JP2012177449A - Power transmission shaft and method for manufacturing power transmission shaft - Google Patents

Power transmission shaft and method for manufacturing power transmission shaft Download PDF

Info

Publication number
JP2012177449A
JP2012177449A JP2011041560A JP2011041560A JP2012177449A JP 2012177449 A JP2012177449 A JP 2012177449A JP 2011041560 A JP2011041560 A JP 2011041560A JP 2011041560 A JP2011041560 A JP 2011041560A JP 2012177449 A JP2012177449 A JP 2012177449A
Authority
JP
Japan
Prior art keywords
transmission shaft
power transmission
outer shell
laminated body
cylindrical outer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011041560A
Other languages
Japanese (ja)
Inventor
Takanori Sawano
貴紀 澤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011041560A priority Critical patent/JP2012177449A/en
Publication of JP2012177449A publication Critical patent/JP2012177449A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power transmission shaft having the same or higher strength and an anti-bending property compared with a conventional power transmission shaft made of an iron-based material alone, and further having a much reduced weight and high reliability.SOLUTION: A laminated body formed by winding at least one of a unidirectional prepreg and a textile prepreg made of at least one of a carbon fiber and a glass fiber and a thermosetting resin around a hollow core material made of rubber, is inserted into a shell made of steel. The laminated body is stuck to the inner surface of the shell by inflating the hollow rubber body and heated, and thus attached and cured to obtain the power transmission shaft of a composite structure.

Description

本発明は、動力伝達機構に用いられる動力伝達軸で、特に複合材料製の動力伝達軸に関するものである。   The present invention relates to a power transmission shaft used in a power transmission mechanism, and more particularly to a power transmission shaft made of a composite material.

近年、自動車を始めとした機械分野において、近年地球温暖化に対する炭酸ガス排出量の低減要求が強くなり、エネルギーの節減を図るために各種の部材を繊維強化樹脂とすることによって、軽量化する傾向がある。
これらの部材のうち、動力伝達部材においては、軽量化や固有振動数を高めて危険回転数を上昇させる為に、比強度や比剛性に優れたFRP材料(GFRP、CFRP)への代替が試みられ、使用が拡大している。しかしながら、FRP材が単独で動力伝達部品に用いられる例は少なく、トルクを伝達するため、金属製の継ぎ手と接合して使用される。FRPと金属製合継ぎ手との接合部分には大きな力が加わるため、動力伝達部品の接合部分には十分な固定力と強度が必要となる。という課題があった。
In recent years, in the field of machinery such as automobiles, there has been a strong demand for reducing carbon dioxide emissions in response to global warming, and various components are made of fiber reinforced resin to save energy, which tends to reduce weight. There is.
Among these members, in power transmission members, replacement with FRP materials (GFRP, CFRP) excellent in specific strength and specific rigidity is attempted to reduce the weight and increase the natural frequency to increase the dangerous rotation speed. The use is expanding. However, the FRP material is rarely used alone as a power transmission component, and is used by being joined to a metal joint in order to transmit torque. Since a large force is applied to the joint portion between the FRP and the metal joint, a sufficient fixing force and strength are required at the joint portion of the power transmission component. There was a problem.

FRP材料製動力伝達部品の、金属製合継ぎ手取り付け部の強度を確保する手法として、動力伝達部品の外殻及び継ぎ手を金属で一体に形成した円筒形外殻を作成し、円筒形外殻を高速回転させてその内面に繊維を導入して、円筒形外殻の内面に繊維を巻上げた後に、樹脂を導入して固化させ、円筒形外殻の内面にFRPを形成する方法が開示されている(先行技術文献1
特開平5−8310)。
また、中空シャフトの内径に詰め物をして強度を向上させる方法が開示されている(先行技術部文献2
特開2005−113986)。
As a method to ensure the strength of the metal joint joint attachment part of the power transmission part made of FRP material, a cylindrical outer shell in which the outer shell and the joint of the power transmission part are integrally formed of metal is created. A method is disclosed in which fibers are introduced into the inner surface of a cylindrical outer shell by rotating at a high speed, the fibers are wound up on the inner surface of the cylindrical outer shell, and then the resin is introduced and solidified to form FRP on the inner surface of the cylindrical outer shell. (Prior art document 1)
JP 5-8310).
Further, a method for improving the strength by filling the inner diameter of the hollow shaft has been disclosed (Document 2 of the prior art).
JP 2005-113986).

