JP2012177463A - Cylindrical heat insulation material, and method for manufacturing the same - Google Patents

Cylindrical heat insulation material, and method for manufacturing the same Download PDF

Info

Publication number
JP2012177463A
JP2012177463A JP2011057185A JP2011057185A JP2012177463A JP 2012177463 A JP2012177463 A JP 2012177463A JP 2011057185 A JP2011057185 A JP 2011057185A JP 2011057185 A JP2011057185 A JP 2011057185A JP 2012177463 A JP2012177463 A JP 2012177463A
Authority
JP
Japan
Prior art keywords
raw material
heat insulating
insulating material
powdered
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011057185A
Other languages
Japanese (ja)
Inventor
Kenji Imae
憲司 井前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMAE KOGYO KK
Original Assignee
IMAE KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMAE KOGYO KK filed Critical IMAE KOGYO KK
Priority to JP2011057185A priority Critical patent/JP2012177463A/en
Publication of JP2012177463A publication Critical patent/JP2012177463A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical heat insulation material which thermally insulates a high-temperature thermal device body by utilizing high heat insulation property of silica aerogel particles and achieving reduction in thickness or size, and to provide a method for manufacturing the same.SOLUTION: This cylindrical heat insulation material 1 is inserted and attached to a thermal device body A to thermally insulate the thermal device body A, and is composed of a calcium silicate compact internally formed with a plurality of fine pores which have porosity of 50% or higher and are composed of the silica aerogel particles densely blended. The method for manufacturing the cylindrical heat insulation material uses silica aerogel raw material with a hydrophilic coating film formed on surfaces of hydrophobic silica aerogel particles as the silica aerogel particles, the hydrophobic silica aerogel particles being treated to prevent intrusion of water into the inside.

Description

本発明は、燃料電池の改質器本体のような高温の熱機器本体を断熱する筒状の断熱材に関する。The present invention relates to a cylindrical heat insulating material that insulates a high-temperature heat device main body such as a reformer main body of a fuel cell.

高温で発熱する熱機器においてその熱機器本体を断熱する必要のある熱機器本体としては、燃料電池の改質器本体があり、このような熱機器本体を断熱する断熱材としては断熱性を十分に維持しつつ薄型化もしくはコンパクト化さらには熱機器本体に配置する施工性の効率化などが望まれている。そのために熱機器本体を挿着する筒状の断熱材が種々提案されている。As a thermal equipment body that needs to insulate the thermal equipment body in a thermal equipment that generates heat at a high temperature, there is a reformer body of a fuel cell, and as a thermal insulation material that insulates such a thermal equipment body, insulation is sufficient. Therefore, it is desired to make it thinner or more compact and to improve the efficiency of workability to be arranged in the main body of the thermal equipment. For this purpose, various cylindrical heat insulating materials for inserting the thermal equipment main body have been proposed.

例えば、特許文献1のように、シリカのような無機ナノ粒子(シリカナノ粒子)を用いた圧縮成形体の断熱層を筒状成形体の被覆層で被覆してできた筒状の断熱材や、特許文献2のように、無機繊維からなる中空成形体の中空部にシリカのような無機粉体からなる充填材を充填してできた筒状の断熱材さらには、特許文献3のように、可撓性無機質断熱材と可撓性エアロゲル断熱材と可撓性無機質断熱材とを順に積層してできた筒状の断熱材がそれぞれ提案されている。For example, as in Patent Document 1, a cylindrical heat insulating material formed by coating a heat insulating layer of a compression molded body using inorganic nanoparticles such as silica (silica nanoparticles) with a coating layer of a cylindrical molded body, As in Patent Document 2, a cylindrical heat insulating material made by filling a hollow part of a hollow molded body made of inorganic fibers with a filler made of inorganic powder such as silica, and further, as in Patent Document 3, Cylindrical heat insulating materials made by sequentially laminating a flexible inorganic heat insulating material, a flexible airgel heat insulating material, and a flexible inorganic heat insulating material have been proposed.

特開2009−299893号公報JP 2009-299893 A 特開2007−100750号公報JP 2007-1000075 A 特開2010−33745号公報JP 2010-33745 A

しかし、これら特許文献1、2および3で提案の筒状の断熱材では、断熱性に優れた無機ナノ粒子や無機粉体やエアロゲル断熱材が何れも、他の断熱材と別体で構成されている。そのため、これら断熱性に優れた無機ナノ粒子や無機粉体やエアロゲル断熱材が他の断熱材を介して熱機器本体を断熱することになるので、無機ナノ粒子や無機粉体やエアロゲル断熱材の断熱性が十分に活用されておらず、高温の熱機器本体を断熱させかつ薄型化ができる筒状の断熱材として制約がある。However, in the cylindrical heat insulating materials proposed in Patent Documents 1, 2, and 3, all of the inorganic nanoparticles, the inorganic powder, and the airgel heat insulating material excellent in heat insulating properties are formed separately from other heat insulating materials. ing. Therefore, since these inorganic nanoparticles, inorganic powder, and airgel heat insulating material excellent in heat insulation will insulate the heat equipment body through other heat insulating materials, the inorganic nanoparticles, inorganic powder, and airgel heat insulating material Thermal insulation is not sufficiently utilized, and there is a limitation as a cylindrical heat insulating material that can insulate a high-temperature thermal equipment body and reduce the thickness.

さらに、特許文献1で提案の筒状の断熱材では、無機ナノ粒子(シリカナノ粒子)が発塵しないように被覆シートの端部を接着して筒状の袋としたり、被覆層を二重にしたりする作業工程が必要である。また、特許文献2で提案の筒状の断熱材では、中空成形体が損傷した際、中空部に充填された無機粉体が飛散しないようにする配慮が必要である。また、特許文献3で提案の筒状の断熱材では、各断熱材を密着させたり積層したりする作業が必要である。Furthermore, in the cylindrical heat insulating material proposed in Patent Document 1, the end of the covering sheet is adhered to form a cylindrical bag so that inorganic nanoparticles (silica nanoparticles) do not generate dust, or the covering layer is doubled. Work process is necessary. Moreover, in the cylindrical heat insulating material proposed in Patent Document 2, it is necessary to consider that the inorganic powder filled in the hollow portion is not scattered when the hollow molded body is damaged. Moreover, in the cylindrical heat insulating material proposed in Patent Document 3, it is necessary to work to closely adhere or laminate the heat insulating materials.

本発明は、上記問題点を解消し、シリカエアロゲル粒子の高い断熱性を活用して高温の熱機器本体を断熱させかつ薄型化もしくはコンパクト化した筒状の断熱材およびその製造方法を提供することを目的とする。The present invention provides a cylindrical heat insulating material that eliminates the above-mentioned problems, makes a high-temperature heat equipment body heat-insulating by utilizing the high heat insulating property of silica airgel particles, and is made thin or compact, and a method for manufacturing the same. With the goal.

請求項1記載の筒状の断熱材は、熱機器本体に挿着して前記熱機器本体を断熱する筒状で気孔率が50%以上となる多数の微細な気孔を内部に有する珪酸カルシウム成形体でできた断熱材において、前記気孔をシリカエアロゲル粒子で構成させてできたことを特徴とする。さらに、請求項2記載の筒状の断熱材は、請求項1記載の筒状の断熱材で前記シリカエアロゲル粒子の平均粒径は1.5mmであることを特徴とする。請求項3記載の筒状の断熱材は、請求項1または2記載の筒状の断熱材は、前記珪酸カルシウム成形体は粉末状珪酸原料と粉末状カルシウム原料に無機繊維フィラーを添加させてできたことを特徴とする。また、請求項4記載の筒状の断熱材は、請求項1から3の何れかひとつに記載の筒状の断熱材を無機繊維クロスで被覆させてできたことを特徴とする。The cylindrical heat insulating material according to claim 1 is a calcium silicate molding in which a plurality of fine pores having a porosity of 50% or more are inserted inside the thermal equipment body to insulate the thermal equipment body and have a porosity of 50% or more. A heat insulating material made of a body is characterized in that the pores are made of silica airgel particles. Furthermore, the cylindrical heat insulating material according to claim 2 is the cylindrical heat insulating material according to claim 1, wherein the average particle diameter of the silica airgel particles is 1.5 mm. The cylindrical heat insulating material according to claim 3 is the cylindrical heat insulating material according to claim 1 or 2, wherein the calcium silicate compact is formed by adding an inorganic fiber filler to a powdered silicic acid raw material and a powdered calcium raw material. It is characterized by that. According to a fourth aspect of the present invention, there is provided a cylindrical heat insulating material obtained by coating the cylindrical heat insulating material according to any one of the first to third aspects with an inorganic fiber cloth.

