JP2012183494A - Percolating water cleaning ground - Google Patents

Percolating water cleaning ground Download PDF

Info

Publication number
JP2012183494A
JP2012183494A JP2011048649A JP2011048649A JP2012183494A JP 2012183494 A JP2012183494 A JP 2012183494A JP 2011048649 A JP2011048649 A JP 2011048649A JP 2011048649 A JP2011048649 A JP 2011048649A JP 2012183494 A JP2012183494 A JP 2012183494A
Authority
JP
Japan
Prior art keywords
water
upper layer
ground
lower layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011048649A
Other languages
Japanese (ja)
Other versions
JP5694815B2 (en
Inventor
Kentaro Masuoka
健太郎 増岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2011048649A priority Critical patent/JP5694815B2/en
Publication of JP2012183494A publication Critical patent/JP2012183494A/en
Application granted granted Critical
Publication of JP5694815B2 publication Critical patent/JP5694815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a percolating water cleaning ground which can be adopted without being limited by a groundwater level or the like, and can effectively purify nitrate nitrogen-contaminated water.SOLUTION: The percolating water cleaning ground 1 is configured by laminating up and down, an upper layer 2 composed by a first material that is sand or a material having the particle diameter finer than that of sand, and a lower layer 3 composed by a second material that is a material having the particle size rougher than that of the first material at the upper position from a groundwater level WL, wherein a cleaning part 4 in which a sustained release organic matter 5 is mixed with the first material is formed in the lower end of the upper layer 2.

Description

本発明は、浸透水浄化地盤に関する。   The present invention relates to a seepage water purification ground.

過剰な施肥等による高濃度の窒素を含む地盤では、降雨により汚染浸透水が浸透し、地下水が汚染されるおそれがある。
このような汚染物質の拡散を防止する方法として、生物学的脱窒法による浄化層を地中に形成し、汚染浸透水が地下水域に流れ込む前に脱窒して無害化処理する場合がある。
In the ground containing high concentration of nitrogen due to excessive fertilization, etc., contaminated infiltrated water may permeate due to rainfall, which may contaminate groundwater.
As a method for preventing the diffusion of such pollutants, there is a case where a purification layer is formed in the ground by a biological denitrification method, and denitrification is performed before decontamination before the contaminated permeated water flows into the groundwater area.

硝酸性窒素の生物学的脱窒を促進させるためには、有機物の供給、嫌気環境の形成が有効である。
例えば、特許文献1には、硝酸性窒素の生物学的窒素を促進させるために、不飽和地盤(地山102)中に徐放性有機物104を混合させた透水性の低い層(浄化層103)を地下水位WLよりも高い位置に設けることで、有機物の供給、嫌気環境の形成、滞留時間の確保を行う浸透水浄化地盤101が開示されている。
In order to promote biological denitrification of nitrate nitrogen, supply of organic substances and formation of an anaerobic environment are effective.
For example, in Patent Document 1, in order to promote biological nitrogen of nitrate nitrogen, a layer with low water permeability (purification layer 103) in which a sustained-release organic substance 104 is mixed in unsaturated ground (natural ground 102). ) Is provided at a position higher than the groundwater level WL, thereby disclosing an osmotic water purification ground 101 for supplying organic matter, forming an anaerobic environment, and securing a residence time.

特開2009−11947号公報JP 2009-11947 A

ところが、前記従来の浸透水浄化地盤101は、降雨量が多い場合等、一時的に浸透水量が増加すると、水位が上昇して地表湛水が生じるおそれがある。農耕地区等のように地表が畑等の場合には、地表湛水が根腐れの原因になるため、浸透水浄化地盤101の浄化層103は、比較的深い位置に形成するのが望ましい。しかしながら、地下水位WLが高い場合には、地表湛水を防止するために必要な深度を確保することができない場合があった。   However, in the conventional seepage water purification ground 101, when the amount of seepage water temporarily increases, such as when there is a lot of rainfall, there is a risk that the water level will rise and surface drowning will occur. When the ground surface is a field or the like as in an agricultural area or the like, surface groundwater causes root rot, so it is desirable to form the purification layer 103 of the seepage water purification ground 101 at a relatively deep position. However, when the groundwater level WL is high, the depth necessary to prevent surface flooding may not be ensured.

