JP2012183542A - Fillet arc welding method of steel plate - Google Patents
Fillet arc welding method of steel plate Download PDFInfo
- Publication number
- JP2012183542A JP2012183542A JP2011046256A JP2011046256A JP2012183542A JP 2012183542 A JP2012183542 A JP 2012183542A JP 2011046256 A JP2011046256 A JP 2011046256A JP 2011046256 A JP2011046256 A JP 2011046256A JP 2012183542 A JP2012183542 A JP 2012183542A
- Authority
- JP
- Japan
- Prior art keywords
- upper plate
- plate
- lower plate
- weld metal
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
本発明は、自動車等の構造部材として用いられる鋼板の重ね隅肉溶接に関し、き裂の発生を防止し、疲労強度の高い溶接継手を得ることができる鋼板の重ね隅肉アーク溶接方法に関するものである。 The present invention relates to a lap fillet welding of a steel plate used as a structural member of an automobile or the like, and relates to a lap fillet arc welding method of a steel plate capable of preventing the occurrence of cracks and obtaining a welded joint having high fatigue strength. is there.
近年、自動車分野では車体重量軽減による燃費向上の観点から、高張力鋼板の適用による鋼材の薄厚化が進められている。さらに、鋼材の薄厚化に伴いともない、腐食による鋼材の穴開きが懸念されるようになり、腐食防止の観点から高強度亜鉛めっき鋼板の適用が検討されている。
鋼板の重ね隅肉アーク溶接は、図1に示すように、2枚の鋼板を重ね、一方の鋼板の端部(端面とその近傍部分)をもう一方の鋼板の表面に重ね、隅肉アーク溶接するものである。この端部を溶接する鋼板を上板、上板端部と溶接する表面を有する鋼板を下板という。一般に隅肉溶接(特に断りがない限り、隅肉アーク溶接のことを指す。以下同じ。)する場合、2枚の鋼板を水平に配置し、上板を鉛直方向の上に、下板を下にして、上下に重ね、下向きに溶接ワイヤーを接近させて隅肉溶接をすることから、このように呼称する。しかし、実際の重ね隅肉溶接は、鉛直方向の上下に限られたものでなく、前述したような重ね方をした鋼板の相対的位置関係をもって上板、下板を定義するものである。
In recent years, in the automobile field, from the viewpoint of improving fuel consumption by reducing the weight of a vehicle body, the thickness of a steel material has been reduced by applying a high-tensile steel plate. Further, as the thickness of the steel material is reduced, there is a concern about the perforation of the steel material due to corrosion, and the application of a high-strength galvanized steel sheet has been studied from the viewpoint of preventing corrosion.
As shown in FIG. 1, the pile fillet arc welding of steel plates is made by stacking two steel plates, and stacking the end of one steel plate (the end face and the vicinity thereof) on the surface of the other steel plate, To do. A steel plate having a surface to be welded to the end portion of the upper plate is referred to as a lower plate. In general, when fillet welding (unless otherwise noted, refers to fillet arc welding; the same shall apply hereinafter), two steel plates are placed horizontally, the upper plate is placed vertically, and the lower plate is lowered. Thus, it is called in this way because it is piled up and down and the fillet welding is performed with the welding wire approaching downward. However, actual lap fillet welding is not limited to the vertical direction, but defines the upper plate and the lower plate based on the relative positional relationship of the steel plates that are stacked as described above.
自動車などの構造体に鋼板の重ね隅肉溶接継手を適用する場合、その疲労破壊性(疲労強度)が問題となる。重ね隅肉溶接継手の場合、疲労き裂は、形状不連続によって応力が集中する下板側の溶接止端部(溶接継手の溶接ワイヤー側であって、上板表面もしくは端面、および下板表面と溶接金属の界面)やルート(溶接継手の溶接ワイヤーとは反対側であって、上板(または下板)と溶接金属の界面)から発生し、板厚方向に進展して破壊に至る。 When a lap fillet welded joint of steel plates is applied to a structure such as an automobile, its fatigue fracture (fatigue strength) becomes a problem. In the case of lap fillet welded joints, fatigue cracks are welded toes on the lower plate side where stress concentrates due to shape discontinuity (on the welding wire side of the welded joint, the upper plate surface or end surface, and the lower plate surface And the weld metal interface) and the route (on the opposite side of the weld wire of the welded joint, which is the interface between the upper plate (or lower plate) and the weld metal), and progresses in the plate thickness direction to break.
溶接止端部を起点とする破壊は、止端部の曲率半径やフランク角などの止端部形状が原因で、そこに応力が集中するためである。一方、ルートを起点とする破壊は、上板と下板の重ね合わせた部分で溶接されずに残った部分が、ルートを起点とする切り欠き状(ルートを起点とする切り欠き状部分を「ルート部」という。以下同じ。)となっていることと、上板と下板と溶接金属の硬さが異なることから、溶接金属のルート部分(溶接金属のルート部先端にあたる部分)に応力が集中するためである。 The failure starting from the weld toe is due to the concentration of stress on the toe shape such as the radius of curvature or flank angle of the toe. On the other hand, in the fracture starting from the root, the portion of the upper plate and the lower plate that are not welded is the portion that remains without being welded. Because the hardness of the weld metal is different from the upper plate, the lower plate, and the weld metal, stress is applied to the root portion of the weld metal (the portion corresponding to the tip of the root portion of the weld metal). This is to concentrate.
一般的に、その応力集中度合いは、止端部よりもルート部の方が大きいため、荷重の掛かり方によっては、ルート部から容易にき裂が発生する。そのため、構造設計者は、継手の配置や荷重の掛かり方を考慮して溶接部の配置を設計する。しかし、溶接部のあらゆる部分に対してそのように考慮することは不可能なことが実態である。
特許文献1(特開2010-120022号公報)には、止端部形状を改善する薄鋼板の隅肉溶接継手とその溶接方法が開示されている。これは、溶接止端部の形状を改善する効果はあるが、ルート部については効果がない。すなわち、ルート部を起点とする疲労破壊には対処できていない。
In general, since the degree of stress concentration is larger in the root portion than in the toe portion, a crack is easily generated from the root portion depending on how the load is applied. Therefore, the structural designer designs the arrangement of the welded parts in consideration of the arrangement of the joints and how to apply the load. However, the reality is that it is not possible to take this into account for every part of the weld.
Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-120022) discloses a fillet welded joint for thin steel sheets that improves the shape of the toe portion and a welding method therefor. This has the effect of improving the shape of the weld toe, but not the root. That is, it cannot cope with fatigue fracture starting from the root portion.
さらに、上板、下板の鋼板が亜鉛めっき鋼板である場合、溶接に伴う入熱により多量の亜鉛めっきが蒸発するため、溶接時の溶滴移行状態が不安定となりスパッタが増加するとともに、溶融金属内に亜鉛蒸気が混入することによってブローホールやピットが発生する。このスパッタ増加や溶接部のブローホール欠陥が、継手強度を低下させるため問題となる。
特許文献2(特開平7-246465号公報)には、亜鉛めっき鋼板溶接時のスパッタおよびブローホールを低減させる技術として、重ね合わせ溶接する両部材間に0.5mm程度の間隙を設け、発生したガスを溶接部と反対側へ逃がすことが有効であることが開示されている。
In addition, when the upper and lower steel plates are galvanized steel plates, a large amount of galvanization evaporates due to heat input associated with welding, so that the state of droplet transfer during welding becomes unstable, increasing spatter and melting. Blow holes and pits are generated when zinc vapor enters the metal. This increase in spatter and blowhole defects in the weld are problematic because the joint strength is reduced.
In Patent Document 2 (Japanese Patent Laid-Open No. 7-246465), as a technique for reducing spatter and blowhole during welding of a galvanized steel sheet, a gap of about 0.5 mm was provided between both members to be overlap welded. It is disclosed that it is effective to let gas escape to the opposite side of the weld.
しかし、上板と下板の間に間隙(ギャップ)を設けることは、構造的に限られた部分にしか適用できない。自動車のサブフレームなどの長手方向に長い部材には適用できるが、板厚よりも小さな間隙を正確にコントロールすることは困難である。
通常、鋼板の重ね隅肉溶接は、ギャップを設けず上板と下板を重ねる場合が大多数を占める。例えば、ブラケットや補剛板(当て板)などの付加物にはギャップを設けて溶接することはできない。
However, providing a gap (gap) between the upper plate and the lower plate can be applied only to a structurally limited portion. Although it can be applied to a member that is long in the longitudinal direction such as a subframe of an automobile, it is difficult to accurately control a gap smaller than the plate thickness.
Usually, the overlap fillet welding of steel plates occupies the majority when the upper plate and the lower plate are overlapped without providing a gap. For example, an attachment such as a bracket or a stiffening plate (pad plate) cannot be welded with a gap.
特許文献3(特開平7-171679号公報)には、溶接金属と鋼板の硬度差を解消して疲労破壊強度を高める技術が記載されている。正確には、溶接金属とそれに隣接する溶接熱影響部(HAZ)の硬度差を小さくする技術である。しかし、これは相対的に溶接金属の硬さが高くなくなり、ルート部からき裂が発生しやすくなり、疲労破壊特性が劣化し易い。また、特許文献3で実施されていたのは、板を直交配置した隅肉溶接継手であり、鋼板の重ね隅肉溶接継手でのルート部起点の疲労破壊には、あまり効果がない。
Patent Document 3 (Japanese Patent Application Laid-Open No. 7-1771679) describes a technique for eliminating the hardness difference between the weld metal and the steel plate and increasing the fatigue fracture strength. To be precise, this is a technique for reducing the hardness difference between the weld metal and the weld heat affected zone (HAZ) adjacent thereto. However, this relatively decreases the hardness of the weld metal, tends to cause cracks from the root portion, and tends to deteriorate fatigue fracture characteristics. Moreover, what was implemented by
鋼板の重ね隅肉溶接継手の疲労破壊強度を上げるには、(ア)ルート部起因の疲労破壊強度を高めること、(イ)溶接止端部起因の疲労破壊強度を高めること、(ウ)特に亜鉛めっき鋼板の重ね隅肉溶接においては、亜鉛ガスによるピット・ブローホールの気孔欠陥の発生を阻止し、溶接部全体の疲労破壊強度を高めること、という課題がある。
前述したように、(イ)溶接止端部形状改善については特許文献1、(ウ)ピット、ブローホールについては特許文献2などで、その解決策が提案されている。
しかし、鋼板の重ね隅肉溶接継手の耐疲労破壊特性を向上させるには、ルート部起因の疲労破壊強度を高めることが必要であることは明白である。
In order to increase the fatigue fracture strength of the lap fillet welded joint of steel plates, (a) increase the fatigue fracture strength due to the root part, (b) increase the fatigue fracture strength due to the weld toe part, (c) especially In lap fillet welding of galvanized steel sheets, there is a problem of preventing the occurrence of pore defects in pits and blowholes by zinc gas and increasing the fatigue fracture strength of the entire weld.
As described above, (B)
However, in order to improve the fatigue fracture resistance of the lap fillet welded joint of steel plates, it is clear that it is necessary to increase the fatigue fracture strength due to the root portion.
そこで、本発明は、鋼板の重ね隅肉溶接継手において、ルート部起因の疲労破壊強度を高めることを課題とし、それを解決し得る溶接方法、およびその成果としての溶接継手を提供することを目的とする。 Then, this invention makes it a subject to raise the fatigue fracture strength resulting from a root part in the lap fillet welded joint of a steel plate, and it aims at providing the welding method which can solve it, and the welded joint as the result And
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、鋼板の重ね隅肉溶接において、ルート部に切り欠き状に残る上板と下板の接触部分(溶接されていない重ね合わせ部分。以下「ルート部の切り欠き部」という。)をなくし、上板と下板の重ね合わせ部分を全て溶接金属に溶け込ませることにより、ルート部の応力集中を緩和させることができることを知見した。 As a result of intensive studies in order to solve the above problems, the inventors of the present invention have made contact portions between the upper plate and the lower plate that remain in a cutout shape in the root portion in the lap fillet welding of the steel plate (the unwelded overlap). Finding that the stress concentration in the root part can be alleviated by eliminating the "cutting part of the root part") and dissolving the overlapping part of the upper and lower plates in the weld metal. did.