請求項5記載の筒状の断熱材の製造方法は、熱機器本体に挿着して前記熱機器本体を断熱する筒状で気孔率が50%以上となる多数の微細な気孔を内部に有する珪酸カルシウム成形体でできた断熱材の製造方法において、水が内部に侵入するのを阻止するように処理された疎水性シリカエアロゲル粒子の表面に親水性被膜を形成したシリカエアロゲル原料と粉末状珪酸原料と粉末状カルシウム原料と水とを混合させてシリカエアロゲル粒子を粉末状珪酸原料および粉末状カルシウム原料に密に配合させて得られたスラリーを筒状に脱水成形して一次成形物として後、前記一次成形物を蒸気養生し乾燥させて固化した珪酸カルシウム成形体とすることにより、その珪酸カルシウム成形体の前記気孔をシリカエアロゲル粒子で構成させることを特徴とする。さらに、請求項6記載の筒状の断熱材の製造方法は、請求項5記載の筒状の断熱材の製造方法で前記粉末状珪酸原料と粉末状カルシウム原料に無機繊維フィラーを添加させて粉末状親水性シリカエアロゲル原料と水とを撹拌し混合させて得られたスラリーを筒状に脱水成形して一次成形物とすることを特徴とする。また、請求項7記載の筒状の断熱材の製造方法は、請求項5または6記載の筒状の断熱材の製造方法で、無機繊維クロスを配置させた状態で前記スラリーを筒状に脱水成形して一次成形物とすることを特徴とする。The manufacturing method of the cylindrical heat insulating material according to claim 5 has a large number of fine pores having a porosity of 50% or more in a cylindrical shape that is inserted into the heat device main body to insulate the heat device main body. Silica airgel raw material and powdered silicic acid in which a hydrophilic coating is formed on the surface of hydrophobic silica airgel particles treated so as to prevent water from penetrating into the heat insulating material made of calcium silicate molded body The slurry obtained by mixing the raw material, the powdered calcium raw material, and water and mixing the silica airgel particles in the powdered silicic acid raw material and the powdered calcium raw material in a cylindrical shape is dehydrated and formed into a primary molded product, It is characterized in that the pores of the calcium silicate molded body are composed of silica airgel particles by forming the calcium silicate molded body solidified by steam curing and drying the primary molded product. To. Furthermore, the manufacturing method of the cylindrical heat insulating material according to claim 6 is a method in which an inorganic fiber filler is added to the powdered silicic acid raw material and the powdered calcium raw material according to the manufacturing method of the cylindrical heat insulating material according to claim 5. A slurry obtained by stirring and mixing water-like hydrophilic silica airgel raw material and water is dehydrated into a cylindrical shape to form a primary molded product. The method for manufacturing a cylindrical heat insulating material according to claim 7 is the method for manufacturing a cylindrical heat insulating material according to claim 5 or 6, wherein the slurry is dehydrated into a cylindrical shape with an inorganic fiber cloth arranged. It is characterized by forming a primary molded product.

本発明の請求項1および2および請求項5記載の筒状の断熱材およびその製造方法により、熱機器本体に挿着して前記熱機器本体を断熱する筒状で気孔率が50%以上となる多数の微細な気孔を内部に有する珪酸カルシウム成形体でできた断熱材において、前記気孔をシリカエアロゲル粒子で構成させてできているので、シリカエアロゲル粒子が密に配合されて多量のシリカエアロゲル粒子をからなる珪酸カルシウム成形体とすることにより、シリカエアロゲルの断熱性を有効に活用した高温の熱機器本体の断熱ができるとともに、薄型化もしくはコンパクト化した筒状の断熱材を提供する。さらに、請求項3および請求項6記載の筒状の断熱材およびその製造方法により、前記珪酸カルシウム成形体は粉末状珪酸原料と粉末状カルシウム原料に無機繊維フィラーを添加させてできているので、強度を高くすることができ、また、請求項4および請求項7記載の筒状の断熱材およびその製造方法により、筒状の断熱材を無機繊維クロスで被覆させてできているので、粉末状珪酸原料と粉末状カルシウム原料とシリカエアロゲル原料などの組成物特に、シリカエアロゲル粒子が、運搬作業や挿着作業における装置や作業者に付着することを防ぐ筒状の断熱材を提供するなどの効果がある。By the cylindrical heat insulating material according to claims 1 and 2 and the manufacturing method of the present invention and the method for manufacturing the same, the cylindrical heat insulating material is inserted into the thermal equipment body to insulate the thermal equipment body, and the porosity is 50% or more. In the heat insulating material made of a calcium silicate molded body having a large number of fine pores inside, the pores are made of silica airgel particles, so that the silica airgel particles are intimately mixed and a large amount of silica airgel particles By using the calcium silicate molded body made of the above, it is possible to insulate the high-temperature heat equipment body that effectively utilizes the heat insulation property of the silica airgel, and to provide a thin or compact cylindrical heat insulating material. Furthermore, according to the cylindrical heat insulating material according to claim 3 and claim 6 and the manufacturing method thereof, the calcium silicate molded body is made by adding an inorganic fiber filler to a powdered silicate raw material and a powdered calcium raw material, The strength can be increased, and the cylindrical heat insulating material according to claim 4 and claim 7 and the method for producing the same are formed by covering the cylindrical heat insulating material with inorganic fiber cloth. Compositions such as silicic acid raw material, powdered calcium raw material and silica airgel raw material, in particular, effects such as providing a cylindrical heat insulating material that prevents silica airgel particles from adhering to equipment and workers in transportation work and insertion work There is.

本発明の実施形態を示す筒状の断熱材を熱機器本体に挿着した状態の断面図である。It is sectional drawing of the state which inserted and attached the cylindrical heat insulating material which shows embodiment of this invention to the heat equipment main body. 本発明の実施形態を示す筒状の断熱材の断面図である。It is sectional drawing of the cylindrical heat insulating material which shows embodiment of this invention. 図2の筒状の断熱材の分解した断面図である。It is sectional drawing which decomposed | disassembled the cylindrical heat insulating material of FIG. 図3のA−A断面図である。It is AA sectional drawing of FIG. 図3のB−B断面図である。It is BB sectional drawing of FIG. 図3のC−C断面図である。It is CC sectional drawing of FIG. 同上の筒状の断熱材の製造プロセスを示すフローチャートである。It is a flowchart which shows the manufacturing process of a cylindrical heat insulating material same as the above. 同上の筒状の断熱材の製造に用いるスラリー形成装置の断面図である。It is sectional drawing of the slurry formation apparatus used for manufacture of a cylindrical heat insulating material same as the above. 同上の筒状の断熱材の製造に用いる成形装置の断面図である。It is sectional drawing of the shaping | molding apparatus used for manufacture of a cylindrical heat insulating material same as the above. 図9のD−D断面図である。It is DD sectional drawing of FIG. 図9のE−E断面図である。It is EE sectional drawing of FIG. 図9の成形装置の上型と下型に無機繊維クロスを被覆した断面図である。It is sectional drawing which coat | covered the inorganic fiber cloth on the upper mold | type and lower mold | type of the shaping | molding apparatus of FIG. 図12の成形装置の上型と下型とを閉じた状態を示す断面図である。It is sectional drawing which shows the state which closed the upper mold | type and lower mold | type of the shaping | molding apparatus of FIG. 図13の成形装置でスラリーを充填した状態を示す断面図である。It is sectional drawing which shows the state filled with the slurry with the shaping | molding apparatus of FIG. 図14で成形して上型と下型とを開いた状態を示す断面図である。It is sectional drawing which shows the state which shape | molded in FIG. 14 and opened the upper mold | type and the lower mold | type. 図15の上型と下型とを開いて後、下型から取り出して養生させて筒状の断熱材を製造する状態を示す断面図である。FIG. 16 is a cross-sectional view showing a state where a cylindrical heat insulating material is manufactured by opening the upper mold and the lower mold in FIG.

