JP2012177831A - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
JP2012177831A
JP2012177831A JP2011041392A JP2011041392A JP2012177831A JP 2012177831 A JP2012177831 A JP 2012177831A JP 2011041392 A JP2011041392 A JP 2011041392A JP 2011041392 A JP2011041392 A JP 2011041392A JP 2012177831 A JP2012177831 A JP 2012177831A
Authority
JP
Japan
Prior art keywords
lens
imaging lens
imaging
shape
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011041392A
Other languages
Japanese (ja)
Other versions
JP5584938B2 (en
Inventor
Yoji Kubota
洋治 久保田
Kenichi Kubota
賢一 久保田
Hitoshi Hirano
整 平野
Ichiro Kurihara
一郎 栗原
Yoshio Ise
善男 伊勢
Sumio Fukuda
純男 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optical Logic Inc
Kantatsu Co Ltd
Original Assignee
Optical Logic Inc
Kantatsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optical Logic Inc, Kantatsu Co Ltd filed Critical Optical Logic Inc
Priority to JP2011041392A priority Critical patent/JP5584938B2/en
Priority to CN201110162331.1A priority patent/CN102650726B/en
Publication of JP2012177831A publication Critical patent/JP2012177831A/en
Application granted granted Critical
Publication of JP5584938B2 publication Critical patent/JP5584938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an imaging lens which allows the distortion aberration to be satisfactorily corrected though being wide-angle.SOLUTION: A first lens L1 which has a biconcave shape in the vicinity of an optical axis X, a second negative lens L2 which has a meniscus shape having a convex on the object side in the vicinity of the optical axis, a third lens L3 which has a biconvex shape in the vicinity of the optical axis, a fourth lens L4 which has a biconcave shape in the vicinity of the optical axis, and a fifth lens L5 having a biconvex shape in the vicinity of the optical axis are arranged in this order from the object side. In this configuration, a surface on the object side of the second lens L2 is formed to such a shape that a more convex surface faces the object side from the optical axis X toward a peripheral edge, and a surface on the image surface side of the fifth lens L5 is formed to an aspherical shape having an inflection point.

Description

本発明は、CCDセンサやCMOSセンサ等の撮像素子上に被写体像を形成する撮像レンズに係り、携帯電話機、デジタルスティルカメラ、携帯情報端末、セキュリティカメラ、実物投影機、スキャナー、ネットワークカメラ等に搭載されて好適な撮像レンズに関するものである。   The present invention relates to an imaging lens that forms a subject image on an imaging device such as a CCD sensor or a CMOS sensor, and is mounted on a mobile phone, a digital still camera, a portable information terminal, a security camera, a real projector, a scanner, a network camera, and the like. The present invention relates to a preferable imaging lens.

ICT(情報通信技術:Information and Communication Technology)の発展によって情報及び知識の共有化が進み、近年では当該ICTを基礎としたICT機器が登場するに至った。その中でも、教科書や資料等の平面的な物から立体的な物までを拡大投影することができる実物投影機、いわゆるドキュメントカメラは、教育現場や会議室を中心に広く普及している。ドキュメントカメラによれば手元にある資料や実物がそのまま拡大表示されるため、例えば会議室での使用においては、発表者は臨機応変なプレゼンテーションが可能となり、一方の会議参加者はプレゼンテーションの内容理解や、投影対象物である実物の把握等が容易になる。   With the development of ICT (Information and Communication Technology), sharing of information and knowledge has advanced, and in recent years, ICT devices based on the ICT have appeared. Among them, a real projector, a so-called document camera, capable of enlarging and projecting a planar object such as a textbook or a document to a three-dimensional object, is widely used mainly in educational sites and conference rooms. According to the document camera, the materials and actual objects at hand are enlarged and displayed as they are, so for example, when used in a conference room, the presenter can make a flexible presentation, while one conference participant can understand the contents of the presentation. This makes it easy to grasp the actual object that is the projection target.

ドキュメントカメラは通常、机上に載置されることが多いため小型であることが望ましいのはもちろんのこと、文字や図形等の情報がより多く精細に投影あるいは表示されることが望ましい。このため、ドキュメントカメラに搭載される撮像レンズには、小型化とともに高解像度への対応、および広い撮影範囲に対応するための撮影画角の広角化が要求される。しかし、高解像度への対応として各種収差を良好に補正しつつ小型化を図り、併せて撮影画角の広角化をも図ることは困難である。例えば、撮像レンズの小型化を図ると、一枚一枚のレンズの屈折力が強くなるため、各種収差を良好に補正することが困難となる。そこで、撮像レンズの実際の設計にあたっては、これら要求をバランスよく満たすことが重要になる。   A document camera is usually placed on a desk, so it is desirable that the document camera be small. In addition, it is desirable that more information such as characters and figures be projected or displayed with more detail. For this reason, an imaging lens mounted on a document camera is required to be small in size, to support high resolution, and to widen a shooting angle of view to support a wide shooting range. However, it is difficult to reduce the size while properly correcting various aberrations in order to cope with high resolution, and to widen the shooting angle of view. For example, if the imaging lens is downsized, the refractive power of each lens increases, and it becomes difficult to correct various aberrations satisfactorily. Thus, in actual design of the imaging lens, it is important to satisfy these requirements in a balanced manner.

撮影画角の広い撮像レンズとしては、例えば特許文献1に記載の撮像レンズが知られている。この撮像レンズは、物体側から順に、負の屈折力を有する前群と正の屈折力を有する後群とを配置して構成される。前群は、両凹形状の第1レンズと、物体側に凹面を向けたメニスカス形状の負の第2レンズとから構成され、後群は、両凸形状の第3レンズと、両凹形状の第4レンズと、両凸形状の第5レンズとから構成される。当該構成において、レンズ系全体の焦点距離に対する前群の合成焦点距離の比と、レンズ系全体の焦点距離に対する後群の合成焦点距離の比とのそれぞれを好ましい範囲内に抑制することによって、撮影画角の広角化を図りつつ当該広角化に伴う歪曲収差の増大を抑制している。   As an imaging lens having a wide shooting angle of view, for example, an imaging lens described in Patent Document 1 is known. This imaging lens is configured by arranging, in order from the object side, a front group having a negative refractive power and a rear group having a positive refractive power. The front group includes a biconcave first lens and a meniscus negative second lens having a concave surface facing the object side, and the rear group includes a biconvex third lens and a biconcave shape. It is composed of a fourth lens and a biconvex fifth lens. In this configuration, the ratio of the combined focal length of the front group to the focal length of the entire lens system and the ratio of the combined focal length of the rear group to the focal length of the entire lens system are suppressed within a preferable range. While increasing the angle of view, an increase in distortion due to the widening is suppressed.

特開2009−134175号公報JP 2009-134175 A

上記ドキュメントカメラに搭載の撮像レンズには、投影対象物の形態を忠実に撮影する能力が強く求められる。上記特許文献1に記載の撮像レンズによれば、対角画角が130°程度と広いものの、歪曲収差が比較的大きいため、投影対象物の形態を忠実に撮影することは困難である。   An imaging lens mounted on the document camera is strongly required to have an ability to accurately capture the form of the projection target. According to the imaging lens described in Patent Document 1, although the diagonal angle of view is as wide as about 130 °, since the distortion is relatively large, it is difficult to accurately capture the form of the projection target.

なお、こうした撮影画角の広角化と歪曲収差の良好な補正との両立は上記ドキュメントカメラに搭載される撮像レンズに特有の課題ではなく、デジタルスティルカメラ、携帯情報端末、セキュリティカメラ、スキャナー、ネットワークカメラ等の比較的小型の機器に搭載される撮像レンズにおいても共通の課題である。   Note that coexistence of widening of the field of view and good correction of distortion is not a problem specific to the imaging lens mounted on the document camera, but is a digital still camera, personal digital assistant, security camera, scanner, network This is also a common problem with imaging lenses mounted on relatively small devices such as cameras.

本発明は上記のような従来技術の問題点に鑑みてなされたものであり、その目的は、広角でありながらも歪曲収差を良好に補正することができる撮像レンズを提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an imaging lens that can correct distortion well while having a wide angle.

上記課題を解決するために、本発明では、物体側から像面側に向かって順に、負の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、負の屈折力を有する第4レンズと、正の屈折力を有する第5レンズとを配置して構成し、第1レンズを、像面側の面の曲率半径が正となる形状に形成し、第2レンズを、物体側の面が、光軸から周縁部に向うにつれて物体側に強い凸面を向けた形状となるように形成するとともに、像面側の面の曲率半径が正となる形状に形成し、第3レンズを、物体側の面の曲率半径が正となり、像面側の面の曲率半径が負となる形状に形成し、第4レンズを、物体側の面の曲率半径が負となり、像面側の面の曲率半径が正となる形状に形成し、第5レンズを、物体側の面の曲率半径が正となり、像面側の面の曲率半径が負となる形状に形成するとともに、当該像面側の面を、変曲点を有する非球面形状に形成した。   In order to solve the above problems, in the present invention, in order from the object side to the image plane side, a first lens having a negative refractive power, a second lens having a negative refractive power, and a positive refractive power. A third lens having a negative refracting power and a fifth lens having a positive refracting power are arranged, and the first lens has a positive radius of curvature of the image side surface. And the second lens is formed so that the object side surface has a strong convex surface toward the object side as it goes from the optical axis to the peripheral edge, and the curvature radius of the image side surface Is formed in a shape in which the curvature radius of the object side surface is positive and the curvature radius of the image side surface is negative, and the fourth lens is formed in the object side surface. The fifth lens is formed in a shape in which the curvature radius of the surface is negative and the curvature radius of the image side surface is positive. The radius of curvature is positive, with the radius of curvature of the image surface side is formed in a shape which is negative, the surface of the image surface side, and an aspherical shape having an inflection point.

撮像レンズとしてこのような構成によれば、負の屈折力を有する第1レンズと、同じく負の屈折力を有する第2レンズとによって撮影画角の広角化が図られる。また、第2レンズの物体側の面と第5レンズの像面側の面とにより、第1レンズにおいて発生した歪曲収差が好適に補正されることになる。   According to such a configuration as the imaging lens, a wide angle of field of view can be achieved by the first lens having a negative refractive power and the second lens having the same negative refractive power. Further, the distortion aberration generated in the first lens is preferably corrected by the object-side surface of the second lens and the image-side surface of the fifth lens.

上記構成の撮像レンズにおいて第2レンズは、第1レンズ、第3レンズ、第4レンズ、および第5レンズのそれぞれよりも屈折力が弱くなるように形成することが望ましい。一般に、負の屈折力を有する2枚のレンズを物体側から順に配置し、レンズ系全体の焦点距離を一定に保ちつつ像面側に配置されたレンズの屈折力を相対的に強くすると、レンズ系全体の主点の位置が第2レンズから遠ざかる方向(像面側)に移動するため、バックフォーカスが長くなってしまう。このようなレンズ構成は撮像レンズの小型化にとって不利となる。そこで本発明では、レンズ系全体の中で第2レンズの屈折力を一番弱くすることにより、撮影画角の広角化と歪曲収差の補正とをバランスよく図りつつ、撮像レンズの小型化を図っている。   In the imaging lens having the above-described configuration, it is desirable that the second lens is formed so that its refractive power is weaker than each of the first lens, the third lens, the fourth lens, and the fifth lens. In general, when two lenses having negative refractive power are arranged in order from the object side and the refractive power of the lens arranged on the image plane side is relatively increased while keeping the focal length of the entire lens system constant, the lens Since the position of the principal point of the entire system moves in the direction away from the second lens (image plane side), the back focus becomes long. Such a lens configuration is disadvantageous for downsizing the imaging lens. Therefore, in the present invention, by making the refractive power of the second lens the weakest in the entire lens system, it is possible to reduce the size of the imaging lens while achieving a good balance between widening the shooting angle of view and correcting distortion. ing.

