JP2012183522A - Hydrophilization method for polyvinylidene fluoride-based porous membrane - Google Patents

Hydrophilization method for polyvinylidene fluoride-based porous membrane Download PDF

Info

Publication number
JP2012183522A
JP2012183522A JP2011050078A JP2011050078A JP2012183522A JP 2012183522 A JP2012183522 A JP 2012183522A JP 2011050078 A JP2011050078 A JP 2011050078A JP 2011050078 A JP2011050078 A JP 2011050078A JP 2012183522 A JP2012183522 A JP 2012183522A
Authority
JP
Japan
Prior art keywords
membrane
polyvinylidene fluoride
porous membrane
solution
perhydropolysilazane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011050078A
Other languages
Japanese (ja)
Inventor
Kensuke Watanabe
健祐 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2011050078A priority Critical patent/JP2012183522A/en
Publication of JP2012183522A publication Critical patent/JP2012183522A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hydrophilization method for a polyvinylidene fluoride-based porous membrane by a thermally-induced phase separation method without causing the significant lowering of water permeability.SOLUTION: The polyvinylidene fluoride-based porous membrane manufactured by the thermally-induced phase separation method is immersed in a solution containing the perhydropolysilazane of a concentration of 0.01-3 wt.%, and then subjected to heat drying at 140-165°C. By immersing the polyvinylidene fluoride-based porous membrane into the solution containing the perhydropolysilazane of a predetermined concentration, the solution effectively soaks into membrane fine holes. By heating the membrane, -SiO- groups are formed on the membrane surface and inner surfaces of the membrane fine holes, and not only the membrane surface but also the entire membrane are hydrophilized. The membrane is hydrophilized without causing the significant lowering of the water permeability.

Description

本発明は、ポリフッ化ビニリデン系多孔質膜の親水化方法に関する。さらに詳しくは、熱誘起相分離法により作製されたポリフッ化ビニリデン系多孔質膜の親水化方法に関する。   The present invention relates to a method for hydrophilizing a polyvinylidene fluoride porous membrane. More specifically, the present invention relates to a method for hydrophilizing a polyvinylidene fluoride porous membrane prepared by a thermally induced phase separation method.

近年、世界的な水環境の悪化が問題となっており、低コストかつ単純な構成の水処理技術に対する要求がますます高まっている。このような水処理技術として、活性汚泥処理と膜分離処理とを組み合わせたメンブレンリアクター法(MBR)が挙げられる。この膜ロ過による浄水処理や下廃水処理は、これ迄の凝集沈殿のロ過方式と比較し、運転の維持や管理が容易であり、処理水質も良好であることから、近年水処理分野で幅広く用いられている。特に、これらの処理方式は、従来法では除去が不十分であったクリプトスポリジウム等の病原性微生物を完全に除去できることが大きな特徴として挙げられる。   In recent years, deterioration of the global water environment has become a problem, and there is an increasing demand for low-cost and simple water treatment technology. As such a water treatment technique, there is a membrane reactor method (MBR) that combines activated sludge treatment and membrane separation treatment. Compared with conventional filtration methods for coagulation and precipitation, this water purification process using membrane filtration and wastewater treatment are easier to maintain and manage, and the quality of treated water is good. Widely used. In particular, these treatment methods are characterized by the ability to completely remove pathogenic microorganisms such as Cryptosporidium, which was insufficiently removed by conventional methods.

これらの膜ロ過に用いられる素材としては、微粒子や有機物等のファウリング物質に対する耐汚染性にすぐれているポリフッ化ビニリデン系樹脂が注目されている。就中、熱誘起相分離法を製膜基本原理として得られるポリフッ化ビニリデン多孔質膜は、従来の非溶媒誘起相分離法(液・液分離法)で得られる膜の課題でもあった機械的強度やマクロボイドの生成という問題が解決され、さらに化学的耐久性にもすぐれている特徴を有している(特許文献1〜2参照)。   As a material used for these membrane filtrations, a polyvinylidene fluoride resin that is excellent in contamination resistance against fouling substances such as fine particles and organic substances has attracted attention. In particular, the polyvinylidene fluoride porous membrane obtained using the thermally induced phase separation method as the basic principle of membrane formation is a mechanical problem that has been a problem of membranes obtained by the conventional non-solvent induced phase separation method (liquid / liquid separation method). The problem of strength and generation of macrovoids is solved, and the chemical durability is also excellent (see Patent Documents 1 and 2).

かかるポリフッ化ビニリデン多孔質膜は、疎水性が高いため、水処理に使用するに際しては親水化処理が必要となる。親水化処理の方法としては、特許文献3に開示されているように、膜をエタノールに浸せきした後、水で置換する方法があり、この方法によって透水性を高くすることが可能となる。また、このような前処理を不要とすべく、膜をグリセリン水溶液に浸せきさせる方法(特許文献4参照)、界面活性剤水溶液に浸せきさせる方法(特許文献5参照)、これらの特徴を組み合わせ、HLB値が8〜15の非イオン界面活性剤とグリセリンを含有させた水溶液を膜分離膜の保存液としたもの(特許文献6参照)などが提案されている。   Since such a polyvinylidene fluoride porous membrane has high hydrophobicity, it needs to be hydrophilized when used for water treatment. As a hydrophilization treatment method, as disclosed in Patent Document 3, there is a method of immersing a membrane in ethanol and then replacing with water, and this method makes it possible to increase water permeability. Further, in order to eliminate the need for such pretreatment, a method of immersing the membrane in a glycerin aqueous solution (see Patent Document 4), a method of immersing in a surfactant aqueous solution (see Patent Document 5), a combination of these features, and HLB An aqueous solution containing a nonionic surfactant having a value of 8 to 15 and glycerin as a preservation solution for a membrane separation membrane has been proposed (see Patent Document 6).