本発明の筒状の断熱材の実施形態について図を参照して、以下説明する。Embodiments of the tubular heat insulating material of the present invention will be described below with reference to the drawings.

(熱機器本体の実施形態)
図1は、特開2010−161047号公報(以下、例示公報1という)に記載する燃料電池用円筒型水蒸気改質器を高温で発熱する熱機器として例示するとともにこれを簡略化して図示した熱機器本体の実施形態で、筒状の断熱材を熱機器本体に挿着した状態の断面図である。この例示公報1の図1および図6において、改質器本体は700℃程度まで達する温度の改質触媒層が配置された小径の円筒体と300〜330℃の温度のCO変成触媒層及び170℃程度の温度のCO除去触媒層が配置された大径の円筒体とからなり、小径の円筒体の外周に充填する粉状ヒュームドシリカからなる断熱材層とこの粉状ヒュームドシリカからなる断熱材層および大径の円筒体の外周に配置されたセラミックファイバー系断熱材層が配置されているが、本発明の実施形態では、小径の円筒体と大径の円筒体とを簡略化して同一径で円筒状の熱機器本体Aとし、原燃料供給管、CO除去用空気供給管、水供給管、水蒸気供給管、燃焼排ガス排出管、改質ガス導出管などを簡略化してパイプA1としている。
(Embodiment of thermal equipment main body)
FIG. 1 illustrates a cylindrical steam reformer for a fuel cell described in Japanese Patent Application Laid-Open No. 2010-161047 (hereinafter referred to as “exemplary publication 1”) as a thermal device that generates heat at a high temperature, and simplified heat illustrated. In embodiment of an apparatus main body, it is sectional drawing of the state which inserted and attached the cylindrical heat insulating material to the thermal apparatus main body. In FIG. 1 and FIG. 6 of this Illustrative Publication 1, the reformer body has a small-diameter cylindrical body in which a reforming catalyst layer having a temperature reaching about 700 ° C. is disposed, a CO shift catalyst layer having a temperature of 300 to 330 ° C., and 170 It consists of a large-diameter cylindrical body on which a CO removal catalyst layer having a temperature of about 0 ° C. is disposed, and consists of a heat-insulating material layer made of powdered fumed silica that fills the outer periphery of the small-diameter cylindrical body and this powdered fumed silica. Although the ceramic fiber-based heat insulating material layer disposed on the outer periphery of the heat insulating material layer and the large-diameter cylindrical body is disposed, in the embodiment of the present invention, the small-diameter cylindrical body and the large-diameter cylindrical body are simplified. A heat source body A having the same diameter and a cylindrical shape is used, and a raw fuel supply pipe, a CO removal air supply pipe, a water supply pipe, a water vapor supply pipe, a combustion exhaust gas discharge pipe, a reformed gas outlet pipe, etc. are simplified as a pipe A1. Yes.

このような高温の熱機器本体Aを断熱させるために、周壁1Aと頂上壁1Bと空間部1Cとを有する一端が開口した筒状の断熱材1を熱機器本体Aに挿着するので、筒状の断熱材1は同一径の円筒体として図示しているが、熱機器本体Aが小径の円筒体と大径の円筒体とで構成されておれば、筒状の断熱材1を熱機器本体Aに挿着できるように熱機器本体Aの形状に対応して、小径の円筒体と大径の円筒体とすればよい。この場合、熱機器本体Aは断面が真円や非真円の筒体であったり断面が矩形の筒体であってもよいので、筒状の断熱材1は熱機器本体Aの形状に対応して、断面が真円や非真円の筒体であったり断面が矩形の筒体であってもよい。In order to insulate such a high-temperature heat device main body A, the tubular heat insulating material 1 having one end having a peripheral wall 1A, a top wall 1B, and a space 1C is inserted into the heat device main body A. Although the cylindrical heat insulating material 1 is illustrated as a cylindrical body having the same diameter, if the heat equipment main body A is composed of a small diameter cylindrical body and a large diameter cylindrical body, the tubular heat insulating material 1 is used as the heat equipment. A small-diameter cylindrical body and a large-diameter cylindrical body may be used in accordance with the shape of the thermal apparatus main body A so that it can be inserted into the main body A. In this case, the thermal apparatus main body A may be a cylinder having a perfect circle or a non-circular cross section, or may be a cylinder having a rectangular cross section, so that the cylindrical heat insulating material 1 corresponds to the shape of the thermal apparatus main body A. And a cylinder with a perfect circle or a non-perfect circle may be sufficient as a cross section, and a cylinder with a rectangular cross section may be sufficient.

また、パイプA1は熱機器本体Aの一端(図1では下端)から外方に突出しているが、周壁(図1では左右)から外方に突出している熱機器本体Aであれば、筒状の断熱材1は予めその周壁1Aに孔加工して形成した孔(図示せず)を設けて、筒状の断熱材1を熱機器本体AにパイプA1のない状態で挿着した後、周壁1Aに形成した孔を介してパイプA1を熱機器本体Aに取り付けるようにしてもよい。The pipe A1 protrudes outward from one end (the lower end in FIG. 1) of the thermal equipment main body A. However, if the thermal equipment main body A projects outward from the peripheral wall (left and right in FIG. 1), the pipe A1 is tubular. The heat insulating material 1 is provided with holes (not shown) formed in the peripheral wall 1A in advance by drilling, and the cylindrical heat insulating material 1 is inserted into the thermal apparatus main body A without the pipe A1, and then the peripheral wall You may make it attach the pipe A1 to the thermal equipment main body A through the hole formed in 1A.

この筒状の断熱材1は多量のシリカエアロゲル粒子をからなる珪酸カルシウム成形体でできているので、そのシリカエアロゲル粒子が運搬作業や挿着作業における装置や作業者に付着するのを防止するために、筒状の断熱材1の外周面および内周面をそれぞれ無機繊維クロス2および3で被覆することが望ましく、これら組成物の粒径よりも小さいメッシュを有すればよいが、用途によっては珪酸カルシウム成形体の状態としてこれら無機繊維クロス2および3を用いなくてもよい。Since this cylindrical heat insulating material 1 is made of a calcium silicate molded body composed of a large amount of silica airgel particles, the silica airgel particles are prevented from adhering to devices and workers in transportation work and insertion work. In addition, it is desirable to coat the outer peripheral surface and the inner peripheral surface of the cylindrical heat insulating material 1 with inorganic fiber cloths 2 and 3, respectively, and it is sufficient to have a mesh smaller than the particle size of these compositions. These inorganic fiber cloths 2 and 3 may not be used as the state of the calcium silicate molded body.

(筒状の断熱材の実施形態)
図2から図6は無機繊維クロス2および3で被覆された筒状の断熱材の実施形態を示す。図2において、筒状の断熱材1は周壁1Aと頂上壁1Bと空間部1Cとを有する一端が開口(図2では、下方が開口)した円筒体で全体にわたって均一にシリカエアロゲル粒子を含有した珪酸カルシウム成形体でできており、この空間部1Cは熱機器本体Aの外周に密着して挿着できる大きさおよび形状に形成されている。なお、この珪酸カルシウム成形体にはシリカエアロゲル粒子を含有しているが、強度を高めるためにガラス繊維などの無機繊維フィラーを添加させてもよい。
(Embodiment of cylindrical heat insulating material)
2 to 6 show an embodiment of a cylindrical heat insulating material covered with inorganic fiber cloths 2 and 3. In FIG. 2, the cylindrical heat insulating material 1 is a cylindrical body having a peripheral wall 1 </ b> A, a top wall 1 </ b> B, and a space 1 </ b> C that is open at one end (opened in FIG. 2) and uniformly contains silica airgel particles throughout. It is made of a calcium silicate molded body, and the space 1C is formed in a size and a shape that can be inserted into close contact with the outer periphery of the thermal equipment main body A. The calcium silicate molded body contains silica airgel particles, but an inorganic fiber filler such as glass fiber may be added to increase the strength.