上記構成の撮像レンズにおいては、レンズ系全体の焦点距離をf、第2レンズの焦点距離をf2としたとき、下記条件式(1)を満足することが望ましい。
−40<f2/f<−5 (1)
In the imaging lens having the above configuration, it is preferable that the following conditional expression (1) is satisfied, where f is the focal length of the entire lens system and f2 is the focal length of the second lens.
−40 <f2 / f <−5 (1)

条件式(1)は、撮像レンズの小型化をより好適に図るための条件である。上限値「−5」を超えると、レンズ系全体の屈折力に比較して第2レンズの屈折力が強くなるため、第1レンズの有効径が増大し、撮像レンズの小型化を図ることが困難となる。一方、下限値「−40」を下回ると、レンズ系全体の屈折力に比較して第2レンズの屈折力が弱くなるため、撮像レンズの小型化には有利となるものの、倍率の色収差が補正不足(基準波長に対して短波長がマイナス方向に増大)となり、良好な結像性能を得ることが困難となる。   Conditional expression (1) is a condition for more suitably downsizing the imaging lens. If the upper limit “−5” is exceeded, the refractive power of the second lens becomes stronger than the refractive power of the entire lens system, so that the effective diameter of the first lens increases and the imaging lens can be downsized. It becomes difficult. On the other hand, if the value falls below the lower limit “−40”, the refractive power of the second lens becomes weaker than the refractive power of the entire lens system, which is advantageous for downsizing the imaging lens, but the chromatic aberration of magnification is corrected. Insufficient (short wavelength increases in the minus direction with respect to the reference wavelength), it becomes difficult to obtain good imaging performance.

上記構成の撮像レンズにおいては、第1レンズの像面側の面の曲率半径をR2、第2レンズの物体側の面の曲率半径をR3としたとき、下記条件式(2)を満足することが望ましい。
0.01<R2/R3<0.4 (2)
In the imaging lens having the above-described configuration, when the radius of curvature of the image side surface of the first lens is R2 and the radius of curvature of the object side surface of the second lens is R3, the following conditional expression (2) is satisfied. Is desirable.
0.01 <R2 / R3 <0.4 (2)

条件式(2)は、歪曲収差を良好な範囲内に抑制しつつ、併せて非点収差を良好な範囲内に抑制するための条件である。上限値「0.4」を超えると、樽型(マイナス)の歪曲収差の補正には有効となるものの、タンジェンシャル面がマイナス方向(物体側)に倒れ、非点隔差が増大する。このため、非点収差を良好な範囲内に抑制することが困難となる。一方、下限値「0.01」を下回ると、樽型の歪曲収差が増大するとともに、タンジェンシャル面がプラス方向(像面側)に倒れることになる。この場合も非点隔差が増大するため、非点収差を良好な範囲内に抑制することが困難となる。   Conditional expression (2) is a condition for suppressing astigmatism within a favorable range while suppressing distortion within a favorable range. Exceeding the upper limit “0.4” is effective in correcting barrel-shaped (minus) distortion, but the tangential surface falls in the minus direction (object side) and the astigmatism increases. For this reason, it becomes difficult to suppress astigmatism within a favorable range. On the other hand, below the lower limit “0.01”, barrel distortion increases and the tangential surface falls in the plus direction (image plane side). In this case as well, the astigmatism difference increases, and it is difficult to suppress astigmatism within a favorable range.

上記構成の撮像レンズにおいては、第1レンズの焦点距離をf1、第2レンズの焦点距離をf2としたとき、下記条件式(3)を満足することが望ましい。
0.02<f1/f2<0.8 (3)
In the imaging lens having the above-described configuration, it is desirable that the following conditional expression (3) is satisfied when the focal length of the first lens is f1 and the focal length of the second lens is f2.
0.02 <f1 / f2 <0.8 (3)

条件式(3)は、像面湾曲を補正しつつ、倍率の色収差を良好な範囲内に抑制するための条件である。上限値「0.8」を超えると、第2レンズに比較して第1レンズの屈折力が相対的に弱くなり、倍率の色収差の補正には有効となるものの、像面がマイナス方向(物体側)に倒れるため、良好な結像性能を得ることが困難となる。一方、下限値「0.02」を下回ると、第2レンズに比較して第1レンズの屈折力が相対的に強くなるため、倍率の色収差が補正不足となる。また、像面がプラス方向(像面側)に倒れるとともに、非点隔差が増大することになる。よって、この場合も良好な結像性能を得ることが困難となる。   Conditional expression (3) is a condition for suppressing chromatic aberration of magnification within a favorable range while correcting curvature of field. When the upper limit “0.8” is exceeded, the refractive power of the first lens becomes relatively weak compared to the second lens, which is effective for correcting chromatic aberration of magnification, but the image plane is in the minus direction (object It is difficult to obtain good imaging performance. On the other hand, when the value is below the lower limit “0.02,” the refractive power of the first lens becomes relatively stronger than that of the second lens, so that the chromatic aberration of magnification becomes insufficiently corrected. Further, the astigmatic difference increases as the image plane falls in the plus direction (image plane side). Therefore, in this case, it is difficult to obtain good imaging performance.

当該構成の撮像レンズにおいては、さらに下記条件式(3A)を満足することにより、歪曲収差および非点収差をより良好な範囲内に抑制することが可能となる。
0.02<f1/f2<0.5 (3A)
In the imaging lens having this configuration, it is possible to further suppress distortion and astigmatism within a better range by satisfying the following conditional expression (3A).
0.02 <f1 / f2 <0.5 (3A)

上記構成の撮像レンズにおいては、レンズ系全体の焦点距離をf、第3レンズの焦点距離をf3としたとき、下記条件式(4)を満足することが望ましい。
0.5<f3/f<1.2 (4)
In the imaging lens having the above configuration, it is desirable that the following conditional expression (4) is satisfied, where f is the focal length of the entire lens system and f3 is the focal length of the third lens.
0.5 <f3 / f <1.2 (4)

条件式(4)は、色収差を良好な範囲内に抑制しつつ、非点収差および像面湾曲を良好な範囲内に抑制するための条件である。上限値「1.2」を超えると、レンズ系全体の屈折力に対して第3レンズの屈折力が弱くなるため、軸上の色収差は補正過剰(基準波長に対して短波長がプラス方向に増大)となり、軸外の色収差は補正不足となる。また、像面がプラス方向に倒れるため、像面湾曲を良好な範囲内に抑制することが困難となる。さらに、非点隔差が増大するため、非点収差を良好な範囲内に抑制することも困難となる。一方、下限値「0.5」を下回ると、レンズ系全体の屈折力に対して第3レンズの屈折力が強くなるため、軸上の色収差が補正不足となる。また、像面がマイナス方向に倒れるとともに非点収差も増大することになる。よって、いずれの場合も良好な結像性能を得ることが困難となる。   Conditional expression (4) is a condition for suppressing astigmatism and curvature of field within a favorable range while suppressing chromatic aberration within a favorable range. When the upper limit “1.2” is exceeded, the refractive power of the third lens becomes weaker than the refractive power of the entire lens system, so that the axial chromatic aberration is overcorrected (short wavelengths are positive in the positive direction relative to the reference wavelength). And the off-axis chromatic aberration is under-corrected. Further, since the image plane falls in the plus direction, it is difficult to suppress the curvature of field within a favorable range. Furthermore, since the astigmatic difference increases, it is difficult to suppress astigmatism within a favorable range. On the other hand, when the value is below the lower limit “0.5”, the refractive power of the third lens becomes stronger than the refractive power of the entire lens system, and the axial chromatic aberration is insufficiently corrected. In addition, astigmatism increases as the image plane tilts in the negative direction. Therefore, in any case, it is difficult to obtain good imaging performance.

上記構成の撮像レンズにおいては、第2レンズの像面側の面から第3レンズの物体側の面までの光軸上の距離をdf、第3レンズの像面側の面から第4レンズの物体側の面までの光軸上の距離をdrとしたとき、下記条件式(5)を満足することが望ましい。
0.8<df/dr<2.5 (5)
In the imaging lens having the above-described configuration, the distance on the optical axis from the image plane side surface of the second lens to the object side plane of the third lens is df, and from the image plane side surface of the third lens to the fourth lens side. When the distance on the optical axis to the object side surface is dr, it is desirable to satisfy the following conditional expression (5).
0.8 <df / dr <2.5 (5)

条件式(5)は、倍率の色収差と歪曲収差とをバランスよく良好な範囲内に抑制するとともに、非点収差を良好な範囲内に抑制するための条件である。上限値「2.5」を超えると、倍率の色収差が補正不足となるとともに樽型の歪曲収差が増大し、良好な結像性能を得ることが困難となる。一方、下限値「0.8」を下回ると、色収差および樽型の歪曲収差の補正には有効となるものの、像面がマイナス方向に倒れるとともに非点隔差が増大し、この場合も良好な結像性能を得ることが困難となる。   Conditional expression (5) is a condition for suppressing chromatic aberration of magnification and distortion within a good range with good balance and for suppressing astigmatism within a good range. If the upper limit value “2.5” is exceeded, the lateral chromatic aberration will be undercorrected and barrel distortion will increase, making it difficult to obtain good imaging performance. On the other hand, when the value is below the lower limit “0.8”, it is effective for correcting chromatic aberration and barrel distortion, but astigmatism increases as the image surface tilts in the negative direction. It becomes difficult to obtain image performance.

上記構成の撮像レンズにおいては、レンズ系全体の焦点距離をf、第4レンズおよび第5レンズの合成焦点距離をf45としたとき、下記条件式(6)を満足することが望ましい。
5<f45/f<15 (6)
In the imaging lens having the above configuration, it is desirable that the following conditional expression (6) is satisfied, where f is the focal length of the entire lens system and f45 is the combined focal length of the fourth lens and the fifth lens.
5 <f45 / f <15 (6)

条件式(6)は、撮像レンズから出射された光線の撮像素子への入射角度を一定の範囲内に抑制しつつ、像面湾曲を補正するための条件である。周知のように、撮像素子に取り込むことのできる光線には、撮像素子の構造上、入射角度上の限界として、いわゆる最大入射角度が設けられている。この最大入射角度の範囲外の光線が撮像素子に入射した場合には、シェーディング現象によって周辺部の暗い画像となってしまう。そこで、撮像レンズから出射される光線の撮像素子への入射角度を一定の範囲内に抑制する必要がある。   Conditional expression (6) is a condition for correcting curvature of field while suppressing the incident angle of the light beam emitted from the imaging lens to the imaging element within a certain range. As is well known, a so-called maximum incident angle is provided as a limit on the incident angle of the light beam that can be taken into the image sensor due to the structure of the image sensor. When light rays outside the range of the maximum incident angle are incident on the image sensor, a dark image in the peripheral portion is generated due to the shading phenomenon. Therefore, it is necessary to suppress the incident angle of the light beam emitted from the imaging lens to the imaging element within a certain range.

