JP2012180536A - Anodized alumina using electron beam drawing method, and method for producing the same - Google Patents

Anodized alumina using electron beam drawing method, and method for producing the same Download PDF

Info

Publication number
JP2012180536A
JP2012180536A JP2011034289A JP2011034289A JP2012180536A JP 2012180536 A JP2012180536 A JP 2012180536A JP 2011034289 A JP2011034289 A JP 2011034289A JP 2011034289 A JP2011034289 A JP 2011034289A JP 2012180536 A JP2012180536 A JP 2012180536A
Authority
JP
Japan
Prior art keywords
layer
electron beam
producing
film
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011034289A
Other languages
Japanese (ja)
Other versions
JP5780543B2 (en
Inventor
Yoshiyuki Harada
善之 原田
Seisuke Nigo
精佑 児子
Seiichi Kato
誠一 加藤
Hideaki Kitazawa
英明 北澤
Yoshio Kido
義勇 木戸
Yoshihiro Nakano
嘉博 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2011034289A priority Critical patent/JP5780543B2/en
Publication of JP2012180536A publication Critical patent/JP2012180536A/en
Application granted granted Critical
Publication of JP5780543B2 publication Critical patent/JP5780543B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a highly regular anodized alumina film formed in an optional shape within an optional area by use of an electron beam drawing method, and a method for producing the same.SOLUTION: The method for producing the anodized alumina film includes: preliminarily aligning points of origin of pores on an SiOprotective layer surface on an Al thin film in a predetermined shape in a high regular manner by means of electron beam drawing, thereby controlling the regularity of pore diameters, pore intervals, and vertical lateral and depth directions. The anodized alumina film produced by the method is also provided. The resulting anodized alumina film can be used as a material for manufacturing a functional device and an insulator on a semiconductor device.

Description

本発明は、電子線描画法を用いた陽極酸化アルミナ膜及びその製造方法に関するものである。更に詳しくは電子線描画法を用い、任意領域に、任意形状にて形成された高規則性陽極酸化アルミナ膜及びその製造方法を提案する。 The present invention relates to an anodized alumina film using an electron beam drawing method and a method for producing the same. More specifically, the present invention proposes a highly ordered anodized alumina film formed in an arbitrary shape in an arbitrary region using an electron beam drawing method and a method for manufacturing the same.

陽極酸化アルミナ膜は、アルミニウム(Al)を酸性又はアルカリ性あるいは中性の電解質溶液中にて陽極酸化することにより得られる多孔性質の酸化皮膜であり、細孔が膜面に対して垂直に直行したホールアレー構造を有する。このため、陽極酸化アルミナ膜は各種機能性デバイス及び各種機能デバイスを作製するための出発構造として、また半導体デバイスの高誘電性絶縁膜としての関心を集めている。 The anodized alumina film is a porous oxide film obtained by anodizing aluminum (Al) in an acidic, alkaline or neutral electrolyte solution, and the pores are perpendicular to the film surface. It has a hole array structure. For this reason, anodic alumina films are attracting interest as various functional devices and as a starting structure for producing various functional devices, and as high dielectric insulating films of semiconductor devices.

陽極酸化アルミナ膜の機能的な応用分野の典型例としては細孔内に磁性体を充填した磁気記録媒体、半導体及び金属を充填した量子素子、金属を充填した光学素子、細孔径を利用した光学及び音波素子が挙げられる。このほか細孔に他の機能性酸化物(酸化亜鉛、酸化チタン)等を充填することによる抵抗変化型メモリ素子を作製することも可能である。更に近年、陽極酸化アルミナ膜自体も抵抗変化型メモリ素子に代表される機能性デバイス材料としての利用も可能である。   Typical examples of functional application fields of anodized alumina films include magnetic recording media filled with magnetic material in pores, quantum elements filled with semiconductors and metals, optical elements filled with metals, and optics utilizing pore diameters. And a sonic element. In addition, it is also possible to manufacture a resistance change type memory element by filling pores with other functional oxides (zinc oxide, titanium oxide) or the like. Furthermore, in recent years, the anodized alumina film itself can also be used as a functional device material typified by a resistance change type memory element.

これらの機能的応用に際しては、細孔径の均一性に加え、細孔配列の規則性が極めて重要となる。一例として、磁気記録媒体を例にとれば、細孔配列の規則性が媒体性能に寄与することが報告されている。加えて、陽極酸化アルミナ膜における細孔配列の乱れは、細孔形状の歪み、細孔径の不均一をもたらすことから、細孔配列の規則性は陽極酸化アルミナ形成自体へも影響を与える要素である。   In these functional applications, the regularity of the pore arrangement is extremely important in addition to the uniformity of the pore diameter. As an example, taking a magnetic recording medium as an example, it has been reported that the regularity of the pore arrangement contributes to the medium performance. In addition, disorder of the pore arrangement in the anodized alumina film causes distortion of the pore shape and nonuniformity of the pore diameter. Therefore, the regularity of the pore arrangement is an element that affects the formation of the anodized alumina itself. is there.

陽極酸化アルミナ膜の細孔配列の規則性は、作製条件によって依存することが知られている。参考文献(特開2002−285382号報、特開2009−299188、2段階陽極酸化法)においては、適切な陽極酸化条件により細孔が規則的に配列した陽極酸化アルミナ膜が得られることが示されている。しかしながら、この方法により得られる規則配列のピッチ及び細孔径は、陽極酸化条件、特に陽極酸化電圧に依存し、ピッチ2.5nm/V、細孔径1.0nm/Vで規定されることが知られている。またこの方法による規則配列領域は、アルミニウムの粒子(及びドメイン)から最大数μm程度内に限定される。   It is known that the regularity of the pore arrangement of the anodized alumina film depends on the production conditions. References (Japanese Patent Laid-Open No. 2002-285382, Japanese Patent Laid-Open No. 2009-299188, two-step anodizing method) show that an anodized alumina film in which pores are regularly arranged can be obtained under appropriate anodizing conditions. Has been. However, it is known that the pitch and pore diameter of the regular arrangement obtained by this method depend on the anodizing conditions, particularly the anodizing voltage, and are defined by a pitch of 2.5 nm / V and a pore diameter of 1.0 nm / V. ing. Further, the regular arrangement region by this method is limited to a maximum of about several μm from the aluminum particles (and domains).