特開平5−8310号公報Japanese Patent Laid-Open No. 5-8310 特開2005−113986号公報JP-A-2005-113986

しかし、先行技術文献1の発明では、円筒形外殻内面のFRPの繊維配向方向に自由度が低く、FRPの繊維含有率にムラが生じやすい。また、先行技術文献2の発明では、CFRP円筒の端部内径と、継ぎ手のセレーション結合される歯部とのセンタリングを精度良く行うことは困難である。また、継ぎ手の歯部を用いてCFRP円筒体の端部内径を削り取りながら圧入する為、CFRP円筒体の端部内径寸法及び継ぎ手歯部外径寸法のばらつきにより、圧入力及び固定力、強度のばらつきが大きくなる。さらに、セレーション結合では、回転方向の固定力は確保できるものの、軸方向の固定力を十分に大きくすることが出来ない。
そこで、本発明は、軽量且つ、継ぎ手との接続部における回転方向及び軸方向の強度を向上させた複合材料製の動力伝達軸を提供することを課題としている。
However, in the invention of Prior Art Document 1, the degree of freedom is low in the FRP fiber orientation direction on the inner surface of the cylindrical outer shell, and unevenness is likely to occur in the fiber content of FRP. In the invention of Prior Art Document 2, it is difficult to accurately center the inner diameter of the end portion of the CFRP cylinder and the tooth portion to be serrated by the joint. In addition, because the inner diameter of the end of the CFRP cylindrical body is pressed using the joint teeth, and the inner diameter of the end of the CFRP cylinder and the outer diameter of the joint tooth are varied, pressure input, fixing force, strength The variation becomes large. Further, in the serration coupling, the fixing force in the rotational direction can be secured, but the axial fixing force cannot be sufficiently increased.
Therefore, an object of the present invention is to provide a power transmission shaft made of a composite material that is lightweight and has improved strength in the rotational direction and the axial direction at the connection portion with the joint.

上記問題を解決するために、請求項1に記載の発明は、円筒断面を有する動力伝達軸であって、金属製の円筒状外殻の内周面に、炭素繊維強化樹脂又はガラス繊維強化樹脂の少なくとも一方からなる繊維強化樹脂層が接着硬化されてなることを特徴としている。
また、請求項2に記載の発明は、請求項1に記載の動力伝達軸において、前記円筒状外殻が焼入れ鋼からなり、前記繊維強化樹脂層が、一方向或いは織物プリプレグの少なくとも一つからなる積層体からなることを特徴としている。
また、請求項3に記載の発明は、請求項2に記載の動力伝達軸において、前記円筒状外殻はHRC30以上の硬度を持つことを特徴としている。
また、請求項4に記載の発明は、円筒断面を有する動力伝達軸の製造方法であって、金属製の円筒状外殻の内径に、中空ゴム製の芯材に炭素繊維又はガラス繊維の少なくとも一方を巻きつけて積層した積層体を挿入した後、前記中空ゴム製の芯材に流体を注入して膨張させ、前記積層体を、前記円筒状外殻の内周面に密着させた状態で接着、硬化させることにより、複合構造の動力伝達軸とすることを特徴としている。
In order to solve the above problem, the invention according to claim 1 is a power transmission shaft having a cylindrical cross section, and a carbon fiber reinforced resin or a glass fiber reinforced resin is formed on an inner peripheral surface of a metal cylindrical outer shell. A fiber reinforced resin layer made of at least one of the above is bonded and cured.
According to a second aspect of the present invention, in the power transmission shaft according to the first aspect, the cylindrical outer shell is made of hardened steel, and the fiber reinforced resin layer is made of at least one of unidirectional or woven prepreg. It consists of the laminated body which becomes.
According to a third aspect of the present invention, in the power transmission shaft according to the second aspect, the cylindrical outer shell has a hardness of HRC30 or higher.
The invention according to claim 4 is a method of manufacturing a power transmission shaft having a cylindrical cross section, wherein the hollow cylindrical core material is formed of at least carbon fiber or glass fiber on the inner diameter of a metal cylindrical outer shell. After inserting a laminated body wound around one side, a fluid is injected into the hollow rubber core material to expand it, and the laminated body is in close contact with the inner peripheral surface of the cylindrical outer shell. The power transmission shaft of the composite structure is obtained by bonding and curing.