しかし、この場合、上板と下板との重ね代(溶接前の上板と下板の重ね合わせ長さ)を最適化する必要がある。重ね代が大きいとルート部の切り欠き部が残り、重ね代が小さいと溶接金属が下板の裏側へ抜けてしまい、穴あき、抜け落ちといった溶接欠陥が発生する。そのため、本発明者らは、実験等により最適な重ね代の求め方を考案した。 However, in this case, it is necessary to optimize the overlap of the upper plate and the lower plate (the overlap length of the upper plate and the lower plate before welding). If the overlap is large, the notch portion of the root portion remains, and if the overlap is small, the weld metal is pulled out to the back side of the lower plate, and welding defects such as perforations and dropouts occur. Therefore, the present inventors have devised a method for obtaining the optimum overlap allowance through experiments and the like.
さらに、鋼板を重ね合わせ部分が全て溶接金属に溶け込まれることにより、亜鉛めっき鋼板を溶接した際に発生する亜鉛ガスを溶接金属中から系外に拡散排出することができ、ピット、ブローホールも軽減できることを知見した。
本発明は、これら知見や考案を基に成されたものである。以下に本発明の要旨を示す。
Furthermore, by overlapping all the steel plates into the weld metal, the zinc gas generated when welding galvanized steel plates can be diffused and discharged out of the weld metal, reducing pits and blow holes. I found out that I can do it.
The present invention has been made based on these findings and ideas. The gist of the present invention is shown below.
(1)2枚の鋼板を、上板となる鋼板の端部が下板となる鋼板の表面に位置するように重ね、該上板の端部に沿って該上板と該下板を溶接してなる鋼板の重ね隅肉アーク溶接継手において、上板端面と下板の上板側表面が溶接金属を介して接続され、また下板端面と上板の下板側表面も前記溶接金属を介して接続されていることを特徴とする鋼板の重ね隅肉溶接継手。
即ち、上板と下板の重ね合わせ部分が溶接金属に溶け込んでいることを特徴とする鋼板の重ね隅肉溶接継手である。
(2)前記下板端面と上板の下板側表面を接続している溶接金属の、前記上板の下板側表面との境界部分が面取り状の形状であることを特徴とする(1)に記載の鋼板の重ね隅肉溶接継手。
(3)前記下板端面と上板の下板側表面を接続している溶接金属の面取りの幅が、前記上板の下板側表面との境界から上板厚の25%以下であることを特徴とする(2)に記載の鋼板の重ね隅肉溶接継手。
(4)前記上板と下板が亜鉛めっき鋼板であることを特徴とする(1)〜(3)のいずれか1項に記載の鋼板の重ね隅肉溶接継手。
(5)前記上板と下板との間に間隙を有することを特徴とする(4)に記載の鋼板の重ね隅肉溶接継手。
(6)2枚の鋼板を、上板となる鋼板の端部が下板となる鋼板の表面に位置するように重ね、該上板の端部に沿って該上板と該下板を溶接してなる鋼板の重ね隅肉アーク溶接継手において、上板と下板を重ね合わせ、当該重ね合わせ部分が溶接金属に溶け込むように溶接し、上板端面と下板の上板側表面が溶接金属を介して接続され、また下板端面と上板の下板側表面も前記溶接金属を介して接続されることを特徴とする鋼板の重ね隅肉溶接方法。
(7)前記上板と下板の重ね合わせ部の鋼板長手方向の長さである重ね代(重ね合わせ長さ)が以下の式を満足することを特徴とする(6)に記載の鋼板の重ね隅肉溶接方法。
−0.26×t1 2+2×t1−2.4 ≦ 重ね代 ≦ 0.1×t1 3−1.1×t1 2+4.3×t1−2.7
t1:上板の板厚
(8)前記下板端面と上板の下板側表面を接続している溶接金属の、前記上板の下板側表面との境界部分を面取りすることを特徴とする(6)または(7)に記載の鋼板の重ね隅肉溶接方法。
(9)前記下板端面と上板の下板側表面を接続している溶接金属の面取りの幅が、前記上板の下板側表面との境界から上板厚の25%以下であることを特徴とする(8)に記載の鋼板の重ね隅肉溶接方法。
(10)前記上板と下板が亜鉛めっき鋼板であることを特徴とする(6)〜(9)のいずれか1項に記載の鋼板の重ね隅肉溶接方法。
(11)前記上板と下板との間に間隙を設けることを特徴とする(10)に記載の鋼板の重ね隅肉溶接方法。
(1) Two steel plates are overlapped so that the end of the upper steel plate is positioned on the surface of the lower steel plate, and the upper plate and the lower plate are welded along the end of the upper plate. In the lap fillet arc welded joint of the steel plate, the upper plate end face and the upper plate side surface of the lower plate are connected via a weld metal, and the lower plate end face and the lower plate side surface of the upper plate are also connected with the weld metal. A lap fillet welded joint of steel plates, characterized by being connected via
That is, it is a lap fillet welded joint of steel plates characterized in that the overlapping portion of the upper plate and the lower plate is dissolved in the weld metal.
(2) The weld metal connecting the lower plate end surface and the lower plate side surface of the upper plate has a chamfered shape at the boundary between the upper plate and the lower plate side surface (1) ) The fillet welded joint of steel plates according to (1).
(3) The width of the chamfer of the weld metal connecting the lower plate end surface and the lower plate side surface of the upper plate is 25% or less of the upper plate thickness from the boundary with the lower plate side surface of the upper plate. The lap fillet welded joint of steel plates according to (2), characterized in that
(4) The lap fillet welded joint of steel plates according to any one of (1) to (3), wherein the upper plate and the lower plate are galvanized steel plates.
(5) The lap fillet welded joint for steel plates according to (4), wherein a gap is provided between the upper plate and the lower plate.