条件式(6)において上限値「15」を超えると、レンズ系全体の屈折力に対して第4レンズおよび第5レンズの合成の屈折力が相対的に弱くなり、撮像レンズから出射される光線の射出角度が大きくなり、撮像レンズから出射される光線の撮像素子への入射角度を一定の範囲内に抑制することが困難となる。また、像面がプラス方向に倒れるため、良好な結像性能を得ることが困難となる。一方、下限値「5」を下回ると、レンズ系全体の屈折力に対して第4レンズおよび第5レンズの合成の屈折力が相対的に強くなり、撮像レンズから出射される光線の撮像素子への入射角度を一定の範囲内に抑制し易くなるものの、像面がマイナス方向に倒れるとともに非点隔差が増大することになる。よって、この場合も良好な結像性能を得ることが困難となる。   When the upper limit “15” is exceeded in conditional expression (6), the combined refractive power of the fourth lens and the fifth lens becomes relatively weak with respect to the refractive power of the entire lens system, and the light emitted from the imaging lens And the incident angle of the light beam emitted from the imaging lens to the image sensor becomes difficult to be controlled within a certain range. In addition, since the image plane is tilted in the plus direction, it is difficult to obtain good imaging performance. On the other hand, below the lower limit “5”, the combined refractive power of the fourth lens and the fifth lens is relatively strong with respect to the refractive power of the entire lens system, and the light is emitted from the imaging lens to the imaging device. However, the astigmatic difference increases as the image plane falls in the negative direction. Therefore, in this case, it is difficult to obtain good imaging performance.

上記構成の撮像レンズにおいては、第4レンズのアッベ数をνd4、第5レンズのアッベ数をνd5としたとき、下記条件式(7)を満足することが望ましい。
νd4<35 且つ 45<νd5<80 (7)
In the imaging lens having the above-described configuration, it is preferable that the following conditional expression (7) is satisfied when the Abbe number of the fourth lens is νd4 and the Abbe number of the fifth lens is νd5.
νd4 <35 and 45 <νd5 <80 (7)

条件式(7)は、色収差を良好な範囲内に抑制するための条件である。条件式(7)の範囲から外れると、軸上および軸外ともに色収差が補正不足となり、良好な結像性能を得ることが困難となる。   Conditional expression (7) is a condition for suppressing chromatic aberration within a favorable range. Outside the range of conditional expression (7), chromatic aberration is undercorrected both on and off the axis, making it difficult to obtain good imaging performance.

また、当該構成の撮像レンズにおいては、第1レンズのアッベ数をνd1、第2レンズのアッベ数をνd2、第3レンズのアッベ数をνd3としたとき、下記条件式(8)をさらに満足することが望ましい。
45<νd1<80、45<νd2<80、且つ 45<νd3<80 (8)
In the imaging lens having the above configuration, when the Abbe number of the first lens is νd1, the Abbe number of the second lens is νd2, and the Abbe number of the third lens is νd3, the following conditional expression (8) is further satisfied. It is desirable.
45 <νd1 <80, 45 <νd2 <80, and 45 <νd3 <80 (8)

条件式(8)は、色収差をより良好な範囲内に抑制するための条件である。条件式(8)の範囲から外れると、軸上および軸外ともに色収差が補正不足となり、良好な結像性能を得ることが困難となる。   Conditional expression (8) is a condition for suppressing chromatic aberration within a better range. Outside the range of conditional expression (8), chromatic aberration is undercorrected both on and off the axis, making it difficult to obtain good imaging performance.

また、上記構成の撮像レンズでは、第4レンズの焦点距離をf4、第5レンズの焦点距離をf5としたとき、下記条件式(9)を満足することが望ましい。
−1.5<f4/f5<−0.5 (9)
In the imaging lens having the above-described configuration, it is desirable that the following conditional expression (9) is satisfied when the focal length of the fourth lens is f4 and the focal length of the fifth lens is f5.
−1.5 <f4 / f5 <−0.5 (9)

条件式(9)は、色収差および非点収差を良好な範囲内に抑制するための条件である。上限値「−0.5」を超えると、色収差が補正過剰となる。また、タンジェンシャル面がプラス方向に倒れるとともに非点隔差が増大する。このため、良好な結像性能を得ることが困難となる。一方、下限値「−1.5」を下回ると、色収差は補正不足となる。また、タンジェンシャル面がマイナス方向に倒れ、非点隔差も増大することになる。よって、この場合も良好な結像性能を得ることが困難となる。   Conditional expression (9) is a condition for suppressing chromatic aberration and astigmatism within a favorable range. When the upper limit “−0.5” is exceeded, chromatic aberration is overcorrected. In addition, the astigmatic difference increases as the tangential surface falls in the positive direction. For this reason, it is difficult to obtain good imaging performance. On the other hand, below the lower limit “−1.5”, the chromatic aberration is insufficiently corrected. In addition, the tangential surface falls in the negative direction, and the astigmatic difference also increases. Therefore, in this case, it is difficult to obtain good imaging performance.

本発明の撮像レンズによれば、広角でありながらも歪曲収差が良好に補正された撮像レンズを提供することができる。   According to the imaging lens of the present invention, it is possible to provide an imaging lens in which distortion is favorably corrected while having a wide angle.

本発明の一実施の形態について、数値実施例1に係る撮像レンズの概略構成を示すレンズ断面図である。1 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 1 according to an embodiment of the present invention. 図1に示す撮像レンズの横収差を示す収差図である。FIG. 3 is an aberration diagram illustrating lateral aberration of the imaging lens illustrated in FIG. 1. 図1に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 2 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 1. 同実施の形態について、数値実施例2に係る撮像レンズの概略構成を示すレンズ断面図である。4 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 2 in the embodiment. FIG. 図4に示す撮像レンズの横収差を示す収差図である。FIG. 5 is an aberration diagram showing lateral aberration of the imaging lens shown in FIG. 4. 図4に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 5 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 4. 同実施の形態について、数値実施例3に係る撮像レンズの概略構成を示すレンズ断面図である。5 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 3 in the embodiment. FIG. 図7に示す撮像レンズの横収差を示す収差図である。FIG. 8 is an aberration diagram showing lateral aberration of the imaging lens shown in FIG. 7. 図7に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 8 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 7. 同実施の形態について、数値実施例4に係る撮像レンズの概略構成を示すレンズ断面図である。6 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 4 in the embodiment. FIG. 図10に示す撮像レンズの横収差を示す収差図である。FIG. 11 is an aberration diagram illustrating lateral aberration of the imaging lens illustrated in FIG. 10. 図10に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 11 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 10. 同実施の形態について、数値実施例5に係る撮像レンズの概略構成を示すレンズ断面図である。6 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 5 in the embodiment. FIG. 図13に示す撮像レンズの横収差を示す収差図である。FIG. 14 is an aberration diagram illustrating lateral aberration of the imaging lens illustrated in FIG. 13. 図13に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 14 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 13.

以下、本発明を具体化した一実施の形態について、図面を参照しながら詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1、図4、図7、図10、図13はそれぞれ、本実施の形態の数値実施例1〜5に対応するレンズ断面図を示したものである。いずれの数値実施例も基本的なレンズ構成は同一であるため、ここでは数値実施例1のレンズ断面図を参照しながら、本実施の形態に係る撮像レンズのレンズ構成について説明する。   1, 4, 7, 10, and 13 are lens cross-sectional views corresponding to Numerical Examples 1 to 5 of the present embodiment, respectively. Since all the numerical examples have the same basic lens configuration, the lens configuration of the imaging lens according to the present embodiment will be described here with reference to the lens cross-sectional view of the numerical example 1.

図1に示すように、本実施の形態の撮像レンズは、物体側から像面側に向かって順に、負の屈折力を有する第1レンズL1と、負の屈折力を有する第2レンズL2と、正の屈折力を有する第3レンズL3と、負の屈折力を有する第4レンズL4と、正の屈折力を有する第5レンズL5とが配列されて構成される。第5レンズL5と像面IMとの間にはフィルタ10が配置される。このフィルタ10は割愛することも可能である。なお、本実施の形態に係る撮像レンズでは、第3レンズL3の像面側の面に開口絞りを設けている。   As shown in FIG. 1, the imaging lens of the present embodiment includes a first lens L1 having a negative refractive power and a second lens L2 having a negative refractive power in order from the object side to the image plane side. A third lens L3 having a positive refractive power, a fourth lens L4 having a negative refractive power, and a fifth lens L5 having a positive refractive power are arranged. A filter 10 is disposed between the fifth lens L5 and the image plane IM. This filter 10 can be omitted. In the imaging lens according to the present embodiment, an aperture stop is provided on the image side surface of the third lens L3.

上記構成の撮像レンズにおいて、第1レンズL1は、物体側の面の曲率半径R1が負となり、像面側の面の曲率半径R2が正となる形状、すなわち光軸Xの近傍において両凹レンズとなる形状に形成される。本実施の形態に係る第1レンズL1の物体側の面は、変曲点を有する非球面形状に形成されている。すなわち、第1レンズL1の物体側の面は、光軸Xの近傍では物体側に凹面を向けた形状となっており、周縁部では物体側に凸面を向けた形状となっている。本実施の形態では、第1レンズL1の最大有効径の50%近傍に変曲点が設けられている。なお、この第1レンズL1の形状は、本実施の形態に係る形状に限定されるものではない。第1レンズL1の形状は、像面側の面の曲率半径R2が正となる形状であればよく、上記曲率半径R1および上記曲率半径R2が共に正となる形状、すなわち、光軸Xの近傍において物体側に凸面を向けたメニスカスレンズとなる形状にしてもよい。   In the imaging lens having the above-described configuration, the first lens L1 has a shape in which the curvature radius R1 of the object-side surface is negative and the curvature radius R2 of the image-side surface is positive, that is, a biconcave lens in the vicinity of the optical axis X. Is formed into a shape. The object side surface of the first lens L1 according to the present embodiment is formed in an aspherical shape having an inflection point. That is, the object-side surface of the first lens L1 has a shape with a concave surface facing the object side in the vicinity of the optical axis X, and a shape with a convex surface facing the object side at the periphery. In the present embodiment, an inflection point is provided in the vicinity of 50% of the maximum effective diameter of the first lens L1. Note that the shape of the first lens L1 is not limited to the shape according to the present embodiment. The shape of the first lens L1 may be any shape as long as the curvature radius R2 of the surface on the image plane side is positive. The first curvature L1 and the curvature radius R2 are both positive, that is, in the vicinity of the optical axis X. The shape may be a meniscus lens having a convex surface facing the object side.

第2レンズL2は、物体側の面の曲率半径R3および像面側の面の曲率半径R4が共に正となる形状、すなわち光軸Xの近傍において物体側に凸面を向けたメニスカスレンズとなる形状に形成される。本実施の形態に係る第2レンズL2の物体側の面は、非球面であり、光軸Xから周縁部に向うにつれて物体側に強い凸面を向けた形状となるように形成されている。すなわち、第2レンズL2の物体側の面は、光軸Xからレンズ周縁部に向かうにつれてカーブがきつくなる非球面形状に形成されている。なお、この第2レンズL2の形状は、本実施の形態に係る形状に限定されるものではない。第2レンズL2の形状は、像面側の面の曲率半径R4が正となる形状であればよく、上記曲率半径R3が負となり、上記曲率半径R4が正となる形状、すなわち、光軸Xの近傍において両凹レンズとなる形状にしてもよい。   The second lens L2 has a shape in which the curvature radius R3 of the object side surface and the curvature radius R4 of the image side surface are both positive, that is, a shape that becomes a meniscus lens having a convex surface facing the object side in the vicinity of the optical axis X. Formed. The object-side surface of the second lens L2 according to the present embodiment is an aspherical surface, and is formed to have a shape with a strong convex surface facing the object side from the optical axis X toward the periphery. That is, the object-side surface of the second lens L2 is formed in an aspherical shape in which the curve becomes tighter from the optical axis X toward the lens periphery. Note that the shape of the second lens L2 is not limited to the shape according to the present embodiment. The shape of the second lens L2 may be any shape as long as the curvature radius R4 of the surface on the image plane side is positive. The curvature radius R3 is negative and the curvature radius R4 is positive, that is, the optical axis X. The shape may be a biconcave lens in the vicinity of.