そのため、本発明は、地下水位等に限定されず採用することが可能で、かつ、効果的に硝酸性窒素汚染水を浄化することを可能とした浸透水浄化地盤を提案することを課題とする。   Therefore, this invention makes it a subject to propose the osmotic water purification ground which can be employ | adopted without being limited to a groundwater level etc. and was able to purify nitrate nitrogen pollution water effectively. .

前記課題を解決するために、本発明は、砂または砂よりも細かい粒径の材料である第一材料により構成された上層と、前記第一材料よりも粗い粒径の材料である第二材料により構成された下層とが地下水位よりも上位において上下に積層された浸透水浄化地盤であって、前記上層の下端部には、前記第一材料に徐放性有機物が混合された浄化部が形成されていることを特徴としている。   In order to solve the above problems, the present invention provides an upper layer composed of sand or a material having a particle diameter finer than that of sand, and a second material that is a material having a coarser particle diameter than the first material. Is a permeated water purification ground layered vertically above and below the groundwater level, and a lower part of the upper layer has a purification unit in which a sustained-release organic substance is mixed with the first material. It is characterized by being formed.

かかる浸透水浄化地盤によれば、粒径の細かい第一材料(砂または砂よりも細かい材料)からなる上層の下に、粒径の粗い第二材料(例えば礫等)により構成された下層を設けているため、上層と下層との間でキャピラリーバリア(上層と下層の毛管力の違いによって形成された遮水層)が形成されるようになり、地表からの浸透水をキャピラリーバリアの浸透抑制機能によって浄化部に保水させることが可能となる。
そして、徐放性有機物が混合された浄化部では、飽和度が高く嫌気環境が形成されやすくなるため、生物学的脱窒が促進する。したがって、地表側から浸透した硝酸性窒素汚染水は、浄化部において浄化され、下層へと排出されるようになる。
According to such a permeated water purification ground, a lower layer composed of a second material having a coarse particle size (for example, gravel) is provided below an upper layer made of the first material having a fine particle size (sand or a material finer than sand). As a result, a capillary barrier (a water-impervious layer formed by the difference in capillary force between the upper layer and the lower layer) is formed between the upper layer and the lower layer, and permeated water from the ground surface is prevented from penetrating the capillary barrier. The function enables the purification unit to retain water.
And in the purification | cleaning part with which sustained-release organic substance was mixed, since it becomes easy to form anaerobic environment with high saturation, biological denitrification is accelerated | stimulated. Therefore, the nitrate nitrogen contaminated water that has permeated from the surface side is purified in the purification section and discharged to the lower layer.

また、地表側からの浸透水が浄化部(上層)の保水可能量を上回る場合は、キャピラリーバリアが破過して下方(下層)へと排水されるため、水位が上昇して地表湛水するおそれがない。
なお、本明細書において「砂」とは、土質区分により砂として分類される粒径を有するものとする。
In addition, if the permeated water from the surface side exceeds the water retention capacity of the purification unit (upper layer), the capillary barrier breaks through and drains downward (lower layer), so the water level rises and the surface water is submerged. There is no fear.
In the present specification, “sand” has a particle size classified as sand by the soil classification.

また、前記上層と前記下層との境界面に、前記第一材料が前記下層に流出することを防止する透水性シートが介設されていれば、上層の保水能力の低下を防止することができる。つまり、第一材料が下層に流出すると、上層の密度低下が生じ、上層の保水能力が低下してしまう。そのため、透水性シートにより第一材料の流出を防止することで、保水能力の低下を防止する。   Moreover, if the water permeable sheet which prevents that said 1st material flows out into the said lower layer is interposed in the interface of the said upper layer and the said lower layer, the fall of the water retention capability of an upper layer can be prevented. . That is, when the first material flows out to the lower layer, the density of the upper layer is reduced, and the water retention capacity of the upper layer is reduced. Therefore, the water permeable sheet prevents the first material from flowing out, thereby preventing a decrease in water retention capacity.