筒状の断熱材1はシリカエアロゲル粒子を含有した珪酸カルシウム成形体でできているので、筒状の断熱材1を燃料電池の改質器本体のような高温の熱機器本体に挿着する作業や挿着した状態で、粉末状珪酸原料と粉末状カルシウム原料とシリカエアロゲル原料などの組成物が、特に、シリカエアロゲル粒子が運搬作業や挿着作業における装置や作業者に付着する可能性があるので、その付着を防ぐために、周壁1Aと頂上壁1Bの外周面または周壁1Aと頂上壁1Bの内周面および開口した端面をガラス繊維やシリカ繊維などの無機繊維クロス3で被覆させることが望ましい。Since the cylindrical heat insulating material 1 is made of a calcium silicate molded body containing silica airgel particles, the cylindrical heat insulating material 1 is inserted into a high-temperature heat device main body such as a reformer main body of a fuel cell. In the inserted state, compositions such as powdered silicic acid raw material, powdered calcium raw material and silica airgel raw material, especially silica airgel particles may adhere to equipment and workers in transportation work and insertion work Therefore, in order to prevent the adhesion, it is desirable to coat the outer peripheral surface of the peripheral wall 1A and the top wall 1B or the inner peripheral surface and the open end surface of the peripheral wall 1A and the top wall 1B with an inorganic fiber cloth 3 such as glass fiber or silica fiber. .

図3から図6は、無機繊維クロス2および3を筒状の断熱材1に挿着して被覆させる実施形態を示す。無機繊維クロス2は周壁1Aの外径に相当する大きさの空間部を有する一端が開口した中空の円筒体であり、無機繊維クロス3は周壁1Aの内径に相当する大きさの外径で一端が開口し、その開口端の厚さ(周壁1Aの厚さ)に相当する大きさで外方向に突出した環状の鍔部3Aが形成された中空の円筒体である。このように形成された無機繊維クロス2を矢印P1方向から筒状の断熱材1に挿着し、無機繊維クロス3を矢印P2方向から筒状の断熱材1に挿着することにより、周壁1Aと頂上壁1Bの外周面は無機繊維クロス2で被覆されており、周壁1Aと頂上壁1Bの内周面および開口した端面は無機繊維クロス3で被覆されている。また、筒状の断熱材1の外周面および内周面は無機繊維クロス2および3で被覆されているが、筒状の断熱材1の外周面または内周面の何れか一方のみを無機繊維クロス2または3で被覆してもよい。さらに、これら無機繊維クロス2および3は筒状の断熱材1に挿着して被覆されているが、図7から図16に記載するように筒状の断熱材1を珪酸カルシウム成形体として成形する際に一体にしてもよい。3 to 6 show an embodiment in which the inorganic fiber cloths 2 and 3 are inserted into and covered with the tubular heat insulating material 1. The inorganic fiber cloth 2 is a hollow cylindrical body having one end opened with a space portion having a size corresponding to the outer diameter of the peripheral wall 1A, and the inorganic fiber cloth 3 has an outer diameter having a size corresponding to the inner diameter of the peripheral wall 1A. Is a hollow cylindrical body formed with an annular flange 3A protruding outward in a size corresponding to the thickness of the opening end (thickness of the peripheral wall 1A). By inserting the inorganic fiber cloth 2 formed in this way into the cylindrical heat insulating material 1 from the direction of the arrow P1, and inserting the inorganic fiber cloth 3 into the cylindrical heat insulating material 1 from the direction of the arrow P2, the peripheral wall 1A The outer peripheral surface of the top wall 1B is covered with an inorganic fiber cloth 2, and the inner peripheral surface and the opened end face of the peripheral wall 1A and the top wall 1B are covered with an inorganic fiber cloth 3. Further, the outer peripheral surface and inner peripheral surface of the cylindrical heat insulating material 1 are covered with inorganic fiber cloths 2 and 3, but only one of the outer peripheral surface and the inner peripheral surface of the cylindrical heat insulating material 1 is covered with inorganic fibers. You may coat with cloth 2 or 3. Furthermore, these inorganic fiber cloths 2 and 3 are inserted into and covered with the cylindrical heat insulating material 1, but the cylindrical heat insulating material 1 is molded as a calcium silicate molded body as shown in FIGS. When doing so, it may be integrated.

(製造工程の概要)
図7は、筒状の断熱材の製造プロセスを示すフローチャートで、製造工程の概要を示し、先ず、スラリー形成工程101にて粉末状珪酸原料と粉末状カルシウム原料とシリカエアロゲル原料からなる原料を多量の水で撹拌して混合させスラリーSを形成し、次に、成形工程102にて所定量のスラリーSを脱水成形型へ注入して一次成形物Tを形成して後、養生工程103にて脱水成形型から一次成形物Tを取り出して、所定時間、オートクレーブ(蒸気養生)処理し、乾燥させて固化した筒状の断熱材1が形成される。その際、スラリーSには、水が内部に侵入するのを阻止するように処理された疎水性シリカエアロゲル粒子の表面に親水性被膜を形成したシリカエアロゲル原料が密に配合されており、筒状の断熱材1は多量のシリカエアロゲル粒子からなる珪酸カルシウム成形体でできた筒状の成形ボードとなっている。なお、上記原料にはガラス繊維などの無機繊維フィラーを添加させてもよい。
(Outline of manufacturing process)
FIG. 7 is a flowchart showing a manufacturing process of a cylindrical heat insulating material, showing an outline of the manufacturing process. First, in the slurry forming process 101, a large amount of raw materials composed of a powdered silicic acid raw material, a powdered calcium raw material, and a silica airgel raw material are used. In the molding step 102, a predetermined amount of the slurry S is injected into the dehydrating mold to form the primary molded product T, and then in the curing step 103 The primary molded product T is taken out from the dehydrating mold, and the cylindrical heat insulating material 1 is formed by subjecting it to autoclave (steam curing) treatment for a predetermined time, drying and solidifying. At that time, the slurry S is mixed with a silica airgel raw material having a hydrophilic coating formed on the surface of hydrophobic silica airgel particles treated so as to prevent water from penetrating into the slurry S, and has a cylindrical shape. The heat insulating material 1 is a cylindrical molded board made of a calcium silicate molded body composed of a large amount of silica airgel particles. In addition, you may add inorganic fiber fillers, such as glass fiber, to the said raw material.

(製造装置並びに製造方法)
次に、図8から図16を参照して、全体にわたってシリカエアロゲル粒子を含有した珪酸カルシウム成形体からなる筒状の断熱材1の製造方法についてその製造装置とともに説明する。
(Manufacturing equipment and manufacturing method)
Next, with reference to FIG. 8 to FIG. 16, a method of manufacturing the tubular heat insulating material 1 made of a calcium silicate molded body containing silica airgel particles throughout will be described together with its manufacturing apparatus.

(スラリー形成工程)
図8は、スラリー形成工程101におけるスラリー形成装置を示し、スラリー収容筐体4には、粉末状珪酸原料と粉末状カルシウム原料とシリカエアロゲル原料からなる原料さらには無機繊維フィラー原料を添加させた原料と多量の水とが混練するように収容されている。この場合、粉末状珪酸原料と粉末状カルシウム原料もしくはこの原料に無機繊維フィラー原料を添加させた粉末状珪酸原料と粉末状カルシウム原料により、気孔率が50%以上となる多数の微細な気孔を内部に有する珪酸カルシウム成形体となる量を予め試験し確認して原料を用意する。
(Slurry forming process)
FIG. 8 shows a slurry forming apparatus in the slurry forming step 101, and a raw material in which a raw material consisting of a powdered silicic acid raw material, a powdered calcium raw material and a silica airgel raw material, and further an inorganic fiber filler raw material are added to the slurry housing case 4. And a large amount of water are contained so as to be kneaded. In this case, the powdered silicic acid raw material and the powdered calcium raw material or the powdered silicic acid raw material obtained by adding the inorganic fiber filler raw material to the raw material and the powdered calcium raw material contain a large number of fine pores having a porosity of 50% or more. The raw material is prepared by testing and confirming in advance the amount of the calcium silicate molded body having the above.