ところで、本実施の形態において上記第2レンズL2は、第1レンズL1、第3レンズL3、第4レンズL4、および第5レンズL5のそれぞれよりも屈折力が弱くなるように形成されている。これにより、撮影画角の広角化と歪曲収差の補正とがバランスよく図られ、併せて撮像レンズの小型化が好適に図られる。   By the way, in the present embodiment, the second lens L2 is formed so that its refractive power is weaker than each of the first lens L1, the third lens L3, the fourth lens L4, and the fifth lens L5. As a result, the widening of the shooting angle of view and the correction of distortion aberration can be achieved in a well-balanced manner, and at the same time, the imaging lens can be reduced in size.

第3レンズL3は、物体側の面の曲率半径R5が正となり、像面側の面の曲率半径R6が負となる形状であって、光軸Xの近傍において両凸レンズとなる形状に形成される。   The third lens L3 has a shape in which the curvature radius R5 of the object-side surface is positive and the curvature radius R6 of the image-side surface is negative, and is a shape that becomes a biconvex lens in the vicinity of the optical axis X. The

第4レンズL4は、物体側の面の曲率半径R7が負となり、像面側の面の曲率半径R8が正となる形状であり、光軸Xの近傍において両凹レンズとなる形状に形成される。また、第5レンズL5は、物体側の面の曲率半径R9が正となり、像面側の面の曲率半径R10が負となる形状であり、光軸Xの近傍において両凸レンズとなる形状に形成される。本実施の形態おいて第5レンズL5の像面側の面は、変曲点を有する非球面形状に形成されている。すなわち、第5レンズL5の像面側の面は、光軸Xの近傍では像面側に凸面を向けた形状となっており、周縁部では像面側に凹面を向けた形状となっている。本実施の形態では、第5レンズL5の最大有効径の60%近傍に変曲点が設けられている。第5レンズL5の像面側の面のこのような形状は、上記第1レンズL1の物体側の面の形状および上記第2レンズL2の物体側の面の形状とともに、歪曲収差を良好に補正するのに寄与する。具体的には、第1レンズL1に入射した軸外光線は、第1レンズL1の物体側の面、第2レンズL2の物体側の面、および第5レンズL5の像面側の面を順次通過することによってその光路が補正されることになる。その結果、歪曲収差は良好な範囲内に抑制される。また、第5レンズL5のこうした形状によって、第5レンズL5から出射した光線の像面IMへの入射角度が一定の範囲内に抑制される。   The fourth lens L4 has a shape in which the curvature radius R7 of the object side surface is negative and the curvature radius R8 of the image side surface is positive, and is formed into a shape that becomes a biconcave lens in the vicinity of the optical axis X. . The fifth lens L5 has a shape in which the curvature radius R9 of the object side surface is positive and the curvature radius R10 of the image side surface is negative, and is formed in a shape that becomes a biconvex lens in the vicinity of the optical axis X. Is done. In the present embodiment, the image side surface of the fifth lens L5 is formed in an aspheric shape having an inflection point. That is, the surface on the image plane side of the fifth lens L5 has a shape in which the convex surface is directed to the image plane side in the vicinity of the optical axis X, and has a shape in which the concave surface is directed to the image plane side in the peripheral portion. . In the present embodiment, an inflection point is provided in the vicinity of 60% of the maximum effective diameter of the fifth lens L5. Such a shape of the image-side surface of the fifth lens L5 corrects distortion aberrations together with the shape of the object-side surface of the first lens L1 and the shape of the object-side surface of the second lens L2. To contribute to. Specifically, off-axis rays incident on the first lens L1 sequentially pass through the object-side surface of the first lens L1, the object-side surface of the second lens L2, and the image-side surface of the fifth lens L5. By passing, the optical path is corrected. As a result, distortion is suppressed within a good range. Further, such a shape of the fifth lens L5 suppresses the incident angle of the light beam emitted from the fifth lens L5 to the image plane IM within a certain range.

本実施の形態に係る撮像レンズは、以下に示す条件式(1)〜(9)を満足する。このため、本実施の形態に係る撮像レンズによれば、撮像レンズの広角化と良好な収差補正との両立が図られる。
−40<f2/f<−5 (1)
0.01<R2/R3<0.4 (2)
0.02<f1/f2<0.8 (3)
0.5<f3/f<1.2 (4)
0.8<df/dr<2.5 (5)
5<f45/f<15 (6)
νd4<35、45<νd5<80 (7)
45<νd1<80、45<νd2<80、45<νd3<80 (8)
但し、
f:レンズ系全体の焦点距離
f1:第1レンズL1の焦点距離
f2:第2レンズL2の焦点距離
f3:第3レンズL3の焦点距離
f45:第4レンズL4および第5レンズL5の合成焦点距離
R2:第1レンズL1の像面側の面の曲率半径
R3:第2レンズL2の物体側の面の曲率半径
df:第2レンズL2の像面側の面から第3レンズL3の物体側の面までの光軸上の距離
dr:第3レンズL3の像面側の面から第4レンズL4の物体側の面までの光軸上の距離
νd1:第1レンズL1のアッベ数
νd2:第2レンズL2のアッベ数
νd3:第3レンズL3のアッベ数
νd4:第4レンズL4のアッベ数
νd5:第5レンズL5のアッベ数
The imaging lens according to the present embodiment satisfies the following conditional expressions (1) to (9). For this reason, according to the imaging lens according to the present embodiment, both widening of the imaging lens and good aberration correction can be achieved.
−40 <f2 / f <−5 (1)
0.01 <R2 / R3 <0.4 (2)
0.02 <f1 / f2 <0.8 (3)
0.5 <f3 / f <1.2 (4)
0.8 <df / dr <2.5 (5)
5 <f45 / f <15 (6)
νd4 <35, 45 <νd5 <80 (7)
45 <νd1 <80, 45 <νd2 <80, 45 <νd3 <80 (8)
However,
f: focal length of the entire lens system f1: focal length of the first lens L1 f2: focal length of the second lens L2 f3: focal length of the third lens L3 f45: combined focal length of the fourth lens L4 and the fifth lens L5 R2: radius of curvature of the image side surface of the first lens L1 R3: radius of curvature of the object side surface of the second lens L2 df: from the image side surface of the second lens L2 to the object side of the third lens L3 Distance on the optical axis to the surface dr: Distance on the optical axis from the image side surface of the third lens L3 to the object side surface of the fourth lens L4 νd1: Abbe number of the first lens L1 νd2: Second Abbe number of lens L2 νd3: Abbe number of third lens L3 νd4: Abbe number of fourth lens L4 νd5: Abbe number of fifth lens L5

本実施の形態に係る撮像レンズでは、歪曲収差および非点収差をより良好な範囲内に抑制するために下記条件式(3A)を満足する。
0.02<f1/f2<0.5 (3A)
In the imaging lens according to the present embodiment, the following conditional expression (3A) is satisfied in order to suppress distortion and astigmatism within a better range.
0.02 <f1 / f2 <0.5 (3A)

また、本実施の形態に係る撮像レンズでは、第4レンズの焦点距離をf4、第5レンズの焦点距離をf5としたとき、下記条件式(9)を満足する。
−1.5<f4/f5<−0.5 (9)
In the imaging lens according to the present embodiment, when the focal length of the fourth lens is f4 and the focal length of the fifth lens is f5, the following conditional expression (9) is satisfied.
−1.5 <f4 / f5 <−0.5 (9)

なお、上記条件式(1)〜(9)(条件式(3A)を含む。以下同じ。)の全てを満たす必要はなく、それぞれを単独に満たすことにより、各条件式に対応する作用効果をそれぞれ得ることができる。   In addition, it is not necessary to satisfy all of the conditional expressions (1) to (9) (including conditional expression (3A); the same applies hereinafter), and by satisfying each of them independently, the effects corresponding to the conditional expressions are achieved. Each can be obtained.

本実施の形態では、必要に応じて各レンズのレンズ面を非球面で形成している。これらレンズ面に採用する非球面形状は、光軸方向の軸をZ、光軸に直交する方向の高さをH、円錐係数をk、非球面係数をA4、A6、A8、A10、A12、A14としたとき、次式により表される。

Figure 2012177831
In the present embodiment, the lens surface of each lens is formed as an aspheric surface as necessary. The aspherical shape adopted for these lens surfaces is that the axis in the optical axis direction is Z, the height in the direction perpendicular to the optical axis is H, the conic coefficient is k, and the aspherical coefficients are A 4 , A 6 , A 8 , A When 10 , A 12 , and A 14 , they are expressed by the following formula.
Figure 2012177831

次に、本実施の形態に係る撮像レンズの数値実施例を示す。各数値実施例において、fはレンズ系全体の焦点距離を、FnoはFナンバーを、ωは半画角をそれぞれ示す。また、iは物体側より数えた面番号を示し、Rは曲率半径を示し、dは光軸に沿ったレンズ面間の距離(面間隔)を示し、Ndはd線に対する屈折率を、νdはd線に対するアッベ数をそれぞれ示す。なお、非球面の面には、面番号iの後に*(アスタリスク)の符号を付加して示すこととする。   Next, numerical examples of the imaging lens according to the present embodiment will be shown. In each numerical example, f represents the focal length of the entire lens system, Fno represents the F number, and ω represents the half angle of view. Further, i indicates a surface number counted from the object side, R indicates a radius of curvature, d indicates a distance (surface interval) between lens surfaces along the optical axis, Nd indicates a refractive index with respect to d-line, and νd Indicates the Abbe number for the d line. The aspherical surface is indicated by adding a symbol of * (asterisk) after the surface number i.