前記上層および前記下層からなる積層構造が、複数段積層されていれば、地下水に至るまでに硝酸性窒素汚染水の浄化が複数回実施されるようになるので浄化性能をより向上させることができる。   If the laminated structure composed of the upper layer and the lower layer is laminated in a plurality of stages, purification of nitrate-nitrogen-contaminated water is performed a plurality of times before reaching the groundwater, so that purification performance can be further improved. .

本発明によれば、硝酸性窒素汚染水を浄化する浸透水浄化地盤を地形形状に限定されず採用することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to employ | adopt the osmotic water purification | cleaning ground which purifies nitrate nitrogen pollution water, without being limited to topographic shape.

本発明の実施の形態に係る浸透水浄化地盤の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the permeated water purification | cleaning ground which concerns on embodiment of this invention. 浸透水浄化地盤の保水状況を模式的に示す断面図である。It is sectional drawing which shows typically the water retention condition of the seepage water purification ground. (a)は実施例の試験モデルを模式的に示す断面図、(b)は実施例における定常後の飽和度分布を示すグラフである。(A) is sectional drawing which shows typically the test model of an Example, (b) is a graph which shows saturation distribution after the steady state in an Example. 実施例における積算加水量、積算排水量、保水量および砂層空隙体積と時間の関係を示すグラフである。It is a graph which shows the relationship of time and the accumulated water amount, accumulated wastewater amount, water retention amount, sand layer void volume, and time in Examples. 従来の浸透水浄化地盤の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the conventional permeated water purification ground.

以下に本発明の好適な実施形態について説明する。
本実施形態の浸透水浄化地盤1は、農耕地等において、畑等から溶出した硝酸性窒素分を地下水面に到達する前に浄化するものであって、図1に示すように、不飽和地盤中において、上層2と下層3とが地下水位WLよりも上位において、上下に積層されることにより構成されている。
Hereinafter, preferred embodiments of the present invention will be described.
The permeated water purification ground 1 of the present embodiment purifies nitrate nitrogen eluted from a field or the like before reaching the ground water surface in an agricultural land or the like. As shown in FIG. In the inside, the upper layer 2 and the lower layer 3 are configured to be stacked vertically above and below the groundwater level WL.

上層2は、土質区分において砂に分類される材料または砂よりも細かい粒径の材料である第一材料により構成されている。本実施形態では、地山Gを掘削することにより発生した掘削土砂を利用している。なお、第一材料を構成する材料には、砂または砂を主体とするいわゆる砂質土を使用する。第一材料は、透水係数が1×10−4cm/secより大きい材料であることが望ましい。
なお、上層2は、搬入された砂等により形成してもよい。
The upper layer 2 is made of a first material which is a material classified as sand in the soil classification or a material having a particle diameter finer than that of sand. In this embodiment, excavated soil generated by excavating the natural ground G is used. The material constituting the first material is sand or so-called sandy soil mainly composed of sand. The first material is desirably a material having a water permeability greater than 1 × 10 −4 cm / sec.
In addition, you may form the upper layer 2 with the sand etc. which were carried in.

上層2の下端部には、第一材料に徐放性有機物5が混合された浄化部4が形成されている。
浄化部4は、第一材料(上層2)の毛管力による保水能力が高い位置を含むように形成する。浄化部4の層厚は限定されるものではないが、本実施形態では、図2に示すように、上層2において飽和度が80%以上となる領域を包含し得る層厚となるように浄化部4を形成している。
At the lower end portion of the upper layer 2, a purification portion 4 in which a sustained-release organic material 5 is mixed with the first material is formed.
The purification | cleaning part 4 is formed so that the position where the water retention capability by the capillary force of the 1st material (upper layer 2) is high may be included. Although the layer thickness of the purification unit 4 is not limited, in this embodiment, as shown in FIG. 2, the purification unit 4 performs purification so as to have a layer thickness that can include a region where the saturation level is 80% or more. Part 4 is formed.