さらに、膜製造時に親水物質を混入させるものとしては、酸化チタンを分散させたもの(特許文献7参照)、有機化クレイを分散させたもの(特許文献8〜9参照)、有機ケイ素化合物を分散させたもの(特許文献10参照)などが提案されている。   Further, as a substance to be mixed with a hydrophilic substance at the time of film production, a dispersion of titanium oxide (see Patent Document 7), a dispersion of organic clay (see Patent Documents 8 to 9), and an organosilicon compound are dispersed. A proposed one (see Patent Document 10) has been proposed.

しかしながら、膜をグリセリン等の水溶液に浸せきさせる方法は、膜モジュールを製造した後に、乾燥した膜モジュール中の膜をエタノール浸せきなどにより親水化させ、さらにグリセリン等の水溶液に浸せきする工程が必要であり、またモジュールからのグリセリン水溶液の漏出や、乾燥が起こらないように包装することが必要とされる。さらに、湿潤させた膜は、保管時に菌発生等が生じる可能性が高く、菌発生はモジュールの透水性を低下させる要因となるため、その抑制処理も要求される。   However, the method of immersing the membrane in an aqueous solution of glycerin, etc. requires a step of making the membrane in the dried membrane module hydrophilic after ethanol membrane immersing and then immersing the membrane in an aqueous solution of glycerin. In addition, it is necessary to package the module so that leakage of the glycerin aqueous solution from the module and drying do not occur. Furthermore, the wet membrane is highly likely to generate bacteria during storage, and the generation of bacteria is a factor that reduces the water permeability of the module, so that a suppression treatment is also required.

一方、膜製造時に酸化チタンあるいは有機化クレイ等を分散させる方法においては、膜の親水性を高めるために、親水性物質の混入量を高める必要が生じるが、これらの混入量を高くしすぎると、製膜原液の相安定性が低下し、また得られた膜の耐薬品性あるいは強度が低下するため、添加量に限界がみられる。さらに、かかる方法では、親水性物質を微細化したとしても、素材のポリフッ化ビニリデン多孔質膜自体が疎水性であるため、膜全体を親水化することができず、性能向上にはやはり限界がみられる。   On the other hand, in the method of dispersing titanium oxide or organic clay at the time of film production, it is necessary to increase the mixing amount of hydrophilic substances in order to increase the hydrophilicity of the film, but if these mixing amounts are too high, However, the phase stability of the film-forming stock solution is lowered, and the chemical resistance or strength of the obtained film is lowered, so that there is a limit to the amount added. Furthermore, in this method, even if the hydrophilic substance is miniaturized, since the polyvinylidene fluoride porous membrane itself is hydrophobic, the entire membrane cannot be hydrophilized, and there is still a limit to improving the performance. Be looked at.

膜の親水化方法のうち、膜表面をシリカガラスに転化させるものとしては、クラリアント社により製造されているパーヒドロポリシラザンが知られている。この物質を含有する市販品としては、AZエレクトロマテリアルズ社製品アクアミカシリーズが挙げられる。アクアミカは、パーヒドロポリシラザンを主成分としており、その希釈液を膜表面に塗装することにより、塗装面の水酸基、カルボキシル基などの官能基と化学結合するとともに、アクリル系やポリウレタン系などの樹脂と相溶するために高い密着性が得られるといった特徴を有している。また、次のような反応によって、膜塗装表面がシリカ(SiO2)となることで、親水性や汚泥性を高めることを可能とする。
( SiH2NH ) + 2H2O → ( SiO2 ) + NH3 + 2H2
Perhydropolysilazane manufactured by Clariant is known as a method for converting the membrane surface into silica glass among the methods for hydrophilizing the membrane. Commercial products containing this substance include the AZ Electromaterials product Aquamica series. AQUAMICA is mainly composed of perhydropolysilazane. By coating the diluted liquid on the membrane surface, it chemically bonds with functional groups such as hydroxyl and carboxyl groups on the coating surface, and with acrylic and polyurethane resins. It has a feature that high adhesion can be obtained because of compatibility. In addition, the surface of the film coating becomes silica (SiO 2 ) by the following reaction, so that hydrophilicity and sludge property can be improved.
(SiH 2 NH) + 2H 2 O → (SiO 2 ) + NH 3 + 2H 2

特公平4−33302号公報Japanese Patent Publication No. 4-33302 特許第2,899,903号公報Japanese Patent No. 2,899,903 特開2006−63095号公報JP 2006-63095 A 特開2002−95939号公報JP 2002-95939 A 特開昭63−277251号公報JP-A 63-277251 特開2010−88996号公報JP 2010-88996 A WO2006/006340WO2006 / 006340 特開2006−169498号公報JP 2006-169498 A 特開2004−352824号公報JP 2004-352824 A 特開2005−296846号公報Japanese Patent Application Laid-Open No. 2005-296846

本発明の目的は、熱誘起相分離法によるポリフッ化ビニリデン系多孔質膜の親水化方法であって、透水性の大きな低下を招くことなく、膜を親水化する方法を提供することにある。   An object of the present invention is to provide a method for hydrophilizing a polyvinylidene fluoride porous membrane by a heat-induced phase separation method and hydrophilizing the membrane without causing a significant decrease in water permeability.

