JP2012176852A - Vacuum chuck - Google Patents

Vacuum chuck Download PDF

Info

Publication number
JP2012176852A
JP2012176852A JP2011041912A JP2011041912A JP2012176852A JP 2012176852 A JP2012176852 A JP 2012176852A JP 2011041912 A JP2011041912 A JP 2011041912A JP 2011041912 A JP2011041912 A JP 2011041912A JP 2012176852 A JP2012176852 A JP 2012176852A
Authority
JP
Japan
Prior art keywords
suction pad
conductance
area
suction
vacuum chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011041912A
Other languages
Japanese (ja)
Other versions
JP5733700B2 (en
Inventor
Atsushi Takada
篤 高田
Masakazu Takatsu
雅一 高津
Kazuya Horie
和也 堀江
Kazuki Kamidan
一樹 上段
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano TEM Co Ltd
Original Assignee
Nano TEM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano TEM Co Ltd filed Critical Nano TEM Co Ltd
Priority to JP2011041912A priority Critical patent/JP5733700B2/en
Publication of JP2012176852A publication Critical patent/JP2012176852A/en
Application granted granted Critical
Publication of JP5733700B2 publication Critical patent/JP5733700B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Handling Of Sheets (AREA)
  • Registering Or Overturning Sheets (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum chuck that definitely positions and holds the whole substance along the surface of an attraction pad even if it is a sheet-like attracted body whose periphery is warped relatively to the surface of the attracted body.SOLUTION: The intake area VE is set at the region of the surface in the attraction pad that positions and holds the periphery of the sheet-like attracted body, and the rate of an air flow passing through the intake area VE is increased to increase attraction power to the surface even if the periphery is away from the surface of the attraction pad by enlarging conductance Cn1 per unit area of the intake area than conductance Cn2 per unit area of the surface in the attraction pad excluding the intake area.

Description

本発明は、密閉された背面側を真空ポンプで減圧し、表面から背面に連通する多数の空隙を介して吸着パッドの表面に載置される被吸着物を吸着して位置決めする真空チャックに関し、更に詳しくは、巻き癖の残る等の原因で一部が吸着パッドの表面から離れて載置されるシート状被吸着物を確実に吸着パッドの表面に沿って位置決めする真空チャックに関するものである   The present invention relates to a vacuum chuck that depressurizes a sealed back side with a vacuum pump and adsorbs and positions an object to be adsorbed placed on the surface of the suction pad through a number of gaps communicating from the surface to the back side. More particularly, the present invention relates to a vacuum chuck that reliably positions a sheet-like object to be adsorbed partially placed away from the surface of the suction pad along the surface of the suction pad due to, for example, remaining curl.

被吸着物を吸引する吸着パッドの表面に対して背面側を真空ポンプで減圧し、表面と背面に連通する貫通孔を介して作業対象の被吸着物を吸引して保持する真空チャックでは、表面側の大気圧に対して背面側の背圧を真空に近い圧力に保つ必要がある。このような真空チャックは、被吸着物が吸着面である表面全体を覆わないと、貫通孔の一部が表面に開口し、貫通孔を通して外気が流入し、表面側と背面側との差圧が充分にとれないので、所定の吸着力が得られないという問題があった。   In a vacuum chuck that sucks and holds the object to be adsorbed through a through-hole communicating with the surface and the back surface, the back side is reduced by a vacuum pump with respect to the surface of the suction pad that sucks the object to be adsorbed. It is necessary to keep the back pressure on the back side close to vacuum with respect to the atmospheric pressure on the side. In such a vacuum chuck, if the object to be adsorbed does not cover the entire surface that is the adsorption surface, a part of the through hole opens to the surface, and outside air flows through the through hole, and the differential pressure between the front side and the back side As a result, there is a problem that a predetermined adsorption force cannot be obtained.

そこで、吸着パッドの表面側と背面側に連通する多数の貫通孔を細径として、貫通孔全体のコンダクタンスを低下させた真空チャックが特許文献1、特許文献2で知られている。これらの従来の真空チャックによれば、一部の貫通孔が被吸着物に覆われずに表面に開口しても、貫通孔を通して表面から背面側に流れる流量が制限され、表面側と背面側との差圧を一定に保つことができ、表面の一部に載置される被吸着物であっても所定の吸着力で表面上に位置決め保持することができる。   Thus, a vacuum chuck is known in Patent Document 1 and Patent Document 2 in which a large number of through holes communicating with the front surface side and the back surface side of the suction pad have a small diameter to reduce the conductance of the entire through hole. According to these conventional vacuum chucks, even if some of the through holes are not covered with the object to be adsorbed and opened on the surface, the flow rate flowing from the surface to the back side through the through holes is limited, and the front side and the back side Can be kept constant, and even an object to be adsorbed placed on a part of the surface can be positioned and held on the surface with a predetermined adsorbing force.