なお、浄化部4の上面および下面(上層2と下層3との境界面)は、浸透水が浄化部4に沿って流出することがないよう平ら(略水平)に形成されている。   In addition, the upper surface and the lower surface (the boundary surface between the upper layer 2 and the lower layer 3) of the purification unit 4 are formed flat (substantially horizontal) so that permeated water does not flow out along the purification unit 4.

下層3は、第一材料よりも粗い粒径の材料である第二材料により構成されている。本実施形態では、第二材料として砕石を採用するが、第二材料を構成する材料は、第一材料よりも粗い粒径の材料であれば限定されるものではない。例えば、土質区分において礫に分類される材料が望ましい。   The lower layer 3 is composed of a second material that is a material having a coarser particle diameter than the first material. In this embodiment, crushed stone is employed as the second material, but the material constituting the second material is not limited as long as the material has a coarser particle diameter than the first material. For example, materials classified as gravel in the soil classification are desirable.

本実施形態では、下層3の下面が地下水面に接するように、下層3を地下水位WLの直上に形成するが、下層3の下面の位置は、必ずしも地下水位WLに合わせる必要はなく、地下水位WLから上に離してもよい。また、施工上、第二材料が地下水位WLよりも低い位置に配置された場合であっても、下層3の下面の位置は地下水面(地下水位WL)と認定する。   In the present embodiment, the lower layer 3 is formed directly above the groundwater level WL so that the lower surface of the lower layer 3 is in contact with the groundwater surface. It may be separated upward from WL. Moreover, even if it is a case where 2nd material is arrange | positioned in the position lower than the groundwater level WL on construction, the position of the lower surface of the lower layer 3 is recognized as a groundwater surface (groundwater level WL).

図1に示すように、上層2と下層3との境界面には、不織布等からなる透水性シート6が介設されている。なお、透水性シート6を構成する材料は、不織布に限定されるものではなく、上層2を構成する第一材料や徐放性有機物5を通過させることなく水分を通過させることが可能な材料の中から適宜選定して採用すればよい。   As shown in FIG. 1, a water permeable sheet 6 made of a nonwoven fabric or the like is interposed at the boundary surface between the upper layer 2 and the lower layer 3. In addition, the material which comprises the water-permeable sheet 6 is not limited to a nonwoven fabric, The material which can permeate | transmit a water | moisture content without allowing the 1st material which comprises the upper layer 2, and the sustained release organic substance 5 to pass through. What is necessary is just to select suitably from the inside and to employ | adopt.

浸透水浄化地盤1は、地盤Gを掘削した後、下層3、上層2の順に積層することにより形成する。本実施形態では、地盤Gの掘削を地下水位WLまで行うが、掘削範囲は限定されるものではない。   The permeated water purification ground 1 is formed by laminating the lower layer 3 and the upper layer 2 in this order after excavating the ground G. In the present embodiment, excavation of the ground G is performed up to the groundwater level WL, but the excavation range is not limited.

下層3は、砕石等を床付面(地盤Gの表面)に敷き均すことにより形成する。下層3の厚さは限定されるものではないが、本実施形態では30cm程度の厚みとする。   The lower layer 3 is formed by spreading crushed stone or the like on the floored surface (the surface of the ground G). Although the thickness of the lower layer 3 is not limited, it is about 30 cm in this embodiment.

下層3を敷き均したら、下層3の上面を透水性シート6により覆う。   When the lower layer 3 is spread and leveled, the upper surface of the lower layer 3 is covered with the water-permeable sheet 6.

次に、掘削土砂と徐放性有機物とを予め混合した混合土砂を、透水性シート6上に敷き均して浄化部4を形成する。浄化部4の層厚は限定されるものではないが、本実施形態では20cm程度の厚みとする。
なお、掘削土砂と徐放性有機物との混合は、地上で行ってもよいし、上層2の上で行ってもよい。
Next, the mixed soil in which the excavated soil and the sustained-release organic material are mixed in advance is spread on the water-permeable sheet 6 to form the purification unit 4. Although the layer thickness of the purification | cleaning part 4 is not limited, In this embodiment, it shall be about 20 cm thick.
The mixing of the excavated earth and the sustained-release organic substance may be performed on the ground or on the upper layer 2.