かかる本発明の目的は、熱誘起相分離法によって作製されたポリフッ化ビニリデン系多孔質膜を、濃度0.01〜3重量%のパーヒドロポリシラザン含有溶液に浸せきした後、140〜165℃の温度で加熱乾燥を行うことによって達成される。   The object of the present invention is to immerse a polyvinylidene fluoride-based porous membrane produced by a thermally induced phase separation method in a perhydropolysilazane-containing solution having a concentration of 0.01 to 3% by weight, and then heat at a temperature of 140 to 165 ° C. This is achieved by performing drying.

本発明に係るポリフッ化ビニリデン系多孔質膜の親水化方法によれば、ポリフッ化ビニ
リデン系多孔質膜を所定濃度のパーヒドロポリシラザン含有溶液に浸せきすることで、膜細孔内に溶液が有効に染み込み、これを加熱することによって膜表面および膜細孔内表面に-SiO2-基が形成され、膜表面のみならず膜全体が親水化される。従って、乾燥した膜を用いて作製したモジュールを水処理する前にエタノール浸せき等の前処理を必要とせず、即使用が可能であり、また湿潤状態を維持するためのグリセリン溶液処理あるいは処理前のグリセリン水溶液漏洩あるいは膜の乾燥を防ぐための包装や除菌の必要性もないことから、親水化工程が簡素化されているといった効果を奏する。
According to the method for hydrophilizing a polyvinylidene fluoride porous membrane according to the present invention, the solution is effectively contained in the pores of the membrane by immersing the polyvinylidene fluoride porous membrane in a perhydropolysilazane-containing solution having a predetermined concentration. By soaking and heating, a —SiO 2 — group is formed on the membrane surface and the membrane pore inner surface, and not only the membrane surface but also the entire membrane is hydrophilized. Therefore, the module prepared using the dried membrane does not require pretreatment such as ethanol soaking before water treatment, and can be used immediately, and the glycerin solution treatment or pretreatment before maintaining a wet state is possible. Since there is no need for packaging and sterilization to prevent leakage of the glycerin aqueous solution or drying of the membrane, there is an effect that the hydrophilization process is simplified.

また、本発明方法によって親水化されたポリフッ化ビニリデン系多孔質膜は、透水性の大きな低下を招くことなく、膜が親水化されているといった特徴を有している。   In addition, the polyvinylidene fluoride porous membrane hydrophilized by the method of the present invention has a feature that the membrane is hydrophilized without causing a significant decrease in water permeability.

本発明方法においては、熱誘起相分離法によって作製されたポリフッ化ビニリデン系多孔質膜が、パーヒドロポリシラザン含有溶液への浸せきおよび加熱乾燥によって親水化される。なお、本発明方法は、熱誘起タイプ以外のポリフッ化ビニリデン系多孔質膜にも適用可能であるが、熱誘起タイプのポリフッ化ビニリデン系多孔質膜に対して特に有効である。   In the method of the present invention, the polyvinylidene fluoride porous membrane produced by the thermally induced phase separation method is hydrophilized by dipping in a perhydropolysilazane-containing solution and heat drying. The method of the present invention can be applied to a polyvinylidene fluoride porous membrane other than the heat-induced type, but is particularly effective for a heat-induced type polyvinylidene fluoride-based porous membrane.

ポリフッ化ビニリデン系多孔質膜の製造法として用いられる熱誘起相分離法は、熱可塑性樹脂を加熱溶融させた状態でフタル酸ジオクチル、フタル酸ジブチルなどの溶媒や疎水性シリカなどの添加剤(無機粒子等の造孔剤)とを均質混合し、これを加熱溶融状態で中空糸状または平膜状に成形した後、成形体を成形体成分の非溶解性液体(水など)への浸漬または空気中で冷却することでポリマー層と溶媒層とを相分離させ、これを溶液浸せきして膜中の溶媒や充填剤等を抽出し、多孔質膜を製膜するものである。   Thermally induced phase separation, which is used as a method for producing polyvinylidene fluoride porous membranes, is a solvent such as dioctyl phthalate and dibutyl phthalate in a state where a thermoplastic resin is heated and melted, and an additive such as hydrophobic silica (inorganic And then forming it into a hollow fiber shape or flat membrane shape in a heated and melted state, and then immersing the molded body in an insoluble liquid (such as water) of the molded body component or air The polymer layer and the solvent layer are phase-separated by cooling in the solution, and this is immersed in a solution to extract the solvent, the filler and the like in the film, thereby forming a porous film.

かかる熱誘起相分離法が適用されるポリフッ化ビニリデン系樹脂の例としては、フッ化ビニリデンの単独重合体、フッ化ビニリデンとテトラフルオロエチレン、ヘキサフルオロプロピレン、トリフルオロクロロエチレン、エチレン等の少なくとも一種との共重合体が挙げられ、好ましくはフッ化ビニリデン単独重合体が用いられる。ポリフッ化ビニリデン系樹脂の重量平均分子量Mw(GPS法によるポリスチレン換算分子量として測定)は、100,000〜300,000程度であることが好ましい。Mwがこれよりも大きくなると、球晶構造の生成が顕著となり、一方Mwがこれよりも小さくなると、機械的強度が低下するようになる。   Examples of the polyvinylidene fluoride resin to which the thermally induced phase separation method is applied include a homopolymer of vinylidene fluoride, at least one of vinylidene fluoride and tetrafluoroethylene, hexafluoropropylene, trifluorochloroethylene, ethylene, etc. A vinylidene fluoride homopolymer is preferably used. The polyvinylidene fluoride resin preferably has a weight average molecular weight Mw (measured as a polystyrene-equivalent molecular weight by the GPS method) of about 100,000 to 300,000. When Mw is larger than this, the formation of spherulite structure becomes remarkable, while when Mw is smaller than this, the mechanical strength is lowered.