この2段階陽極酸化法とは、基板材料の電解研磨から長時間の陽極酸化を行った後にリン酸及びクロム酸の混合溶液、あるいはアルカリにて溶解除去し、このとき得られた構造をシード層として2回目の陽極酸化により規則構造を得る。そのため1段階目の陽極酸化には長時間の陽極酸化が必要であり、基板となるアルミニウム材にも500nm以上の厚みを要する。更に、基板材料に貴金属を用いると、陽極酸化中に孔底が基板材料に到達した瞬間に大きな電流が流れ、このとき多量のガス発生により、膜構造が破壊されるといった使用上の制約もある。   In this two-step anodizing method, after anodizing for a long time from electropolishing of the substrate material, it is dissolved and removed with a mixed solution of phosphoric acid and chromic acid or alkali, and the resulting structure is used as a seed layer. As a result, an ordered structure is obtained by the second anodic oxidation. Therefore, the first stage of anodic oxidation requires long-term anodic oxidation, and the aluminum material used as the substrate also requires a thickness of 500 nm or more. Furthermore, when a noble metal is used as the substrate material, a large current flows at the moment when the hole bottom reaches the substrate material during anodization, and there is a restriction in use such that a large amount of gas is generated and the film structure is destroyed. .

近年、1段階陽極酸化のみで規則構造を得る方法としてインプリント法が考案されている。しかしながら、この方法においては、規則構造の作製のため、あらかじめシリコンカーバイド(SiC)、シリコン(Si)、クロム(Cr)などのアルミニウムより硬質の材料を用いて規則構造が形成されたモールドを作製する必要がある。このモールドの作製には通常電子線描画法が用いられている(電子線インプリント法)。そのモールドを樹脂もしくはSiO、アルミニウム上へ圧着、転写することで陽極酸化の出発点として利用して規則構造をアルミニウム上へ転写する方法であり、作製可能な構造はモールドによるという制限が課せられる。更に、モールド圧着によるモールドの破損等により規則性の劣化、量産性の低下の可能性もあり、その自由度は低い。 In recent years, an imprint method has been devised as a method for obtaining an ordered structure by only one-step anodization. However, in this method, in order to produce a regular structure, a mold having a regular structure formed in advance using a material harder than aluminum such as silicon carbide (SiC), silicon (Si), and chromium (Cr). There is a need. An electron beam drawing method is usually used for the production of this mold (electron beam imprint method). It is a method of transferring the regular structure onto aluminum by using the mold as a starting point for anodization by pressing and transferring the resin onto a resin or SiO 2 or aluminum, and the structure that can be produced is limited by the mold. . Furthermore, there is a possibility that regularity is deteriorated and mass productivity is lowered due to breakage of the mold due to mold pressing, and the degree of freedom is low.

更に、1段階陽極酸化法として電子線描画を用いた電子線インプリント法も考案されている。しかしながら、従来の電子線インプリント法ではアルミニウム膜上への樹脂、もしくはアルミニウム膜自体へ圧痕で陽極酸化の細孔形成起点を作製することから、アルミニウムへのダメージは避けることができない。また、そのため細孔構造を作製する部位以外のアルミニウムも陽極酸化過程にさらされることから、平坦性はその細孔形成により低下することは避けることができない。 Furthermore, an electron beam imprint method using electron beam drawing has been devised as a one-step anodic oxidation method. However, in the conventional electron beam imprinting method, the anodic oxidation pore formation starting point is formed by indentation on the resin on the aluminum film or on the aluminum film itself, and thus damage to aluminum cannot be avoided. For this reason, aluminum other than the part for producing the pore structure is also exposed to the anodizing process, and thus flatness cannot be avoided due to the formation of the pores.

また、上記のいずれの方法においても短時間(薄い)細孔形成においては、アルミニウムのもつ結晶粒(ドメイン、グレーン等)の影響により膜面垂直方向への形成が阻害されることがある。 In any of the above methods, in the formation of fine pores for a short time (thin), formation in the direction perpendicular to the film surface may be hindered by the influence of aluminum crystal grains (domains, grains, etc.).

特開2009−299188号報JP 2009-299188 A 特開2006−213992号報JP 2006-213992 A 特開2002−285382号報JP 2002-285382 A 特開2010−229506号報JP 2010-229506 A

Q. Huang et al., APL 88 (2006) 233112, Observation of isolated nonporous formed by patterned anodic oxidation thin filmsQ. Huang et al., APL 88 (2006) 233112, Observation of isolated nonporous formed by patterned anodic oxidation thin films S. Chen et al., JJAP 49 (2010) 015201, Nanoimprinting Pre-patterned effects on anodic aluminum oxide.S. Chen et al., JJAP 49 (2010) 015201, Nanoimprinting Pre-patterned effects on anodic aluminum oxide. H. Shirakiet al., Appl. Surf. Sci. 237 (2004) 369, Investigation of formation processes of an anodic porous alumina film on a silicon substrate.H. Shirakiet al., Appl. Surf. Sci. 237 (2004) 369, Investigation of formation processes of an anodic porous alumina film on a silicon substrate.

本発明は、上記従来技術における課題を解決するためになされたものであり、数10nmから600μm(電子線描画における最大露光面積)の広範囲においてヘキサゴナルのみならず格子状など任意形状において、電子線描画可能な任意サイズ(細孔径及び細孔間隔10nm以上、500nm以下)で形成された陽極酸化アルミナ膜及びその製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problems in the prior art. In a wide range of several tens of nm to 600 μm (maximum exposure area in electron beam drawing), not only hexagonal but also an arbitrary shape such as a lattice shape is used. An object of the present invention is to provide an anodized alumina film formed with any possible size (pore diameter and pore spacing of 10 nm or more and 500 nm or less) and a method for producing the same.

ここで、細孔が規則的に配列した陽極酸化アルミナ膜とは、0.3mol/Lシュウ酸水溶液を使用した場合、陽極酸化電圧40Vにおいては、40nm径の細孔を100nmピッチにおいて数百μm以下の範囲において欠陥を持たずにヘキサゴナル及び格子状配列を有する膜が生成される。   Here, the anodized alumina film in which pores are regularly arranged means that when a 0.3 mol / L oxalic acid aqueous solution is used, pores having a diameter of 40 nm are several hundred μm at a pitch of 100 nm at an anodic oxidation voltage of 40 V. A film having hexagonal and lattice-like arrangement without defects is produced in the following range.