先ず、このように、気孔率が50%以上となる多数の微細な気孔を内部に有する珪酸カルシウム成形体となるように確認して用意する原料のうち、粉末状珪酸原料は石英、珪石、珪砂などを粒径が30μm以下で平均粒径が2〜3μm程度に粉末状としたもので、粉末状カルシウム原料は酸化カルシウム、水酸化カルシウム、生石灰などを粒径が30μm以下で平均粒径が2〜3μm程度に粉末状としたものであり、これら粉末状珪酸原料と粉末状カルシウム原料とをほぼ等量とし、粉末状珪酸原料と粉末状カルシウム原料もしくはこの原料に無機繊維フィラー原料を添加させた粉末状珪酸原料と粉末状カルシウム原料を選択する。この選択した粉末状珪酸原料と粉末状カルシウム原料もしくはこの原料に無機繊維フィラー原料を添加させた粉末状珪酸原料と粉末状カルシウム原料にシリカエアロゲル原料を配合する。粉末状珪酸原料と粉末状カルシウム原料もしくはこの原料に無機繊維フィラー原料を添加させた粉末状珪酸原料と粉末状カルシウム原料に対してその重量比で1/2〜1/6に相当するシリカエアロゲル原料を配合する。この場合のシリカエアロゲル原料を配合する量は、気孔率が50%以上となる多数の微細な気孔を内部に有する珪酸カルシウム成形体を狙いかつその気孔がシリカエアロゲル粒子となるようにする必要があるので、粉末状珪酸原料と粉末状カルシウム原料とシリカエアロゲル原料とからなる原料もしくはこの原料に無機繊維フィラー原料を添加させた原料におけるシリカエアロゲル原料の配合重量比は上記例示した重量比を試験確認により再設定して選択すればよい。このシリカエアロゲル原料は、球状の微粒子が融合したクラスター構造で、60%以上の気孔率を有するシリカエアロゲル粒子であって、水が内部に侵入するのを阻止するように処理された疎水性シリカエアロゲル粒子を界面活性剤で処理することにより、その表面に親水性被膜が形成されたシリカエアロゲル粒子でできている。このシリカエアロゲル粒子の粒径は0.5〜4mmで、平均粒径は1.5mmであり、粉末状珪酸原料および粉末状カルシウム原料の粒径よりも大きいので、個々のシリカエアロゲル粒子言い換えればシリカエアロゲル粒子間に粉末状珪酸原料および粉末状カルシウム原料が配合されやすくしているので、気孔率が50%以上となる多数の微細な気孔を内部に有する珪酸カルシウム成形体でその気孔がシリカエアロゲル粒子となるようにすることが容易となる。First, among the raw materials prepared by confirming to be a calcium silicate molded body having a large number of fine pores having a porosity of 50% or more, powdered silicic acid raw materials are quartz, silica, and silica sand. Etc. are made into a powder form with a particle size of 30 μm or less and an average particle size of about 2 to 3 μm. The powdered calcium raw material is calcium oxide, calcium hydroxide, quick lime, etc. The particle size is 30 μm or less and the average particle size is 2 The powdered silicic acid raw material and the powdered calcium raw material were approximately equal, and the powdered silicic acid raw material and the powdered calcium raw material or the inorganic fiber filler raw material was added to this raw material. Select powdered silicic acid raw material and powdered calcium raw material. A silica airgel raw material is blended with the selected powdered silicic acid raw material and powdered calcium raw material, or powdered silicic acid raw material obtained by adding an inorganic fiber filler raw material to this raw material and powdered calcium raw material. Silica airgel raw material corresponding to 1/2 to 1/6 by weight ratio of powdered silicic acid raw material and powdered calcium raw material or powdered silicic acid raw material obtained by adding inorganic fiber filler raw material to this raw material and powdered calcium raw material Is blended. In this case, the amount of the silica airgel raw material to be blended needs to aim at a calcium silicate molded body having a large number of fine pores having a porosity of 50% or more and make the pores become silica airgel particles. Therefore, the mixing weight ratio of the silica airgel raw material in the raw material composed of the powdered silicic acid raw material, the powdered calcium raw material and the silica airgel raw material or the raw material obtained by adding the inorganic fiber filler raw material to this raw material is based on the weight ratio exemplified above by test confirmation Re-set and select. The silica airgel raw material is a silica airgel particle having a cluster structure in which spherical fine particles are fused and having a porosity of 60% or more, and is treated so as to prevent water from entering the inside. The particles are made of silica airgel particles having a hydrophilic film formed on the surface thereof by treating the particles with a surfactant. The silica airgel particles have a particle size of 0.5 to 4 mm and an average particle size of 1.5 mm, which is larger than the particle sizes of the powdered silicic acid raw material and the powdered calcium raw material. Since the powdered silicate raw material and the powdered calcium raw material are easily blended between the airgel particles, the calcium silicate molded body has a large number of fine pores having a porosity of 50% or more, and the pores are silica airgel particles. It becomes easy to become.

次に、上記選択した粉末状珪酸原料と粉末状カルシウム原料とシリカエアロゲル原料とからなる原料もしくはこの原料に無機繊維フィラー原料を添加させた原料を10〜30重量%として、スラリー収容筐体4にて70〜90重量%の水と混合させて撹拌し混練して水和反応により粘性のあるスラリーSが得られる。この場合、シリカエアロゲル原料は、スラリーSを構成する水が内部に侵入してシリカエアロゲル粒子のクラスター構造が崩壊されないようにするために疎水性のシリカエアロゲル粒子の表面において水と親和性を作用させており、シリカエアロゲル粒子を含有した多量の水が粉末状珪酸原料や粉末状カルシウム原料と混合して混練されることにより、水和過程でシリカエアロゲル粒子が密に配合されたスラリーSが得られる。Next, the raw material consisting of the selected powdered silicic acid raw material, powdered calcium raw material and silica airgel raw material or a raw material obtained by adding an inorganic fiber filler raw material to this raw material is 10 to 30 wt%, and the slurry containing casing 4 Then, it is mixed with 70 to 90% by weight of water, stirred and kneaded to obtain a viscous slurry S by a hydration reaction. In this case, the silica airgel raw material has an affinity for water on the surface of the hydrophobic silica airgel particles so that the water constituting the slurry S does not enter the interior and the cluster structure of the silica airgel particles is not destroyed. A large amount of water containing silica airgel particles is mixed with a powdered silicic acid raw material or a powdered calcium raw material and kneaded to obtain a slurry S in which silica airgel particles are closely mixed in the hydration process. .

上記原料を多量の水と混合させて撹拌し混練するには、原料と水とを撹拌させる撹拌治具5が用いられる。この撹拌治具5は原動機(図示せず)にてR方向またはその逆方向の一方向に回転もしくはR方向とその逆方向とに交互に回動されるブレード5Aを備えており、スラリー収容筐体4に収容された上記原料を水と撹拌させて混練して水和反応により、所定の粘性をもたせたスラリーSが得られるまで回転させる。このようにして撹拌治具5による混練作用の過程で、スラリーSの粘度を確認するために、先ず、粉末状珪酸原料と粉末状カルシウム原料と多量の水を収容させておいて、これらを撹拌治具5で撹拌しながらシリカエアロゲル原料を少量ずつスラリー収容筐体4に供給することが好ましい。なお、シリカエアロゲル原料は水が内部に侵入するのを阻止するように処理された疎水性シリカエアロゲル粒子の表面に親水性被膜が形成されているので、粉末状珪酸原料と粉末状カルシウム原料と水とを撹拌させて混練する過程で、シリカエアロゲル原料がスラリー収容筐体4内で浮き上がったり偏在したりせず、シリカエアロゲル原料の個々のシリカエアロゲル粒子が粉末状珪酸原料および粉末状カルシウム原料に均一に配合される。In order to mix and stir and knead | mix the said raw material with a lot of water, the stirring jig 5 which stirs a raw material and water is used. The stirring jig 5 is provided with a blade 5A that is rotated by a prime mover (not shown) in one direction of the R direction or the reverse direction thereof, or alternately rotated in the R direction and the reverse direction. The raw material housed in the body 4 is stirred with water and kneaded and rotated until a slurry S having a predetermined viscosity is obtained by a hydration reaction. Thus, in order to confirm the viscosity of the slurry S in the course of the kneading action by the stirring jig 5, first, the powdered silicic acid raw material, the powdered calcium raw material and a large amount of water are accommodated, and these are stirred. It is preferable to supply the silica airgel raw material to the slurry containing housing 4 little by little while stirring with the jig 5. Since the silica airgel raw material has a hydrophilic coating formed on the surface of the hydrophobic silica airgel particles treated so as to prevent water from entering the inside, the powdered silicic acid raw material, the powdered calcium raw material and the water In the process of stirring and kneading, the silica airgel raw material is not lifted up or unevenly distributed in the slurry housing case 4, and the individual silica airgel particles of the silica airgel raw material are uniformly in the powdered silicic acid raw material and the powdered calcium raw material. Is blended into.

