第2回転体との間の動力伝達を行う環状体と、
該環状体を相対回転自在に支持し、該環状体と共に軸線方向で且つ当該環状体を前記第1回転体及び前記第2回転体の夫々の傾斜面に沿わせる方向へと移動可能な環状体支持装置と、
間隙を空けて前記環状体の外周面及び側面を覆いつつ、端部が前記油貯留部の潤滑油の油面よりも上方に位置するよう当該潤滑油内から前記環状体の回転方向に向けて延設し、前記間隙に入り込んだ潤滑油を前記端部の排出口に向けて案内する油案内部材と、
を備えたことを特徴とする無段変速機。
A first rotating shaft disposed in the housing as one of the input shaft or the output shaft;
A second rotating shaft disposed in the casing as the other of the input shaft or the output shaft and disposed in parallel with the first rotating shaft;
A conical first rotating body disposed concentrically on the first rotating shaft, and having the lower side immersed in the lubricating oil of the oil reservoir in the housing;
A conical second rotating body disposed concentrically with the second rotating shaft;
The first rotating body and the second rotating body are arranged so as to be eccentric with respect to the first rotating body so as to cover a part of the outer peripheral surface of the first rotating body in the axial direction on the inner peripheral surface side. An annular body that is arranged in a state sandwiched between the body and that transmits power between the first rotating body and the second rotating body while rotating by friction between them;
An annular body that supports the annular body in a relatively rotatable manner and is movable in the axial direction together with the annular body and in a direction in which the annular body is along the inclined surfaces of the first rotating body and the second rotating body. A support device;
Covering the outer peripheral surface and the side surface of the annular body with a gap, and from the inside of the lubricating oil toward the rotational direction of the annular body so that the end portion is located above the oil surface of the lubricating oil of the oil reservoir. An oil guide member that extends and guides the lubricating oil that has entered the gap toward the outlet of the end;
A continuously variable transmission comprising:
前記油案内部材は、前記間隙に連通する開口を前記油貯留部の潤滑油内に有することを特徴とした請求項1記載の無段変速機。   The continuously variable transmission according to claim 1, wherein the oil guide member has an opening communicating with the gap in the lubricating oil of the oil reservoir. 前記排出口の面積は、前記間隙の面積よりも狭くすることを特徴とした請求項1又は2に記載の無段変速機。   The continuously variable transmission according to claim 1 or 2, wherein an area of the discharge port is smaller than an area of the gap.
JP2011046734A 2011-03-03 2011-03-03 Continuously variable transmission Expired - Fee Related JP5626032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011046734A JP5626032B2 (en) 2011-03-03 2011-03-03 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011046734A JP5626032B2 (en) 2011-03-03 2011-03-03 Continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2012184784A true JP2012184784A (en) 2012-09-27
JP5626032B2 JP5626032B2 (en) 2014-11-19

Family

ID=47015046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011046734A Expired - Fee Related JP5626032B2 (en) 2011-03-03 2011-03-03 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5626032B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121659U (en) * 1989-03-17 1990-10-03
JPH0579108U (en) * 1992-03-31 1993-10-26 スズキ株式会社 Automotive transmission
JP2000065172A (en) * 1998-08-18 2000-03-03 Ulrich Rohs Conical friction ring transmission and control method for transmission ratio of conical transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121659U (en) * 1989-03-17 1990-10-03
JPH0579108U (en) * 1992-03-31 1993-10-26 スズキ株式会社 Automotive transmission
JP2000065172A (en) * 1998-08-18 2000-03-03 Ulrich Rohs Conical friction ring transmission and control method for transmission ratio of conical transmission

Also Published As

Publication number Publication date
JP5626032B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5590230B2 (en) Lubricating oil supply device for power transmission device
US20150323058A1 (en) Continuously variable transmission
JP5621872B2 (en) Continuously variable transmission
US10871091B2 (en) Power system
WO2015186467A1 (en) In-wheel motor drive device
JP6137317B2 (en) Drive transmission device
JP5315279B2 (en) Reducer and swivel device
JP7124955B2 (en) left and right wheel drive
JP2015140682A (en) Turbocompressor
JP2008069962A (en) Power transmitting device
US20140314608A1 (en) Internal-gear-type oil pump for vehicle
JP2006200409A (en) Balancer device of internal combustion engine
JP6850226B2 (en) Power unit
JP2014190374A (en) Differential device
JP5626032B2 (en) Continuously variable transmission
JP2015052281A (en) Oil pump
JP2015200357A (en) Vehicle power transmission device
JP2016008646A (en) Lubrication structure of vehicle gear train
JP2018168778A (en) Hydraulic system and work vehicle including the hydraulic system
JP2016033404A (en) Lubrication structure of differential gear
JP2012145206A (en) Differential device
JP5590265B2 (en) Continuously variable transmission
JP6512131B2 (en) Centrifugal compressor for vehicles
JP2012057641A (en) Lubricating oil supply device
JP5742308B2 (en) Lubricating oil supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

LAPS Cancellation because of no payment of annual fees