(6) Two steel plates are stacked so that the end of the upper steel plate is positioned on the surface of the lower steel plate, and the upper plate and the lower plate are welded along the end of the upper plate. In the overlapped fillet arc welded joint of steel plates, the upper plate and the lower plate are overlapped and welded so that the overlapped portion melts into the weld metal, and the upper plate end surface and the upper plate side surface of the lower plate are weld metal And the lower plate end face and the lower plate side surface of the upper plate are also connected via the weld metal.
(7) The steel sheet according to (6), wherein a superposition allowance (superposition length) which is a length in a steel plate longitudinal direction of the superposed portion of the upper plate and the lower plate satisfies the following formula: Lap fillet welding method.
−0.26 × t 1 2 + 2 × t 1 −2.4 ≦ Overlap ≦ 0.1 × t 1 3 −1.1 × t 1 2 + 4.3 × t 1 −2.7
t1: Plate thickness of the upper plate (8) Chamfering a boundary portion between the lower plate side surface of the upper plate and the weld metal connecting the lower plate end surface and the lower plate side surface of the upper plate (6) or (7).
(9) The width of the chamfer of the weld metal connecting the lower plate end surface and the lower plate side surface of the upper plate is 25% or less of the upper plate thickness from the boundary with the lower plate side surface of the upper plate. The method of welding fillet of steel sheets according to (8), characterized in that:
(10) The steel plate lap fillet welding method according to any one of (6) to (9), wherein the upper plate and the lower plate are galvanized steel plates.
(11) The method according to (10), wherein a gap is provided between the upper plate and the lower plate.
本発明に係る溶接方法により製造した鋼板の重ね隅肉溶接継手によれば、ルート部起因の疲労破壊強度を高めるという効果を奏する。さらに、亜鉛めっき鋼板の重ね隅肉溶接に応用することにより、ピット・ブローホールの発生を抑制する効果を奏する。 According to the lap fillet welded joint of steel plates manufactured by the welding method according to the present invention, there is an effect of increasing the fatigue fracture strength due to the root portion. Furthermore, by applying to lap fillet welding of galvanized steel sheet, the effect of suppressing the generation of pits and blowholes is achieved.
以下に、本発明の実施の形態について実施例に従い、詳細に説明する。
図1(a)に従来の重ね隅肉溶接の概念図を、図1(b)に本発明に係る重ね隅肉溶接の概念図を示す。従来は、上板と下板を重ねた際の上板と下板の重ね代(溶接前の上板と下板の重ね合わせ長さ)を長くとっていた。このため、隅肉溶接後においても、上板と下板の接合されていない部分が、図1(a)に示すように、縦断面で見ると切り欠き状に残存する。この残存した切り欠き状の部分をルート部とよび、その長さ(鋼板長手方向の長さ)をルート部長さとよぶ。ルート部は上板、下板の幅方向にも広がりをもっており、この面(上板側、下板側の両方の対抗している面)をルート面とよぶ。
Hereinafter, embodiments of the present invention will be described in detail according to examples.
FIG. 1A is a conceptual diagram of conventional lap fillet welding, and FIG. 1B is a conceptual diagram of lap fillet welding according to the present invention. Conventionally, the upper plate and the lower plate are overlapped with each other when the upper plate and the lower plate are overlapped (the overlapping length of the upper plate and the lower plate before welding). For this reason, even after fillet welding, the portion where the upper plate and the lower plate are not joined remains in a cutout shape when viewed in a longitudinal section as shown in FIG. This remaining notched portion is called a root portion, and its length (length in the longitudinal direction of the steel plate) is called a root portion length. The root portion also extends in the width direction of the upper plate and the lower plate, and this surface (the surface facing both the upper plate side and the lower plate side) is called a route surface.
隅肉溶接において、溶接ワイヤー側とは反対側の溶接金属と上板または下板の界面を、溶接金属のルートという。上板と下板を密着するように重ねた場合、ルート部の先端が溶接金属のルートとなる。
従って、ルート部の先端では、切り欠きと同様な効果が生じ、さらに溶接金属と上板、下板となる鋼板の硬さの違いから、溶接金属のルートに応力集中が生じ易くなっている。
In fillet welding, the interface between the weld metal on the side opposite to the welding wire and the upper plate or the lower plate is referred to as a route of the weld metal. When the upper plate and the lower plate are stacked so as to be in close contact with each other, the tip of the route portion becomes the route of the weld metal.
Therefore, the same effect as a notch is produced at the tip of the root portion, and stress concentration is likely to occur in the root of the weld metal due to the difference in hardness between the weld metal and the steel plate as the upper and lower plates.
図1(b)に、本発明に係る隅肉溶接継手の縦断面の概念図を示す。
従来の隅肉溶接継手の応力集中の元となるルート部をなくしていることが特徴である。このため、溶接ワイヤー側の上板端面と下板の上板側表面が溶接金属を介して接続されている。またルート側(つまり溶接ワイヤー側とは反対側の)下板端面と上板の下板側表面も前記溶接金属を介して接続される構造となっている。言い方を変えると、上板と下板の重ね合わせ部分が溶接金属に溶け込んでしまった状態となっている。
ルート部が残存していないことにより、溶接継手中に切り欠き効果が発生せず、その分疲労強度の向上に資するものである。
FIG. 1B shows a conceptual diagram of a longitudinal section of a fillet welded joint according to the present invention.
It is characterized in that the root portion that is the source of stress concentration in the conventional fillet welded joint is eliminated. For this reason, the upper plate end surface of the welding wire side and the upper plate side surface of the lower plate are connected via the weld metal. Further, the lower plate end face and the lower plate side surface of the upper plate on the root side (that is, the side opposite to the welding wire side) are also connected via the weld metal. In other words, the overlapping portion of the upper plate and the lower plate is in a state of being melted into the weld metal.
Since the root portion does not remain, a notch effect does not occur in the welded joint, which contributes to an improvement in fatigue strength.