本発明は以上のような構成を有しており、従来の全鋼製動力伝達軸に対して同等以上の抗曲性を有しつつ、大幅に軽量できる。また、軽量化により固有振動数が高くなり、危険回転数を高く出来るという効果が有る。   The present invention has the above-described configuration, and can be significantly reduced in weight while having the same or higher curvature than the conventional all-steel power transmission shaft. In addition, the natural frequency is increased by reducing the weight, and the dangerous rotational speed can be increased.

本発明による第一の実施例を示す図である。It is a figure which shows the 1st Example by this invention. 本発明による動力伝達軸の製造方法を示す図である。It is a figure which shows the manufacturing method of the power transmission shaft by this invention.

図1及び図2に本発明による第一の実施例を示す。
図1に於いて、動力伝達軸1は外殻2と外殻2の内周面に形成される繊維強化樹脂層3からなる。図2(a)に示すように、外殻2は鋼製円筒体に焼き入れを行い、表面硬度と強度の向上を行う。その後、一方向又は織物の繊維と熱硬化性樹脂とからなるプリプレグを中空ゴムからなる芯材4に巻きつけ、図2(b)のように積層した積層体3aを外殻2の内径に挿入し、図2(c)芯材4の中に不図示の圧縮空気等の流体を注入して積層体3aを外殻2の内面に密着させる。この状態で、積層体3aを130℃で2時間保持することで、積層体3aに含有される熱硬化性樹脂を硬化させ、外殻2の内周面に繊維強化樹脂層3を接着する。そして、芯材4を除去し、動力伝達軸1を得る。積層体3aに用いるプリプレグはエポキシに代表される熱硬化性樹脂を22〜55質量%、より好ましくは25〜40質量%含有していることが望ましい。熱硬化性樹脂の含有量が22質量%を下回ると、繊維間に樹脂が十分に行き渡らず、プリプレグ同士の接着性の低下及び、ボイドの発生を生じる。また、50質量%を越えると、繊維数の減少により強度や剛性が低下する。
上記の実施例に従い作成した動力伝達軸と、従来の全鋼製動力伝達軸との重量、耐久性、抗曲性の比較結果を行ったので以下に説明する。
鋼製パイプに焼き入れ処理を行い外殻とした。そして熱硬化性樹脂を25質量%含有する炭素繊維プリプレグを中空ゴム製の芯材に巻きつけて積層し外殻の内径に挿入した後、芯材に圧縮空気を注入して膨張させ、外殻の内面にプリプレグを密着させた。この状態で130℃で2時間保持してプリプレグを外殻内面に接着、硬化させ、動力伝達軸の実施例1得た。
上記実施例1と同寸法の、全鋼製動力伝達軸を比較例1として、両者の重量、耐久試験、曲げ評価試験の結果を表1に示す。なお、数値は比較例1の値を100とした場合の実施例1の相対値を表している。
1 and 2 show a first embodiment according to the present invention.
In FIG. 1, the power transmission shaft 1 includes an outer shell 2 and a fiber reinforced resin layer 3 formed on the inner peripheral surface of the outer shell 2. As shown in FIG. 2 (a), the outer shell 2 is quenched into a steel cylinder to improve surface hardness and strength. Thereafter, a prepreg made of unidirectional or woven fiber and a thermosetting resin is wound around a core material 4 made of hollow rubber, and the laminated body 3a laminated as shown in FIG. 2B is inserted into the inner diameter of the outer shell 2. Then, a fluid such as compressed air (not shown) is injected into the core material 4 in FIG. 2 (c) to bring the laminate 3 a into close contact with the inner surface of the outer shell 2. In this state, the laminated body 3 a is held at 130 ° C. for 2 hours to cure the thermosetting resin contained in the laminated body 3 a and adhere the fiber reinforced resin layer 3 to the inner peripheral surface of the outer shell 2. And the core material 4 is removed and the power transmission shaft 1 is obtained. It is desirable that the prepreg used for the laminate 3a contains 22 to 55% by mass, more preferably 25 to 40% by mass of a thermosetting resin typified by epoxy. When the content of the thermosetting resin is less than 22% by mass, the resin is not sufficiently distributed between the fibers, resulting in a decrease in adhesion between prepregs and generation of voids. On the other hand, if it exceeds 50% by mass, the strength and rigidity decrease due to the decrease in the number of fibers.
A comparison of the weight, durability, and curvature of the power transmission shaft prepared according to the above-described embodiment and the conventional all-steel power transmission shaft will be described below.
The steel pipe was quenched and used as the outer shell. Then, a carbon fiber prepreg containing 25% by mass of a thermosetting resin is wound around a hollow rubber core material, laminated, inserted into the inner diameter of the outer shell, and then inflated by injecting compressed air into the core material. A prepreg was adhered to the inner surface of the plate. In this state, it was held at 130 ° C. for 2 hours, and the prepreg was adhered and cured to the inner surface of the outer shell to obtain Example 1 of the power transmission shaft.
Table 1 shows the results of the weight, durability test, and bending evaluation test of the all-steel power transmission shaft having the same dimensions as in Example 1 above as Comparative Example 1. The numerical value represents the relative value of Example 1 when the value of Comparative Example 1 is 100.