熱誘起相分離法を適用するポリフッ化ビニリデン系多孔質膜の製造法としては、前記特許文献1〜2等に開示されている公知の方法をそのまま用いることができ、本発明ではさらに重量平均分子量Mwが100,000〜300,000のポリフッ化ビニリデン系樹脂25〜35重量%と一般式

Figure 2012183522
(ここでR1、R2、R3は同一または互いに異なるC4〜C6のアルキル基であり、R4はアシル基である)で表わされるクエン酸エステル化合物75〜65重量%との混合物を溶融成形した後、クエン酸エステル化合物抽出溶媒でクエン酸エステル化合物を除去し、多孔質化してポリフッ化ビニリデン系多孔質膜を製造するといった方法により製造されたポリフッ化ビニリデン系多孔質膜を用いることもできる。かかる製造法について、以下詳述する。 As a method for producing a polyvinylidene fluoride porous membrane to which a thermally induced phase separation method is applied, a known method disclosed in Patent Documents 1 and 2 can be used as it is. In the present invention, the weight average molecular weight is further increased. Polyvinylidene fluoride resin with Mw of 100,000-300,000, 25-35% by weight and general formula
Figure 2012183522
(Wherein R 1 , R 2 and R 3 are the same or different C 4 -C 6 alkyl groups and R 4 is an acyl group) and a mixture thereof with 75 to 65% by weight of a citrate compound After melt molding, a polyvinylidene fluoride-based porous membrane produced by a method of removing a citrate ester compound with a citrate ester compound extraction solvent and making it porous to produce a polyvinylidene fluoride-based porous membrane is used. You can also. This manufacturing method will be described in detail below.

熱誘起相分離法では、一般に熱可塑性樹脂と溶媒との混合物である製膜原液中の樹脂濃度が増大すると、球晶の生成が抑制される方向に働くが、クエン酸エステル化合物を用いる製膜原液にあっては樹脂濃度が増大するとかえって球晶が生成し、また樹脂濃度が小さくなると微細な球晶構造の生成がみられるので、ポリフッ化ビニリデン系樹脂は溶媒であるクエン酸エステル化合物との合計量中25〜35重量%の割合で用いられなければならない。   In the heat-induced phase separation method, generally, when the resin concentration in the film-forming stock solution, which is a mixture of a thermoplastic resin and a solvent, increases, the formation of spherulites is suppressed. However, film formation using a citrate ester compound is performed. In the undiluted solution, spherulites are generated when the resin concentration is increased, and fine spherulite structures are observed when the resin concentration is decreased. Therefore, the polyvinylidene fluoride resin is different from the citrate ester compound as a solvent. It must be used in a proportion of 25 to 35% by weight in the total amount.

前記一般記で表わされるクエン酸エステル化合物において、基R1、R2、R3は同一または互いに異なるC4〜C6のアルキル基であり、基R4はアセチル基、ベンゾイル基等のアシル基であり、例えばアセチルクエン酸トリブチル、アセチルクエン酸トリペンチル、アセチルクエン酸トリヘキシルおよびこれらの混合物が挙げられ、好ましくはアセチルクエン酸トリブチルが用いられる。 In the citrate compound represented by the above general formula, the groups R 1 , R 2 , and R 3 are the same or different C 4 to C 6 alkyl groups, and the group R 4 is an acyl group such as an acetyl group or a benzoyl group Examples thereof include tributyl acetyl citrate, tripentyl acetyl citrate, trihexyl acetyl citrate, and mixtures thereof, and preferably tributyl acetyl citrate is used.

基R1、R2、R3において、アルキル基がC3以下の炭素数を有するクエン酸アルキルエステルでは、得られるポリフッ化ビニリデン系多孔質膜の断面構造中に顕著な球晶の生成が認
められ、基R4が水素原子である場合にも同様である。一方、基R1、R2、R3において、アルキル基がC7以上の炭素数を有するクエン酸アルキルエステルでは、ポリフッ化ビニリデン系樹脂との相溶性が悪化したり、得られた成形体からのクエン酸アルキルエステルの抽出が困難となる。
In the groups R 1 , R 2 , and R 3 , alkyl citrate having an alkyl group with a carbon number of C 3 or less, noticeable formation of spherulites in the cross-sectional structure of the resulting polyvinylidene fluoride porous membrane. The same applies to the case where the group R 4 is a hydrogen atom. On the other hand, in the groups R 1 , R 2 , and R 3 , in the citric acid alkyl ester in which the alkyl group has a carbon number of C 7 or more, the compatibility with the polyvinylidene fluoride resin is deteriorated, or from the obtained molded body Extraction of the citric acid alkyl ester becomes difficult.

クエン酸エステル化合物を用いるポリフッ化ビニリデン系多孔質膜の製造法においては、クエン酸エステル化合物はポリフッ化ビニリデン系樹脂との合計量中75〜65重量%の割合で用いられる。   In the method for producing a polyvinylidene fluoride porous membrane using a citrate ester compound, the citrate ester compound is used in a proportion of 75 to 65% by weight in the total amount with the polyvinylidene fluoride resin.