本発明の他の課題は、上記陽極酸化アルミナ膜を用いて作製可能な機能性デバイス、特に抵抗変化型メモリ、半導体デバイス用絶縁膜、フィルタ及びその製造方法を提供することにある。   Another object of the present invention is to provide a functional device, particularly a resistance change memory, an insulating film for a semiconductor device, a filter, and a method for manufacturing the same, which can be manufactured using the anodized alumina film.

この出願の発明は、上記の課題を解決するものとして第1に、
陽極酸化膜の製造方法であって、
(1)SiOが被覆された脱脂洗浄後のSi基板上に、3d遷移金属又は金属窒化物よりなる密着層を成膜後Al層を成膜し、
(2)前記Al層の上にSiO層を成膜し、
(3)前記SiO層の上に電子線ポジレジストをコートし、
(4)前記電子線レジストコートを電子線リソグラフィにより所望のパターンを描画し、
(5)表面にパターンが形成された前記SiO層を選択的にドライエッチし、
(6)前記SiO層をマスクとして、前記Al層の陽極酸化を行い、
(7)残留するレジストコートを完全剥離
する工程で、高規則性陽極酸化アルミナ膜を形成することを特徴とする陽極酸化アルミナ膜の製造方法を提供する。
The invention of this application is primarily to solve the above problems,
A method for producing an anodized film comprising:
(1) On the Si substrate after degreasing and cleaning coated with SiO 2, an adhesion layer made of a 3d transition metal or a metal nitride is formed, and then an Al layer is formed.
(2) A SiO 2 layer is formed on the Al layer,
(3) An electron beam positive resist is coated on the SiO 2 layer,
(4) Draw a desired pattern on the electron beam resist coat by electron beam lithography,
(5) selectively dry-etching the SiO 2 layer having a pattern formed on the surface;
(6) Anodizing the Al layer using the SiO 2 layer as a mask,
(7) Provided is a method for producing an anodized alumina film, wherein a highly ordered anodized alumina film is formed in a step of completely removing the remaining resist coat.

第2に、密着層の構成材料として、3d遷移金属がTiあるいはCr、金属窒化物がTiNあるいはAlNであることを特徴とする陽極酸化膜の製造方法を提供する。   Second, the present invention provides a method for producing an anodic oxide film characterized in that the 3d transition metal is Ti or Cr and the metal nitride is TiN or AlN as the constituent material of the adhesion layer.

第3に、電子線描画によるパターンが、格子状配列、トライアングル状配列、五角形配列、八角形配列のいずれか、あるいは、前記5種類の配列の混在している配列をなすことを特徴とする陽極酸化膜の製造方法を提供する。 Third, the pattern formed by electron beam drawing is one of a lattice arrangement, a triangle arrangement, a pentagon arrangement, an octagon arrangement, or an arrangement in which the five kinds of arrangements are mixed. A method for manufacturing an oxide film is provided.

第4に、硫酸、シュウ酸、リン酸あるいはクロム酸を使用し、陽極酸化電圧が200V以下のとき、孔径が200nm以下、ピッチが500nm以下の範囲であることを特徴とする陽極酸化膜の製造方法を提供する。 Fourth, production of an anodic oxide film characterized by using sulfuric acid, oxalic acid, phosphoric acid or chromic acid, and having an anodizing voltage of 200 V or less, a pore diameter of 200 nm or less and a pitch of 500 nm or less. Provide a method.

本発明に係る陽極酸化膜の製造方法によれば、以下の効果が得られる。
(1)Alの下部層としてはTi以外にも薄膜形成技術からCr等の3d遷移金属、TiN及びAlN等の窒化物に置換しても同等の作用効果を発揮させることができる。
(2)電子線描画パターンは陽極酸化溶液(例えば、リン酸、硫酸等)の種類により変更が可能となる。
(3)陽極酸化金属はAl以外にも陽極酸化可能な金属(Si、Ti等)に置換するこができる。
(4)薄膜の利用によりAl層膜厚の制御性が高い。
(5)基板は、本製造法では熱酸化SiO付きSi基板を用いているが、絶縁性(SrTiO、Al、ポリイミド等)及び半導体性(ZnO)基板のようなより高い電気抵抗を示す基板に置換することができる。
(6)従来の半導体プロセスへ本発明を応用することで、例えば、MOSゲート絶縁膜などの半導体デバイス上への高誘電率絶縁膜製造の製造が可能となる。
(7)半導体プロセスに本発明を応用することで、より高い規則性、平坦性、膜厚制御性の特定波長フィルタの製造が可能となる。
(8)任意基板上へのナノドット、ナノロッド等ナノ構造の基板上への形成時マスク材料としての応用も可能となる。
According to the method for producing an anodized film of the present invention, the following effects can be obtained.
(1) For the lower layer of Al, the same effect can be achieved even if Ti is replaced with a 3d transition metal such as Cr, or a nitride such as TiN and AlN in addition to Ti.
(2) The electron beam drawing pattern can be changed depending on the type of anodizing solution (for example, phosphoric acid, sulfuric acid, etc.).
(3) The anodized metal can be replaced with an anodizable metal (Si, Ti, etc.) other than Al.
(4) The controllability of the Al layer thickness is high by using a thin film.
(5) The substrate uses a Si substrate with thermally oxidized SiO 2 in this manufacturing method, but higher electrical properties such as insulating (SrTiO 3 , Al 2 O 3 , polyimide, etc.) and semiconducting (ZnO) substrates. It can be replaced with a substrate exhibiting resistance.
(6) By applying the present invention to a conventional semiconductor process, for example, it is possible to manufacture a high dielectric constant insulating film on a semiconductor device such as a MOS gate insulating film.
(7) By applying the present invention to a semiconductor process, it is possible to manufacture a specific wavelength filter with higher regularity, flatness, and film thickness controllability.
(8) Application as a mask material when forming nanostructures such as nanodots and nanorods on an arbitrary substrate on a substrate is also possible.