溶接後に残存しているルート部の長さを残存ルート部長さと呼ぶ。残存ルート部長さの応力集中への影響を調べるために、各種残存ルート部長さとき裂開口部方向応力との関係を、有限要素法(FEM)にて調べた。その結果を表1に示す。表中の「き裂開口方向応力」値は、平均応力を100MPaとした時の応力値を示す。 The length of the route portion remaining after welding is referred to as the remaining route portion length. In order to investigate the influence of the remaining root length on the stress concentration, the relationship between various remaining root lengths and stress in the crack opening direction was examined by a finite element method (FEM). The results are shown in Table 1. The “crack opening direction stress” value in the table indicates the stress value when the average stress is 100 MPa.
また、表1には、本発明に係るルート部長さ0、つまり溶接後の残存ルート部が無い状態において、上板の下板側表面と溶接金属との境界を面取りし、応力集中低減効果についてFEMにて検証した結果も示している。ルート部を0mmにするだけでも、従来の切り欠き状ルートのときより5%応力集中が低減される。 Table 1 shows the effect of reducing the stress concentration by chamfering the boundary between the lower plate side surface of the upper plate and the weld metal in the state where the root portion length according to the present invention is 0, that is, there is no remaining route portion after welding. The result verified by FEM is also shown. Even if the root portion is only 0 mm, the stress concentration is reduced by 5% compared to the conventional notch route.
さらに、溶接金属のルート近傍を面取りすること、つまり図1(c)、(d)に示すように、ルート部長さ0mmであっても、溶接金属をルートに張り出させ、下板端面と上板の下板側表面を溶接金属で接続すること(これを「面取り」という。)により、格段の応力集中低減効果を奏することを確認した。幅が0.15mmの面取りで11%、0.3mmの面取りで15%、それぞれ従来の切り欠き状ルートに対し、き裂(ルート部)開口方向応力の低減効果が確認された。ルート近傍の面取り幅が0.5mmを超えると、き裂開口方向応力の低減効果はそれほど変わらないことも確認した。 Further, chamfering the vicinity of the root of the weld metal, that is, as shown in FIGS. 1C and 1D, even if the root portion length is 0 mm, the weld metal is projected to the root, and the lower plate end surface and the upper surface It was confirmed that a significant stress concentration reducing effect was achieved by connecting the lower plate side surface of the plate with a weld metal (this is called “chamfering”). A chamfering width of 0.15 mm and 11% chamfering of 15 mm and 15% of the chamfering width of 0.15 mm, respectively, confirmed the effect of reducing stress in the crack (root) opening direction with respect to the conventional notched root. It was also confirmed that when the chamfer width in the vicinity of the root exceeds 0.5 mm, the effect of reducing crack opening direction stress does not change much.
上記シミュレーションは、板厚2mmの場合の例である。発明者らは、板厚5mm、10mmにおいても同様のシミュレーションを行った。その結果、板厚5mmのときは、面取り幅1.25mmで、板厚10mmのときは面取り幅2.5mmを超えると、き裂開口方向応力の低減効果はあまり変わらなくなることも確認した。したがって、面取り幅は、板厚の25%を上限としてよい。面取り幅の下限は、応力集中低減効果を確実に10%以上発揮するために0.15mmとすると、なおよい。 The above simulation is an example when the plate thickness is 2 mm. The inventors also performed the same simulation at plate thicknesses of 5 mm and 10 mm. As a result, it was confirmed that when the plate thickness was 5 mm, the chamfering width was 1.25 mm, and when the plate thickness was 10 mm, the effect of reducing crack opening direction stress was not significantly changed when the chamfering width was 2.5 mm. Therefore, the upper limit of the chamfer width may be 25% of the plate thickness. The lower limit of the chamfer width is more preferably 0.15 mm in order to surely exert the stress concentration reduction effect by 10% or more.
なお、面取り幅は、図1(d)(図1(c)のルート部分の拡大図)に示すように、隅肉溶接断面をとったときのルートに張り出た溶接金属の幅であり、溶接金属上の、上板の下板側表面との境界(ルート)と溶接金属と下板端面との境界とを結ぶ距離で定義する。
面取り部分の断面形状は特に限定しないが面取り部分の角度は、上板の下板側表面に対し45度を中心におよそ±30度程度の傾きがよい。角度が大きすぎると、面取りの効果が小さくなり、溶接金属が下板を貫通して溶け落ちる場合もある。一方角度が小さすぎると溶接金属と下板の端面との境界での応力集中が高まってしまう。そこで、好ましくは45度±15度とするとよい。また、直角のルートとは、重ね代が0mmかつ面取り幅0mmであることを意味している。
In addition, as shown in FIG. 1D (enlarged view of the route portion in FIG. 1C), the chamfer width is the width of the weld metal protruding in the route when the fillet weld cross section is taken, It is defined by the distance connecting the boundary (route) between the upper plate and the lower plate side surface on the weld metal and the boundary between the weld metal and the lower plate end surface.
The cross-sectional shape of the chamfered portion is not particularly limited, but the angle of the chamfered portion is preferably inclined approximately ± 30 degrees around 45 degrees with respect to the lower plate side surface of the upper plate. If the angle is too large, the chamfering effect is reduced, and the weld metal may penetrate through the lower plate and melt. On the other hand, if the angle is too small, stress concentration at the boundary between the weld metal and the end face of the lower plate increases. Therefore, the angle is preferably set to 45 ° ± 15 °. Further, the right-angled route means that the overlap margin is 0 mm and the chamfer width is 0 mm.
次に重ね代の適正範囲について考察する。
上板の板厚に対して適切な重ね代を設定しないと、溶接施工自体がうまくいかず、所望の効果どころか、溶接継手も得ることができない。即ち、重ね代が大きすぎると、ルート部が残るため、応力集中が高まり、強度が低下する。一方、重ね代が小さすぎると、上板の裏側(つまりルート側)へ溶接金属が大きく抜けて、上板を溶断するようになり、穴あき・溶け落ちといった溶接欠陥が生じる。
Next, the appropriate range of overlap allowance will be considered.