表1は実施例1、と、比較例1による質量及び耐久性の比較結果を示すものである。
(表1)

Figure 2012177449
表1に示すように、本発明による炭素繊維強化樹脂と、鋼製の外殻により構成される動力伝達軸は、従来の鋼製動力伝達軸並の強度、耐久性を有しながら軽量化を実現している。 Table 1 shows the comparison results of mass and durability according to Example 1 and Comparative Example 1.
(Table 1)
Figure 2012177449
As shown in Table 1, the power transmission shaft constituted by the carbon fiber reinforced resin according to the present invention and the steel outer shell has the same strength and durability as a conventional steel power transmission shaft, but is reduced in weight. Realized.

複合構造軸の製造方法として利用できる。   It can be used as a method for manufacturing a composite structural shaft.

1 動力伝達軸
2 外殻
3 繊維強化樹脂層
3a 積層体
4 芯材
DESCRIPTION OF SYMBOLS 1 Power transmission shaft 2 Outer shell 3 Fiber reinforced resin layer 3a Laminated body 4 Core material

Claims (4)

円筒断面を有する動力伝達軸であって、金属製の円筒状外殻の内周面に、炭素繊維強化樹脂又はガラス繊維強化樹脂の少なくとも一方からなる繊維強化樹脂層が接着硬化されてなることを特徴とする複合構造の動力伝達軸。   A power transmission shaft having a cylindrical cross section, wherein a fiber reinforced resin layer made of at least one of carbon fiber reinforced resin or glass fiber reinforced resin is bonded and cured to an inner peripheral surface of a metal cylindrical outer shell. A power transmission shaft with a unique composite structure. 請求項1に記載の動力伝達軸において、前記円筒状外殻が焼入れ鋼からなり、前記繊維強化樹脂層が、一方向或いは織物プリプレグの少なくとも一つからなる積層体からなることを特徴とする動力伝達軸。   2. The power transmission shaft according to claim 1, wherein the cylindrical outer shell is made of hardened steel, and the fiber reinforced resin layer is made of a laminated body composed of one direction or at least one woven prepreg. Transmission shaft. 請求項2に記載の動力伝達軸において、前記円筒状外殻はHRC30以上の硬度を持つことを特徴とする動力伝達軸。   The power transmission shaft according to claim 2, wherein the cylindrical outer shell has a hardness of HRC30 or higher. 円筒断面を有する動力伝達軸の製造方法であって、金属製の円筒状外殻の内径に、中空ゴム製の芯材に炭素繊維又はガラス繊維の少なくとも一方を巻きつけて積層した積層体を挿入した後、前記中空ゴム製の芯材に流体を注入して膨張させ、前記積層体を、前記円筒状外殻の内周面に密着させた状態で接着、硬化させることにより、複合構造の動力伝達軸とすることを特徴とする、動力伝達軸の製造方法。   A method of manufacturing a power transmission shaft having a cylindrical cross section, in which a laminated body in which at least one of carbon fiber or glass fiber is wound around a hollow rubber core material is inserted around an inner diameter of a metal cylindrical outer shell After that, a fluid is injected into the hollow rubber core material to expand it, and the laminated body is bonded and cured in a state of being in close contact with the inner peripheral surface of the cylindrical outer shell. A method of manufacturing a power transmission shaft, wherein the transmission shaft is a transmission shaft.
JP2011041560A 2011-02-28 2011-02-28 Power transmission shaft and method for manufacturing power transmission shaft Withdrawn JP2012177449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011041560A JP2012177449A (en) 2011-02-28 2011-02-28 Power transmission shaft and method for manufacturing power transmission shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011041560A JP2012177449A (en) 2011-02-28 2011-02-28 Power transmission shaft and method for manufacturing power transmission shaft