陽極酸化アルミナ皮膜の概略図。Schematic of an anodized alumina film. アルミニウム基板上のポーラスアルミナ構造を示すSEM画像(5万倍)。The SEM image (50,000 times) which shows the porous alumina structure on an aluminum substrate. 電子線インプリント法プロセスフロー図。Process flow diagram of electron beam imprint method. 電子線インプリント後のSiO保護層のSEM画像で、配列が格子状とヘキサゴナル型の例を示した(10万倍)。In the SEM image of the SiO 2 protective layer after electron beam imprinting, an example in which the arrangement is a lattice and a hexagonal type is shown (100,000 times). 陽極酸化後の表面SEM像(5万倍、陽極酸化時間1min)。Surface SEM image after anodic oxidation (50,000 times, anodic oxidation time 1 min). 陽極酸化後のFIB‐SEM断面像(15万倍)。断面像は膜面垂直方向に断面を切り出し、垂直から45度傾いた方向から観察を行っている。FIB-SEM cross-sectional image after anodization (150,000 times). In the cross-sectional image, a cross section is cut out in the direction perpendicular to the film surface, and observation is performed from a direction inclined 45 degrees from the vertical. 陽極酸化後の表面SEM像(5万倍、陽極酸化時間3min)。Surface SEM image after anodization (50,000 times, anodization time 3 min). 陽極酸化後のFIB-SEM断面像(15万倍)。断面観察方法は図6と同様。FIB-SEM cross-sectional image after anodization (150,000 times). The cross-sectional observation method is the same as in FIG. Al薄膜の電子線インプリント陽極酸化後のSEM(5万倍)及びFIB-SEM断面像(SiO保護層なし、15万倍)。断面観察方法は図6と同様。SEM (50,000 times) and FIB-SEM cross-sectional image (without SiO 2 protective layer, 150,000 times) after electron beam imprint anodization of an Al thin film. The cross-sectional observation method is the same as in FIG. Al薄膜の電子線インプリント陽極酸化(Ti無し、SiO膜なし)のSEM画像(5万倍)及びFIB-SEM断面像(15万倍)。断面観察方法は図6と同様。SEM image (50,000 times) and FIB-SEM cross-sectional image (150,000 times) of an electron beam imprint anodization (without Ti, without SiO 2 film) of an Al thin film. The cross-sectional observation method is the same as in FIG. Al薄膜陽極酸化後のSEM像(電子線インプリントなし)(10万倍)。SEM image after anodization of an Al thin film (no electron beam imprint) (100,000 times).

本発明は、上記の通りの特徴を持つものであるが、以下にその実施の形態について説明する。 The present invention has the features as described above, and an embodiment thereof will be described below.

初めに、電子線描画方法による直接描画インプリントによりその陽極酸化の規則構造を作製した。その方法としては熱酸化SiO付きのSi基板上に真空蒸着あるいはスパッタ法にて密着層(Ti、Crなど)とAl薄膜を形成する。その後、保護層となるSiO層をスパッタ法にて成膜する。そのSiOに電子線リソグラフィにて規則構造を直接描画する。SiOは下層のAlにダメージを与えることなく選択的にドライエッチング(RIE、F系ガス)にてパターンを形成可能である。その後、SiOをマスクとして陽極酸化を行い、Al層の陽極酸化を行う。これにより陽極酸化溶液に暴露されるAl部のみが陽極酸化され、電子線描画と同等のパターンの高規則性陽極酸化アルミナを形成することが可能となる。 First, a regular structure of the anodic oxidation was produced by direct drawing imprinting by an electron beam drawing method. As the method, an adhesion layer (Ti, Cr, etc.) and an Al thin film are formed on a Si substrate with thermally oxidized SiO 2 by vacuum deposition or sputtering. Thereafter, a SiO 2 layer serving as a protective layer is formed by sputtering. A regular structure is directly drawn on the SiO 2 by electron beam lithography. SiO 2 can selectively form a pattern by dry etching (RIE, F-based gas) without damaging the underlying Al. Thereafter, anodization is performed using SiO 2 as a mask, and an Al layer is anodized. As a result, only the Al portion exposed to the anodizing solution is anodized, and a highly ordered anodized alumina having a pattern equivalent to electron beam drawing can be formed.

図3は電子線インプリント法を用いた陽極酸化膜の形成方法のプロセスフローである。以下に詳細を述べる。 FIG. 3 is a process flow of a method for forming an anodized film using an electron beam imprint method. Details are described below.

初めに熱酸化SiO付きSi基板の表面の有機物コンタミ層を有機溶剤(アセトン、エタノール)を用いて脱脂、洗浄する。その後、純水又は蒸留水により有機溶剤を除去し、半導体洗浄液(セミコクリーン23:フルウチ化学社製)、RCA洗浄法、ピラニア洗浄法にて表面に付着している有機物及び金属コンタミネーション層を除去する。 First, the organic contaminant layer on the surface of the Si substrate with thermally oxidized SiO 2 is degreased and cleaned using an organic solvent (acetone, ethanol). Thereafter, the organic solvent is removed with pure water or distilled water, and the organic substances and metal contamination layer adhering to the surface are removed by a semiconductor cleaning solution (Semico Clean 23: manufactured by Furuuchi Chemical Co., Ltd.), RCA cleaning method, and piranha cleaning method. To do.

洗浄後のSi基板は、10−4Pa以上の高真空状態のチャンバ内において真空蒸着あるいはスパッタ法によりTi密着層(成長速度 1〜10nm/min、膜厚20〜50nm)、Al薄膜(成長速度 1〜10nm/min、膜厚100〜500nm)を成膜する。 After cleaning, the Si substrate is a Ti adhesion layer (growth rate 1 to 10 nm / min, film thickness 20 to 50 nm), Al thin film (growth rate) by vacuum deposition or sputtering in a high vacuum chamber of 10 −4 Pa or higher. 1-10 nm / min, film thickness 100-500 nm).

密着層としては基板材料と陽極酸化材料との間に物理的結合ないしは格子定数が中間的であることが望ましい。3d遷移金属においてはSiO中Oの2p電子と3d遷移金属中のd電子が軌道混成を起こしやすく、結合力が強いことが知られている。またAlN及びTiN窒化物密着層は基板材料Siと陽極酸化材料Alとの格子定数が非常に近いことが知られている。もちろん金属として格子状数が近いもの、窒化物として基板、陽極酸化材料ともに結合力が強いものも密着層として選択される。 As the adhesion layer, it is desirable that the physical bond or lattice constant is intermediate between the substrate material and the anodized material. In the 3d transition metal, it is known that the 2p electrons of O in SiO 2 and the d electrons in the 3d transition metal are likely to cause orbital hybridization and have a strong bonding force. Further, it is known that the AlN and TiN nitride adhesion layers have very close lattice constants between the substrate material Si and the anodized material Al. Of course, a metal having a close number of lattices and a nitride having a strong bonding force for both the substrate and the anodized material are also selected as the adhesion layer.