Unless an appropriate overlap margin is set for the plate thickness of the upper plate, the welding operation itself is not successful, and a welded joint cannot be obtained as well as a desired effect. That is, if the overlap margin is too large, the root portion remains, so stress concentration increases and the strength decreases. On the other hand, if the stacking allowance is too small, the weld metal is greatly pulled out to the back side (that is, the root side) of the upper plate, so that the upper plate is melted, and welding defects such as perforation and melt-down occur.
そのため、上板の板厚に対し、重ね代の適正範囲が存在する。この適正範囲について調査した結果を図3に示す。図3において、〇はルート部が残らなかった条件、●はルート部が残った条件、×は溶接金属に抜け落ちが発生した条件を示す。図3からも明らかなように、上板厚に対し、適正な重ね代範囲が存在することがわかった。本発明者らは、適正重ね代範囲(L)について、上板の板厚(t1)の多項式関数近似により、以下の条件式を導いた。 Therefore, there is an appropriate range for the stacking allowance with respect to the thickness of the upper plate. The results of investigation on this appropriate range are shown in FIG. In FIG. 3, ○ indicates a condition in which the root portion does not remain, ● indicates a condition in which the root portion remains, and × indicates a condition in which the weld metal has fallen off. As is clear from FIG. 3, it was found that an appropriate overlap margin range exists for the upper plate thickness. The present inventors have derived the following conditional expression for the proper overlap margin range (L) by polynomial function approximation of the plate thickness (t 1 ) of the upper plate.
−0.26×t1 2+2×t1−2.4 ≦ L
≦0.1×t1 3−1.1×t1 2+4.3×t1−2.7
−0.26 × t 1 2 + 2 × t 1 −2.4 ≦ L
≦ 0.1 × t 1 3 −1.1 × t 1 2 + 4.3 × t 1 −2.7
この式に従えば、容易に適正な重ね代を求めることができる。
次に亜鉛めっき鋼板の重ね隅肉溶接で問題となるブローホールについて考察した。特許文献1に記載があるように、上板と下板との間に間隙(ギャップ)を設けることにより、溶接金属のルート側に亜鉛ガスが抜けることから、ブローホール抑制に効果がある。
If this equation is followed, an appropriate overlap can be easily obtained.
Next, the blowhole which becomes a problem in the lap fillet welding of the galvanized steel sheet was considered. As described in
しかし、本発明に係る溶接継手では、溶接金属のルートが上板の裏側(下板側)に出ているので、ギャップを設けたときと同様に亜鉛ガスがそこから抜けるため、ブローホール抑制効果がある。そのため、ブローホール回避のために通常設けるギャップが不要になるので、本発明に係る溶接継手ではギャップについて特に限定しない。なお、ある程度ギャップを設けると、ルートでの応力集中が緩和される方向であるので疲労強度の観点から有利ではあるが、ギャップがあまりに大きくなると、ルート部からき裂が発生するような破断形態になる場合があるためギャップの管理は重要である。 However, in the welded joint according to the present invention, since the route of the weld metal comes out on the back side (lower plate side) of the upper plate, the zinc gas escapes from the same as when the gap is provided, so that the blowhole suppressing effect is obtained. There is. Therefore, since the gap normally provided for avoiding a blowhole becomes unnecessary, the welded joint according to the present invention is not particularly limited with respect to the gap. It should be noted that providing a gap to some extent is advantageous from the viewpoint of fatigue strength because stress concentration at the root is mitigated, but if the gap becomes too large, a fracture form in which a crack is generated from the root portion is obtained. In some cases, gap management is important.
一方、ルート部長さが少しでも存在すると、溶接金属がルート側で大気に触れないので亜鉛ガスが抜けず、ブローホールの発生が抑制されない。溶接金属中のブローホールが20堆積%未満では、溶接継手の静的強度は大きく低下しないが、疲労強度には大きな影響を及ぼす。このため、ブローホールは極力0%にすることが望ましい。
また、高強度鋼板ほど、強度に対するブローホール感受性が高まるため、なおさらブローホールの発生を抑制することが望ましい。
On the other hand, if the length of the root portion exists even a little, the weld metal does not come into contact with the atmosphere on the route side, so the zinc gas cannot escape and the occurrence of blowholes is not suppressed. If the blowhole in the weld metal is less than 20% by deposition, the static strength of the welded joint is not greatly reduced, but the fatigue strength is greatly affected. For this reason, it is desirable that the blowhole be 0% as much as possible.
Moreover, since the higher the strength of the steel plate, the more sensitive the blow hole to the strength, it is desirable to suppress the generation of blow holes.
次に実施例に基づき、本発明について説明する。
実施例は、薄鋼板の重ね隅肉溶接をした試験片にて疲労試験を行い、その効果を検証した。表2に供試鋼板を、表3に供試溶接ワイヤーを示す。供試鋼板は、いずれも溶融亜鉛めっき鋼板を使用した。ブローホールの影響を除けば、亜鉛めっき鋼板も、めっきなし鋼板も溶接継手特性は同じと考えて差し支えない。ここでは、本発明に係る溶接継手のブローホールに対する影響も評価するため、亜鉛めっき鋼板を使用する。
Next, based on an Example, this invention is demonstrated.
In Examples, a fatigue test was performed on a test piece obtained by laminating fillet welding of thin steel plates, and the effect was verified. Table 2 shows the test steel sheets, and Table 3 shows the test welding wires. As the test steel plates, hot dip galvanized steel plates were used. Except for the effect of blowholes, galvanized steel sheets and non-plated steel sheets can be considered to have the same weld joint characteristics. Here, in order to evaluate the influence with respect to the blowhole of the welded joint which concerns on this invention, a galvanized steel plate is used.
図2に、疲労試験に供した試験片形状を示す。重ねすみ肉アーク溶接継手の溶接ビード止端部が、試験片中央となるようにした。溶接条件は以下のとおりである。
・溶接方式 消耗式電極溶接
・溶接電源 DP350 (株式会社ダイヘン製)
・溶接モード DC-Pulse(Ar+20%CO2ガス)
・溶接姿勢 下向き水平重ねすみ肉溶接
・チップ母材間距離(突き出し長さ) 15mm
・トーチ角度 55°
・ねらい位置 重ね部すみから0.5mm離した位置
・シールドガス流 20L/min
・溶接速度 100cm/min
・ワイヤー送給速度は、上板側にアンダーカットが出ないよう適正な値に設定した
FIG. 2 shows the shape of a test piece subjected to a fatigue test. The weld bead toe of the lap fillet arc welded joint was placed at the center of the test piece. The welding conditions are as follows.