ポリフッ化ビニリデン系樹脂とクエン酸エステル化合物との所定割合の混合物は、それを溶融成形した後、クエン酸エステル化合物抽出溶媒でクエン酸化合物を除去し、成形体を多孔質化させるという熱誘起相分離法が適用される。   A mixture of a polyvinylidene fluoride resin and a citrate ester compound in a predetermined ratio is melt-molded, and then the citric acid compound is removed with a citrate ester compound extraction solvent to make the molded body porous. Separation methods are applied.

その溶融混合温度や溶融成形温度は、ポリフッ化ビニリデン系樹脂が溶融し、一相に混じり合う温度以上で、かつクエン酸エステル化合物の沸点以下の温度であり、一般には約150〜200℃、好ましくは約160〜180℃である。成形される多孔質体の形状は、平膜状でも中空糸膜状でもよい。   The melt mixing temperature or melt molding temperature is a temperature above the temperature at which the polyvinylidene fluoride resin melts and mixes in one phase and below the boiling point of the citrate compound, generally about 150 to 200 ° C., preferably Is about 160-180 ° C. The shape of the molded porous body may be a flat membrane or a hollow fiber membrane.

平膜状の場合には、溶融混合物をTダイ等のダイスからシート状に押し出し、キャストロールを経て冷却固化させる方法、あるいは溶融混合物を予め冷却固化し、その固化物を熱プレスにより再度溶融させて成形し、冷却固化させる方法などが適用される。その膜厚は、一般に0.1〜1.0mm、好ましくは0.2〜0.5mmに設定される。   In the case of a flat film, the molten mixture is extruded from a die such as a T-die into a sheet and cooled and solidified via a cast roll, or the molten mixture is cooled and solidified in advance, and the solidified product is melted again by hot pressing. A method of forming and cooling and solidifying is applied. The film thickness is generally set to 0.1 to 1.0 mm, preferably 0.2 to 0.5 mm.

中空糸膜状の場合には、二重環状ノズルから中空糸膜状に溶融押出し、所定の空走区間を経た後、冷却浴中に浸漬して固化させる方法が一般にとられる。冷却浴としては、廉価でかつ熱容量も大きいことから水が好んで用いられるが、成形体成分が溶解しない他の溶剤あるいは空冷であってもよい。また、中空糸膜の中空部形成用の流体には、押出温度以上の沸点を有する非溶解性の液体や空気、窒素等の気体を使用することができる。その膜厚は、一般に0.05〜3.0mm、好ましくは0.2〜2.0mmであり、外径は一般に0.1〜5.0mm、好ましくは0.3〜3.0mmに設定される。   In the case of a hollow fiber membrane, a method is generally employed in which it is melt-extruded from a double annular nozzle into a hollow fiber membrane, passed through a predetermined idle running section, and then immersed in a cooling bath to solidify. As the cooling bath, water is preferably used because it is inexpensive and has a large heat capacity. However, other solvents that do not dissolve the molded body components or air cooling may be used. The fluid for forming the hollow portion of the hollow fiber membrane may be an insoluble liquid having a boiling point equal to or higher than the extrusion temperature, or a gas such as air or nitrogen. The film thickness is generally 0.05 to 3.0 mm, preferably 0.2 to 2.0 mm, and the outer diameter is generally set to 0.1 to 5.0 mm, preferably 0.3 to 3.0 mm.

成形体を多孔質化するために用いられる製膜溶液(クエン酸エステル化合物)抽出溶媒としては、例えばメタノール、エタノール、イソプロパノール等のアルコール系溶媒、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、n-ヘキサン、シクロヘキサン等の炭化水素系溶媒が挙げられる。   Examples of the film forming solution (citrate ester compound) extraction solvent used to make the molded body porous include alcohol solvents such as methanol, ethanol and isopropanol, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and n- Examples thereof include hydrocarbon solvents such as hexane and cyclohexane.

ポリフッ化ビニリデン系多孔質膜は、所定濃度のパーヒドロポリシラザン含有溶液に浸せきした後、所定温度で加熱乾燥することによって、膜表面および膜細孔内表面に-SiO2-基が形成され、膜が親水化される。 The polyvinylidene fluoride-based porous membrane is immersed in a perhydropolysilazane-containing solution at a predetermined concentration and then heated and dried at a predetermined temperature to form -SiO 2 -groups on the membrane surface and the inner surface of the membrane pores. Is hydrophilized.

パーヒドロポリシラザン含有溶液としては、パーヒドロポリシラザンを、例えばキシレン、ジブチルエーテル、ソルベンツ、ターペン等の有機溶媒に溶解させたものが用いられ、実際には例えばAZエレクトロマテリアルズ社製品アクアミカシリーズを使用することができる。この溶液中のパーヒドロポリシラザン濃度は、0.01〜3重量%、好ましくは0.1〜2.5重量%で用いられ、これより高い濃度で用いられると、膜の細孔が小さくなることによって透水性が低下するようになり、一方これより低い濃度で用いられる所望の親水化効果を得ることが難しくなる。なお、パーヒドロポリシラザン含有溶液中には、触媒、例えばパラジウム系触媒、アミン系触媒等を含有せしめることもできる。   As the perhydropolysilazane-containing solution, a solution obtained by dissolving perhydropolysilazane in an organic solvent such as xylene, dibutyl ether, sorbents, and terpenes is used. be able to. The perhydropolysilazane concentration in this solution is 0.01 to 3% by weight, preferably 0.1 to 2.5% by weight. When used at a concentration higher than this, the water permeability decreases due to the small pores of the membrane. On the other hand, it becomes difficult to obtain a desired hydrophilizing effect used at a lower concentration. The perhydropolysilazane-containing solution may contain a catalyst such as a palladium catalyst or an amine catalyst.