その後、RFスパッタ法で成膜した場合はそのままの状態で、真空蒸着法で成膜した場合は、Alの自然酸化層を除去するため、スパッタチャンバ内において、RF出力100Wで、2min間の逆スパッタを行い、その後、膜厚が20〜100nmの、より好ましくは50〜80nmのSiO保護層を成膜する。これによりAl表面は酸化されずに陽極酸化が可能となる。これまでの工程は各種基板材料に対応可能なように全て100℃以下から室温までの温度にて行って構わない。 Thereafter, when the film is formed by the RF sputtering method, the state is left as it is. When the film is formed by the vacuum evaporation method, in order to remove the natural oxidation layer of Al, in the sputtering chamber, an RF output of 100 W is reversed for 2 minutes. Sputtering is performed, and then a SiO 2 protective layer having a thickness of 20 to 100 nm, more preferably 50 to 80 nm is formed. As a result, the Al surface can be anodized without being oxidized. All the steps so far may be performed at temperatures from 100 ° C. or lower to room temperature so as to be compatible with various substrate materials.

成膜後は電子線レジスト(ZEP520A:日本ゼオン社製などポジ型電子線レジスト)をスピンコート法にて200〜500nm程度をコート(細孔径に依存)し、電子線描画装置にて必要とされる陽極酸化膜の規則構造を描画する。 After film formation, an electron beam resist (ZEP520A: manufactured by Nippon Zeon Co., Ltd., positive type electron beam resist) is coated by spin coating to about 200 to 500 nm (depending on the pore diameter), and is required for an electron beam drawing apparatus. An ordered structure of the anodic oxide film is drawn.

描画後、膜を電子線レジスト用現像液にて現像、細孔形成部分のレジストを除去する。 After the drawing, the film is developed with an electron beam resist developer, and the resist in the pore forming portion is removed.

現像済みサンプルはRIE(反応性イオンエッチング Reactive Ion etching)装置において、CF又はCHFなどF系ガスによりSiO層のみの選択エッチングを行う。 The developed sample is subjected to selective etching of only the SiO 2 layer with an F-based gas such as CF 4 or CHF 3 in a RIE (Reactive Ion Etching) apparatus.

この工程においては、電子線レジストがエッチング装置のプラズマにて剥離している可能性が高い。表面にレジストが残っている場合は、電子線レジスト剥離液及びOプラズマ処理にてレジストの剥離を行う。この工程でレジストが残ると、後工程においてはコンタミとなる。図4は、全工程が終了した後の、SEM観察による陽極酸化膜表面の画像である。 In this step, there is a high possibility that the electron beam resist is peeled off by the plasma of the etching apparatus. In the case where the resist remains on the surface, the resist is stripped by an electron beam resist stripping solution and O 2 plasma treatment. If the resist remains in this process, it becomes a contaminant in the subsequent process. FIG. 4 is an image of the surface of the anodized film by SEM observation after all the steps are completed.

電子線リソグラフィにより電子線レジスト上に描画する規則性のあるパターンは、格子状配列、トライアングル状配列、五角形配列、八角形配列のいずれか、あるいは、前記5種類の配列の混在している配列のうちから自由に選択することができる。 The regular pattern drawn on the electron beam resist by electron beam lithography is either a grid array, a triangle array, a pentagon array, an octagon array, or an array in which the five types of arrays are mixed. You can choose freely from home.

また、電子線レジスト上に描画する規則性のあるパターンにおけるピッチ及び孔径は、使用する陽極酸化溶液によって制限される。陽極酸化液としては、硫酸、シュウ酸、リン酸、クロム酸が知られている。特によく使用される硫酸、シュウ酸、リン酸において規則性の高いパターンが自然に得られる電圧と孔径、ピッチとの関係を表1で示す。これはバルク材で長時間陽極酸化することにより規則性を高める場合に適当な条件であるが、本発明のように薄膜に人工的にパターンを作り、短時間陽極酸化する場合は必ずしもこの条件に従う必要はない。 Moreover, the pitch and the hole diameter in the regular pattern drawn on the electron beam resist are limited by the anodizing solution used. As an anodizing solution, sulfuric acid, oxalic acid, phosphoric acid, and chromic acid are known. Table 1 shows the relationship between the voltage, hole diameter, and pitch at which a pattern with high regularity is naturally obtained in sulfuric acid, oxalic acid, and phosphoric acid that are often used. This is an appropriate condition for enhancing regularity by anodizing with a bulk material for a long time, but this condition is not necessarily followed when an artificial pattern is formed on a thin film and anodizing for a short time as in the present invention. There is no need.

<実施例1>
10−5Pa以下の高真空蒸着装置において、熱酸化処理により200nmのSiO層が被服されたSi基板上に、RFスパッタ法により50nmのTi密着層を5.7nm/minの成長速度で成膜した。更に、前記Ti層状にAl層500nmを8.2nm/minの成長速度で成膜した。その後前記Al層上にRFスパッタ法において10−4Pa以下の高真空状態でSiO保護層を60nm成膜した。
<Example 1>
In a high vacuum deposition apparatus of 10 −5 Pa or less, a 50 nm Ti adhesion layer is formed at a growth rate of 5.7 nm / min by RF sputtering on a Si substrate coated with a 200 nm SiO 2 layer by thermal oxidation. Filmed. Further, an Al layer having a thickness of 500 nm was formed on the Ti layer at a growth rate of 8.2 nm / min. Thereafter, a SiO 2 protective layer having a thickness of 60 nm was formed on the Al layer in a high vacuum state of 10 −4 Pa or less by RF sputtering.

成膜後の基板に電子線レジストZEP520Aをスピンコート法にて300nmコートし、電子線描画装置において細孔径40nm、ピッチ100nmの規則性ホール構造を描画した。この規則構造は0.3mol/Lシュウ酸水溶液を用いた2段階陽極酸化法によるアルミナ膜の細孔構造に対応する構造となる。描画、現像後サンプルはRIE装置を用いて、CF流量54cm/min、O2流量17cm3/min、RF出力80Wの条件で、70sのエッチングを行った。 An electron beam resist ZEP520A was coated to 300 nm by spin coating on the substrate after film formation, and a regular hole structure having a pore diameter of 40 nm and a pitch of 100 nm was drawn with an electron beam drawing apparatus. This ordered structure is a structure corresponding to the pore structure of the alumina film by a two-step anodic oxidation method using a 0.3 mol / L oxalic acid aqueous solution. The sample after drawing and development was etched using a RIE apparatus for 70 s under conditions of a CF 4 flow rate of 54 cm 3 / min, an O 2 flow rate of 17 cm 3 / min, and an RF output of 80 W.