・ Welding method Consumable electrode welding / Welding power source DP350 (Daihen Co., Ltd.)
・ Welding mode DC-Pulse (Ar + 20% CO2 gas)
・ Welding posture Downward horizontal overlap fillet welding ・ Distance between tip base materials (extrusion length) 15mm
・ Torch angle 55 °
・ Target position 0.5mm away from overlapped corner ・ Shield gas flow 20L / min
・ Welding speed 100cm / min
・ The wire feed speed was set to an appropriate value to prevent undercutting on the upper plate side.
試験片を電気油圧式疲労試験装置にかけ、応力振幅一定、応力比0.1として軸力引張疲労試験に供し、疲労強度を測定した。応力を繰り返し200万回負荷しても試験片が破断しない応力振幅をもって、疲労強度を評価した。ルート部長さ0mmの継手は、面取り幅が上板厚の20%程度となるよう溶接条件を設定して作製した。
評価結果を表4に示す。
The test piece was subjected to an electrohydraulic fatigue test apparatus, subjected to an axial tension fatigue test with a constant stress amplitude and a stress ratio of 0.1, and the fatigue strength was measured. Fatigue strength was evaluated with a stress amplitude at which the test piece did not break even when stress was repeatedly applied 2 million times. The joint with a root length of 0 mm was produced by setting the welding conditions so that the chamfer width was about 20% of the upper plate thickness.
The evaluation results are shown in Table 4.
なお、本実施例においては、溶接ワイヤーの送給速度は、上板側にアンダーカットが出ないよう適正な値に設定した。J10〜J18が本発明例であり、J1〜J9はルート部長さを5〜8mm程度に設定した比較例である。また、表4中の「疲労強度向上率(対比較例)」は、同一鋼板、同一溶接ワイヤーでルート部長さの違う比較材に対する疲労強度の向上率を示している。同様に、「疲労強度向上率(対軟質ワイヤー)」は、同鋼種、同ルート部長さのグループで、当該グループ内での最軟質ワイヤーを使用した実施例との相対比較(疲労強度比)を示している。同様に「疲労強度向上率(対J17)」は、ルート部長さ0mmで、ブローホール率が0%の継手のうち、最も疲労強度の低いJ17対する相対比較(疲労強度比)で表している。また、「疲労強度向上率(対ブローホール0%)」は、同鋼種・同溶接ワイヤーで、ブローホール無しに対する相対比較(疲労強度比)で表している。
結果からもわかるように、本発明例はいずれも、同鋼板、同溶接ワイヤーでルート部長さが5〜8mm程度に設定した比較例に対し、13〜36%の疲労強度向上効果があった。
In the present example, the feeding speed of the welding wire was set to an appropriate value so as not to cause an undercut on the upper plate side. J10 to J18 are examples of the present invention, and J1 to J9 are comparative examples in which the root portion length is set to about 5 to 8 mm. Further, “Fatigue Strength Improvement Rate (vs. Comparative Example)” in Table 4 indicates the fatigue strength improvement rate with respect to a comparative material having the same steel plate and the same welding wire but having different root part lengths. Similarly, "Fatigue strength improvement rate (vs. soft wire)" is a group of the same steel type and the same route length, and is a relative comparison (fatigue strength ratio) with an example using the softest wire in the group. Show. Similarly, the “fatigue strength improvement rate (vs. J17)” is represented by a relative comparison (fatigue strength ratio) with respect to J17 having the lowest fatigue strength among joints having a root portion length of 0 mm and a blowhole ratio of 0%. The “fatigue strength improvement rate (vs. blowhole 0%)” is expressed as a relative comparison (fatigue strength ratio) with respect to the same steel type and the same welding wire with no blowhole.
As can be seen from the results, all of the inventive examples had an effect of improving the fatigue strength by 13 to 36% with respect to the comparative example in which the root length was set to about 5 to 8 mm with the same steel plate and the same welding wire.
さらに、本発明例は、ブローホール率が0%と、ブローホール抑制効果も高いことが確認された。ブローホール率(体積分率)とルート長さの関係を図4に示す。ルート長さが少しでも存在するとブローホール率が高くなることがわかる。従って、本発明のブローホール抑制効果が大きいことも確認された。 Furthermore, it was confirmed that the inventive example has a blowhole rate of 0% and a high blowhole suppression effect. FIG. 4 shows the relationship between the blowhole rate (volume fraction) and the route length. It can be seen that the blowhole rate increases if the route length exists even a little. Therefore, it was also confirmed that the blowhole suppression effect of the present invention is large.
ブローホールがあると、疲労強度は低下することは知られているが、その低下率は、母材硬さが硬いほど大きくなる。つまり、母材硬さが硬いほど、ブローホール感受性が高まることになる。オーバーマッチ率(母材に対する溶接金属の硬さの比率)が120%以上であれば、ブローホールによる疲労強度低下率を20%以下に抑制できることもわかった。この観点からも、本発明例のようにルート部長さを0にすることにより、母材の鋼種に関わらずブローホール感受性を抑えることが可能となる。 It is known that when there is a blowhole, the fatigue strength decreases, but the decrease rate increases as the base material hardness increases. That is, the higher the base material hardness, the higher the blowhole sensitivity. It was also found that if the overmatch rate (the ratio of the hardness of the weld metal to the base material) is 120% or more, the fatigue strength reduction rate due to blowholes can be suppressed to 20% or less. Also from this point of view, it is possible to suppress blowhole sensitivity regardless of the steel type of the base material by setting the length of the root portion to 0 as in the present invention example.