浄化部4を形成したら、掘削土砂を埋め戻して、上層2を完成させる。   After the purification unit 4 is formed, the excavated earth and sand are backfilled to complete the upper layer 2.

浸透水浄化地盤1によれば、図2に示すように、砂等により構成された上層2の下に、砂よりも粒径の粗い砕石(礫)により構成された下層3を設けているため、上層2と下層3との間でキャピラリーバリアが形成されることになる。そのため、キャピラリーバリアの浸透抑制機能により、上層2の下端部では地表からの浸透水w1が保水されて、飽和度sが高くなっている。
浄化部4は、嫌気環境である地中のうちの飽和度sの高い部分に形成されているため、生物学的脱窒が促進するとともに、キャピラリーバリアの浸透抑制機能により、浸透水w1の滞留時間を確保することが可能となる。そのため、肥料等から溶出した窒素化合物を含む浸透水w1は、浄化部4において脱窒された浄化水w2として下層3へと流出されるため、地下水に汚染水が浸透することが防止される。
According to the seepage water purification ground 1, as shown in FIG. 2, a lower layer 3 made of crushed stone (gravel) having a particle diameter larger than that of sand is provided under the upper layer 2 made of sand or the like. A capillary barrier is formed between the upper layer 2 and the lower layer 3. Therefore, by the permeation suppression function of the capillary barrier, the permeated water w1 from the ground surface is retained at the lower end portion of the upper layer 2, and the saturation s is increased.
Since the purification unit 4 is formed in a portion of the ground that is anaerobic and has a high degree of saturation s, biological denitrification is promoted, and the permeation water w1 is retained due to the permeation suppression function of the capillary barrier. Time can be secured. Therefore, the permeated water w1 containing the nitrogen compound eluted from the fertilizer and the like flows out to the lower layer 3 as the purified water w2 denitrified in the purification unit 4, so that the contaminated water is prevented from penetrating into the groundwater.

また、激しい降雨等により、一時的に地表側からの浸透水w1が上層2(浄化部4)の保水可能量を上回る場合には、キャピラリーバリアが破過して下層3へと排水されるため、上層2内における水位の上昇による地表湛水(ダムアップ)のおそれがない。
すなわち、本実施形態の浸透水浄化地盤1によれば、地表湛水のリスクが低い生物学的脱窒の促進領域を不飽和地盤中に形成することができる。
In addition, when the permeated water w1 from the surface side temporarily exceeds the water retention capacity of the upper layer 2 (purification unit 4) due to heavy rain or the like, the capillary barrier breaks through and is drained to the lower layer 3. There is no risk of surface flooding (dam up) due to rising water levels in the upper layer 2.
That is, according to the permeated water purification ground 1 of this embodiment, the biological denitrification promotion area | region with a low risk of surface drowning can be formed in unsaturated ground.

また、ダムアップが生じるおそれがないため、地下水位WLが高い地盤であっても、浸透水浄化地盤1を形成することができる。   Moreover, since there is no possibility that dam up will occur, the seepage water purification ground 1 can be formed even if the groundwater level WL is high.

また、上層2と下層3との境界面に透水性シート6が介設されているため、下層3の空隙に上層2の第一材料が入り込むことが防止される。つまり、第一材料が下層に流出することで上層の密度低下が生じることを防止し、ひいては、上層の保水能力が低下を防止することができる。また、下層3に目詰まりが生じ難くなり、ひいては、下層3の透水性能の低下が防止される。   Moreover, since the water-permeable sheet 6 is interposed at the boundary surface between the upper layer 2 and the lower layer 3, the first material of the upper layer 2 is prevented from entering the gap of the lower layer 3. That is, it is possible to prevent the density of the upper layer from being lowered due to the first material flowing out to the lower layer, and thus to prevent the water retention capacity of the upper layer from being lowered. Moreover, clogging is unlikely to occur in the lower layer 3, and as a result, deterioration of the water permeability of the lower layer 3 is prevented.