上記粉末状珪酸原料と粉末状カルシウム原料とシリカエアロゲル原料からなる原料には平均粒径が数10μm程度のガラス繊維などの無機繊維フィラーを添加させてあってもよい。この場合、スラリー収容筐体4に予め粉末状珪酸原料と粉末状カルシウム原料に少量の無機繊維フィラーを混合させて多量の水を収容させておいて、これらを撹拌治具5で撹拌しながらシリカエアロゲル原料を少量ずつスラリー収容筐体4に供給することが好ましい。このように粉末状珪酸原料と粉末状カルシウム原料に無機繊維フィラーを添加させることにより珪酸カルシウム成形体の強度を高くすることができる。An inorganic fiber filler such as glass fiber having an average particle diameter of about several tens of μm may be added to the raw material composed of the powdered silicic acid raw material, the powdered calcium raw material, and the silica airgel raw material. In this case, a small amount of inorganic fiber filler is mixed in the slurry containing housing 4 in advance with a powdered silicic acid raw material and a powdered calcium raw material to contain a large amount of water. It is preferable to supply the airgel raw material to the slurry housing case 4 little by little. Thus, the intensity | strength of a calcium-silicate molded object can be made high by adding an inorganic fiber filler to a powdery silicic acid raw material and a powdery calcium raw material.

(スラリー成形工程)
図9〜図11は、スラリー成形工程102における成形装置の脱水成形型を示し、この脱水成形型を有する成形装置6は、上型9と下型10とスラリー供給部材7と吸水部材12と振動機構部材13とから構成されている。
(Slurry molding process)
9 to 11 show a dehydrating mold of the molding apparatus in the slurry molding step 102. The molding apparatus 6 having the dehydrating mold includes an upper mold 9, a lower mold 10, a slurry supply member 7, a water absorbing member 12, and vibrations. The mechanism member 13 is comprised.

上型9は図10に示すように筒壁9Aと頂壁9Bを有し、下型10は図11に示すように円柱体10Aとベース10Bを有する。この上型9と下型10とは相対的に開閉されるが、この実施形態では下型10が可動するので、下型10が上型9の方向に移動して閉じることにより、上型9の頂壁9Bと下型10のベース10Bとがシール部材14で密閉された脱水成形型部11となる空間部が形成される。上型9の頂壁9Bには、スラリー供給部材7のノズル部8が脱水成形型部11と連通した注入口9Dが形成されている。The upper mold 9 has a cylindrical wall 9A and a top wall 9B as shown in FIG. 10, and the lower mold 10 has a cylindrical body 10A and a base 10B as shown in FIG. Although the upper mold 9 and the lower mold 10 are opened and closed relatively, in this embodiment, the lower mold 10 is movable. Therefore, when the lower mold 10 moves in the direction of the upper mold 9 and closes, the upper mold 9 is moved. A space portion is formed as a dehydration mold portion 11 in which the top wall 9B and the base 10B of the lower die 10 are sealed with a seal member 14. The top wall 9 </ b> B of the upper mold 9 is formed with an inlet 9 </ b> D in which the nozzle portion 8 of the slurry supply member 7 communicates with the dehydration mold portion 11.

吸水部材12は吸水ポンプPと連結した管を有し、この管には、脱水成形型部11内の水分や空気を吸引して脱水・脱気できるようなフィルターや濾水性シートが着脱自在(図示せず)に設けられている。この吸水部材12の管は上型9の筒壁9Aに形成した小孔を介して脱水成形型部11と連通するように上型9の筒壁9Aに設けられている。吸水部材12の吸水ポンプPを駆動させることにより、脱水成形型部11内に充填されたスラリーSの水分や空気を吸引して脱水・脱気してスラリーSの粘性を高くして粉末状珪酸原料と粉末状カルシウム原料とシリカエアロゲル原料とからなる原料もしくはこの原料に無機繊維フィラー原料を添加させた原料にシリカエアロゲル粒子が密に配合されるように半硬化させる作用がある。また、吸水部材12は、複数本が例えば3本が120度間隔でかつ筒壁9A方向にも3本が重ならないように上型9の筒壁9Aに設けられており、脱水・脱気作用が効率よく行なわれるようにしている。The water-absorbing member 12 has a pipe connected to the water-absorbing pump P, and a filter and a drainage sheet that can suck and dehydrate and deaerate by sucking moisture and air in the dehydrating mold part 11 can be attached to and detached from this pipe ( (Not shown). The pipe of the water absorbing member 12 is provided on the cylindrical wall 9A of the upper mold 9 so as to communicate with the dehydrating mold part 11 through a small hole formed in the cylindrical wall 9A of the upper mold 9. By driving the water absorption pump P of the water absorption member 12, the water and air of the slurry S filled in the dewatering mold part 11 are sucked and dehydrated and degassed to increase the viscosity of the slurry S to form powdered silicic acid. It has the effect of semi-curing so that the silica airgel particles are intimately mixed with a raw material comprising a raw material, a powdery calcium raw material and a silica airgel raw material or a raw material obtained by adding an inorganic fiber filler raw material to this raw material. Further, the water absorbing member 12 is provided on the cylindrical wall 9A of the upper mold 9 so that a plurality of water absorbing members 12 are, for example, three at intervals of 120 degrees and do not overlap in the direction of the cylindrical wall 9A. Is done efficiently.

また、下型10のベース10Bには毎分6000〜15000回で振幅が0.01〜2mmで下型10および上型9を振動させるように振動機構部材13が設けられている。この振動機構部材13の振動源は超音波発振装置を例示しているが、電磁振動装置でもよい。この振動機構部材13を駆動させて下型10を振動させることにより、上型9も下型10を介して振動させることにより、スラリーSは下型10および上型9の型面との間に気泡が発生しないようにするとともにスラリーS内の水分や空気が均一に排出され内部に気孔が存在せずシリカエアロゲル粒子が密に配合されるようにしている。The base 10B of the lower mold 10 is provided with a vibration mechanism member 13 so as to vibrate the lower mold 10 and the upper mold 9 with an amplitude of 0.01 to 2 mm at 6000 to 15000 times per minute. The vibration source of the vibration mechanism member 13 is exemplified by an ultrasonic oscillation device, but may be an electromagnetic vibration device. By driving the vibration mechanism member 13 to vibrate the lower mold 10, the upper mold 9 is also vibrated through the lower mold 10, so that the slurry S is placed between the lower mold 10 and the mold surface of the upper mold 9. Air bubbles are prevented from being generated, and moisture and air in the slurry S are uniformly discharged so that pores do not exist in the inside and silica airgel particles are mixed closely.

次に、図12〜図14にて、一次成形物Tが形成される製造方法を説明する。先ず、図12にて、上型9と下型10とは開いた状態で、前述の図3〜6にて例示した無機繊維クロス2を上型9の筒壁9Aと頂壁9Bに配置するように挿着し、無機繊維クロス3を鍔部3Aが下型10のベース10Bに配置するように下型10の円柱体10Aに挿着して後、下型10を矢印P1方向(図12では上方向)に移動させて、図13に示すように上型9と下型10とは閉じた状態とする。この場合、図12において矢印Q1は、下型10が上型9と対面させない位置から対面する位置に移動(図12では左方向に移動)する移動方向を示す。Next, the manufacturing method in which the primary molded product T is formed will be described with reference to FIGS. First, in FIG. 12, with the upper mold 9 and the lower mold 10 opened, the inorganic fiber cloth 2 illustrated in FIGS. 3 to 6 is disposed on the cylindrical wall 9A and the top wall 9B of the upper mold 9. After inserting the inorganic fiber cloth 3 into the cylindrical body 10A of the lower mold 10 so that the flange 3A is disposed on the base 10B of the lower mold 10, the lower mold 10 is moved in the direction of arrow P1 (FIG. 12). Then, the upper die 9 and the lower die 10 are closed as shown in FIG. In this case, an arrow Q1 in FIG. 12 indicates a moving direction in which the lower mold 10 moves from a position where it does not face the upper mold 9 to a position where it faces (moves leftward in FIG. 12).