Publications (1)

Publication Number Publication Date
JP2012177449A true JP2012177449A (en) 2012-09-13

Family

ID=46979414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011041560A Withdrawn JP2012177449A (en) 2011-02-28 2011-02-28 Power transmission shaft and method for manufacturing power transmission shaft

Country Status (1)

Country Link
JP (1) JP2012177449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117962371A (en) * 2024-04-02 2024-05-03 湖南科技大学 Forming die and method for co-curing transmission shaft of composite material and metal joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117962371A (en) * 2024-04-02 2024-05-03 湖南科技大学 Forming die and method for co-curing transmission shaft of composite material and metal joint
CN117962371B (en) * 2024-04-02 2024-06-04 湖南科技大学 Forming die and method for co-curing transmission shaft of composite material and metal joint

Similar Documents

Publication Publication Date Title
JP4846103B2 (en) Fiber reinforced resin pipe and power transmission shaft using the same
JP6481849B2 (en) Gear and gear manufacturing method
JP2015145121A (en) Method for manufacturing bar member, and bar member
JP6492074B2 (en) Energy storage flywheel and method of manufacturing the same
JPH06200951A (en) Joint method for driving force transmission shaft made of frp with pipe made of frp
JP2012177449A (en) Power transmission shaft and method for manufacturing power transmission shaft
JP5092884B2 (en) Rack and pinion type electric power steering apparatus and manufacturing method thereof
JP2007271079A (en) Torque transmission shaft
JP2011017413A (en) Shaft for power transmission shaft
JP2009274612A5 (en)
KR101744705B1 (en) Hybrid Propeller Shaft and Method for Manufacturing Thereof
JPH05106629A (en) Load transmitting shaft made of fiber reinforced plastics
JP5206125B2 (en) Rack and pinion type electric power steering system
JP5699657B2 (en) Propeller shaft and manufacturing method thereof
KR101704038B1 (en) Propeller shaft for vehicle and manufacturing method thereof
JP2012153314A (en) Rack for rack and pinion type steering unit
JP2007000528A (en) Shaft for golf club made of fiber-reinforced composite material
JP2013176823A (en) Spindle device for machine tool
CN109838469A (en) A kind of connection type of Carbon Fiber Composite Propeller Shaft
JP2002357284A (en) Combined pipe
JP2015143008A (en) Fiber-reinforced composite material shaft
KR20100026003A (en) Manufacturing method for hybrid steering column shaft of vehicle with composite materials
KR101524105B1 (en) Fiber reinforced composite drive shaft and method for making the same
KR101126837B1 (en) Propeller Shaft for Vehicle, Apparatus Therefore and Method of Manufacture Thereof
JPH0160686B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513