現地発生土を利用して構築することが可能なため、簡易かつ安価に形成することができる。   Since it can be constructed using locally generated soil, it can be formed easily and inexpensively.

浄化部4の上面および下面は平らを呈しているため、浄化部4の表面に沿って浸透水が拡散することはない。そのため、汚染物質を含む浸透水は、浄化部4内において保水されるとともに脱窒処理された後、下層3へと流下する。   Since the upper surface and the lower surface of the purification unit 4 are flat, the permeated water does not diffuse along the surface of the purification unit 4. Therefore, the permeated water containing the pollutant flows into the lower layer 3 after being retained in the purification unit 4 and denitrified.

本発明は、前述の実施形態に限られず、本発明の趣旨を逸脱しない範囲で、適宜変更が可能である。
例えば、浄化部4を含む上層2と下層3とからなる積層構造を、複数段積層することで、複数の浄化部4,4,…を備えた浸透水浄化地盤を構成してもよい。これにより浸透水w1の脱窒を複数回実施することが可能となり、浄化性能がより向上する。
The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention.
For example, a permeated water purification ground including a plurality of purification sections 4, 4,... May be configured by laminating a plurality of layers of a laminated structure including the upper layer 2 and the lower layer 3 including the purification section 4. Thereby, denitrification of the permeated water w1 can be performed a plurality of times, and the purification performance is further improved.

次に、透水浄化地盤1の保水性能に係る実施例を示す。
本実施例では、カラム10を利用した室内試験により、上層の保水性能の確認を行った。
Next, the Example which concerns on the water retention performance of the water-permeable purification ground 1 is shown.
In this example, the water retention performance of the upper layer was confirmed by an indoor test using the column 10.

本試験では、図3(a)に示すように、上層20と下層30とが積層されたカラム10に、上方から注水して、カラム10の下面に形成された排水口11からの排水量を測定した。また、試験終了後(注水後)、試料を一晩静置して、上層20の含水比分布を測定した。
一度に加水される注水量は、1回目は300mL、2回目以降は200mLとし、15分毎に合計5回注水した。
In this test, as shown in FIG. 3A, water is poured from above into the column 10 in which the upper layer 20 and the lower layer 30 are laminated, and the amount of drainage from the drain port 11 formed on the lower surface of the column 10 is measured. did. Moreover, after completion | finish of a test (after water injection), the sample was left still overnight and the moisture content distribution of the upper layer 20 was measured.
The amount of water injected at one time was 300 mL for the first time and 200 mL for the second and subsequent times, and water was injected five times in total every 15 minutes.

なお、カラム10には、内径10.4cm、高さ25.0cmの円筒形の塩ビカラムを使用した。
上層20は第一材料として砂を採用し、高さ15cmとした。また、下層30は第二材料として礫を採用し、高さを5cmとした。上層20と下層30の境界面には、透水性シートとして不織布を介設した。また、カラム10の底面には、第二材料の流出を防止するための多孔板12を配設した。表1にカラム10内の試料(第一材料および第二材料)の初期条件を示す。
The column 10 was a cylindrical PVC column having an inner diameter of 10.4 cm and a height of 25.0 cm.
The upper layer 20 employs sand as the first material and has a height of 15 cm. In addition, the lower layer 30 employs gravel as the second material and has a height of 5 cm. A nonwoven fabric was interposed as a water-permeable sheet at the interface between the upper layer 20 and the lower layer 30. A perforated plate 12 for preventing the second material from flowing out was disposed on the bottom surface of the column 10. Table 1 shows initial conditions of the samples (first material and second material) in the column 10.

Figure 2012183494
Figure 2012183494

図4に、本試験による積算加水量、積算排水量、保水量(積算加水量と積算排水量の差)および砂層空隙体積を示す。   FIG. 4 shows the accumulated water amount, accumulated drainage amount, retained water amount (difference between accumulated water amount and accumulated drainage amount), and sand layer void volume in this test.