エッチング後、陽極酸化を行う。陰極にはPt基板を用い、電解液としては規則性構造周期に合わせ0.3mol/Lシュウ酸水溶液を用いた。陽極酸化時間は60sである。完成した陽極酸化膜のSEM像を図5に、またFIB-SEM像により細孔の膜面垂直の断面像を図6に示す。 After the etching, anodization is performed. A Pt substrate was used for the cathode, and a 0.3 mol / L oxalic acid aqueous solution was used as the electrolyte in accordance with the regular structural period. The anodization time is 60 s. FIG. 5 shows a SEM image of the completed anodic oxide film, and FIG. 6 shows a cross-sectional image of the pores perpendicular to the film surface based on the FIB-SEM image.

<実施例2.>
10−5Pa以下の高真空蒸着装置において、熱酸化処理によりSiO層が被覆されたSi基板上に、電子線蒸着法により20nmのTi密着層を6nm/minの成長速度で成膜した。更に、前記Ti層状にAl層500nmを6nm/minの成長速度で成膜した。その後、前記Al層上にRFスパッタ法において10−4Pa以下の高真空状態でSiO保護層を50nm成膜した。
<Example 2.>
In a high vacuum deposition apparatus at 10 −5 Pa or less, a 20 nm Ti adhesion layer was formed at a growth rate of 6 nm / min by an electron beam deposition method on a Si substrate coated with a SiO 2 layer by thermal oxidation treatment. Further, an Al layer of 500 nm was formed on the Ti layer at a growth rate of 6 nm / min. Thereafter, a 50 nm thick SiO 2 protective layer was formed on the Al layer in a high vacuum state of 10 −4 Pa or less by RF sputtering.

成膜後の基板に電子線レジストZEP520Aをスピンコート法にて200nmコートし、電子線描画装置において細孔径40nm、ピッチ100nmの規則性ホール構造を描画した。この規則構造は 0.3mol/ Lシュウ酸水溶液を用いた2段階陽極酸化法によるアルミナ膜の細孔構造に対応する構造となる。描画、現像後サンプルはRIE装置を用いて、CHF流量2.0cm/min バイアス出力10W、RF出力100W、の条件で、300sのエッチングを行った。 The substrate after film formation was coated with 200 nm of electron beam resist ZEP520A by spin coating, and a regular hole structure having a pore diameter of 40 nm and a pitch of 100 nm was drawn with an electron beam drawing apparatus. This ordered structure is a structure corresponding to the pore structure of the alumina film by a two-step anodic oxidation method using a 0.3 mol / L oxalic acid aqueous solution. The sample after drawing and development was etched using a RIE apparatus for 300 s under the conditions of CHF 3 flow rate 2.0 cm 3 / min bias output 10 W and RF output 100 W.

エッチング後、陽極酸化を行う。陰極にはPt基板を用い、電解液としては規則性構造周期に合わせ0.3mol/ Lシュウ酸水溶液を用いた。陽極酸化時間は180sである。完成した陽極酸化膜のSEM像を図7に、また、FIB−SEM像により細孔の膜面垂直の断面像を図8に示す。図8より規則構造は時間に比例し、アルミニウム膜中を膜面垂直方向に進行する様子が確認できる。またそのときのエッチングレート(ホール深さレート)は100nm/minである。 After the etching, anodization is performed. A Pt substrate was used for the cathode, and a 0.3 mol / L oxalic acid aqueous solution was used as the electrolyte in accordance with the regular structural period. The anodization time is 180 s. FIG. 7 shows an SEM image of the completed anodic oxide film, and FIG. 8 shows a cross-sectional image perpendicular to the film surface of the pores by FIB-SEM image. From FIG. 8, it can be confirmed that the regular structure is proportional to the time and proceeds in the direction perpendicular to the film surface in the aluminum film. The etching rate (hole depth rate) at that time is 100 nm / min.

<比較例1>
SiO保護層を成膜せず、実施例1と同じ工程及び条件にて陽極酸化アルミナの製造を行った。図9は比較例1における電子線インプリント陽極酸化膜のFIB−SEM像である。規則性構造は同様に形成されているものの、表面平坦性に関してはAl薄膜中の結晶粒や、陽極酸化による表面あれが観測される。また、膜面垂直方向に関してもホール進行方向はアルミニウムの結晶粒や陽極酸化による電流方向の膜中不規則性から膜面垂直方向への規則的配列の崩れが観察される。
<Comparative Example 1>
Anodized alumina was produced in the same steps and conditions as in Example 1 without forming a SiO 2 protective layer. FIG. 9 is a FIB-SEM image of the electron beam imprinted anodic oxide film in Comparative Example 1. Although the regular structure is formed in the same manner, regarding the surface flatness, crystal grains in the Al thin film and surface roughness due to anodic oxidation are observed. In addition, regarding the vertical direction of the film surface, in the hole traveling direction, a disorder of the regular arrangement in the vertical direction of the film surface is observed due to irregularities in the film in the current direction due to aluminum crystal grains and anodization.

<比較例2>
Ti密着層及びSiO保護層を成膜せずに、実施例1と同じ工程、条件にて陽極酸化アルミナの製造を行った。図10は比較例2における電子線インプリント陽極酸化膜の表面SEM及び断面FIB−SEM像である。比較例1同様のAl結晶粒及び電流方向に依存したホール構造及び表面状態が観察される。またパターン部以外のAl露出部への陽極酸化の進行が観察される。従来の電子線インプリント法はこの比較例2に相当する。
<Comparative example 2>
Anodized alumina was produced in the same steps and conditions as in Example 1 without forming the Ti adhesion layer and the SiO 2 protective layer. 10 is a surface SEM and cross-sectional FIB-SEM image of an electron beam imprinted anodic oxide film in Comparative Example 2. FIG. The hole structure and surface state depending on the Al crystal grains and the current direction are observed as in Comparative Example 1. Moreover, the progress of anodic oxidation to the Al exposed part other than the pattern part is observed. The conventional electron beam imprint method corresponds to the comparative example 2.

<比較例3>
電子線インプリントを用いずに実施例1と同じ工程、条件にて陽極酸化アルミナの製造を行った。図11は比較例3における陽極酸化膜の表面SEM像である。規則性は見られず、Al結晶粒による影響が観察される。従来のアルミニウム薄膜を利用した陽極酸化法はこの比較例3に相当する。
<Comparative Example 3>
Anodized alumina was produced in the same steps and conditions as in Example 1 without using electron beam imprinting. FIG. 11 is a surface SEM image of the anodized film in Comparative Example 3. There is no regularity, and the influence of Al crystal grains is observed. A conventional anodic oxidation method using an aluminum thin film corresponds to Comparative Example 3.