実公昭43−16175号公報Japanese Utility Model Publication No. 43-16175

特許第2693720号公報Japanese Patent No. 2693720

上述の従来の吸着パッドを用いた真空チャックは、工作物への加工工程において、工作物を吸着パッドの表面上に一時的に位置決め保持する用途で用いられるが、工作物がロール等から引き出された可撓性シートである場合には、巻き癖が残り、吸着パッドの表面に載置したときにその先端部が上方に反り、真空チャックの表面に沿って平坦に位置決めできないという問題が生じた。   The vacuum chuck using the above-described conventional suction pad is used for the purpose of temporarily positioning and holding the workpiece on the surface of the suction pad in the machining process of the workpiece, but the workpiece is pulled out from a roll or the like. In the case of the flexible sheet, the curl was left, and when it was placed on the surface of the suction pad, the tip part warped upward, and there was a problem that it could not be positioned flatly along the surface of the vacuum chuck. .

工作物である被吸着物を吸着する吸着力は、吸着パッドの表面側の大気圧P1と真空ポンプで吸引する背面側の気圧P2との差圧ΔPに比例し、この差圧ΔPは、真空ポンプの到達圧力をPu、排気効率をSe、吸着パッドのコンダクタンスをCとして、
ΔP=(P1−Pu)・Se/(Se+C)・・・(6)式
で表される。
The adsorption force for adsorbing an object to be adsorbed, which is a workpiece, is proportional to the differential pressure ΔP between the atmospheric pressure P1 on the surface side of the suction pad and the atmospheric pressure P2 on the back side sucked by the vacuum pump. The ultimate pressure of the pump is Pu, the exhaust efficiency is Se, and the conductance of the suction pad is C.
ΔP = (P1−Pu) · Se / (Se + C) (6)

しかしながら、吸着パッドの表面全体を被吸着物が覆うことがなく、一定の暴露面積を有する上述の真空チャックでは、背面側の気圧P2を低下させるのに限界があり、先端部の反りを吸着パッドの表面まで吸引する充分な吸着力が得られなかった。   However, the above-mentioned vacuum chuck having a certain exposed area without covering the entire surface of the suction pad has a limit in reducing the pressure P2 on the back side, and the warping of the tip portion is caused by the suction pad. A sufficient adsorbing force for sucking up to the surface of the film could not be obtained.

(6)式における吸着パッドのコンダクタンスCを低下させることにより、反った先端部を吸着するまでの吸着力が得られると考えられていたが、上記差圧ΔPから得られる被吸着物の吸着力は、被吸着物が吸着パッドの表面に表れる貫通孔の開口を覆う条件の下で算定される値であるので、上方に反り、吸着パッドの表面から離れた可撓性シートの先端部は、コンダクタンスCを低下させても表面まで吸着させることができず、可撓性シートへの加工の障害となっていた。   Although it has been thought that by reducing the conductance C of the suction pad in the equation (6), an adsorption force until the warped tip is adsorbed is obtained, the adsorption force of the object to be adsorbed obtained from the differential pressure ΔP. Is a value calculated under the condition that the object to be adsorbed covers the opening of the through-hole that appears on the surface of the suction pad, so that the tip of the flexible sheet that warps upward and is separated from the surface of the suction pad is Even if the conductance C is lowered, the surface cannot be adsorbed, which is an obstacle to processing into a flexible sheet.

また、吸着パッドが円筒体であるサクションロールにより平坦な可撓性シートを円筒の外周面に沿って位置決め保持する場合にも、吸着パッドの表面から可撓性シートの先端部が離れた状態で載置されるので、サクションロールの外周面まで吸着させることができないことがあった。   Also, when a flat flexible sheet is positioned and held along the outer peripheral surface of the cylinder by a suction roll whose suction pad is a cylindrical body, the tip of the flexible sheet is separated from the surface of the suction pad. Since it is mounted, it may be impossible to adsorb to the outer peripheral surface of the suction roll.

従って、表面の一部に載置される被吸着物であっても所定の吸着力で表面上に位置決め保持することが可能な上記従来の真空チャックであっても、吸着パッドの表面へ載置する際に、一部に表面と隙間が生じているようなシート状被吸着物については、その全体を吸着パッドの表面に沿って吸着し位置決め保持することができないという課題が残されていた。   Therefore, even the object to be adsorbed placed on a part of the surface is placed on the surface of the suction pad, even the above-described conventional vacuum chuck that can be positioned and held on the surface with a predetermined attracting force. In this case, the sheet-like object to be adsorbed in which a part of the surface and the gap is formed is not able to be adsorbed and positioned and held along the surface of the adsorbing pad.