図4に示すように、初期の段階(加水回数が少ない段階)では、積算加水量と積算排水量の線形に差が生じていたが、加水の回数が増えるにつれて、積算加水量と積算排水量の線形は似た形を示し、保水量が一定値となった。つまり、加水された浸透水は、上層20により保水能力により保水されるため、加水量と排水量の分布に差が生じる。一方、上層20に保水量が一定値になると、加水量と排水量の分布は同等となった。   As shown in FIG. 4, in the initial stage (stage where the number of water additions is small), there is a difference in the linearity between the cumulative water addition and the total wastewater discharge. Showed a similar shape, and the water retention amount was constant. That is, since the osmotic water that has been added is retained by the upper layer 20 by the water retention capacity, a difference occurs in the distribution of the amount of water added and the amount of drainage. On the other hand, when the amount of water retained in the upper layer 20 became a constant value, the distribution of the amount of water added and the amount of drainage became equivalent.

また、試験終了後の上層20の水分分布(定常後の飽和度分布)を図3(b)に示す。図3(b)には、水分分布の実測値の比較例として、van Genuchtenの式による標準砂の水分特性曲線(VG排水、VG給水)を示す。図3(b)に示すように、砂層と礫層が積層された透水浄化地盤1での水分特性は、給水過程の分布から15%程度飽和度が低い曲線となった。
したがって、飽和度15%程度分の浸透水が上層20において保水することが可能であると考えられる。また、保水能力以上の浸透水は排水されることが実証された。
Moreover, the water distribution (saturation distribution after steady state) of the upper layer 20 after the end of the test is shown in FIG. FIG. 3B shows a moisture characteristic curve (VG drainage, VG feed water) of standard sand according to van Genuchten's equation as a comparative example of the measured value of the moisture distribution. As shown in FIG.3 (b), the moisture characteristic in the water-permeable purification | cleaning ground 1 in which the sand layer and the gravel layer were laminated | stacked became a curve with about 15% of low saturation from distribution of a water supply process.
Therefore, it is considered that the permeated water having a saturation degree of about 15% can be retained in the upper layer 20. In addition, it was demonstrated that permeated water exceeding the water retention capacity was drained.

1 浸透水浄化地盤
2 上層
3 下層
4 浄化部
5 徐放性有機物
6 透水性シート
G 地山
DESCRIPTION OF SYMBOLS 1 Permeated water purification ground 2 Upper layer 3 Lower layer 4 Purification part 5 Sustained release organic substance 6 Water-permeable sheet G Jiyama

Claims (3)

砂または砂よりも細かい粒径の材料である第一材料により構成された上層と、
前記第一材料よりも粗い粒径の材料である第二材料により構成された下層と、が地下水位よりも上位において上下に積層された浸透水浄化地盤であって、
前記上層の下端部には、前記第一材料に徐放性有機物が混合された浄化部が形成されていることを特徴とする、浸透水浄化地盤。
An upper layer composed of sand or a first material that is finer particle size than sand;
A lower layer composed of a second material that is a material having a coarser particle diameter than the first material, and an infiltration water purification ground layered up and down above the groundwater level,
An osmotic water purification ground, wherein a purification part in which a sustained-release organic substance is mixed with the first material is formed at a lower end part of the upper layer.
前記上層と前記下層との境界面に、前記第一材料が前記下層に流出することを防止する透水性シートが介設されていることを特徴とする、請求項1に記載の浸透水浄化地盤。   The osmotic water purification ground according to claim 1, wherein a water-permeable sheet for preventing the first material from flowing into the lower layer is interposed at a boundary surface between the upper layer and the lower layer. . 前記上層および前記下層からなる積層構造が、複数段積層されていることを特徴とする、請求項1または請求項2に記載の浸透水浄化地盤。   The percolated water purification ground according to claim 1 or 2, wherein a laminated structure composed of the upper layer and the lower layer is laminated in a plurality of stages.
JP2011048649A 2011-03-07 2011-03-07 Permeated water purification ground Active JP5694815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011048649A JP5694815B2 (en) 2011-03-07 2011-03-07 Permeated water purification ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011048649A JP5694815B2 (en) 2011-03-07 2011-03-07 Permeated water purification ground