数値実施例1
基本的なレンズデータを以下に示す。
f=2.84mm、Fno=2.44、ω=46.9°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ 250
1* -12.79 0.45 1.53 56.0
2* 2.24 0.68
3* 6.18 0.45 1.53 56.0
4* 5.40 1.24(=df)
5* 2.57 1.06 1.53 56.0
6*(絞り) -2.32 0.72(=dr)
7* -5.06 0.40 1.61 26.0
8* 2.33 0.15
9* 8.25 1.03 1.53 56.0
10* -1.92 0.50
11 ∞ 0.50 1.52 64.1
12 ∞ 2.81
(像面) ∞

f1=−3.53mm
f2=−100.00mm
f3=2.47mm
f4=−2.55mm
f5=3.02mm
f45=24.28mm
Numerical example 1
Basic lens data is shown below.
f = 2.84mm, Fno = 2.44, ω = 46.9 °
Unit mm
Surface data Surface number i R d Nd νd
(Object) ∞ 250
1 * -12.79 0.45 1.53 56.0
2 * 2.24 0.68
3 * 6.18 0.45 1.53 56.0
4 * 5.40 1.24 (= df)
5 * 2.57 1.06 1.53 56.0
6 * (aperture) -2.32 0.72 (= dr)
7 * -5.06 0.40 1.61 26.0
8 * 2.33 0.15
9 * 8.25 1.03 1.53 56.0
10 * -1.92 0.50
11 ∞ 0.50 1.52 64.1
12 ∞ 2.81
(Image plane) ∞

f1 = −3.53 mm
f2 = -100.00mm
f3 = 2.47mm
f4 = −2.55 mm
f5 = 3.02mm
f45 = 24.28mm

非球面データ
第1面
k=0.000,A4=3.446E-02,A6=-3.599E-03,A8=-8.291E-05,
10=1.543E-05
第2面
k=0.000,A4=1.750E-02,A6=-1.105E-02,A8=3.441E-02,
10=-1.719E-02,A12=3.262E-03
第3面
k=0.000,A4=-3.026E-02,A6=3.233E-02,A8=-1.004E-02,
10=2.042E-03
第4面
k=0.000,A4=3.205E-02,A6=-3.662E-03,A8=8.714E-03,
10=-2.056E-03
第5面
k=0.000,A4=2.103E-02,A6=-3.153E-02,A8=3.669E-02,
10=-2.507E-02,A12=5.415E-03
第6面
k=-6.021,A4=-2.650E-02,A6=1.713E-03,A8=1.064E-02,
10=-1.641E-02,A12=6.241E-03
第7面
k=0.000,A4=-1.003E-01,A6=2.765E-03,A8=-5.120E-02,
10=9.268E-02,A12=-4.181E-02
第8面
k=0.000,A4=-6.169E-02,A6=-2.045E-02,A8=1.781E-02,
10=-3.303E-03,A12=-2.295E-04
第9面
k=0.000,A4=6.242E-02,A6=-1.454E-02,A8=-6.595E-03,
10=6.315E-03,A12=-1.348E-03
第10面
k=0.000,A4=3.200E-02,A6=1.686E-03,A8=1.200E-02,
10=1.294E-03,A12=-1.979E-03,A14=2.615E-04
Aspherical data first surface k = 0.000, A 4 = 3.446E-02, A 6 = -3.599E-03, A 8 = -8.291E-05,
A 10 = 1.543E-05
Second surface k = 0.000, A 4 = 1.750E-02, A 6 = -1.105E-02, A 8 = 3.441E-02,
A 10 = -1.719E-02, A 12 = 3.262E-03
3rd surface k = 0.000, A 4 = -3.026E-02, A 6 = 3.233E-02, A 8 = -1.004E-02,
A 10 = 2.042E-03
4th surface k = 0.000, A 4 = 3.205E-02, A 6 = -3.662E-03, A 8 = 8.714E-03,
A 10 = -2.056E-03
Fifth surface k = 0.000, A 4 = 2.103E -02, A 6 = -3.153E-02, A 8 = 3.669E-02,
A 10 = -2.507E-02, A 12 = 5.415E-03
6th surface k = -6.021, A 4 = -2.650E-02, A 6 = 1.713E-03, A 8 = 1.064E-02,
A 10 = -1.641E-02, A 12 = 6.241E-03
7th surface k = 0.000, A 4 = -1.003E-01, A 6 = 2.765E-03, A 8 = -5.120E-02,
A 10 = 9.268E-02, A 12 = -4.181E-02
8th surface k = 0.000, A 4 = -6.169E-02, A 6 = -2.045E-02, A 8 = 1.781E-02,
A 10 = -3.303E-03, A 12 = -2.295E-04
9th surface k = 0.000, A 4 = 6.242E-02, A 6 = -1.454E-02, A 8 = -6.595E-03,
A 10 = 6.315E-03, A 12 = -1.348E-03
10th surface k = 0.000, A 4 = 3.200E-02, A 6 = 1.686E-03, A 8 = 1.200E-02,
A 10 = 1.294E-03, A 12 = -1.979E-03, A 14 = 2.615E-04

各条件式の値を以下に示す。
f2/f=−35.21
R2/R3=0.36
f1/f2=0.035
f3/f=0.87
df/dr=1.72
f45/f=8.55
f4/f5=−0.84
このように、本数値実施例1に係る撮像レンズは条件式(1)〜(9)を満足する。また、第1レンズL1の物体側の面から像面IMまでの光軸X上の距離(空気換算長)は、9.82mmであり、撮像レンズの小型化が図られている。
The value of each conditional expression is shown below.
f2 / f = −35.21
R2 / R3 = 0.36
f1 / f2 = 0.035
f3 / f = 0.87
df / dr = 1.72
f45 / f = 8.55
f4 / f5 = −0.84
Thus, the imaging lens according to Numerical Example 1 satisfies the conditional expressions (1) to (9). Further, the distance (air conversion length) on the optical axis X from the object side surface of the first lens L1 to the image plane IM is 9.82 mm, and the imaging lens is downsized.

図2は、数値実施例1の撮像レンズについて、最大像高に対する各像高の比H(以下、「像高比H」という)に対応する横収差をタンジェンシャル方向とサジタル方向とに分けて示したものである(図5、図8、図11、および図14において同じ)。また、図3は、数値実施例1の撮像レンズについて、球面収差(mm)、非点収差(mm)、および歪曲収差(%)をそれぞれ示したものである。これら収差図において、球面収差図には、g線(435.84nm)、F線(486.13nm)、e線(546.07nm)、d線(587.56nm)、C線(656.27nm)の各波長に対する収差量を示し、非点収差図には、サジタル像面Sにおける収差量とタンジェンシャル像面Tにおける収差量とをそれぞれ示す(図6、図9、図12、および図15において同じ)。図2および図3に示されるように、本数値実施例1に係る撮像レンズによれば、像面が良好に補正され、諸収差が好適に補正される。   FIG. 2 illustrates the lateral aberration corresponding to the ratio H of each image height to the maximum image height (hereinafter referred to as “image height ratio H”) in the tangential direction and the sagittal direction for the imaging lens of Numerical Example 1. (It is the same in FIG. 5, FIG. 8, FIG. 11, and FIG. 14). FIG. 3 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Numerical Example 1. Among these aberration diagrams, the spherical aberration diagram includes g-line (435.84 nm), F-line (486.13 nm), e-line (546.07 nm), d-line (587.56 nm), C-line (656.27 nm). The astigmatism diagram shows the aberration amount on the sagittal image plane S and the aberration amount on the tangential image plane T (in FIGS. 6, 9, 12, and 15). the same). As shown in FIG. 2 and FIG. 3, according to the imaging lens according to Numerical Example 1, the image plane is corrected well, and various aberrations are preferably corrected.

数値実施例2
基本的なレンズデータを以下に示す。
f=2.84mm、Fno=2.46、ω=46.9°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ 250
1* -11.64 0.45 1.53 56.0
2* 2.24 0.68
3* 6.26 0.45 1.53 56.0
4* 5.40 1.15(=df)
5* 2.75 1.23 1.53 56.0
6*(絞り) -2.17 0.72(=dr)
7* -7.88 0.40 1.61 26.0
8* 2.02 0.15
9* 7.17 0.99 1.53 56.0
10* -1.99 0.50
11 ∞ 0.50 1.52 64.1
12 ∞ 2.77
(像面) ∞

f1=−3.47mm
f2=−90.04mm
f3=2.48mm
f4=−2.58mm
f5=3.03mm
f45=28.01mm
Numerical example 2
Basic lens data is shown below.
f = 2.84mm, Fno = 2.46, ω = 46.9 °
Unit mm
Surface data Surface number i R d Nd νd
(Object) ∞ 250
1 * -11.64 0.45 1.53 56.0
2 * 2.24 0.68
3 * 6.26 0.45 1.53 56.0
4 * 5.40 1.15 (= df)
5 * 2.75 1.23 1.53 56.0
6 * (aperture) -2.17 0.72 (= dr)
7 * -7.88 0.40 1.61 26.0
8 * 2.02 0.15
9 * 7.17 0.99 1.53 56.0
10 * -1.99 0.50
11 ∞ 0.50 1.52 64.1
12 ∞ 2.77
(Image plane) ∞

f1 = −3.47 mm
f2 = −90.04 mm
f3 = 2.48mm
f4 = −2.58 mm
f5 = 3.03mm
f45 = 28.01 mm

非球面データ
第1面
k=0.000,A4=3.517E-02,A6=-3.879E-03,A8=-4.207E-05,
10=1.425E-05
第2面
k=0.000,A4=1.750E-02,A6=-1.105E-02,A8=3.441E-02,
10=-1.719E-02,A12=3.262E-03
第3面
k=0.000,A4=-3.105E-02,A6=3.378E-02,A8=-1.052E-02,
10=2.170E-03
第4面
k=0.000,A4=3.205E-02,A6=-3.662E-03,A8=8.714E-03,
10=-2.056E-03
第5面
k=0.000,A4=5.577E-03,A6=-8.975E-03,A8=-1.789E-04,
10=-8.581E-05,A12=-1.741E-03
第6面
k=-4.450,A4=-3.024E-02,A6=1.075E-02,A8=-2.034E-02,
10=1.403E-02,A12=-4.934E-03
第7面
k=0.000,A4=-1.075E-01,A6=-2.729E-02,A8=4.481E-02,
10=-3.235E-03,A12=-7.411E-03
第8面
k=0.000,A4=-1.039E-01,A6=1.145E-02,A8=1.077E-03,
10=-1.078E-04,A12=-2.254E-04
第9面
k=0.000,A4=5.538E-02,A6=-5.087E-03,A8=-1.266E-02,
10=8.470E-03,A12=-1.670E-03
第10面
k=0.000,A4=3.103E-02,A6=5.686E-03,A8=9.425E-03,
10=3.140E-03,A12=-2.706E-03,A14=3.394E-04
Aspherical data first surface k = 0.000, A 4 = 3.517E-02, A 6 = -3.879E-03, A 8 = -4.207E-05,
A 10 = 1.425E-05
Second surface k = 0.000, A 4 = 1.750E-02, A 6 = -1.105E-02, A 8 = 3.441E-02,
A 10 = -1.719E-02, A 12 = 3.262E-03
3rd surface k = 0.000, A 4 = -3.105E-02, A 6 = 3.378E-02, A 8 = -1.052E-02,
A 10 = 2.170E-03
4th surface k = 0.000, A 4 = 3.205E-02, A 6 = -3.662E-03, A 8 = 8.714E-03,
A 10 = -2.056E-03
Fifth surface k = 0.000, A 4 = 5.577E-03, A 6 = -8.975E-03, A 8 = -1.789E-04,
A 10 = -8.581E-05, A 12 = -1.741E-03
6th surface k = -4.450, A 4 = -3.024E-02, A 6 = 1.075E-02, A 8 = -2.034E-02,
A 10 = 1.403E-02, A 12 = -4.934E-03
7th surface k = 0.000, A 4 = -1.075E-01, A 6 = -2.729E-02, A 8 = 4.481E-02,
A 10 = -3.235E-03, A 12 = -7.411E-03
8th surface k = 0.000, A 4 = -1.039E-01, A 6 = 1.145E-02, A 8 = 1.077E-03,
A 10 = -1.078E-04, A 12 = -2.254E-04
9th surface k = 0.000, A 4 = 5.538E-02, A 6 = -5.087E-03, A 8 = -1.266E-02,
A 10 = 8.470E-03, A 12 = -1.670E-03
10th surface k = 0.000, A 4 = 3.103E-02, A 6 = 5.686E-03, A 8 = 9.425E-03,
A 10 = 3.140E-03, A 12 = -2.706E-03, A 14 = 3.394E-04

各条件式の値を以下に示す。
f2/f=−31.70
R2/R3=0.36
f1/f2=0.039
f3/f=0.87
df/dr=1.60
f45/f=9.86
f4/f5=−0.84
このように、本数値実施例2に係る撮像レンズは条件式(1)〜(9)を満足する。また、第1レンズL1の物体側の面から像面IMまでの光軸X上の距離(空気換算長)は、9.82mmであり、撮像レンズの小型化が図られている。
The value of each conditional expression is shown below.
f2 / f = −31.70
R2 / R3 = 0.36
f1 / f2 = 0.039
f3 / f = 0.87
df / dr = 1.60
f45 / f = 9.86
f4 / f5 = −0.84
Thus, the imaging lens according to Numerical Example 2 satisfies the conditional expressions (1) to (9). Further, the distance (air conversion length) on the optical axis X from the object side surface of the first lens L1 to the image plane IM is 9.82 mm, and the imaging lens is downsized.