膜の加熱乾燥は、140〜165℃、好ましくは145〜155℃の温度で行われる。これより高い温度で乾燥処理が行われると、膜が収縮してしまい、一方これより低い温度では、膜の親水化が十分に行われなくなる。この際の加熱乾燥時間は、一般に約10〜90分間程度である。   The film is dried by heating at a temperature of 140 to 165 ° C, preferably 145 to 155 ° C. If the drying process is performed at a temperature higher than this, the film shrinks, whereas at a temperature lower than this, the film is not sufficiently hydrophilized. In this case, the heating and drying time is generally about 10 to 90 minutes.

得られる親水化ポリフッ化ビニリデン系多孔質膜は、下記式で示される通水1分後に測定した膜の透水性Xが、さらにエタノール浸せき前処理を行った場合の80%以上であるというように、本発明にかかる親水化処理のみであっても、透水性の大幅な低下はみられないといった特徴を有する。
X(%) = 100×J1/J0
J1:0.1MPaGの差圧がかかった状態で通水して1分後の純水透過係数
J0:親水化ポリフッ化ビニリデン系多孔質膜をエタノールに5分間浸せきし、
その後5分間水置換したのちに、0.1MPaGの差圧がかかった状態で通水して
1分後の純水透過係数
In the obtained hydrophilic polyvinylidene fluoride porous membrane, the water permeability X of the membrane measured after 1 minute of water passage represented by the following formula is 80% or more when ethanol pretreatment is further performed. Even if only the hydrophilization treatment according to the present invention is used, the water permeability is not significantly reduced.
X (%) = 100 x J 1 / J 0
J 1 : Pure water permeability coefficient 1 minute after passing water with a differential pressure of 0.1 MPaG applied
J 0 : Soaking the hydrophilic polyvinylidene fluoride porous membrane in ethanol for 5 minutes,
After water replacement for 5 minutes, water was passed with a differential pressure of 0.1 MPaG applied.
Pure water permeability coefficient after 1 minute

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例1
疎水性シリカ(日本アエロジル製品アエロジルR-972)24.0重量%、フタル酸ジオクチル29.7重量%およびフタル酸ジブチル5.8重量%をヘンシェルミキサで混合した後、ポリフッ化ビニリデン(クレハ製品クレハKFポリマー♯1000)40.5重量%を添加し、再びヘンシェルミキサで混合した。この混合物を、48mm径の二軸押出機を用いて220℃で加熱混合してペレットとした後、30mm径の二軸押出機に中空糸状紡糸口金を設けた中空糸製造装置を用いて、240℃で溶融押出した後に25℃で冷却し、中空糸状に成形した。得られた中空糸を30℃の塩化メチレン中に1時間浸せきして、フタル酸ジオクチルおよびフタル酸ジブチルを抽出して脱脂した後、乾燥させた。外径0.7〜2.0mm、内径0.4〜1.2mmの疎水性シリカ含有ポリフッ化ビニリデン系中空糸膜が得られた。
Example 1
Hydrophobic silica (Nippon Aerosil product Aerosil R-972) 24.0 wt%, dioctyl phthalate 29.7 wt% and dibutyl phthalate 5.8 wt% were mixed in a Henschel mixer, then polyvinylidene fluoride (Kureha product Kureha KF polymer # 1000) 40.5 The wt% was added and mixed again with a Henschel mixer. This mixture was heated and mixed at 220 ° C. using a 48 mm diameter twin screw extruder into pellets, and then a hollow fiber production apparatus provided with a hollow fiber spinneret in a 30 mm diameter twin screw extruder. After melt extrusion at 0 ° C., the mixture was cooled at 25 ° C. and formed into a hollow fiber shape. The obtained hollow fiber was immersed in methylene chloride at 30 ° C. for 1 hour to extract and degrease dioctyl phthalate and dibutyl phthalate, and then dried. A hydrophobic silica-containing polyvinylidene fluoride hollow fiber membrane having an outer diameter of 0.7 to 2.0 mm and an inner diameter of 0.4 to 1.2 mm was obtained.

次に、50%エチルアルコール水溶液に30分間浸せきし、さらに水中に移して30分間浸せきを行い、中空糸を親水化した。次いで、40℃、5%苛性ソーダ水溶液中に1時間浸せきする処理を2回行い、さらに40℃の温水浸せきを10回行い疎水性シリカの抽出を行った。   Next, it was immersed in 50% ethyl alcohol aqueous solution for 30 minutes, and further transferred to water and immersed for 30 minutes to make the hollow fiber hydrophilic. Next, a treatment of immersing in an aqueous solution of caustic soda at 40 ° C. and 5% for 1 hour was performed twice, followed by 10 times of immersion in warm water at 40 ° C. to extract hydrophobic silica.

水洗した中空糸膜は、エアーをブローすることで水の除去を行った後、パーヒドロポリシラザンの2重量%ターペン溶液(アクアミカNP140;アミン系触媒含有)に浸せきし、その後エアーをブローさせて余分なパーヒドロポリシラザン浸せき液を除去した後、150℃、1時間の乾熱処理を行った。   The hollow fiber membrane that has been washed with water is removed by blowing air, then immersed in a 2% by weight terpene solution of perhydropolysilazane (Aquamica NP140, containing amine catalyst), and then blown to remove excess air. After removing the perhydropolysilazane soaking solution, dry heat treatment was performed at 150 ° C. for 1 hour.