本発明は、このような従来の問題点を考慮してなされたものであり、吸着物の表面に対し周辺部が相対的に湾曲しているシート状被吸着物であっても、その全体を吸着パッドの表面に沿って確実に位置決め保持する真空チャックを提供することを目的とする。   The present invention has been made in consideration of such conventional problems, and even if it is a sheet-like adsorbent whose peripheral part is curved relative to the surface of the adsorbent, the entire An object of the present invention is to provide a vacuum chuck that reliably positions and holds along the surface of the suction pad.

上述の目的を達成するため、請求項1に記載の真空チャックは、側面の全体が密閉され、多数の空隙により表面と背面が連通する多孔性基板からなる吸着パッドを備え、密閉された吸着パッドの背面側を真空ポンプで減圧し、吸着パッドの表面に載置されるシート状被吸着物を空隙を介して吸引し、前記表面に沿って位置決め保持する真空チャックであって、シート状被吸着物の周辺部を位置決め保持する吸着パッドの表面の部位に吸気領域を設定し、吸気領域の単位面積あたりのコンダクタンスCn1を、吸気領域を除く吸着パッドの表面の単位面積あたりのコンダクタンスCn2より大きくしたことを特徴とする。   In order to achieve the above-mentioned object, the vacuum chuck according to claim 1 is provided with a suction pad made of a porous substrate whose whole side surface is sealed and whose surface and back surface communicate with each other by a large number of gaps. A vacuum chuck that depressurizes the back side of the substrate with a vacuum pump, sucks a sheet-like object to be placed on the surface of the suction pad through a gap, and positions and holds the object along the surface. An intake area is set at the surface area of the suction pad for positioning and holding the peripheral part of the object, and the conductance Cn1 per unit area of the intake area is made larger than the conductance Cn2 per unit area of the surface of the suction pad excluding the intake area It is characterized by that.

シート状被吸着物の周辺部下方の吸気領域では、単位面積あたりのコンダクタンスCn1が大きいので、吸着パッドの空隙へ流れる流量が増加し、シート状被吸着物の周辺部と吸着パッドの表面に隙間があっても、シート状被吸着物は、吸気領域の表面側から背面側へ流れる風圧により吸気領域の表面に押し付けられ、表面に沿って位置決め保持される。   In the intake area below the periphery of the sheet-like adsorbent, the conductance Cn1 per unit area is large, so the flow rate flowing into the gap of the adsorption pad increases, and there is a gap between the periphery of the sheet-like adsorbent and the surface of the adsorption pad. Even if there is, the sheet-shaped adsorbent is pressed against the surface of the intake area by the wind pressure flowing from the front side to the back side of the intake area, and is positioned and held along the surface.

シート状被吸着物の周辺部を位置決め保持する吸気領域は、吸着パッドの表面全体の一部であるので、吸気領域の単位面積あたりのコンダクタンスCn1を、吸気領域を除く吸着パッドの表面の単位面積あたりのコンダクタンスCn2より大きくしても、背面側の気圧P2を減圧し、表面の一部に暴露領域(被吸着物で覆われない領域)が発生している状態で、シート状被吸着物を位置決め保持する充分な吸着力が得られる。   Since the suction area for positioning and holding the periphery of the sheet-like object to be adsorbed is a part of the entire surface of the suction pad, the conductance Cn1 per unit area of the suction area is expressed as the unit area of the surface of the suction pad excluding the suction area. Even if it is larger than the perimeter conductance Cn2, the pressure P2 on the back surface side is reduced, and in the state where the exposed area (area not covered by the adsorbed substance) is generated on a part of the surface, Sufficient adsorption force for positioning and holding can be obtained.

請求項2の真空チャックは、吸着パッドが、表面が凸曲面で湾曲する多孔性基板からなり、シート状被吸着物の先端部を位置決め保持する吸着パッドの表面の部位に吸気領域を設定し、吸着パッドの表面に載置される平坦なシート状被吸着物を、凸曲面の表面に沿って位置決め保持することを特徴とする。   In the vacuum chuck according to claim 2, the suction pad is made of a porous substrate having a curved surface, and an intake region is set at a portion of the surface of the suction pad that positions and holds the tip of the sheet-like object to be sucked. The flat sheet-like object to be placed placed on the surface of the suction pad is positioned and held along the surface of the convex curved surface.

平坦なシート状被吸着物の先端部と吸着パッドの表面に隙間があっても、シート状被吸着物の先端部が、吸気領域の表面側から背面側へ流れる風圧により吸気領域の表面に押し付けられ、凸曲面である表面に沿って位置決め保持される。   Even if there is a gap between the tip of the flat sheet-like adsorbent and the surface of the suction pad, the tip of the sheet-like adsorbent is pressed against the surface of the intake area by the wind pressure flowing from the front side of the intake area to the back side. And is positioned and held along the surface which is a convex curved surface.