もちろん、この発明は以上の例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。 Of course, the present invention is not limited to the above examples, and it goes without saying that various aspects are possible in detail.

本発明は従来のインプリント法における規則構造の自由化の問題を解決でき、規則配列構造及び細孔径、細孔間隔の違う規則配列を持つ陽極酸化アルミナを製造できる点から、従来技術に比べて優位性がある。具体的な応用例としては規則構造を利用した抵抗変化型メモリ素子、細孔中への金属を充填した量子デバイス、細孔中への磁性記録層を充填した記録媒体、細孔中への規則性酸化物を充填した抵抗変化型メモリ素子、細孔径と間隔を利用した音波及び光フィルタ素子などがある。 The present invention can solve the problem of liberalization of the regular structure in the conventional imprinting method, and can produce anodized alumina having a regular arrangement structure and a regular arrangement with different pore diameters and pore intervals, compared to the prior art. There is an advantage. Specific application examples include a resistance change type memory element using a regular structure, a quantum device filled with metal in the pore, a recording medium filled with a magnetic recording layer in the pore, and a rule in the pore. There are a resistance change type memory element filled with a conductive oxide, a sound wave and optical filter element using a pore diameter and an interval, and the like.

また、本発明は従来の2段階陽極酸化法におけるアルミニウム基板を用いる問題を解決でき、任意基板上へ形成したアルミニウム膜を用い、さらにその膜厚を50nm〜500nm以下のアルミニウム薄膜においても形成できる、またアルミニウム以外への陽極酸化可能金属へ転換しても陽極酸化膜を製造できる点から、従来技術に比べて優位性がある。具体的な応用例としては規則構造を利用した抵抗変化型メモリ素子、細孔中への金属を充填した量子デバイス、細孔中への磁性記録層を充填した記録媒体、細孔径と間隔を利用した音波及び光フィルタ素子、半導体素子上の絶縁膜などがある。 Further, the present invention can solve the problem of using an aluminum substrate in the conventional two-step anodic oxidation method, and can be formed even in an aluminum thin film having a thickness of 50 nm to 500 nm or less using an aluminum film formed on an arbitrary substrate. In addition, there is an advantage over the prior art in that an anodic oxide film can be produced even if it is converted to an anodizable metal other than aluminum. Specific examples of applications include resistance change memory elements using regular structures, quantum devices filled with metal in the pores, recording media filled with magnetic recording layers in the pores, pore diameter and spacing Acoustic wave and optical filter elements, insulating films on semiconductor elements, and the like.

更に、本発明は従来の電子線インプリント陽極酸化法におけるアルミニウム表面荒れ、必要部位以外への陽極酸化膜の形成の問題を解決でき、任意箇所に膜平坦性を崩すことなく陽極酸化膜を製造できる点から、従来技術に比べて本工程以降のデバイス形成プロセスとの親和性が高いという優位性がある。具体的な応用例としては規則構造を利用した抵抗変化型メモリ素子、細孔径と間隔を利用した音波及び光フィルタ素子、半導体素子上の絶縁膜などがある。 In addition, the present invention can solve the problem of the rough surface of the aluminum in the conventional electron beam imprint anodizing method and the formation of an anodized film other than the necessary part, and can produce an anodized film without losing the flatness of the film at an arbitrary place. From the point that it can be done, there is an advantage that the affinity with the device formation process after this step is higher than that of the prior art. Specific application examples include a resistance change type memory element using a regular structure, a sound wave and optical filter element using a pore diameter and an interval, and an insulating film on a semiconductor element.

Claims (10)

陽極酸化膜の製造方法であって、
(1)SiOが被覆された脱脂洗浄後の絶縁性基板上に、金属又は金属窒化物よりなる密着層を成膜後、Al層を成膜し、
(2)前記Al層の上にSiO層を成膜し、
(3)前記SiO層の上に電子線ポジレジストをコートし、
(4)前記電子線レジストコートを電子線リソグラフィにより所望のパターンを描画し、
(5)表面にパターンが形成された前記SiO層を選択的に乾式あるいは湿式でエッチし、
(6)前記SiO層をマスクとして、前記Al層の陽極酸化を行い、
(7)残留するレジストコートを完全剥離
する工程で、高規則性陽極酸化アルミナ膜を形成することを特徴とする陽極酸化膜の製造方法。
A method for producing an anodized film comprising:
(1) On the insulating substrate after degreasing and cleaning coated with SiO 2 , an Al layer is formed after forming an adhesion layer made of metal or metal nitride,
(2) A SiO 2 layer is formed on the Al layer,
(3) An electron beam positive resist is coated on the SiO 2 layer,
(4) Draw a desired pattern on the electron beam resist coat by electron beam lithography,
(5) The SiO 2 layer having a pattern formed on the surface is selectively etched dry or wet,
(6) Anodizing the Al layer using the SiO 2 layer as a mask,
(7) A method for producing an anodized film, wherein a highly ordered anodized alumina film is formed in a step of completely removing the remaining resist coat.
請求項1記載の製造方法であって、SiO層の層厚が20〜100nmの範囲であることを特徴とする陽極酸化膜の製造方法。 A process according to claim 1, wherein the method of anodic oxide film, wherein the layer thickness of the SiO 2 layer is in the range of 20 to 100 nm. 請求項1記載の製造方法であって、電子線ポジレジストコートの厚みが100〜300nmの範囲であることを特徴とする陽極酸化膜の製造方法。 2. The method according to claim 1, wherein the thickness of the electron beam positive resist coat is in the range of 100 to 300 nm. 請求項1記載の製造方法であって、Al層の成膜がCVD法あるいはスパッタによることを特徴とする陽極酸化膜の製造方法。 2. The method for producing an anodized film according to claim 1, wherein the Al layer is formed by CVD or sputtering. 請求項1記載の製造方法であって、SiO層成膜がPVD法によることを特徴とする陽極酸化膜の製造方法。 2. The method for producing an anodic oxide film according to claim 1, wherein the SiO 2 layer is formed by a PVD method. 請求項1記載の製造方法であって、金属が3d遷移金属であることを特徴とする陽極酸化膜の製造方法。 2. The method for producing an anodized film according to claim 1, wherein the metal is a 3d transition metal. 請求項6に記載の3d遷移金属がTiあるいはCrであることを特徴とする陽極酸化膜の製造方法。 The method for producing an anodized film, wherein the 3d transition metal according to claim 6 is Ti or Cr. 請求項1に記載の金属窒化物がTiNあるいはAlNであることを特徴とする陽極酸化膜の製造方法。
The method for producing an anodic oxide film, wherein the metal nitride according to claim 1 is TiN or AlN.
請求項1記載の製造方法であって、電子線描画によるパターンが、格子状配列、トライアングル状配列、五角形配列、八角形配列のいずれか、あるいは、前記5種類の配列の混在している配列をなすことを特徴とする陽極酸化膜の製造方法。 2. The manufacturing method according to claim 1, wherein the pattern formed by electron beam drawing is a grid array, a triangle array, a pentagon array, an octagon array, or an array in which the five types of arrays are mixed. A method for producing an anodic oxide film, comprising: 請求項1記載の製造方法であって、硫酸、シュウ酸、リン酸あるいはクロム酸を使用し、陽極酸化電圧が200V以下のとき、孔径が200nm以下、ピッチが500nm以下の範囲であることを特徴とする陽極酸化膜の製造方法。
2. The production method according to claim 1, wherein sulfuric acid, oxalic acid, phosphoric acid or chromic acid is used, and when the anodic oxidation voltage is 200 V or less, the pore diameter is 200 nm or less and the pitch is 500 nm or less. A method for producing an anodic oxide film.
JP2011034289A 2011-02-07 2011-02-21 Anodized alumina using electron beam drawing method and method for producing the same Expired - Fee Related JP5780543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011034289A JP5780543B2 (en) 2011-02-07 2011-02-21 Anodized alumina using electron beam drawing method and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011023458 2011-02-07
JP2011023458 2011-02-07
JP2011034289A JP5780543B2 (en) 2011-02-07 2011-02-21 Anodized alumina using electron beam drawing method and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012180536A true JP2012180536A (en) 2012-09-20
JP5780543B2 JP5780543B2 (en) 2015-09-16