繰り返しになるが、ブローホールの抑制は、静的強度、疲労強度向上効果が大きく、また高強度鋼板になるほどその効果が大きいことが知られている。従って、本発明を亜鉛めっき鋼板に適用することにより、優れた耐疲労破壊特性を得ることができる。
また、図5に母材硬さと溶接金属硬さの関係を、図6に母材硬さと疲労強度の関係を示す。疲労強度は母材の硬さに比例して増加するが、オーバーマッチ率が低いとその増加率が小さい。また、オーバーマッチ率が120%以上であれば、オーバーマッチ率が100%程度のいわゆるイーブンマッチ継手に対して疲労強度が120%以上向上する。
Again, it is known that the suppression of blowholes has a large effect of improving static strength and fatigue strength, and the effect is greater as the strength of the steel plate becomes higher. Therefore, excellent fatigue fracture resistance can be obtained by applying the present invention to a galvanized steel sheet.
FIG. 5 shows the relationship between the base metal hardness and the weld metal hardness, and FIG. 6 shows the relationship between the base material hardness and the fatigue strength. The fatigue strength increases in proportion to the hardness of the base material, but the increase rate is small when the overmatch rate is low. Further, if the overmatch rate is 120% or more, the fatigue strength is improved by 120% or more with respect to a so-called even match joint having an overmatch rate of about 100%.
以上、実施例に従い、本発明に係る溶接継手、溶接方法について説明した。
なお、本発明の実施態様は、上記実施例に述べた態様に限定されない。本発明の構成要件を実質的に満足するものは、本発明の範囲内となる。
In the above, according to the Example, the welded joint and the welding method which concern on this invention were demonstrated.
The embodiments of the present invention are not limited to the embodiments described in the above examples. Those substantially satisfying the requirements of the invention fall within the scope of the invention.
本発明は、機械工業をはじめ、鋼板の重ね隅肉溶接を適用できる産業において利用することができる。 The present invention can be used not only in the machine industry but also in industries that can apply lap fillet welding of steel plates.
Claims (11)
−0.26×t1 2+2×t1−2.4 ≦ 重ね代
≦ 0.1×t1 3−1.1×t1 2+4.3×t1−2.7
t1:上板の板厚 The overlap fillet welding method for steel sheets according to claim 6, wherein an overlap margin, which is a length in a longitudinal direction of the steel sheet, of the overlapping portion of the upper plate and the lower plate satisfies the following expression.
−0.26 × t 1 2 + 2 × t 1 −2.4 ≦ Overlap allowance
≦ 0.1 × t 1 3 −1.1 × t 1 2 + 4.3 × t 1 −2.7
t1: Thickness of the upper plate
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011046256A JP2012183542A (en) | 2011-03-03 | 2011-03-03 | Fillet arc welding method of steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011046256A JP2012183542A (en) | 2011-03-03 | 2011-03-03 | Fillet arc welding method of steel plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012183542A true JP2012183542A (en) | 2012-09-27 |
Family
ID=47014117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011046256A Withdrawn JP2012183542A (en) | 2011-03-03 | 2011-03-03 | Fillet arc welding method of steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012183542A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190110110A (en) | 2017-02-28 | 2019-09-27 | 제이에프이 스틸 가부시키가이샤 | Overlap fillet arc welding seams and manufacturing method thereof |
US20210394294A1 (en) * | 2018-10-29 | 2021-12-23 | Posco | Method for welding a zinc coated steel sheet |
JP7513892B2 (en) | 2020-11-30 | 2024-07-10 | 日本製鉄株式会社 | Lap fillet welded joint, automobile part, and manufacturing method of lap fillet welded joint |
-
2011
- 2011-03-03 JP JP2011046256A patent/JP2012183542A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190110110A (en) | 2017-02-28 | 2019-09-27 | 제이에프이 스틸 가부시키가이샤 | Overlap fillet arc welding seams and manufacturing method thereof |
US20210394294A1 (en) * | 2018-10-29 | 2021-12-23 | Posco | Method for welding a zinc coated steel sheet |
JP7513892B2 (en) | 2020-11-30 | 2024-07-10 | 日本製鉄株式会社 | Lap fillet welded joint, automobile part, and manufacturing method of lap fillet welded joint |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9339887B2 (en) | Method for bonding dissimilar metals to each other | |
JP4755576B2 (en) | Gas shield arc welding method | |
JP5985901B2 (en) | Welded joint and method for forming the same | |
JP6119940B1 (en) | Vertical narrow groove gas shielded arc welding method | |
KR101888780B1 (en) | Vertical narrow gap gas shielded arc welding method | |
JP2017047475A (en) | Spot welding method | |
JP6439882B2 (en) | Vertical narrow groove gas shielded arc welding method | |
JP2012183542A (en) | Fillet arc welding method of steel plate | |
JP6119948B1 (en) | Vertical narrow groove gas shielded arc welding method | |
CN108367376B (en) | Vertical narrow groove gas shielded arc welding method | |
KR20180074826A (en) | Welded member having excellent welded portion porosity resistance and fatigue property and method of manufacturing the same | |
JP2013233557A (en) | Laser and arc hybrid welding method | |
JP5416471B2 (en) | Method for welding vehicle frame member and vehicle frame member | |
CN110839341A (en) | Welded member of plated steel sheet having excellent weld porosity resistance and fatigue characteristics, and method for producing same | |
JP5866947B2 (en) | Overlap fillet arc welded joint with excellent fatigue characteristics and method for manufacturing the same | |
JP6278291B1 (en) | Lap fillet arc welded joint | |
JP2010228000A (en) | Laser-arc hybrid welding method which attains long fatigue life | |
JP2007216275A (en) | Shield gas for hybrid welding, and hybrid welding method using the shield gas | |
JP5600652B2 (en) | Dissimilar metal joining method | |
JP6119949B1 (en) | Vertical narrow groove gas shielded arc welding method | |
WO2013191160A1 (en) | Aluminum and steel mig weld-joint structure | |
JP2002103036A (en) | Method for seam-welding uo steel pipe | |
JP4777166B2 (en) | Non-consumable nozzle type electroslag welding method | |
JP5600619B2 (en) | Dissimilar material joining method | |
JP2014200812A (en) | Solid wire for gas shield arc welding of thin steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140513 |