得られた親水化ポリフッ化ビニリデン多孔質膜について、透水性能およびバブルポイントの測定を行った。
〔透水性能〕
T字状3方向に開口部を有するガラス管に、中空糸膜を1本挿入して中空糸膜両端部とガラス管との間をエポキシ樹脂にて接着し、中空糸膜の有効長160mmの透水性能評価用モジュールを作製した。中空糸膜一端部より25℃の純水を供給し、中空糸膜他端部側の圧力を調整することで、平均ロ過圧力0.1MPaGで中空糸膜内から中空糸膜外への水ロ過を行った。試験開始後1分後の透水量を測定し、10秒間の水透過量を中空糸膜内側表面積、平均圧力(中空糸内側と外側の水圧差0.1MPa)で除することで、純水透過係数J1(ml/時間・cm2・0.1MPa)を算出した。次いで、モジュールの中空糸膜外側の水を除いた後に、エタノールに5分間浸せきし、さらにその後5分間水での置換を行った後、0.1MPaGの差圧がかかった状態で通水し、1分後の透過係数J0(ml/時間・cm2・0.1MPa)を測定した。これらの結果より、透過率X(%) = 100×J1/J0を算出した。
なお、本発明方法によって得られる親水化ポリフッ化ビニリデン系多孔質膜は、乾燥状態にある初期の状態、すなわちエタノールによる親水化処理を行わない状態で使用することができるが、透水性能試験では、各比較例で得られたものについても、十分に湿潤した状態で透過係数を算出し、各実施例と比較するため、エタノール浸せき処理が行われた。
〔バブルポイント〕
SUS管上部にループ状の中空糸膜(ループ頂点までの高さ30〜40mm)を挿入し、挿入箇所をエポキシ樹脂にて接着したものの中空糸膜部をエタノールに浸せきした状態で、SUS管の中空糸膜を接着していない端部より圧力を印加し、膜の表面から気泡が出る圧力(バブルポイント)を測定した。
The obtained hydrophilized polyvinylidene fluoride porous membrane was measured for water permeability and bubble point.
[Permeability]
A hollow fiber membrane is inserted into a glass tube having openings in three T-shapes, and both ends of the hollow fiber membrane and the glass tube are bonded with an epoxy resin, and the effective length of the hollow fiber membrane is 160 mm. A module for evaluating water permeability was prepared. By supplying pure water at 25 ° C from one end of the hollow fiber membrane and adjusting the pressure at the other end of the hollow fiber membrane, the water flow from the inside of the hollow fiber membrane to the outside of the hollow fiber membrane at an average overpressure of 0.1 MPaG I went over. Measure the water permeation amount 1 minute after the start of the test and divide the water permeation amount for 10 seconds by the inner surface area of the hollow fiber membrane and the average pressure (water pressure difference 0.1 MPa between the inner side and the outer side of the hollow fiber) J 1 (ml / hour · cm 2 · 0.1 MPa) was calculated. Next, after removing the water outside the hollow fiber membrane of the module, after immersing in ethanol for 5 minutes, and then replacing with water for 5 minutes, water was passed with a differential pressure of 0.1 MPaG applied, 1 The permeability coefficient J 0 (ml / hour · cm 2 · 0.1 MPa) after a minute was measured. From these results, transmittance X (%) = 100 × J 1 / J 0 was calculated.
Incidentally, the hydrophilic polyvinylidene fluoride porous membrane obtained by the method of the present invention can be used in an initial state in a dry state, i.e., without performing a hydrophilization treatment with ethanol. For the samples obtained in each comparative example, the permeation coefficient was calculated in a sufficiently wet state, and ethanol immersion treatment was performed in order to compare with each example.
[Bubble Point]
Insert a loop-shaped hollow fiber membrane (height up to 30-40 mm to the top of the loop) into the upper part of the SUS tube, and attach the insertion point with epoxy resin. Pressure was applied from the end where the hollow fiber membrane was not bonded, and the pressure at which bubbles emerged from the surface of the membrane (bubble point) was measured.

実施例2
実施例1において、パーヒドロポリシラザン溶液として、さらにターペン溶媒で希釈し、0.1重量%としたものが用いられた。
Example 2
In Example 1, a perhydropolysilazane solution further diluted with a terpene solvent to a concentration of 0.1% by weight was used.

比較例1
実施例1において、パーヒドロポリシラザン溶液への中空糸膜の浸せきが行われず、また乾熱処理温度が50℃に変更されて乾熱処理が行われた。
Comparative Example 1
In Example 1, the hollow fiber membrane was not immersed in the perhydropolysilazane solution, and the dry heat treatment temperature was changed to 50 ° C. and the dry heat treatment was performed.

比較例2
実施例1において、パーヒドロポリシラザン溶液として20重量%のもの(アクアミカNP110;アミン系触媒、キシレン溶媒)が用いられた。
Comparative Example 2
In Example 1, a 20% by weight (Aquamica NP110; amine-based catalyst, xylene solvent) was used as a perhydropolysilazane solution.

比較例3
実施例1において、パーヒドロポリシラザン溶液として、さらにターペン溶媒で希釈し、0.005重量%としたものが用いられた。
Comparative Example 3
In Example 1, a perhydropolysilazane solution further diluted with a terpene solvent to 0.005% by weight was used.