Family

ID=47011975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011034289A Expired - Fee Related JP5780543B2 (en) 2011-02-07 2011-02-21 Anodized alumina using electron beam drawing method and method for producing the same

Country Status (1)

Country Link
JP (1) JP5780543B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10516105B2 (en) 2017-08-22 2019-12-24 Sandisk Technologies Llc Resistive memory device containing oxygen-modulated hafnium oxide material and methods of making thereof
RU2724308C1 (en) * 2019-03-20 2020-06-22 Сергей Евгеньевич Кушнир Optical filter with multilayer structure of anodic aluminium oxide and method of formation thereof by means of anodising

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020892A (en) * 2000-07-03 2002-01-23 Canon Inc Structure having pore, and manufacturing method
JP2006510229A (en) * 2002-08-28 2006-03-23 ユニバーシティー オブ ピッツバーグ Self-organized nanopore arrays with controlled symmetry and order
JP2008204509A (en) * 2007-02-16 2008-09-04 Fujitsu Ltd Magnetic recording medium and recording and reproducing device thereof
JP2009235553A (en) * 2008-03-28 2009-10-15 Fujitsu Ltd Nanohole structure and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020892A (en) * 2000-07-03 2002-01-23 Canon Inc Structure having pore, and manufacturing method
JP2006510229A (en) * 2002-08-28 2006-03-23 ユニバーシティー オブ ピッツバーグ Self-organized nanopore arrays with controlled symmetry and order
JP2008204509A (en) * 2007-02-16 2008-09-04 Fujitsu Ltd Magnetic recording medium and recording and reproducing device thereof
JP2009235553A (en) * 2008-03-28 2009-10-15 Fujitsu Ltd Nanohole structure and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10516105B2 (en) 2017-08-22 2019-12-24 Sandisk Technologies Llc Resistive memory device containing oxygen-modulated hafnium oxide material and methods of making thereof
RU2724308C1 (en) * 2019-03-20 2020-06-22 Сергей Евгеньевич Кушнир Optical filter with multilayer structure of anodic aluminium oxide and method of formation thereof by means of anodising

Also Published As

Publication number Publication date
JP5780543B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
Rabin et al. Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass
US7875195B2 (en) Thick porous anodic alumina films and nanowire arrays grown on a solid substrate
Masuda et al. Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum-evaporated Al on Si
JP2005008909A (en) Structure manufacturing method
US20120107562A1 (en) Methods for graphene-assisted fabrication of micro-and nanoscale structures and devices featuring the same
JP3848303B2 (en) Structure, functional structure, and method of manufacturing magnetic recording medium
Hwang et al. Fabrication of carbon nanotube emitters in an anodic aluminium oxide nanotemplate on a Si wafer by multi-step anodization
JP2006283189A (en) Electrochemical etching
JP2009037706A (en) Structure and method of manufacturing the same
US7591641B2 (en) Mold and process of production thereof
JP3729449B2 (en) Structure and device having pores
US20100086733A1 (en) Aluminum alloy substrate and a method of manufacturing the same
JP2007247015A (en) Method for manufacturing fine structural body and fine structural body
JP5780543B2 (en) Anodized alumina using electron beam drawing method and method for producing the same
Lim et al. A tunable sub-100 nm silicon nanopore array with an AAO membrane mask: reducing unwanted surface etching by introducing a PMMA interlayer
JP2002004087A (en) Method for manufacturing nanostructure and nanostructure
CN105977122B (en) The preparation of porous silicon nitride support membrane pane
JP4641442B2 (en) Method for producing porous body
Liu et al. Fabrication and transfer of nanoporous alumina thin films for templating applications: Metal dots array deposition and porous ZnO film growth
JP2006303454A (en) Nano imprint mold and methods for manufacturing same, transcribing method of convexo-concave pattern, and manufacturing method of member with concave
JP5334085B2 (en) Substrate seeding method, diamond microstructure and manufacturing method thereof
Chahrour et al. Influence of the Voltage on Pore Diameter and Growth Rate of Thin Anodic Aluminium Oxide (AAO) Pattern on Silicon Substrate
JP2004001191A (en) Irregularity structure and its manufacturing method and functional device
KR101103484B1 (en) Method for fabricating roll stamp
KR101064908B1 (en) Method for patterning nanowires on substrate using novel sacrificial layer material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150529

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150708

R150 Certificate of patent or registration of utility model

Ref document number: 5780543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees