JP2012177034A - Resin composition for molding extrusion laminate - Google Patents

Resin composition for molding extrusion laminate Download PDF

Info

Publication number
JP2012177034A
JP2012177034A JP2011040668A JP2011040668A JP2012177034A JP 2012177034 A JP2012177034 A JP 2012177034A JP 2011040668 A JP2011040668 A JP 2011040668A JP 2011040668 A JP2011040668 A JP 2011040668A JP 2012177034 A JP2012177034 A JP 2012177034A
Authority
JP
Japan
Prior art keywords
resin composition
ethylene
molding
low
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011040668A
Other languages
Japanese (ja)
Other versions
JP5678307B2 (en
Inventor
Tatsuo Goto
辰男 後藤
Daisuke Yokoyama
大輔 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Maruzen Polyethylene Co Ltd
Original Assignee
Ube Maruzen Polyethylene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Maruzen Polyethylene Co Ltd filed Critical Ube Maruzen Polyethylene Co Ltd
Priority to JP2011040668A priority Critical patent/JP5678307B2/en
Publication of JP2012177034A publication Critical patent/JP2012177034A/en
Application granted granted Critical
Publication of JP5678307B2 publication Critical patent/JP5678307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition for molding extrusion laminate, which is excellent in low-temperature heat-sealing properties and heat seal strength and is easy to tear, wherein heat-sealing layers of various packaging material can be formed.SOLUTION: The resin composition for molding the extrusion laminate comprises: 60-95 wt.% of ethylene-1-butene copolymer (A) that has a specific feature, wherein the copolymer can be obtained by copolymerizing 80-99.9 mol% of ethylene and 0.1-20 mol% of 1-butene in the presence of a metallocene catalyst; and 5-40 wt.% of a low-density polyethylene (B) that is produced through a high-pressure radical method by using a tubular reaction chamber and has a specific feature.

Description

本発明は特定のエチレン・1−ブテン共重合体を主体とする押出ラミネート成形用樹脂組成物に関する。この押出ラミネート成形用樹脂組成物は、低温ヒートシール性とヒートシール強度が良好で易引裂性にも優れるため、各種包装材料等のヒートシール層を形成する材料として好適に用いることができる。   The present invention relates to a resin composition for extrusion laminate molding mainly comprising a specific ethylene / 1-butene copolymer. Since this extrusion laminate molding resin composition has good low-temperature heat sealability and heat seal strength and excellent tearability, it can be suitably used as a material for forming a heat seal layer such as various packaging materials.

従来、各種包装材料等のヒートシール層として、高圧ラジカル法低密度ポリエチレン、チーグラー系触媒を用いた直鎖状低密度ポリエチレン、あるいはこれらの混合物が用いられてきたが、近年は低温ヒートシール性や機械的強度の改善のため、メタロセン系触媒による直鎖状低密度ポリエチレンが用いられるようになっている。   Conventionally, high-pressure radical method low-density polyethylene, linear low-density polyethylene using a Ziegler-based catalyst, or a mixture thereof has been used as a heat-sealing layer for various packaging materials. In order to improve mechanical strength, linear low-density polyethylene using a metallocene catalyst has been used.

例えば、メタロセン系触媒により製造されたエチレン・α−オレフィン共重合体と、高圧ラジカル法で製造された低密度ポリエチレンとを含む押出ラミネート成形用樹脂組成物が特許文献1に、易引裂性フィルム用樹脂組成物が特許文献2に記載されている。
また、メタロセン系触媒により製造されたエチレン・1−ブテン共重合体と、高圧ラジカル法で製造された低密度ポリエチレンとを含む易引裂性フィルムが特許文献3に記載されている。
For example, Patent Document 1 discloses a resin composition for extrusion laminate molding comprising an ethylene / α-olefin copolymer produced by a metallocene catalyst and a low density polyethylene produced by a high pressure radical method. A resin composition is described in Patent Document 2.
Patent Document 3 discloses an easy tear film comprising an ethylene / 1-butene copolymer produced by a metallocene catalyst and a low density polyethylene produced by a high pressure radical method.

これらの材料は積層体のヒートシール層として広く用いられ、洗剤、調味料等の各種液体包装や、菓子、医薬品等のその他一般的な包装に利用されている。   These materials are widely used as a heat seal layer of a laminate, and are used for various liquid packaging such as detergents and seasonings, and other general packaging such as confectionery and pharmaceuticals.

特開平9−278953号公報Japanese Patent Laid-Open No. 9-278953 特開2005−53997号公報JP 2005-53997 A 特開2003−201377号公報JP 2003-201377 A

しかしながら、特許文献3に記載の易引裂性フィルムは、易引裂性に優れているが、低温ヒートシール性とヒートシール強度には、改善の余地があった。そこで、本発明は、低温ヒートシール性とヒートシール強度が良好で易引裂性に優れた各種包装材料等のヒートシール層を形成することができる押出ラミネート成形用樹脂組成物を提供することを目的とする。   However, although the easy tear film described in Patent Document 3 is excellent in easy tear, there is room for improvement in the low temperature heat sealability and the heat seal strength. Then, this invention aims at providing the resin composition for extrusion lamination molding which can form heat seal layers, such as various packaging materials excellent in low-temperature heat-sealability and heat-seal strength, and excellent in easy tearability. And

以上の目的を達成するため、本発明者らは、鋭意検討した結果、特定のエチレン・1−ブテン共重合体と低密度ポリエチレンとを用いることで、低温ヒートシール性とヒートシール強度が良好で易引裂性に優れたヒートシール層を形成できる押出ラミネート成形用樹脂組成物を得ることができることを見出し、本発明に至った。すなわち、本発明は、メタロセン触媒の存在下に、エチレン80〜99.9モル%及び1−ブテン0.1〜20モル%を共重合させて得られる下記特性(a−1)〜(a−3)を有するエチレン・1−ブテン共重合体(A)65〜95重量%と、管状反応容器を用いた高圧ラジカル法で製造された下記特性(b−1)〜(b−2)を有する低密度ポリエチレン(B)5〜35重量%とを含む押出ラミネート成形用樹脂組成物である。
(a−1)密度(d)が0.890〜0.910g/cmである。
(a−2)190℃における2.16kg荷重でのメルトフローレート(MFR)が6〜30g/10分である。
(a−3)示差走査熱量計(DSC)測定による融点ピークを1以上有し、そのうち最も高い融点(Tm1)と密度(d)との関係が、下記の式(1)を満たす。
In order to achieve the above object, the present inventors have intensively studied, and as a result, by using a specific ethylene / 1-butene copolymer and low density polyethylene, the low temperature heat sealability and heat seal strength are good. The inventors have found that a resin composition for extrusion laminate molding capable of forming a heat seal layer excellent in easy tearability can be obtained, and the present invention has been achieved. That is, the present invention provides the following characteristics (a-1) to (a-) obtained by copolymerizing 80 to 99.9 mol% of ethylene and 0.1 to 20 mol% of 1-butene in the presence of a metallocene catalyst. 3) having an ethylene / 1-butene copolymer (A) of 65 to 95% by weight and the following characteristics (b-1) to (b-2) produced by a high-pressure radical method using a tubular reaction vessel It is a resin composition for extrusion lamination molding containing 5 to 35% by weight of low density polyethylene (B).
(A-1) The density (d) is 0.890 to 0.910 g / cm 3 .
(A-2) The melt flow rate (MFR) at 2.16 kg load at 190 ° C. is 6 to 30 g / 10 minutes.
(A-3) It has one or more melting point peaks by differential scanning calorimeter (DSC) measurement, and the relationship between the highest melting point (T m1 ) and density (d) satisfies the following formula (1).

Figure 2012177034
(b−1)190℃における2.16kg荷重でのメルトフローレート(MFR)が1.5〜2.5g/10分である。
(b−2)密度が0.916〜0.919g/cmである。
Figure 2012177034
(B-1) The melt flow rate (MFR) at a load of 2.16 kg at 190 ° C. is 1.5 to 2.5 g / 10 minutes.
(B-2) The density is 0.916 to 0.919 g / cm 3 .

また、本発明は、少なくとも前記の押出ラミネート成形用樹脂組成物からなる層と基材層とを含む積層体である。   Moreover, this invention is a laminated body containing the layer which consists of the said resin composition for extrusion lamination molding at least, and a base material layer.

本発明の押出ラミネート成形用樹脂組成物は、低温ヒートシール性とヒートシール強度が良好で易引裂性にも優れるため、食品、医薬品、一般雑貨、衣料品、工業材料等の各種包装材として好適に用いることができる。   The resin composition for extrusion laminate molding of the present invention is suitable as various packaging materials for foods, pharmaceuticals, general goods, clothing, industrial materials and the like because it has good low-temperature heat sealability and heat seal strength and excellent tearability. Can be used.

本発明で用いるエチレン・1−ブテン共重合体(A)は、メタロセン触媒を用いてエチレン80〜99.9モル%と、1−ブテン0.1〜20モル%とを共重合させて得られる。好ましくはエチレン87〜99.5モル%と、1−ブテン0.5〜13モル%、より好ましくはエチレン90〜99モル%と、1−ブテン1〜10モル%とを共重合させて得られる共重合体である。   The ethylene / 1-butene copolymer (A) used in the present invention is obtained by copolymerizing 80 to 99.9 mol% of ethylene and 0.1 to 20 mol% of 1-butene using a metallocene catalyst. . Preferably it is obtained by copolymerizing ethylene 87-99.5 mol%, 1-butene 0.5-13 mol%, more preferably ethylene 90-99 mol%, 1-butene 1-10 mol%. It is a copolymer.

重合に用いるメタロセン触媒としては、周期律表第4族の遷移金属からなるメタロセン化合物を有機アルミニウム化合物及び/又はイオン性化合物により活性化させたもの等、公知の触媒を用いることができる。エチレン・1−ブテン共重合体は、例えば気相重合反応、液相重合反応などの方法により製造することが出来る。好ましくはメタロセン触媒含有固体成分を気相流動床反応器に供給し、気相状態でエチレンと1−ブテンとを共重合させる連続式気相流動床重合法で製造するのが好ましい。   As the metallocene catalyst used for the polymerization, known catalysts such as those obtained by activating a metallocene compound composed of a transition metal of Group 4 of the periodic table with an organoaluminum compound and / or an ionic compound can be used. The ethylene / 1-butene copolymer can be produced by a method such as a gas phase polymerization reaction or a liquid phase polymerization reaction. The metallocene catalyst-containing solid component is preferably supplied to a gas phase fluidized bed reactor, and is preferably produced by a continuous gas phase fluidized bed polymerization method in which ethylene and 1-butene are copolymerized in the gas phase.

上記エチレン・1−ブテン共重合体(A)の密度は0.890〜0.910g/cmが好ましく、0.895〜0.910g/cmがより好ましく、0.900〜0.910g/cmが特に好ましい。密度がこの範囲より高いとシール開始温度が高くなり好ましくなく、低いと耐熱性、耐ブロッキング性、押出ラミネート成形時のロールリリース性が悪化する。 The density of the ethylene-1-butene copolymer (A) is preferably from 0.890~0.910g / cm 3, more preferably 0.895~0.910g / cm 3, 0.900~0.910g / cm 3 is particularly preferred. When the density is higher than this range, the sealing start temperature becomes high, which is not preferable. When the density is low, heat resistance, blocking resistance, and roll release property at the time of extrusion lamination molding deteriorate.

190℃における2.16kg荷重でのメルトフローレート(MFR)は5〜50g/10分が好ましく、6〜40g/10分がより好ましく、10〜30g/10分が特に好ましい。MFRがこの範囲より高いとネックインが大きくなり、ヒートシール強度が低下する。また、低いと成形時の押出機負荷が大きくなる、引裂強度が高くなって易引裂性に劣るなどの問題が生じる。   The melt flow rate (MFR) at a load of 2.16 kg at 190 ° C. is preferably 5 to 50 g / 10 minutes, more preferably 6 to 40 g / 10 minutes, and particularly preferably 10 to 30 g / 10 minutes. If the MFR is higher than this range, the neck-in increases and the heat seal strength decreases. On the other hand, when it is low, problems such as an increase in the load on the extruder at the time of molding and an increase in tear strength and inferior easy tearability occur.

分子量分布(Mw/Mn)は、3〜7の範囲であることが好ましく、3.2〜6.5の範囲であることがさらに好ましく、3.5〜6の範囲であることが特に好ましい。分子量分布(Mw/Mn)が上記範囲より小さい場合、成形加工時に押出機などの成形機の負荷が大きくなるために好ましくなく、大きい場合は、製膜したフィルムの耐ブロッキング性、ヒートシール性が悪化する。   The molecular weight distribution (Mw / Mn) is preferably in the range of 3 to 7, more preferably in the range of 3.2 to 6.5, and particularly preferably in the range of 3.5 to 6. When the molecular weight distribution (Mw / Mn) is smaller than the above range, it is not preferable because the load on a molding machine such as an extruder becomes large at the time of molding, and when it is large, the film formed has blocking resistance and heat sealability. Getting worse.

上記エチレン・1−ブテン共重合体(A)は、示差走査熱量計(DSC)測定による融点ピークを1つ以上有していることが好ましく、密度が0.890〜0.910g/cmの範囲において融点ピークを2つ以上有していることが特に好ましい。さらに、これらのうち最も高い融点Tm1(℃)と密度d(g/cm)は、上記密度範囲において下記の式(1)を満たしていることが好ましい。 The ethylene / 1-butene copolymer (A) preferably has one or more melting point peaks as determined by differential scanning calorimetry (DSC), and has a density of 0.890 to 0.910 g / cm 3 . It is particularly preferable to have two or more melting point peaks in the range. Furthermore, among these, it is preferable that the highest melting point T m1 (° C.) and density d (g / cm 3 ) satisfy the following formula (1) in the above density range.

Figure 2012177034
Figure 2012177034

具体的には、密度が0.900g/cm未満の重合体では融点が113℃以下、0.900〜0.910g/cmの重合体では114.5℃以下であるのが好ましい。 Specifically, the density is a melting point of 113 ° C. or less in the polymer of less than 0.900 g / cm 3, preferably not more than 114.5 ° C. at polymer 0.900~0.910g / cm 3.

本発明で用いる低密度ポリエチレン(B)は、管状反応容器を用いた高圧ラジカル法で製造され、密度は0.916〜0.919g/cmであるのが好ましい。また、190℃における2.16kg荷重でのメルトフローレート(MFR)は1.5〜2.5g/10分であるのが好ましい。MFRの値がこの範囲より大きいとネックインが大きくなり、小さいと上記エチレン・1−ブテン共重合体と均一に混合するのが難しくなる。また、槽型反応容器を用いた高圧ラジカル法で製造された低密度ポリエチレンを用いると、押出ラミネート成形時の溶融延展性が劣るため、溶融延展膜の端部が不安定になり所望の成形幅にて成形できないなどの問題が起きる。 The low density polyethylene (B) used in the present invention is produced by a high-pressure radical method using a tubular reaction vessel, and the density is preferably 0.916 to 0.919 g / cm 3 . The melt flow rate (MFR) at a load of 2.16 kg at 190 ° C. is preferably 1.5 to 2.5 g / 10 minutes. When the MFR value is larger than this range, the neck-in becomes large, and when the MFR value is small, it becomes difficult to uniformly mix with the ethylene / 1-butene copolymer. Also, if low density polyethylene produced by a high-pressure radical method using a tank-type reaction vessel is used, the melt spreadability at the time of extrusion lamination molding is inferior, so the end of the melt spread film becomes unstable and the desired molding width Problems such as inability to mold.

本発明の押出ラミネート成形用樹脂組成物は、上記エチレン・1−ブテン共重合体(A)65〜95重量%と、上記低密度ポリエチレン(B)5〜35重量%とを含む組成物である。低密度ポリエチレン(B)の量がこの範囲より多くなるとヒートシール強度が低下し、また、臭気が問題となる場合がある。   The resin composition for extrusion laminate molding of the present invention is a composition comprising 65 to 95% by weight of the ethylene / 1-butene copolymer (A) and 5 to 35% by weight of the low density polyethylene (B). . When the amount of the low density polyethylene (B) is more than this range, the heat seal strength is lowered and the odor may be a problem.

樹脂組成物の各成分の混合方法、混合装置、混合設備については特に制限はなく、公知の単軸押出機(混練機)、二軸押出機(混練機)、二軸押出機と単軸押出機(混練機)を直列に接続したタンデム型混練装置、カレンダー、バンバリーミキサー、混練ロール、ブラベンダー、プラストグラフ、ニーダー等の装置などを用いることができる。この際、必要に応じて各種添加剤を使用することもできる。   There are no particular restrictions on the mixing method, mixing apparatus, and mixing equipment for each component of the resin composition. Known single-screw extruder (kneading machine), twin-screw extruder (kneading machine), twin-screw extruder and single-screw extrusion A tandem kneading apparatus, a calendar, a Banbury mixer, a kneading roll, a brabender, a plastograph, a kneader, or the like, in which machines (kneading machines) are connected in series, can be used. At this time, various additives may be used as necessary.

このようにして得られる本発明の樹脂組成物を用いて押出ラミネート成形する場合に基材層として用いられる基材としては、上質紙、クラフト紙等の紙、アルミニウム箔等の金属箔、二軸延伸ナイロン等のナイロン系基材、二軸延伸PET(ポリエチレンテレフタレート)フィルム等のポリエステル系基材、二軸延伸ポリプロピレン(OPP)等のポリオレフィン系基材等が挙げられる。   In the case of extrusion lamination molding using the resin composition of the present invention thus obtained, the base material used as a base material layer is paper such as fine paper, kraft paper, metal foil such as aluminum foil, biaxial Examples thereof include nylon base materials such as stretched nylon, polyester base materials such as biaxially stretched PET (polyethylene terephthalate) film, and polyolefin base materials such as biaxially stretched polypropylene (OPP).

これらの基材上に、本発明の樹脂組成物を公知の方法で押出ラミネート成形することにより、低温ヒートシール性とヒートシール強度が良好で易引裂性に優れた積層体が得られる。   By extrusion-molding the resin composition of the present invention on these substrates by a known method, a laminate having good low temperature heat sealability and heat seal strength and excellent tearability can be obtained.

本発明の樹脂組成物を厚さ30μmのフィルムにした場合の引取方向(MD)に対して垂直方向(横方向)(TD)の引裂強度は、10〜100g/15mmの範囲であるのが好ましく、20〜90g/15mmの範囲であるのがさらに好ましく、30〜80g/15mmの範囲であるのが特に好ましい。引裂強度が高すぎると包装に用いたときの開封性が悪くなり、低すぎると破袋しやすくなる。   When the resin composition of the present invention is formed into a film having a thickness of 30 μm, the tear strength in the direction perpendicular to the take-off direction (MD) (transverse direction) (TD) is preferably in the range of 10 to 100 g / 15 mm. The range of 20 to 90 g / 15 mm is more preferable, and the range of 30 to 80 g / 15 mm is particularly preferable. If the tear strength is too high, the unsealing property when used for packaging is deteriorated, and if it is too low, the bag is easily broken.

樹脂組成物自体の引裂強度が高い場合であっても、積層体の層間接着強度が、500g/15mm以上の場合には、積層体全体の引裂性は基材そのものの引裂性を反映し、引裂性の良い基材を利用すれば引裂性は良好となる。しかし、層間接着強度が300g/15mm以下の場合、引裂時に樹脂組成物層の剥離が起こり、樹脂組成物そのものの引裂強度が積層体全体の引裂性に大きな影響を与えることとなり、引裂性の良い基材を利用しても、易引裂性を向上させることができない。なお、積層体を包装材料として用いる場合、全ての包装材料に当てはまるものではないが、300g/15mm以下の層間接着強度であっても、包装という内容物を保護する機能は損なわれない場合がある。   Even when the tear strength of the resin composition itself is high, if the interlayer adhesion strength of the laminate is 500 g / 15 mm or more, the tearability of the entire laminate reflects the tearability of the substrate itself, If a base material with good properties is used, the tearability will be good. However, when the interlayer adhesive strength is 300 g / 15 mm or less, the resin composition layer is peeled off at the time of tearing, and the tear strength of the resin composition itself has a great influence on the tearability of the entire laminate. Even if a substrate is used, the easy tearability cannot be improved. In addition, when using a laminated body as a packaging material, it does not apply to all packaging materials, but even if it is an interlayer adhesive strength of 300 g / 15 mm or less, the function which protects the content of packaging may not be impaired. .

一般的に、押出ラミネート成形による積層体の製造において、ポリエチレン組成物と異素材である基材との接着強度を大きくさせるために、基材への特殊な前処理(表面処理、接着付与剤コーティングなど)や溶融した組成物へのオゾン処理、組成物へ配合する添加剤の削減、接着が良好な基材選定、生産速度の低減、など、多大な手間と設備費用がかかる手法を用いている。しかし、本発明の樹脂組成物は、300g/15mm以下の層間接着強度の場合であっても、積層体の易引裂性は良好であるため、上記のような接着強度を大きくする手法を用いる必要がない。   In general, in the production of laminates by extrusion laminate molding, special pretreatment (surface treatment, adhesion-imparting agent coating) is applied to the base material in order to increase the adhesive strength between the polyethylene composition and the base material that is a different material. Etc.) and ozone treatment of the molten composition, reduction of additives to be added to the composition, selection of a substrate with good adhesion, reduction of production speed, etc. . However, even if the resin composition of the present invention has an interlayer adhesive strength of 300 g / 15 mm or less, the laminate is easy to tear, and thus it is necessary to use a technique for increasing the adhesive strength as described above. There is no.

以下、実施例に基づいて本発明を具体的に説明する。実施例における各測定方法は以下の通りである。   Hereinafter, the present invention will be specifically described based on examples. Each measuring method in an Example is as follows.

[メルトフローレート(MFR)]
JIS K7210(190℃、2.16kg荷重)に準じて測定した。
[密度]
JIS K7112に準じて測定した。
[融点]
JIS K7121に準じ、アニール速度5℃/分(0℃まで)、融点測定時10℃/分の昇温速度で測定した。
[コモノマー濃度]
公知の方法により、H−NMRスペクトルより算出した。
[分子量分布]
Waters社製 GPC/V2000を用いて以下の条件で測定し、標準ポリスチレン換算の値を算出した。
カラム:SHODEX AT−806M×2本
移動相:劣化防止剤入りODCB
温度:145℃
[押出機負荷]
押出ラミネート成形時のスクリューモーターの電流値を目視で読み取った。
[ネックイン]
押出ラミネート成形時のTダイスから押し出された樹脂組成物が積層された幅を用い、(Tダイス幅)−(積層樹脂幅)をネックインとした。
[フィッシュアイ(FE)]
組成物を65mmφフルフライトスクリュー、圧縮比2.7、L/D28の単軸押出機(池貝鉄鋼製)にて200℃、40kg/時間の条件で溶融混練してペレット状物を調製した。これを30mmφ押出機、コートハンガータイプTダイス(幅300mm)、ダイ直下樹脂温度200℃、成形速度12m/分で、厚み30μmの単層フィルムとし、フィルム1mあたりに含まれる500μm以上の長さを有するゲル状の突起物(フィッシュアイ)をCCDカメラによる欠点検出器にて測定した。
[エルメン引裂]
FE測定で作成した30μmのフィルムを用い、JIS K7128に準じて、TD方向のエルメンドルフ引裂強度を測定した。
[接着強度]
積層体をMD方向に15mm幅の短冊状に切り出し、長手方向の一方より基材と樹脂組成物を剥離させ、各々の層をつまみ、速度300mm/mimにて、T字状の形状を保ちながら、剥離していない部分を剥離させる際の抵抗力を接着強度とする。
[Melt flow rate (MFR)]
The measurement was performed according to JIS K7210 (190 ° C., 2.16 kg load).
[density]
The measurement was performed according to JIS K7112.
[Melting point]
According to JIS K7121, the annealing rate was 5 ° C./min (up to 0 ° C.), and the melting point was measured at a heating rate of 10 ° C./min.
[Comonomer concentration]
It computed from the < 1 > H-NMR spectrum by the well-known method.
[Molecular weight distribution]
Measurement was performed under the following conditions using GPC / V2000 manufactured by Waters, and a value in terms of standard polystyrene was calculated.
Column: SHODEX AT-806M x 2 Mobile phase: ODCB with anti-degradation agent
Temperature: 145 ° C
[Extruder load]
The current value of the screw motor at the time of extrusion lamination molding was read visually.
[Neck-in]
The width of the laminated resin composition extruded from the T-dies during extrusion lamination molding was used, and (T-die width) − (laminated resin width) was defined as a neck-in.
[Fisheye (FE)]
The composition was melt-kneaded with a 65 mmφ full flight screw, compression ratio 2.7, L / D28 single screw extruder (Ikegai Steel) at 200 ° C. and 40 kg / hour to prepare pellets. This is a 30 mmφ extruder, a coat hanger type T die (width 300 mm), a resin temperature immediately below the die of 200 ° C., a molding speed of 12 m / min, and a single layer film having a thickness of 30 μm, and a length of 500 μm or more contained per 1 m 2 of film. A gel-like protrusion (fish eye) having a surface area was measured with a defect detector using a CCD camera.
[Elmen tear]
Elmendorf tear strength in the TD direction was measured according to JIS K7128 using a 30 μm film prepared by FE measurement.
[Adhesive strength]
The laminate is cut into a strip of 15 mm width in the MD direction, the base material and the resin composition are peeled off from one side in the longitudinal direction, and each layer is pinched while maintaining a T-shape at a speed of 300 mm / mim The resistance when peeling off the part that has not been peeled is defined as the adhesive strength.

実施例で用いた重合体は以下の通りである。
[エチレン・1−ブテン共重合体(A)]
メタロセン触媒を用いて気相法プロセスで重合して得られたパウダー状の重合体に、過熱劣化防止剤としてチバスペシャリティケミカルズ製イルガノックス1076およびイルガフォス168を各1000ppm、中和剤としてステアリン酸カルシウムを500ppm配合し、45mm三条二軸押出機(池貝鉄鋼製)を用いて200℃設定で溶融混練して得たペレットである。
[低密度ポリエチレン(B)]
管状反応容器を用いた高圧ラジカル法で製造された低密度ポリエチレンで、形状はペレット状である。
The polymers used in the examples are as follows.
[Ethylene / 1-butene copolymer (A)]
A powdery polymer obtained by polymerizing by a gas phase process using a metallocene catalyst was mixed with 1000 ppm of Irganox 1076 and Irgaphos 168 manufactured by Ciba Specialty Chemicals as anti-overheating degradation agents, and 500 ppm of calcium stearate as a neutralizing agent. It is a pellet obtained by blending and melting and kneading at a setting of 200 ° C. using a 45 mm three-spindle twin screw extruder (manufactured by Ikekai Steel).
[Low density polyethylene (B)]
It is a low-density polyethylene manufactured by a high-pressure radical method using a tubular reaction vessel and has a pellet shape.

(実施例1)
表1に示した特性を有するエチレン・1−ブテン共重合体(A)と低密度ポリエチレン(B)とを含む組成物と、表面処理していないアルミ基材(7μm)とを用いて、インナーデュッケルタイプTダイス(幅500mm)を備えた押出ラミネーターにて、ダイ直下樹脂温度310℃、エアーギャップ120mm、成形速度100m/minの条件で押出ラミネート成形して積層体を得た。得られた積層体におけるアルミ基材と組成物の接着強度は、100g/15mmであった。
この積層体の組成物面同士を重ね合わせ、幅5mm(長さ300mm)のヒートシールバーを用いて、圧力2kg/cm、時間1秒の条件で、MD方向と直角にシールしたサンプルを、温度(バー片側のみ設定)を60℃から130℃まで5℃毎のシール温度で作成した。このサンプルのシール部を15mm幅の短冊に切り取って、500mm/分の速度でシール面同士を剥離させ、強度が50gを超えた温度をシール開始温度とした。また、温度130℃でシールしたサンプルの15mm幅の短冊を、500mm/分の速度でシール面を剥離させたときの最大応力を測定し、130℃シール強度を測定した。
カット性は、この積層体を用いて水100ccをなるべく空気が入らないように充填した袋サイズ100×150mmの4方シール袋(MD方向が長い袋)の長手方向の上部一箇所にノッチをつくったものを用い、このノッチを起点として、TD方向に水をこぼさないように袋を引き裂いた際の開封のしやすさで評価した。成人男女5名にて各5袋評価し、○:最後まで開封しやすい、△:最後まで開封できるが抵抗力が強い、×:抵抗が強く最後まで開封できない、の各指標で表した。
臭気は、積層体1mを2cm四方にカットし、500ccのガラス製広口ビンにいれて50℃1時間加熱した後に感じる強さを成人男女5名にて評価し、5段階(5が最も強い臭気)で表した。
これらの結果を表1にまとめた。
Example 1
Using a composition containing an ethylene / 1-butene copolymer (A) and low density polyethylene (B) having the characteristics shown in Table 1, and an aluminum substrate (7 μm) that has not been surface-treated, Using an extrusion laminator equipped with a Duckel type T die (width 500 mm), a laminate was obtained by extrusion lamination molding under conditions of a resin temperature immediately below the die of 310 ° C., an air gap of 120 mm, and a molding speed of 100 m / min. The adhesive strength between the aluminum substrate and the composition in the obtained laminate was 100 g / 15 mm.
A sample that is laminated at right angles to the MD direction under the conditions of a pressure of 2 kg / cm 2 and a time of 1 second using a heat seal bar having a width of 5 mm (length: 300 mm), with the composition surfaces of this laminate laminated. The temperature (set only on one side of the bar) was created from 60 ° C. to 130 ° C. at a seal temperature of every 5 ° C. The seal part of this sample was cut into a strip having a width of 15 mm, the seal surfaces were peeled off at a speed of 500 mm / min, and the temperature at which the strength exceeded 50 g was defined as the seal start temperature. Moreover, the maximum stress when the strip surface of the 15 mm width strip of the sample sealed at a temperature of 130 ° C. was peeled off at a speed of 500 mm / min was measured, and the 130 ° C. seal strength was measured.
Cutability is made by making a notch in the upper part of the longitudinal direction of a 100x150mm bag size (bag with long MD direction) filled with 100cc of water so that air does not enter as much as possible. This was used as a starting point, and the ease of opening when the bag was torn so as not to spill water in the TD direction was evaluated. Five adult males and females evaluated each of the five bags, and each was represented by the following indicators: ○: easy to open to the end, Δ: open to the end but strong resistance, ×: strong resistance to open to the end.
Odor is evaluated by 5 adults (5 adults), with 5 adults (5 being the strongest), evaluating the strength felt after cutting the laminate 1m 2 into 2cm squares and placing it in a 500cc glass wide-mouth bottle and heating at 50 ° C for 1 hour. Odor).
These results are summarized in Table 1.

(実施例2〜5)
表1に示した特性を有するエチレン・1−ブテン共重合体(A)と、低密度ポリエチレン(B)とを含む組成物を用いた以外は実施例1と同様に行った。得られた積層体におけるアルミ基材と組成物の接着強度は、85〜150g/15mmであった。結果を表1にまとめた。
(Examples 2 to 5)
The same procedure as in Example 1 was performed except that a composition containing an ethylene / 1-butene copolymer (A) having the characteristics shown in Table 1 and a low density polyethylene (B) was used. The adhesive strength between the aluminum substrate and the composition in the obtained laminate was 85 to 150 g / 15 mm. The results are summarized in Table 1.

(比較例1、2)
表1に示した密度が高いエチレン・1−ブテン共重合体を用いた以外は、実施例1と同様に行った。結果を表2にまとめた。
得られた積層体はシール開始温度が高く、低温シール性が劣っていた。
(Comparative Examples 1 and 2)
The same operation as in Example 1 was performed except that the ethylene / 1-butene copolymer having a high density shown in Table 1 was used. The results are summarized in Table 2.
The obtained laminate had a high sealing start temperature and was inferior in low-temperature sealing properties.

(比較例3)
表1に示した密度が高く、MFRが低いエチレン・1−ブテン共重合体を用いた以外は、実施例1と同様に行った。結果を表2にまとめた。
成形時の押出負荷が大きく、また、得られた積層体のシール開始温度が高く、低温シール性も劣っていた。さらに、引裂強度が大きく、カット性に問題があった。
(Comparative Example 3)
The same procedure as in Example 1 was performed except that an ethylene / 1-butene copolymer having a high density and a low MFR shown in Table 1 was used. The results are summarized in Table 2.
The extrusion load at the time of molding was large, and the obtained laminate had a high sealing start temperature, and the low-temperature sealing property was inferior. In addition, the tear strength was high, and there was a problem with cutability.

(比較例4、5)
エチレン・1−ブテン共重合体(A)の代わりに、エチレン・1−ヘキセン共重合体を用いた以外は、実施例1と同様に行った。結果を表2にまとめた。
シール開始温度、130℃シール強度とも良好であったが、引裂強度が大きいためカット性が悪く、手で開封することが困難であった。
(Comparative Examples 4 and 5)
The same procedure as in Example 1 was conducted except that an ethylene / 1-hexene copolymer was used instead of the ethylene / 1-butene copolymer (A). The results are summarized in Table 2.
Both the sealing start temperature and the 130 ° C. sealing strength were good, but the tear strength was high, so the cutability was poor and it was difficult to open by hand.

(比較例6)
低密度ポリエチレン(B)の含有量が多い以外は、実施例1と同様に行った。結果を表2にまとめた。
130℃シール強度が低く、臭気がやや強かった。
(Comparative Example 6)
It carried out similarly to Example 1 except having much content of low density polyethylene (B). The results are summarized in Table 2.
The 130 ° C. seal strength was low and the odor was slightly strong.

(比較例7)
低密度ポリエチレン(B)を用いない以外は、実施例1と同様に行った。結果を表2にまとめた。
ネックインが大きく、成形性に問題があった。
(Comparative Example 7)
It carried out similarly to Example 1 except not using a low density polyethylene (B). The results are summarized in Table 2.
The neck-in was large and there was a problem with moldability.

(比較例8、9)
エチレン・1−ブテン共重合体(A)の代わりに、チーグラー・ナッタ触媒を用いて得られたエチレン・1−ブテン共重合体を用いた以外は、実施例1と同様に行った。結果を表2にまとめた。
シール開始温度が高く、130℃シール強度も低いため、シール性に問題があった。また、臭気もやや強かった。さらに、フィッシュアイが多く見られた。
(Comparative Examples 8 and 9)
It carried out similarly to Example 1 except having used the ethylene / 1-butene copolymer obtained using the Ziegler-Natta catalyst instead of the ethylene / 1-butene copolymer (A). The results are summarized in Table 2.
Since the sealing start temperature was high and the 130 ° C. sealing strength was low, there was a problem in sealing performance. Also, the odor was somewhat strong. In addition, many fish eyes were seen.

(比較例10)
表1に示した低密度ポリエチレンのみを用いた以外は、実施例1と同様に行った。結果を表2にまとめた。
シール開始温度が高く、130℃シール強度も低いため、シール性に問題があった。また、臭気もやや強かった。
(Comparative Example 10)
The same operation as in Example 1 was carried out except that only the low density polyethylene shown in Table 1 was used. The results are summarized in Table 2.
Since the sealing start temperature was high and the 130 ° C. sealing strength was low, there was a problem in sealing performance. Also, the odor was somewhat strong.

(比較例11、12)
表1に示した高圧ラジカル法で製造された市販のエチレン・酢酸ビニル共重合体のみを用い、成形時のダイ直下温度を250℃とした以外は、実施例1と同様に行った。結果を表2にまとめた。
シール開始温度は良好であったが、130℃シール強度も低くシール性に問題があった。また、臭気が強く、フィッシュアイも多く見られた。
(Comparative Examples 11 and 12)
The same procedure as in Example 1 was carried out except that only a commercially available ethylene / vinyl acetate copolymer produced by the high-pressure radical method shown in Table 1 was used, and the temperature immediately below the die during molding was 250 ° C. The results are summarized in Table 2.
Although the sealing start temperature was good, the sealing strength at 130 ° C. was low and there was a problem in sealing performance. In addition, it had a strong odor and many fish eyes.

(比較例13、14)
低密度ポリエチレン(B)のMFRが低いもの、高いものを用いた以外は、実施例1と同様に行った。結果を表2にまとめた。
MFRが低い低密度ポリエチレン(B)を用いた場合は、フィッシュアイが多くみられた。また、MFRが高い低密度ポリエチレン(B)を用いた場合は、ネックインが大きく、成形性に問題があった。
(Comparative Examples 13 and 14)
The same operation as in Example 1 was performed except that low density polyethylene (B) having a low MFR and a high MFR were used. The results are summarized in Table 2.
When low density polyethylene (B) having a low MFR was used, many fish eyes were observed. Moreover, when the low density polyethylene (B) having a high MFR was used, the neck-in was large and there was a problem in moldability.

Figure 2012177034
Figure 2012177034

Figure 2012177034
Figure 2012177034

Claims (2)

メタロセン触媒の存在下に、エチレン80〜99.9モル%及び1−ブテン0.1〜20モル%を共重合させて得られる下記特性(a−1)〜(a−3)を有するエチレン・1−ブテン共重合体(A)60〜95重量%と、管状反応容器を用いた高圧ラジカル法で製造された下記特性(b−1)〜(b−2)を有する低密度ポリエチレン(B)5〜40重量%とを含む押出ラミネート成形用樹脂組成物。
(a−1)密度(d)が0.890〜0.910g/cmである。
(a−2)190℃における2.16kg荷重でのメルトフローレート(MFR)が6〜30g/10分である。
(a−3)示差走査熱量計(DSC)測定による融点ピークを1以上有し、そのうち最も高い融点(Tm1)と密度(d)との関係が、下記の式(1)を満たす。
Figure 2012177034
(b−1)190℃における2.16kg荷重でのメルトフローレート(MFR)が1.5〜2.5g/10分である。
(b−2)密度が0.916〜0.919g/cmである。
Ethylene having the following characteristics (a-1) to (a-3) obtained by copolymerizing 80 to 99.9 mol% of ethylene and 0.1 to 20 mol% of 1-butene in the presence of a metallocene catalyst 1-butene copolymer (A) 60 to 95% by weight and low density polyethylene (B) having the following characteristics (b-1) to (b-2) produced by a high-pressure radical method using a tubular reaction vessel A resin composition for extrusion lamination molding comprising 5 to 40% by weight.
(A-1) The density (d) is 0.890 to 0.910 g / cm 3 .
(A-2) The melt flow rate (MFR) at 2.16 kg load at 190 ° C. is 6 to 30 g / 10 minutes.
(A-3) It has one or more melting point peaks by differential scanning calorimeter (DSC) measurement, and the relationship between the highest melting point (T m1 ) and density (d) satisfies the following formula (1).
Figure 2012177034
(B-1) The melt flow rate (MFR) at a load of 2.16 kg at 190 ° C. is 1.5 to 2.5 g / 10 minutes.
(B-2) The density is 0.916 to 0.919 g / cm 3 .
少なくとも請求項1に記載の押出ラミネート成形用樹脂組成物からなる層と基材層とを含む積層体。
A laminate comprising at least a layer made of the resin composition for extrusion laminate molding according to claim 1 and a base material layer.
JP2011040668A 2011-02-25 2011-02-25 Resin composition for extrusion lamination molding Active JP5678307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040668A JP5678307B2 (en) 2011-02-25 2011-02-25 Resin composition for extrusion lamination molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040668A JP5678307B2 (en) 2011-02-25 2011-02-25 Resin composition for extrusion lamination molding

Publications (2)

Publication Number Publication Date
JP2012177034A true JP2012177034A (en) 2012-09-13
JP5678307B2 JP5678307B2 (en) 2015-03-04

Family

ID=46979106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040668A Active JP5678307B2 (en) 2011-02-25 2011-02-25 Resin composition for extrusion lamination molding

Country Status (1)

Country Link
JP (1) JP5678307B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104558788A (en) * 2013-10-22 2015-04-29 中国石油化工股份有限公司 Polyethylene composite with excellent puncture resistance and weather resistance
JP6420891B1 (en) * 2017-12-08 2018-11-07 宇部丸善ポリエチレン株式会社 Resin composition for extrusion lamination and laminate film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210150A (en) * 1985-07-05 1987-01-19 Sumitomo Chem Co Ltd Resin composition for inflation film
JPH08188681A (en) * 1995-01-06 1996-07-23 Tosoh Corp Polyethylene resin composition
JPH08269270A (en) * 1995-03-31 1996-10-15 Mitsui Petrochem Ind Ltd Polyethylene composition for composite film, and composite film
JPH09234837A (en) * 1996-02-28 1997-09-09 Tosoh Corp Laminate
JPH09278953A (en) * 1996-04-12 1997-10-28 Nippon Petrochem Co Ltd Resin composition for extrusion laminate molding
JP2002212350A (en) * 2001-01-19 2002-07-31 Tosoh Corp Resin composition for extrusion lamination and laminate produced by using the composition
JP2003201377A (en) * 2001-11-01 2003-07-18 Ube Ind Ltd Easily tearable film
JP2005053997A (en) * 2003-08-08 2005-03-03 Japan Polyolefins Co Ltd Resin material for easily tearable film, laminate, and its preparation process
JP2006265387A (en) * 2005-03-24 2006-10-05 Tosoh Corp Polyethylene resin composition and film composed of the same
JP2010242081A (en) * 2009-03-19 2010-10-28 Asahi Kasei Chemicals Corp Polyethylene-based resin foaming molded article, foamed sheet, food packaging vessel, and manufacturing method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210150A (en) * 1985-07-05 1987-01-19 Sumitomo Chem Co Ltd Resin composition for inflation film
JPH08188681A (en) * 1995-01-06 1996-07-23 Tosoh Corp Polyethylene resin composition
JPH08269270A (en) * 1995-03-31 1996-10-15 Mitsui Petrochem Ind Ltd Polyethylene composition for composite film, and composite film
JPH09234837A (en) * 1996-02-28 1997-09-09 Tosoh Corp Laminate
JPH09278953A (en) * 1996-04-12 1997-10-28 Nippon Petrochem Co Ltd Resin composition for extrusion laminate molding
JP2002212350A (en) * 2001-01-19 2002-07-31 Tosoh Corp Resin composition for extrusion lamination and laminate produced by using the composition
JP2003201377A (en) * 2001-11-01 2003-07-18 Ube Ind Ltd Easily tearable film
JP2005053997A (en) * 2003-08-08 2005-03-03 Japan Polyolefins Co Ltd Resin material for easily tearable film, laminate, and its preparation process
JP2006265387A (en) * 2005-03-24 2006-10-05 Tosoh Corp Polyethylene resin composition and film composed of the same
JP2010242081A (en) * 2009-03-19 2010-10-28 Asahi Kasei Chemicals Corp Polyethylene-based resin foaming molded article, foamed sheet, food packaging vessel, and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104558788A (en) * 2013-10-22 2015-04-29 中国石油化工股份有限公司 Polyethylene composite with excellent puncture resistance and weather resistance
JP6420891B1 (en) * 2017-12-08 2018-11-07 宇部丸善ポリエチレン株式会社 Resin composition for extrusion lamination and laminate film
JP2019104770A (en) * 2017-12-08 2019-06-27 宇部丸善ポリエチレン株式会社 Resin composition for extrusion lamination, and laminate film

Also Published As

Publication number Publication date
JP5678307B2 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
EP1630196B1 (en) Resin composition and film obtained therefrom
JP4894340B2 (en) Heat-sealable laminated polypropylene resin film and package
JP2019104248A (en) Polyethylene resin composition for lamination and laminate
JP4110683B2 (en) Easy tear film
JP4588490B2 (en) Resin composition and stretched film obtained therefrom
JP3634475B2 (en) Polypropylene composite film for packaging
JP5678307B2 (en) Resin composition for extrusion lamination molding
JP4495602B2 (en) Biaxially oriented polypropylene multilayer film
JP4345924B2 (en) Easy tear multilayer film or sheet
JP7176822B2 (en) Easy-peelable resin composition and sealing material comprising the same
JP4314146B2 (en) Resin composition for sealant and easy heat sealable sealant film obtained therefrom
JP2007246781A (en) Resin composition for sealant, sealant film, and layered product
JP2017105174A (en) Multilayer film
JP4692818B2 (en) Co-extrusion laminated film and laminate film and packaging container using the same
JP2006150624A (en) Laminated resin unidirectionally stretched film
JP6822198B2 (en) Sealant adhesive and easy-to-peel film
JP4214843B2 (en) Resin composition for extrusion lamination and laminate using the same
JP2001009997A (en) Packaging film
JP4611149B2 (en) Resin composition and film obtained therefrom
JPH09234837A (en) Laminate
JP4158259B2 (en) Extruded laminate resin composition and film comprising the same
JPH1110809A (en) Film for packaging
JP3477283B2 (en) Polyolefin wrap stretch film
JP4662614B2 (en) Ethylene resin film for packaging
JPH11199723A (en) Adhesive resin composition and laminate thereof

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20131129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5678307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250