次に、図13にて、上記のように上型9と下型10とは閉じて、シール部材14で密閉された脱水成形型部11の空間部に、無機繊維クロス2および3が配置された状態で、水和反応されて粘性のあるスラリーSを所定量、成形装置6の脱水成形型部11へ注入して流し込んで、充填させる。このスラリーSを流し込む量は、予め、気孔率が50%以上となる多数の微細な気孔を内部に有する珪酸カルシウム成形体となる量を試験し確認してあるので、粉末状珪酸原料と粉末状カルシウム原料とシリカエアロゲル原料とからなる原料もしくはこの原料に無機繊維フィラー原料を添加させた原料にシリカエアロゲル粒子が密に配合されるようにするためにスラリーS内の排出される水分や空気の容積を考慮して脱水成形型部11の空間部を満たす量を制御すればよい。また、このスラリーSの注入方法は、図8に示すスラリー形成装置と連結(図示せず)させて混練させながら流し込むかまたは圧送により流し込むようにすればよい。このスラリーSの注入時に、振動機構部材13を駆動させて下型10および上型9を振動させるとともに吸水ポンプPを駆動させて吸水部材12にて脱水成形型部11内でスラリーSの水分や空気を吸引して粉末状珪酸原料と粉末状カルシウム原料とシリカエアロゲル原料とからなる原料もしくはこの原料に無機繊維フィラー原料を添加させた原料が半硬化される。このようにして成形装置6の脱水成形型部11にて筒状の断熱材1となる一次成形物Tが形成される(図14参照)。Next, in FIG. 13, the upper mold 9 and the lower mold 10 are closed as described above, and the inorganic fiber cloths 2 and 3 are arranged in the space of the dehydration mold 11 sealed with the seal member 14. In this state, a predetermined amount of the hydrated and viscous slurry S is poured into the dehydration mold part 11 of the molding apparatus 6 and filled therein. The amount of the slurry S to be poured has been previously tested and confirmed to be a calcium silicate molded body having a large number of fine pores having a porosity of 50% or more. The volume of water and air discharged in the slurry S so that the silica airgel particles are closely mixed with the raw material composed of the calcium raw material and the silica airgel raw material or the raw material obtained by adding the inorganic fiber filler raw material to this raw material. The amount that fills the space of the dehydrating mold part 11 may be controlled in consideration of the above. In addition, the slurry S may be injected by connecting (not shown) with the slurry forming apparatus shown in FIG. 8 and mixing while kneading or by pumping. During the injection of the slurry S, the vibration mechanism member 13 is driven to vibrate the lower mold 10 and the upper mold 9 and the water absorption pump P is driven to cause the water absorption member 12 to move the moisture in the slurry S in the dehydration mold portion 11. A raw material composed of a powdered silicic acid raw material, a powdered calcium raw material and a silica airgel raw material by sucking air or a raw material obtained by adding an inorganic fiber filler raw material to this raw material is semi-cured. In this way, the primary molded product T that becomes the tubular heat insulating material 1 is formed in the dehydration mold part 11 of the molding apparatus 6 (see FIG. 14).

(養生工程)
図15および図16は、上記のように形成された一次成形物Tを所定時間、オートプレープ(蒸気養生)処理し、乾燥させて固化した筒状の断熱材1が形成される養生工程103における作業を示す。
(Curing process)
15 and 16 show a curing process 103 in which a tubular heat insulating material 1 is formed by subjecting the primary molded article T formed as described above to an auto-prep (steam curing) treatment for a predetermined time, and drying and solidifying. The work in is shown.

図15において、下型10を矢印P2方向に移動させて上型9と下型10とが開いた状態とすることにより、一次成形物Tは筒状の断熱材1に対応した円筒状で、中空部は下型10の円柱体10Aにあり、開口した端面は下型10のベース10Bにある状態で下型10に載置されるように、上型9から分離する。次に、下型10を矢印Q2方向に移動させることにより、下型10は上型9と対面させた位置から対面しない位置に移動する。In FIG. 15, by moving the lower mold 10 in the direction of the arrow P2 so that the upper mold 9 and the lower mold 10 are opened, the primary molded product T has a cylindrical shape corresponding to the tubular heat insulating material 1, The hollow portion is in the cylindrical body 10A of the lower mold 10, and the opened end surface is separated from the upper mold 9 so as to be placed on the lower mold 10 in the state of being in the base 10B of the lower mold 10. Next, by moving the lower mold 10 in the direction of the arrow Q2, the lower mold 10 moves from a position facing the upper mold 9 to a position not facing.

図16において、下型10を矢印Q2方向に移動させた位置で、一次成形物Tを下型10から矢印P1方向に取り出して、この一次成形物Tを図示しないが、養生装置に送る。このように一次成形物Tは取り出すので、無機繊維フィラーを添加させて強度を高くして半硬化させることが好ましい。この養生装置にて一次成形物Tを150℃から200℃の飽和水蒸気圧で、3〜10時間のオートクレープ(蒸熱処理)処理する。この場合、珪酸とカルシウムにもしくは無機繊維フィラーが添加された珪酸とカルシウムからなる珪酸カルシウム成形体にその気孔率が50%以上となる多数の微細な気孔がシリカエアロゲル粒子となっているので、オートクレープ(蒸熱処理)処理をして後、図示しないが乾燥炉に送り乾燥させて固化すると、珪酸カルシウム成形体の内部の多数の微細な気孔がシリカエアロゲル粒子で構成された筒状の成形ボードが得られるので、シリカエアロゲル粒子が密に配合されて多量のシリカエアロゲル粒子を有することとなり、シリカエアロゲルの断熱性を有効に活用した高温の熱機器本体を断熱する筒状の断熱材1が出来上がる。In FIG. 16, at the position where the lower mold 10 is moved in the direction of arrow Q2, the primary molded product T is taken out from the lower mold 10 in the direction of arrow P1, and this primary molded product T is sent to the curing device (not shown). Thus, since the primary molded product T is taken out, it is preferable to add an inorganic fiber filler to increase the strength and to make it semi-cured. In this curing device, the primary molded product T is subjected to autoclaving (steaming heat treatment) for 3 to 10 hours at a saturated water vapor pressure of 150 to 200 ° C. In this case, the silica airgel particles have a number of fine pores whose porosity is 50% or more in the calcium silicate molded body composed of silicic acid and calcium added with silicic acid and calcium or inorganic fiber filler. After a crepe (steaming) process, when not shown, it is sent to a drying furnace and dried to solidify. A cylindrical molding board in which many fine pores inside the calcium silicate compact are composed of silica airgel particles is formed. As a result, the silica airgel particles are densely mixed to have a large amount of silica airgel particles, and the cylindrical heat insulating material 1 that insulates the high-temperature heat device main body that effectively uses the heat insulating property of the silica airgel is obtained.

本発明は、多量のシリカエアロゲル粒子からなる珪酸カルシウム成形体でできた筒状の成形ボードとなった断熱材であるので、高温の熱機器本体を断熱する断熱材として種々用途展開ができ、例えば、固体高分子形燃料電池の改質器や固体酸化物形燃料電池(または固体電解質形燃料電池)の本体を断熱する断熱材として利用できる。特に、熱機器の設置面積が大きくとれないような設備にも有効である。Since the present invention is a heat insulating material that is a cylindrical molded board made of a calcium silicate molded body composed of a large amount of silica airgel particles, it can be used in various applications as a heat insulating material that insulates a high-temperature heat device body, for example, It can be used as a heat insulating material for insulating a reformer of a polymer electrolyte fuel cell or a main body of a solid oxide fuel cell (or a solid electrolyte fuel cell). In particular, it is also effective for facilities where the installation area of thermal equipment cannot be increased.