Publications (2)

Publication Number Publication Date
JP2012183494A true JP2012183494A (en) 2012-09-27
JP5694815B2 JP5694815B2 (en) 2015-04-01

Family

ID=47014079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011048649A Active JP5694815B2 (en) 2011-03-07 2011-03-07 Permeated water purification ground

Country Status (1)

Country Link
JP (1) JP5694815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109592788A (en) * 2019-01-22 2019-04-09 湖南中科环保技术有限公司 A kind of efficient denitrification filters sewage disposal system ecologically

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491056A (en) * 1972-04-20 1974-01-08
JPS6336895A (en) * 1986-01-20 1988-02-17 Toshiyuki Wakatsuki Sewage cleaning device using soil
JPH07299483A (en) * 1994-05-11 1995-11-14 Canon Inc Diffusion suppression of underground pollutant and its purifying method
JP2003145185A (en) * 2001-11-19 2003-05-20 Univ Kanazawa Method for removing nitrate nitrogen from soil seeping water
JP2005279373A (en) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd Environment cleaning method
JP2009011947A (en) * 2007-07-05 2009-01-22 Taisei Corp Purification ground and method for soil saturation water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491056A (en) * 1972-04-20 1974-01-08
JPS6336895A (en) * 1986-01-20 1988-02-17 Toshiyuki Wakatsuki Sewage cleaning device using soil
JPH07299483A (en) * 1994-05-11 1995-11-14 Canon Inc Diffusion suppression of underground pollutant and its purifying method
JP2003145185A (en) * 2001-11-19 2003-05-20 Univ Kanazawa Method for removing nitrate nitrogen from soil seeping water
JP2005279373A (en) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd Environment cleaning method
JP2009011947A (en) * 2007-07-05 2009-01-22 Taisei Corp Purification ground and method for soil saturation water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109592788A (en) * 2019-01-22 2019-04-09 湖南中科环保技术有限公司 A kind of efficient denitrification filters sewage disposal system ecologically

Also Published As

Publication number Publication date
JP5694815B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
US20220056684A1 (en) Regenerative stormwater conveyance system and method
US5318699A (en) Denitrification of septic tank effluent
KR101288606B1 (en) Infiltration trench
CN107893469A (en) One kind oozes row's integral system based on sponge urban rainwater
DE102006000800A1 (en) Cleaning system for rainwater
KR20170128921A (en) Urban rain garden system
Rolland et al. Influence of the physical and mechanical characteristics of sands on the hydraulic and biological behaviors of sand filters
KR101207293B1 (en) Water Treatment Facility for Underground Infiltration of Early Rainwater
JP6621653B2 (en) Storage and purification system
JP2009197486A (en) Underground water storage structure
JP5694815B2 (en) Permeated water purification ground
KR20100089449A (en) Sustainable structured permeability controlling system
KR101352643B1 (en) Rainwater permeating apparatus and method thereof, for enviromental-friendly rainwater circulation
JP2019010610A (en) Storage structure of heavy metal polluted soil
KR101095322B1 (en) Infiltration trench having natural water circulation and nonpoint source pollution reduction
JP4684582B2 (en) Soil cover structure at the final disposal site
CN112939332B (en) Sponge urban road rainwater cuts dirty clean system
CN209099100U (en) It is suitably applied the pervious concrete paving structure of groundwater level region
JPS6223494A (en) Recirculation type quasi-aerobic reclaiming construction method
JP2003013484A (en) Water purification structure
CN106115941A (en) A kind of rice field runoff regulation intercepts with nitrogen phosphorus diafiltration and removes filtration system and application process thereof
KR101055652B1 (en) Infiltration trench having natural water circulation and make better use of a space the use of effective materials
KR100235903B1 (en) A method for executing isolation wall of dirty water in sewage treatment plant
CN214497809U (en) Rainwater regulation and storage system
KR102654697B1 (en) Rainwater drain system capable of purifying non-point source pollutant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150205

R150 Certificate of patent or registration of utility model

Ref document number: 5694815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150