図5は、数値実施例2の撮像レンズについて、像高比Hに対応する横収差を示したものであり、図6は、球面収差(mm)、非点収差(mm)、および歪曲収差(%)をそれぞれ示したものである。これら図5および図6に示されるように、本数値実施例2に係る撮像レンズによっても、数値実施例1と同様に像面が良好に補正され、諸収差が好適に補正される。   FIG. 5 shows lateral aberration corresponding to the image height ratio H for the imaging lens of Numerical Example 2. FIG. 6 shows spherical aberration (mm), astigmatism (mm), and distortion ( %). As shown in FIGS. 5 and 6, the image pickup lens according to Numerical Example 2 also corrects the image plane well and various aberrations are preferably corrected similarly to Numerical Example 1.

数値実施例3
基本的なレンズデータを以下に示す。
f=2.88mm、Fno=2.39、ω=46.5°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ 250
1* -15.21 0.45 1.53 56.0
2* 2.37 0.61
3* 41.52 0.40 1.53 56.0
4* 10.64 1.19(=df)
5* 2.71 1.24 1.53 56.0
6*(絞り) -2.17 0.74(=dr)
7* -6.86 0.40 1.61 26.0
8* 2.00 0.15
9* 6.28 1.02 1.53 56.0
10* -1.98 0.50
11 ∞ 0.50 1.52 64.1
12 ∞ 2.78
(像面) ∞

f1=−3.80mm
f2=−26.87mm
f3=2.47mm
f4=−2.48mm
f5=2.94mm
f45=26.61mm
Numerical Example 3
Basic lens data is shown below.
f = 2.88mm, Fno = 2.39, ω = 46.5 °
Unit mm
Surface data Surface number i R d Nd νd
(Object) ∞ 250
1 * -15.21 0.45 1.53 56.0
2 * 2.37 0.61
3 * 41.52 0.40 1.53 56.0
4 * 10.64 1.19 (= df)
5 * 2.71 1.24 1.53 56.0
6 * (aperture) -2.17 0.74 (= dr)
7 * -6.86 0.40 1.61 26.0
8 * 2.00 0.15
9 * 6.28 1.02 1.53 56.0
10 * -1.98 0.50
11 ∞ 0.50 1.52 64.1
12 ∞ 2.78
(Image plane) ∞

f1 = -3.80 mm
f2 = −26.87 mm
f3 = 2.47mm
f4 = -2.48mm
f5 = 2.94mm
f45 = 26.61mm

非球面データ
第1面
k=0.000,A4=3.686E-02,A6=-5.745E-03,A8=1.870E-04,
10=5.956E-06
第2面
k=0.000,A4=1.751E-02,A6=-1.104E-02,A8=3.441E-02,
10=-1.719E-02,A12=3.262E-03
第3面
k=0.000,A4=-9.374E-03,A6=6.269E-02,A8=-2.628E-02,
10=4.905E-03
第4面
k=0.000,A4=5.912E-02,A6=3.630E-02,A8=-1.591E-02,
10=1.982E-03
第5面
k=0.000,A4=1.531E-02,A6=-1.525E-02,A8=1.315E-02,
10=-9.891E-03,A12=1.540E-03
第6面
k=-4.370,A4=-1.958E-02,A6=3.714E-03,A8=-5.359E-03,
10=3.662E-04,A12=7.524E-06
第7面
k=0.000,A4=-1.051E-01,A6=-1.030E-02,A8=2.021E-02,
10=6.272E-03,A12=-9.737E-03
第8面
k=0.000,A4=-1.045E-01,A6=1.099E-02,A8=2.017E-03,
10=-2.032E-03,A12=2.975E-04
第9面
k=0.000,A4=5.185E-02,A6=-1.019E-02,A8=-7.167E-03,
10=5.543E-03,A12=-1.096E-03
第10面
k=0.000,A4=3.369E-02,A6=3.097E-03,A8=1.059E-02,
10=1.521E-03,A12=-2.110E-03,A14=2.993E-04
Aspherical data first surface k = 0.000, A 4 = 3.686E-02, A 6 = -5.745E-03, A 8 = 1.870E-04,
A 10 = 5.956E-06
Second surface k = 0.000, A 4 = 1.751E-02, A 6 = -1.104E-02, A 8 = 3.441E-02,
A 10 = -1.719E-02, A 12 = 3.262E-03
3rd surface k = 0.000, A 4 = -9.374E-03, A 6 = 6.269E-02, A 8 = -2.628E-02,
A 10 = 4.905E-03
4th surface k = 0.000, A 4 = 5.912E-02, A 6 = 3.630E-02, A 8 = -1.591E-02,
A 10 = 1.982E-03
5th surface k = 0.000, A 4 = 1.531E-02, A 6 = -1.525E-02, A 8 = 1.315E-02,
A 10 = -9.891E-03, A 12 = 1.540E-03
6th surface k = -4.370, A 4 = -1.958E-02, A 6 = 3.714E-03, A 8 = -5.359E-03,
A 10 = 3.662E-04, A 12 = 7.524E-06
7th surface k = 0.000, A 4 = -1.051E-01, A 6 = -1.030E-02, A 8 = 2.021E-02,
A 10 = 6.272E-03, A 12 = -9.737E-03
8th surface k = 0.000, A 4 = -1.045E-01, A 6 = 1.099E-02, A 8 = 2.017E-03,
A 10 = -2.032E-03, A 12 = 2.975E-04
9th surface k = 0.000, A 4 = 5.185E-02, A 6 = -1.019E-02, A 8 = -7.167E-03,
A 10 = 5.543E-03, A 12 = -1.096E-03
10th surface k = 0.000, A 4 = 3.369E-02, A 6 = 3.097E-03, A 8 = 1.059E-02,
A 10 = 1.521E-03, A 12 = -2.110E-03, A 14 = 2.993E-04

各条件式の値を以下に示す。
f2/f=−9.33
R2/R3=0.057
f1/f2=0.14
f3/f=0.86
df/dr=1.61
f45/f=9.24
f4/f5=−0.84
このように、本数値実施例3に係る撮像レンズは条件式(1)〜(9)を満足する。また、第1レンズL1の物体側の面から像面IMまでの光軸X上の距離(空気換算長)は、9.81mmであり、撮像レンズの小型化が図られている。
The value of each conditional expression is shown below.
f2 / f = −9.33
R2 / R3 = 0.057
f1 / f2 = 0.14
f3 / f = 0.86
df / dr = 1.61
f45 / f = 9.24
f4 / f5 = −0.84
Thus, the imaging lens according to Numerical Example 3 satisfies the conditional expressions (1) to (9). Further, the distance (air conversion length) on the optical axis X from the object side surface of the first lens L1 to the image plane IM is 9.81 mm, and the imaging lens is downsized.

図8は、数値実施例3の撮像レンズについて、像高比Hに対応する横収差を示したものであり、図9は、球面収差(mm)、非点収差(mm)、および歪曲収差(%)をそれぞれ示したものである。これら図8および図9に示されるように、本数値実施例3に係る撮像レンズによっても、数値実施例1と同様に像面が良好に補正され、諸収差が好適に補正される。   FIG. 8 shows lateral aberration corresponding to the image height ratio H for the imaging lens of Numerical Example 3, and FIG. 9 shows spherical aberration (mm), astigmatism (mm), and distortion ( %). As shown in FIGS. 8 and 9, the imaging lens according to Numerical Example 3 also corrects the image plane well and various aberrations as well as Numerical Example 1.

数値実施例4
基本的なレンズデータを以下に示す。
f=2.89mm、Fno=2.41、ω=46.3°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ 250
1* -14.22 0.45 1.53 56.0
2* 2.32 0.62
3* 80.52 0.40 1.53 56.0
4* 14.80 1.21(=df)
5* 2.69 1.24 1.53 56.0
6*(絞り) -2.15 0.74(=dr)
7* -6.55 0.40 1.61 26.0
8* 1.99 0.14
9* 6.23 1.00 1.53 56.0
10* -2.01 0.50
11 ∞ 0.50 1.52 64.1
12 ∞ 2.76
(像面) ∞

f1=−3.69mm
f2=−34.00mm
f3=2.45mm
f4=−2.44mm
f5=2.97mm
f45=39.98mm
Numerical Example 4
Basic lens data is shown below.
f = 2.89mm, Fno = 2.41, ω = 46.3 °
Unit mm
Surface data Surface number i R d Nd νd
(Object) ∞ 250
1 * -14.22 0.45 1.53 56.0
2 * 2.32 0.62
3 * 80.52 0.40 1.53 56.0
4 * 14.80 1.21 (= df)
5 * 2.69 1.24 1.53 56.0
6 * (aperture) -2.15 0.74 (= dr)
7 * -6.55 0.40 1.61 26.0
8 * 1.99 0.14
9 * 6.23 1.00 1.53 56.0
10 * -2.01 0.50
11 ∞ 0.50 1.52 64.1
12 ∞ 2.76
(Image plane) ∞

f1 = -3.69 mm
f2 = −34.00 mm
f3 = 2.45mm
f4 = −2.44 mm
f5 = 2.97mm
f45 = 39.98mm

非球面データ
第1面
k=0.000,A4=3.687E-02,A6=-5.740E-03,A8=1.887E-04,
10=6.376E-06
第2面
k=0.000,A4=1.756E-02,A6=-1.098E-02,A8=3.442E-02,
10=-1.719E-02,A12=3.263E-03
第3面
k=0.000,A4=-9.178E-03,A6=6.269E-02,A8=-2.629E-02,
10=4.902E-03
第4面
k=0.000,A4=5.879E-02,A6=3.639E-02,A8=-1.581E-02,
10=2.045E-03
第5面
k=0.000,A4=1.545E-02,A6=-1.530E-02,A8=1.306E-02,
10=-9.959E-03,A12=1.505E-03
第6面
k=-4.363,A4=-1.962E-02,A6=3.683E-03,A8=-5.399E-03,
10=3.216E-04,A12=-3.783E-05
第7面
k=0.000,A4=-1.044E-01,A6=-1.076E-02,A8=1.963E-02,
10=5.953E-03,A12=-9.788E-03
第8面
k=0.000,A4=-1.044E-01,A6=1.120E-02,A8=2.062E-03,
10=-2.045E-03,A12=2.817E-04
第9面
k=0.000,A4=5.193E-02,A6=-1.016E-02,A8=-7.135E-03,
10=5.560E-03,A12=-1.092E-03
第10面
k=0.000,A4=3.354E-02,A6=3.112E-03,A8=1.059E-02,
10=1.515E-03,A12=-2.114E-03,A14=2.978E-04
Aspherical data first surface k = 0.000, A 4 = 3.687E-02, A 6 = -5.740E-03, A 8 = 1.887E-04,
A 10 = 6.376E-06
Second side k = 0.000, A 4 = 1.756E-02, A 6 = -1.098E-02, A 8 = 3.442E-02,
A 10 = -1.719E-02, A 12 = 3.263E-03
3rd surface k = 0.000, A 4 = -9.178E-03, A 6 = 6.269E-02, A 8 = -2.629E-02,
A 10 = 4.902E-03
4th surface k = 0.000, A 4 = 5.879E-02, A 6 = 3.639E-02, A 8 = -1.581E-02,
A 10 = 2.045E-03
5th surface k = 0.000, A 4 = 1.545E-02, A 6 = -1.530E-02, A 8 = 1.306E-02,
A 10 = -9.959E-03, A 12 = 1.505E-03
6th surface k = -4.363, A 4 = -1.962E-02, A 6 = 3.683E-03, A 8 = -5.399E-03,
A 10 = 3.216E-04, A 12 = -3.783E-05
7th surface k = 0.000, A 4 = -1.044E-01, A 6 = -1.076E-02, A 8 = 1.963E-02,
A 10 = 5.953E-03, A 12 = -9.788E-03
8th surface k = 0.000, A 4 = -1.044E-01, A 6 = 1.120E-02, A 8 = 2.062E-03,
A 10 = -2.045E-03, A 12 = 2.817E-04
9th surface k = 0.000, A 4 = 5.193E-02, A 6 = -1.016E-02, A 8 = -7.135E-03,
A 10 = 5.560E-03, A 12 = -1.092E-03
10th surface k = 0.000, A 4 = 3.354E-02, A 6 = 3.112E-03, A 8 = 1.059E-02,
A 10 = 1.515E-03, A 12 = -2.114E-03, A 14 = 2.978E-04