1 筒状の断熱材
2 無機繊維クロス
3 無機繊維クロス
4 スラリー収容筐体
5 撹拌治具
A 熱機器本体
S スラリー
T 一次成形物
DESCRIPTION OF SYMBOLS 1 Cylindrical heat insulating material 2 Inorganic fiber cloth 3 Inorganic fiber cloth 4 Slurry housing | casing 5 Stirring jig | tool A Thermal apparatus main body S Slurry T Primary molding

Claims (7)

熱機器本体に挿着して前記熱機器本体を断熱する筒状で気孔率が50%以上となる多数の微細な気孔を内部に有する珪酸カルシウム成形体でできた断熱材において、前記気孔をシリカエアロゲル粒子で構成させてできたことを特徴とする筒状の断熱材。In a heat insulating material made of a calcium silicate molded body having a large number of fine pores having a porosity of 50% or more, which is inserted into a heat device main body to insulate the heat device main body, the pores are made of silica. A cylindrical heat insulating material characterized by comprising airgel particles. 前記シリカエアロゲル粒子の平均粒径は1.5mmであることを特徴とする請求項1記載の筒状の断熱材。The cylindrical heat insulating material according to claim 1, wherein an average particle diameter of the silica airgel particles is 1.5 mm. 前記珪酸カルシウム成形体は粉末状珪酸原料と粉末状カルシウム原料に無機繊維フィラーを添加させてできたことを特徴とする請求項1または2記載の筒状の断熱材。The cylindrical heat insulating material according to claim 1 or 2, wherein the calcium silicate compact is formed by adding an inorganic fiber filler to a powdered silicate raw material and a powdered calcium raw material. 前記筒状の断熱材を無機繊維クロスで被覆させてできたことを特徴とする請求項1から3の何れかひとつに記載の筒状の断熱材。The cylindrical heat insulating material according to any one of claims 1 to 3, wherein the cylindrical heat insulating material is coated with an inorganic fiber cloth. 熱機器本体に挿着して前記熱機器本体を断熱する筒状で気孔率が50%以上となる多数の微細な気孔を内部に有する珪酸カルシウム成形体でできた断熱材の製造方法において、水が内部に侵入するのを阻止するように処理された疎水性シリカエアロゲル粒子の表面に親水性被膜を形成したシリカエアロゲル原料と粉末状珪酸原料と粉末状カルシウム原料と水とを混合させてシリカエアロゲル粒子を粉末状珪酸原料および粉末状カルシウム原料に密に配合させて得られたスラリーを筒状に脱水成形して一次成形物として後、前記一次成形物を蒸気養生し乾燥させて固化した珪酸カルシウム成形体とすることにより、その珪酸カルシウム成形体の前記気孔をシリカエアロゲル粒子で構成させることを特徴とする筒状の断熱材の製造方法。In a method for manufacturing a heat insulating material made of a calcium silicate molded body having a large number of fine pores which are inserted into a thermal equipment body and insulate the thermal equipment body and have a porosity of 50% or more, Silica airgel by mixing a silica airgel raw material, a powdered silicic acid raw material, a powdered calcium raw material, and water in which a hydrophilic coating is formed on the surface of hydrophobic silica airgel particles that have been treated to prevent intrusion into the interior The slurry obtained by closely blending the particles with the powdered silicate raw material and the powdered calcium raw material is dehydrated into a cylindrical shape to form a primary molded product, and then the primary molded product is steam-cured and dried to solidify the calcium silicate A method for producing a cylindrical heat insulating material, characterized in that the pores of the calcium silicate molded body are composed of silica airgel particles by forming the molded body. 前記粉末状珪酸原料と粉末状カルシウム原料に無機繊維フィラーを添加させて前記シリカエアロゲル原料と水とを撹拌し混合させて得られたスラリーを筒状に脱水成形して一次成形物とすることを特徴とする請求項5記載の筒状の断熱材の製造方法。Slurry obtained by adding an inorganic fiber filler to the powdered silicic acid raw material and powdered calcium raw material and stirring and mixing the silica airgel raw material and water is formed into a cylindrical shape by dehydrating the slurry. The method for producing a cylindrical heat insulating material according to claim 5. 無機繊維クロスを配置させた状態で前記スラリーを筒状に脱水成形して一次成形物とすることを特徴とする請求項5または6記載の筒状の断熱材の製造方法。The method for producing a cylindrical heat insulating material according to claim 5 or 6, wherein the slurry is dewatered and formed into a primary molded product in a state where the inorganic fiber cloth is disposed.
JP2011057185A 2011-02-25 2011-02-25 Cylindrical heat insulation material, and method for manufacturing the same Withdrawn JP2012177463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011057185A JP2012177463A (en) 2011-02-25 2011-02-25 Cylindrical heat insulation material, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011057185A JP2012177463A (en) 2011-02-25 2011-02-25 Cylindrical heat insulation material, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012177463A true JP2012177463A (en) 2012-09-13

Family

ID=46979426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011057185A Withdrawn JP2012177463A (en) 2011-02-25 2011-02-25 Cylindrical heat insulation material, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012177463A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021046886A (en) * 2019-09-17 2021-03-25 明星工業株式会社 Heat insulating panel
CN114420987A (en) * 2022-01-24 2022-04-29 一汽解放汽车有限公司 Composite proton exchange membrane and preparation method and application thereof
CN115286961A (en) * 2022-09-05 2022-11-04 上海葵亚环保科技有限公司 Coating for building exterior wall and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021046886A (en) * 2019-09-17 2021-03-25 明星工業株式会社 Heat insulating panel
JP7429508B2 (en) 2019-09-17 2024-02-08 明星工業株式会社 How to manufacture insulation panels
CN114420987A (en) * 2022-01-24 2022-04-29 一汽解放汽车有限公司 Composite proton exchange membrane and preparation method and application thereof
CN114420987B (en) * 2022-01-24 2024-03-19 一汽解放汽车有限公司 Composite proton exchange membrane and preparation method and application thereof
CN115286961A (en) * 2022-09-05 2022-11-04 上海葵亚环保科技有限公司 Coating for building exterior wall and preparation method thereof
CN115286961B (en) * 2022-09-05 2023-10-13 上海葵亚环保科技有限公司 Coating for building outer wall and preparation method thereof

Similar Documents

Publication Publication Date Title
US10851022B2 (en) Aerated composite materials, methods of production and uses thereof
EP2424824B1 (en) Method for coating a substrate with a composite
CA2876691C (en) Flexible insulating structures and methods of making and using same
TWI586629B (en) Precursors and transport methods for hydrothermal liquid phase sintering (hlps)
WO2014159832A1 (en) Pavers and block composite materials and methods of preparation thereof
CN106699227A (en) Nanowire self-reinforced porous silicon nitride ceramic and preparation method thereof
JP2012177463A (en) Cylindrical heat insulation material, and method for manufacturing the same
CN103896561A (en) Preparation method of silicon dioxide thermal insulation material with regular layered structure
Perumal et al. Porous alkali-activated materials
JPH01320243A (en) Lightweight cement composition
JP2006347837A (en) Method for manufacturing continuous fiber-reinforced composite material
TWI385127B (en) Paper sludge-geopolymer composite and fabrication method thereof
JP4826141B2 (en) Soundproof material and manufacturing method thereof
JP2020193413A (en) Adiabatic sheet and its manufacturing method, as well as electronic apparatus and battery unit
CN113526937B (en) Method for improving strength of calcium hydroxide carbonized hardened body and product
KR20140104534A (en) Method for manufacturing porous ceramics material and porous ceramics material using thereof
JP2008155500A (en) Manufacturing method of calcium silicate plate
TW202228834A (en) A method of forming an impregnated filtering member
CN112440368A (en) Method for preparing high-strength light gypsum block by using phosphogypsum
JP4485774B2 (en) Manufacturing method of molded body and manufacturing apparatus using the method
CN101196415A (en) Ultrasonic sensor
JP2007268755A (en) Manufacturing method of calcium silicate plate
JP2004179954A (en) Matching material, its manufacturing method, and ultrasonic sensor using the same
JP7315252B2 (en) Method for producing pre-cured material for hydraulic composition and method for producing hydraulic composition
CN109180134A (en) A kind of fiber reinforced cement board and its preparation method and application

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513