比較例4
透過係数(ml/時間・cm2・0.1MPa)が10、分画分子量2万のポリフェニルサルホン膜を、パーヒドロポリシラザン(アクアミカNP110)の2重量%溶液に浸せきし、その後エアーをブローさせて余分なパーヒドロポリシラザン浸せき液を除去した後、150℃、1時間の乾熱処理を行ったところ、処理後の膜は部分的に透明化しており、透過係数が0.001以下となっていた。
Comparative Example 4
A polyphenylsulfone membrane with a permeability coefficient (ml / hour · cm 2 · 0.1 MPa) of 10 and a molecular weight cut off of 20,000 is immersed in a 2% by weight solution of perhydropolysilazane (Aquamica NP110), and then air is blown. After removing the excess perhydropolysilazane immersion solution, a dry heat treatment was performed at 150 ° C. for 1 hour. As a result, the treated film was partially transparent, and the permeability coefficient was 0.001 or less.

実施例および比較例1〜3についての透水性能およびバブルポイントは、下記の表に示される。

測 定 項 目 実1 実2 比1 比2 比3
透過係数(ml/時間・cm2・0.1MPa)
初期通水時 J1 4173 4050 0.7 790 1000
エタノール親水化処理後 J0 4320 4500 4988 800 4700
透過率 X(%) 96.5 90.0 0.01 98.8 21.3
バブルポイント(kPaG) 210 205 200 300 200
The water permeability and bubble points for the examples and comparative examples 1 to 3 are shown in the table below.
table
Measurement Item real 1 real 2 ratio 1 ratio 2 ratio 3
Permeation coefficient (ml / hour ・ cm 2・ 0.1MPa)
Initial water flow J 1 4 173 4050 0.7 790 1000
After ethanol hydrophilization treatment J 0 4320 4500 4988 800 4700
Transmittance X (%) 96.5 90.0 0.01 98.8 21.3
Bubble point (kPaG) 210 205 200 300 200

Claims (2)

熱誘起相分離法によって作製されたポリフッ化ビニリデン系多孔質膜を、濃度0.01〜3重量%のパーヒドロポリシラザン含有溶液に浸せきした後、140〜165℃の温度で加熱乾燥を行うことを特徴とするポリフッ化ビニリデン系多孔質膜の親水化方法。   It is characterized in that a polyvinylidene fluoride porous membrane produced by a thermally induced phase separation method is immersed in a perhydropolysilazane-containing solution having a concentration of 0.01 to 3% by weight, and then heated and dried at a temperature of 140 to 165 ° C. A method for hydrophilizing a polyvinylidene fluoride porous membrane. 請求項1記載の親水化方法によって親水化処理が行われたポリフッ化ビニリデン系多孔質膜。   A polyvinylidene fluoride-based porous membrane that has been subjected to a hydrophilization treatment by the hydrophilization method according to claim 1.
JP2011050078A 2011-03-08 2011-03-08 Hydrophilization method for polyvinylidene fluoride-based porous membrane Withdrawn JP2012183522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011050078A JP2012183522A (en) 2011-03-08 2011-03-08 Hydrophilization method for polyvinylidene fluoride-based porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011050078A JP2012183522A (en) 2011-03-08 2011-03-08 Hydrophilization method for polyvinylidene fluoride-based porous membrane

Publications (1)

Publication Number Publication Date
JP2012183522A true JP2012183522A (en) 2012-09-27

Family

ID=47014105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050078A Withdrawn JP2012183522A (en) 2011-03-08 2011-03-08 Hydrophilization method for polyvinylidene fluoride-based porous membrane

Country Status (1)

Country Link
JP (1) JP2012183522A (en)

Similar Documents

Publication Publication Date Title
AU736329B2 (en) Porous polyvinylidene fluoride resin membrane and process for preparing the same
US7819956B2 (en) Gas transfer membrane
JP5619020B2 (en) Hydrophobic membrane made of polyvinylidene fluoride which is stable to ozone
JP6644674B2 (en) Hollow fiber membrane and method for manufacturing hollow fiber membrane
WO2002102500A1 (en) Membrane polymer compositions
JP2012525966A (en) Fluorine-based hollow fiber membrane and method for producing the same
JP4931796B2 (en) Vinylidene fluoride resin hollow fiber porous membrane, water filtration method using the same, and production method thereof
WO2012176810A1 (en) Porous polymer film and production method for porous polymer film
JP5050499B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
JP6599818B2 (en) Method for producing porous membrane
JP5292890B2 (en) Composite hollow fiber membrane
JP5983981B2 (en) Method for producing porous membrane
JP6419917B2 (en) Method for producing hollow fiber membrane
JP2015182060A (en) Hollow fiber membrane and manufacturing method of hollow fiber membrane
JP4864707B2 (en) Method for producing vinylidene fluoride resin porous water treatment membrane
KR20130040620A (en) Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment
JP2002233739A (en) Porous hollow yarn composite membrane
KR101308998B1 (en) The Preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment
JP2012183522A (en) Hydrophilization method for polyvinylidene fluoride-based porous membrane
KR102316308B1 (en) Spinning solution for flexible PPS porous hollow fiber having hydrophilicity, flexible PPS porous hollow fiber membrane having hydrophilicity and Manufacturing method thereof
KR20120077011A (en) Water treatment membrane of poly(ethylenechlorotrifluoroethylene) and manufacturing method thereof
KR101308996B1 (en) The Preparation method of hollow fiber membrane with high permeation using hydrophilic polyvinylidenefluoride composites for water treatment
CN113195082A (en) Porous membranes for high pressure filtration
KR20160079354A (en) Composition of PVDF porous hollow fiber membrane improved with hydrophilicity and PVDF porous hollow fiber membrane having asymmetry sandwich structure using the same
KR20130040622A (en) The preparation method of hollow fiber membrane with high permeation using hydrophilized polyvinylidenefluoride for water treatment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513