各条件式の値を以下に示す。
f2/f=−11.76
R2/R3=0.029
f1/f2=0.11
f3/f=0.85
df/dr=1.64
f45/f=13.83
f4/f5=−0.82
このように、本数値実施例4に係る撮像レンズは条件式(1)〜(9)を満足する。また、第1レンズL1の物体側の面から像面IMまでの光軸X上の距離(空気換算長)は、9.79mmであり、撮像レンズの小型化が図られている。
The value of each conditional expression is shown below.
f2 / f = -11.76
R2 / R3 = 0.029
f1 / f2 = 0.11
f3 / f = 0.85
df / dr = 1.64
f45 / f = 13.83
f4 / f5 = −0.82
Thus, the imaging lens according to Numerical Example 4 satisfies the conditional expressions (1) to (9). Further, the distance (air conversion length) on the optical axis X from the object side surface of the first lens L1 to the image plane IM is 9.79 mm, and the imaging lens is downsized.

図11は、数値実施例4の撮像レンズについて、像高比Hに対応する横収差を示したものであり、図12は、球面収差(mm)、非点収差(mm)、および歪曲収差(%)をそれぞれ示したものである。これら図11および図12に示されるように、本数値実施例4に係る撮像レンズによっても、数値実施例1と同様に像面が良好に補正され、諸収差が好適に補正される。   FIG. 11 shows lateral aberration corresponding to the image height ratio H for the imaging lens of Numerical Example 4. FIG. 12 shows spherical aberration (mm), astigmatism (mm), and distortion ( %). As shown in FIGS. 11 and 12, the imaging lens according to Numerical Example 4 also corrects the image plane satisfactorily as in Numerical Example 1, and various aberrations are preferably corrected.

数値実施例5
基本的なレンズデータを以下に示す。
f=2.82mm、Fno=2.32、ω=47.3°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ 250
1* -23.04 0.45 1.53 56.0
2* 2.59 0.59
3* 159.31 0.47 1.53 56.0
4* 7.27 1.20(=df)
5* 2.68 1.21 1.53 56.0
6*(絞り) -2.16 0.70(=dr)
7* -7.50 0.40 1.61 26.0
8* 2.00 0.16
9* 6.12 1.04 1.53 56.0
10* -1.96 0.50
11 ∞ 0.50 1.52 64.1
12 ∞ 2.72
(像面) ∞

f1=−4.33mm
f2=−14.26mm
f3=2.45mm
f4=−2.53mm
f5=2.91mm
f45=20.23mm
Numerical Example 5
Basic lens data is shown below.
f = 2.82mm, Fno = 2.32, ω = 47.3 °
Unit mm
Surface data Surface number i R d Nd νd
(Object) ∞ 250
1 * -23.04 0.45 1.53 56.0
2 * 2.59 0.59
3 * 159.31 0.47 1.53 56.0
4 * 7.27 1.20 (= df)
5 * 2.68 1.21 1.53 56.0
6 * (aperture) -2.16 0.70 (= dr)
7 * -7.50 0.40 1.61 26.0
8 * 2.00 0.16
9 * 6.12 1.04 1.53 56.0
10 * -1.96 0.50
11 ∞ 0.50 1.52 64.1
12 ∞ 2.72
(Image plane) ∞

f1 = −4.33 mm
f2 = -14.26 mm
f3 = 2.45mm
f4 = −2.53 mm
f5 = 2.91mm
f45 = 20.23mm

非球面データ
第1面
k=0.000,A4=3.691E-02,A6=-5.744E-03,A8=1.841E-04,
10=5.497E-06
第2面
k=0.000,A4=1.960E-02,A6=-1.117E-02,A8=3.437E-02,
10=-1.717E-02,A12=3.276E-03
第3面
k=0.000,A4=-9.616E-03,A6=6.246E-02,A8=-2.636E-02,
10=4.911E-03
第4面
k=0.000,A4=6.008E-02,A6=3.682E-02,A8=-1.586E-02,
10=1.863E-03
第5面
k=0.000,A4=1.473E-02,A6=-1.537E-02,A8=1.323E-02,
10=-9.785E-03,A12=1.598E-03
第6面
k=-4.383,A4=-1.953E-02,A6=3.724E-03,A8=-5.307E-03,
10=4.546E-04,A12=1.197E-04
第7面
k=0.000,A4=-1.046E-01,A6=-9.770E-03,A8=2.043E-02,
10=6.342E-03,A12=-9.673E-03
第8面
k=0.000,A4=-1.043E-01,A6=1.088E-02,A8=1.922E-03,
10=-2.088E-03,A12=2.659E-04
第9面
k=0.000,A4=5.180E-02,A6=-1.019E-02,A8=-7.184E-03,
10=5.529E-03,A12=-1.105E-03
第10面
k=0.000,A4=3.427E-02,A6=3.179E-03,A8=1.061E-02,
10=1.529E-03,A12=-2.108E-03,A14=2.997E-04
Aspherical data first surface k = 0.000, A 4 = 3.691E-02, A 6 = -5.744E-03, A 8 = 1.841E-04,
A 10 = 5.497E-06
2nd surface k = 0.000, A 4 = 1.960E-02, A 6 = -1.117E-02, A 8 = 3.437E-02,
A 10 = -1.717E-02, A 12 = 3.276E-03
3rd surface k = 0.000, A 4 = -9.616E-03, A 6 = 6.246E-02, A 8 = -2.636E-02,
A 10 = 4.911E-03
4th surface k = 0.000, A 4 = 6.008E-02, A 6 = 3.682E-02, A 8 = -1.586E-02,
A 10 = 1.863E-03
Fifth surface k = 0.000, A 4 = 1.473E-02, A 6 = -1.537E-02, A 8 = 1.323E-02,
A 10 = -9.785E-03, A 12 = 1.598E-03
6th surface k = -4.383, A 4 = -1.953E-02, A 6 = 3.724E-03, A 8 = -5.307E-03,
A 10 = 4.546E-04, A 12 = 1.197E-04
7th surface k = 0.000, A 4 = -1.046E-01, A 6 = -9.770E-03, A 8 = 2.043E-02,
A 10 = 6.342E-03, A 12 = -9.673E-03
8th surface k = 0.000, A 4 = -1.043E-01, A 6 = 1.088E-02, A 8 = 1.922E-03,
A 10 = -2.088E-03, A 12 = 2.659E-04
9th surface k = 0.000, A 4 = 5.180E-02, A 6 = -1.019E-02, A 8 = -7.184E-03,
A 10 = 5.529E-03, A 12 = -1.105E-03
10th surface k = 0.000, A 4 = 3.427E-02, A 6 = 3.179E-03, A 8 = 1.061E-02,
A 10 = 1.529E-03, A 12 = -2.108E-03, A 14 = 2.997E-04

各条件式の値を以下に示す。
f2/f=−5.06
R2/R3=0.016
f1/f2=0.30
f3/f=0.87
df/dr=1.71
f45/f=7.17
f4/f5=−0.87
このように、本数値実施例5に係る撮像レンズは条件式(1)〜(9)を満足する。また、第1レンズL1の物体側の面から像面IMまでの光軸X上の距離(空気換算長)は、9.77mmであり、撮像レンズの小型化が図られている。
The value of each conditional expression is shown below.
f2 / f = −5.06
R2 / R3 = 0.016
f1 / f2 = 0.30
f3 / f = 0.87
df / dr = 1.71
f45 / f = 7.17
f4 / f5 = −0.87
Thus, the imaging lens according to Numerical Example 5 satisfies the conditional expressions (1) to (9). Further, the distance on the optical axis X from the object-side surface of the first lens L1 to the image plane IM (equivalent air length) is 9.77 mm, and the imaging lens is downsized.

図14は、数値実施例5の撮像レンズについて、像高比Hに対応する横収差を示したものであり、図15は、球面収差(mm)、非点収差(mm)、および歪曲収差(%)をそれぞれ示したものである。これら図14および図15に示されるように、本数値実施例5に係る撮像レンズによっても、数値実施例1と同様に像面が良好に補正され、諸収差が好適に補正される。   FIG. 14 shows lateral aberration corresponding to the image height ratio H for the imaging lens of Numerical Example 5. FIG. 15 shows spherical aberration (mm), astigmatism (mm), and distortion ( %). As shown in FIG. 14 and FIG. 15, the imaging lens according to Numerical Example 5 also corrects the image plane well as in Numerical Example 1, and various aberrations are preferably corrected.

したがって、上記実施の形態に係る撮像レンズを携帯電話機、デジタルスティルカメラ、携帯情報端末、セキュリティカメラ、実物投影機、スキャナー、ネットワークカメラ等に搭載される撮像光学系に適用した場合、当該カメラ等の高機能化と小型化の両立を図ることができる。   Therefore, when the imaging lens according to the above embodiment is applied to an imaging optical system mounted on a mobile phone, a digital still camera, a portable information terminal, a security camera, an actual projector, a scanner, a network camera, etc. Both high functionality and downsizing can be achieved.

本発明は、撮像レンズとして小型化、広角化とともに歪曲収差の良好な補正能力が要求される機器、例えばドキュメントカメラやスキャナー等の機器に搭載される撮像レンズに適用することができる。   INDUSTRIAL APPLICABILITY The present invention can be applied to an imaging lens mounted on a device that is required to have a small distortion, a wide angle, and a good distortion correction capability, such as a document camera or a scanner.

L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
L5 第5レンズ
10 フィルタ
L1 1st lens L2 2nd lens L3 3rd lens L4 4th lens L5 5th lens 10 Filter

Claims (10)

物体側から像面側に向かって順に、負の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、負の屈折力を有する第4レンズと、正の屈折力を有する第5レンズとを配置して構成され、
前記第1レンズは、像面側の面の曲率半径が正となる形状に形成されており、
前記第2レンズは、物体側の面が、光軸から周縁部に向うにつれて物体側に強い凸面を向けた形状となるように形成されるとともに、像面側の面の曲率半径が正となる形状に形成されており、
前記第3レンズは、物体側の面の曲率半径が正となり、像面側の面の曲率半径が負となる形状に形成されており、
前記第4レンズは、物体側の面の曲率半径が負となり、像面側の面の曲率半径が正となる形状に形成されており、
前記第5レンズは、物体側の面の曲率半径が正となり、像面側の面の曲率半径が負となる形状に形成されるとともに、像面側の面が変曲点を有する非球面形状に形成される、
ことを特徴とする撮像レンズ。
In order from the object side to the image plane side, the first lens having negative refractive power, the second lens having negative refractive power, the third lens having positive refractive power, and the negative refractive power A fourth lens and a fifth lens having a positive refractive power are arranged;
The first lens is formed in a shape in which the radius of curvature of the image side surface is positive,
The second lens is formed such that the object-side surface has a shape with a strong convex surface facing the object side from the optical axis toward the peripheral edge, and the curvature radius of the image-side surface becomes positive. Formed into a shape,
The third lens is formed in a shape in which the curvature radius of the object side surface is positive and the curvature radius of the image side surface is negative.
The fourth lens is formed in a shape in which the curvature radius of the object side surface is negative and the curvature radius of the image side surface is positive.
The fifth lens is formed in a shape in which the curvature radius of the object side surface is positive and the curvature radius of the image side surface is negative, and the aspherical surface has an inflection point on the image side surface. Formed into,
An imaging lens characterized by the above.
前記第2レンズは、前記第1レンズ、前記第3レンズ、前記第4レンズ、および前記第5レンズのそれぞれよりも屈折力が弱くなるように形成されることを特徴とする請求項1に記載の撮像レンズ。   The said 2nd lens is formed so that refractive power may become weaker than each of a said 1st lens, a said 3rd lens, a said 4th lens, and a said 5th lens. Imaging lens. レンズ系全体の焦点距離をf、前記第2レンズの焦点距離をf2としたとき、
−40<f2/f<−5
を満足することを特徴とする請求項1または2に記載の撮像レンズ。
When the focal length of the entire lens system is f and the focal length of the second lens is f2,
−40 <f2 / f <−5
The imaging lens according to claim 1, wherein:
前記第1レンズの像面側の面の曲率半径をR2、前記第2レンズの物体側の面の曲率半径をR3としたとき、
0.01<R2/R3<0.4
を満足することを特徴とする請求項1〜3のいずれか一項に記載の撮像レンズ。
When the radius of curvature of the image side surface of the first lens is R2, and the radius of curvature of the object side surface of the second lens is R3,
0.01 <R2 / R3 <0.4
The imaging lens according to claim 1, wherein the imaging lens is satisfied.
前記第1レンズの焦点距離をf1、前記第2レンズの焦点距離をf2としたとき、
0.02<f1/f2<0.8
を満足することを特徴とする請求項1〜4のいずれか一項に記載の撮像レンズ。
When the focal length of the first lens is f1, and the focal length of the second lens is f2,
0.02 <f1 / f2 <0.8
The imaging lens according to claim 1, wherein the imaging lens is satisfied.
レンズ系全体の焦点距離をf、前記第3レンズの焦点距離をf3としたとき、
0.5<f3/f<1.2
を満足することを特徴とする請求項1〜5のいずれか一項に記載の撮像レンズ。
When the focal length of the entire lens system is f and the focal length of the third lens is f3,
0.5 <f3 / f <1.2
The imaging lens according to claim 1, wherein the imaging lens is satisfied.
前記第2レンズの像面側の面から前記第3レンズの物体側の面までの光軸上の距離をdf、前記第3レンズの像面側の面から前記第4レンズの物体側の面までの光軸上の距離をdrとしたとき、
0.8<df/dr<2.5
を満足することを特徴とする請求項1〜6のいずれか一項に記載の撮像レンズ。
The distance on the optical axis from the image side surface of the second lens to the object side surface of the third lens is df, and the object side surface of the fourth lens from the image side surface of the third lens When the distance on the optical axis to is dr
0.8 <df / dr <2.5
The imaging lens according to any one of claims 1 to 6, wherein:
レンズ系全体の焦点距離をf、前記第4レンズおよび前記第5レンズの合成焦点距離をf45としたとき、
5<f45/f<15
を満足することを特徴とする請求項1〜7のいずれか一項に記載の撮像レンズ。
When the focal length of the entire lens system is f, and the combined focal length of the fourth lens and the fifth lens is f45,
5 <f45 / f <15
The imaging lens according to claim 1, wherein the imaging lens is satisfied.
前記第4レンズのアッベ数をνd4、前記第5レンズのアッベ数をνd5としたとき、
νd4<35
45<νd5<80
を満足することを特徴とする請求項1〜8のいずれか一項に記載の撮像レンズ。
When the Abbe number of the fourth lens is νd4 and the Abbe number of the fifth lens is νd5,
νd4 <35
45 <νd5 <80
The imaging lens according to claim 1, wherein the imaging lens is satisfied.
前記第1レンズのアッベ数をνd1、前記第2レンズのアッベ数をνd2、前記第3レンズのアッベ数をνd3としたとき、
45<νd1<80
45<νd2<80
45<νd3<80
を満足することを特徴とする請求項9に記載の撮像レンズ。
When the Abbe number of the first lens is νd1, the Abbe number of the second lens is νd2, and the Abbe number of the third lens is νd3,
45 <νd1 <80
45 <νd2 <80
45 <νd3 <80
The imaging lens according to claim 9, wherein:
JP2011041392A 2011-02-28 2011-02-28 Imaging lens Active JP5584938B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011041392A JP5584938B2 (en) 2011-02-28 2011-02-28 Imaging lens
CN201110162331.1A CN102650726B (en) 2011-02-28 2011-06-13 Pick-up lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011041392A JP5584938B2 (en) 2011-02-28 2011-02-28 Imaging lens

Publications (2)

Publication Number Publication Date
JP2012177831A true JP2012177831A (en) 2012-09-13
JP5584938B2 JP5584938B2 (en) 2014-09-10

Family

ID=46692760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011041392A Active JP5584938B2 (en) 2011-02-28 2011-02-28 Imaging lens

Country Status (2)

Country Link
JP (1) JP5584938B2 (en)
CN (1) CN102650726B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9274307B2 (en) 2013-12-18 2016-03-01 Genius Electronic Optical Co., Ltd. Camera device and optical imaging lens thereof
US9405099B2 (en) 2013-01-22 2016-08-02 Samsung Electro-Mechanics Co., Ltd. Subminiature optical system and portable device including the same
CN106291875A (en) * 2015-06-26 2017-01-04 先进光电科技股份有限公司 Optical imaging system
CN106291876A (en) * 2015-06-26 2017-01-04 先进光电科技股份有限公司 Optical imaging system
CN106291877A (en) * 2015-06-26 2017-01-04 先进光电科技股份有限公司 Optical imaging system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969799B (en) * 2013-12-18 2017-01-11 玉晶光电(厦门)有限公司 Shooting device and optical imaging lens thereof
KR101547461B1 (en) * 2013-12-31 2015-08-27 주식회사 코렌 Optical lens system
CN105242383B (en) * 2015-10-13 2017-11-24 利达光电股份有限公司 Day and night confocal glass moulds hybrid lenses for a kind of large aperture
CN105278082B (en) * 2015-11-19 2018-12-07 中山联合光电科技股份有限公司 A kind of ultra-wide angle fish eye optical imaging lens
TWI660193B (en) * 2015-11-27 2019-05-21 揚明光學股份有限公司 Optical lens
TWI710815B (en) * 2016-03-10 2020-11-21 先進光電科技股份有限公司 Optical image capturing system
WO2018021800A1 (en) 2016-07-25 2018-02-01 엘지이노텍 주식회사 Light-receiving device and lidar
CN106597641B (en) * 2017-01-22 2022-10-18 东莞市宇瞳光学科技股份有限公司 Small-sized low-cost 4MP athermal prime lens
CN106932885A (en) * 2017-04-11 2017-07-07 广东思锐光学股份有限公司 A kind of fish eye lens
WO2021127899A1 (en) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 Camera optical lens
WO2021134267A1 (en) * 2019-12-30 2021-07-08 诚瑞光学(常州)股份有限公司 Photographing optical lens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054013A (en) * 2002-07-22 2004-02-19 Nidec Copal Corp Zoom lens
JP2009134175A (en) * 2007-11-30 2009-06-18 Olympus Imaging Corp Image forming optical system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100561286C (en) * 2004-09-17 2009-11-18 鸿富锦精密工业(深圳)有限公司 The digital camera wide-angle lens
JP4980772B2 (en) * 2007-03-30 2012-07-18 富士フイルム株式会社 Zoom lens and imaging device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054013A (en) * 2002-07-22 2004-02-19 Nidec Copal Corp Zoom lens
JP2009134175A (en) * 2007-11-30 2009-06-18 Olympus Imaging Corp Image forming optical system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7014001273; 早水良定: 光機器の光学I , 1998, p137-138,p325-326, 社団法人日本オプトメカトロニクス協会 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9405099B2 (en) 2013-01-22 2016-08-02 Samsung Electro-Mechanics Co., Ltd. Subminiature optical system and portable device including the same
US9846296B2 (en) 2013-01-22 2017-12-19 Samsung Electro-Mechanics Co., Ltd. Subminiature optical system and portable device including the same
US10191249B2 (en) 2013-01-22 2019-01-29 Samsung Electro-Mechanics Co., Ltd. Subminiature optical system and portable device including the same
US10310224B2 (en) 2013-01-22 2019-06-04 Samsung Electro-Mechanics Co., Ltd. Subminiature optical system and portable device including the same
US10473895B2 (en) 2013-01-22 2019-11-12 Samsung Electro-Mechanics Co., Ltd. Subminiature optical system and portable device including the same
US11099362B2 (en) 2013-01-22 2021-08-24 Samsung Electro-Mechanics Co., Ltd. Subminiature optical system and portable device including the same
US11796773B2 (en) 2013-01-22 2023-10-24 Samsung Electro-Mechanics Co., Ltd. Subminiature optical system and portable device including the same
US9274307B2 (en) 2013-12-18 2016-03-01 Genius Electronic Optical Co., Ltd. Camera device and optical imaging lens thereof
CN106291875A (en) * 2015-06-26 2017-01-04 先进光电科技股份有限公司 Optical imaging system
CN106291876A (en) * 2015-06-26 2017-01-04 先进光电科技股份有限公司 Optical imaging system
CN106291877A (en) * 2015-06-26 2017-01-04 先进光电科技股份有限公司 Optical imaging system

Also Published As

Publication number Publication date
CN102650726B (en) 2015-09-09
CN102650726A (en) 2012-08-29
JP5584938B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5584938B2 (en) Imaging lens
JP6452643B2 (en) Imaging lens
JP6403711B2 (en) Imaging lens
JP5201679B2 (en) Imaging lens
JP5975386B2 (en) Imaging lens
JP6226296B2 (en) Imaging lens
JP5735712B2 (en) Imaging lens and imaging device provided with imaging lens
JP6105317B2 (en) Wide-angle imaging lens
JP5577531B2 (en) Imaging lens
JP6570076B2 (en) Imaging lens
WO2012132456A1 (en) Image pickup lens and image pickup device
JP2016206392A (en) Image capturing lens
JP2017049347A (en) Imaging lens
JP2017003703A (en) Image capturing lens
JP2014026254A (en) Imaging lens
JP2013242449A (en) Imaging lens
JP2011095513A (en) Imaging lens
JP2013054099A (en) Imaging lens
JP2012103319A (en) Imaging lens
JP2014112131A (en) Imaging lens
JP6146741B2 (en) Imaging lens
JP2013097007A (en) Imaging lens
JP2014010331A (en) Imaging lens
JP2019045665A (en) Image capturing lens
JP2012211935A (en) Imaging lens and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140704

R150 Certificate of patent or registration of utility model

Ref document number: 5584938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250