請求項3の真空チャックは、吸着パッドが多数の空隙が略等密度に形成され、吸気領域に設定した吸着パッドの背面に多数の第1凹溝が凹設されたことを特徴とする。   The vacuum chuck according to claim 3 is characterized in that a large number of gaps are formed in the suction pad with substantially equal density, and a plurality of first concave grooves are provided in the back surface of the suction pad set in the suction area.

吸着パッドの空隙は、ほぼ等密度に形成され、第1凹溝が凹設された部位は、表面と背面側の第1凹溝の内頂面との厚さが他の部分に比べて薄く、吸気領域での表面と背面を連通する空隙の平均距離がその平均厚さに比例して短くなるので、吸気領域の単位面積あたりのコンダクタンスCn1は、吸気領域を除く他の部分の単位面積あたりのコンダクタンスCn2より大きくなる。   The space of the suction pad is formed with substantially equal density, and the thickness of the portion where the first groove is provided is thinner than the other parts in the surface and the inner top surface of the first groove on the back side. Since the average distance of the air gap communicating between the front surface and the back surface in the intake region is reduced in proportion to the average thickness, the conductance Cn1 per unit area of the intake region is equal to the unit area of other parts excluding the intake region. It becomes larger than the conductance Cn2.

請求項4の真空チャックは、吸気領域に設定した吸着パッドの背面に、複数の第1凹溝と交差し、交差する第1凹溝間を連通する第2凹溝が凹設されていることを特徴とする。   In the vacuum chuck according to claim 4, a second groove that intersects with the plurality of first grooves and communicates between the intersecting first grooves is formed on the back surface of the suction pad set in the suction area. It is characterized by.

吸気領域の表面と第1凹溝と第2凹溝の内頂面との厚さが吸気領域以外の部分に比べて薄くなるので、吸気領域の単位面積あたりのコンダクタンスCn1は、吸気領域を除く他の部分の単位面積あたりのコンダクタンスCn2より大きくなる。   Since the thickness of the surface of the intake region and the inner top surfaces of the first and second grooves are thinner than those other than the portion other than the intake region, the conductance Cn1 per unit area of the intake region excludes the intake region It becomes larger than the conductance Cn2 per unit area of the other part.

請求項5の真空チャックは、吸着パッドが多孔質セラミック基板であることを特徴とする。   The vacuum chuck according to claim 5 is characterized in that the suction pad is a porous ceramic substrate.

吸着パッドが多孔質セラミック基板からなるので、表面と底面を連通する1μm乃至20μmの微小径の空隙が高密度で形成され、吸着パッドのコンダクタンスCn1、Cn2を容易に低下させて、暴露領域が発生していてもシート状被吸着物を位置決め保持する吸着力を発生させることができる。   Since the suction pad is made of a porous ceramic substrate, voids with a small diameter of 1 μm to 20 μm that communicate with the surface and the bottom surface are formed with high density, and the exposed pad conductances Cn1 and Cn2 are easily reduced to generate an exposed region. Even if it does, the adsorption | suction force which positions and holds a sheet-like to-be-adsorbed object can be generated.

請求項1の発明によれば、巻き癖が残り、周辺部が上方に反ったシート状被吸着物を、吸着パッドの平坦な表面に沿って確実に位置決め保持することができ、また、平坦なシート状被吸着物を凸曲面に湾曲する吸着パッドの表面に沿って確実に位置決め保持することができる。   According to the invention of claim 1, the sheet-like object to be adsorbed in which the curl remains and the peripheral part is warped upward can be reliably positioned and held along the flat surface of the suction pad. The sheet-like object to be adsorbed can be reliably positioned and maintained along the surface of the suction pad that curves into a convex curved surface.

請求項2の発明によれば、吸着パッドが円筒体や円筒体の一部の多孔性基板から構成されていても、平坦なシート状被吸着物を確実に円筒状の表面に沿って吸着して位置決め保持できる。従って、サクションロールに吸着パッドを用いれば、搬送される平坦な可撓性フィルムをその表面に沿って確実に位置決め支持することができる。   According to the invention of claim 2, even if the suction pad is composed of a cylindrical body or a part of the porous substrate of the cylindrical body, the flat sheet-like object to be adsorbed is surely adsorbed along the cylindrical surface. Positioning. Therefore, if a suction pad is used for the suction roll, the transported flat flexible film can be reliably positioned and supported along its surface.

請求項3の発明によれば、吸気領域に、第1凹溝を形成する簡単な加工で、吸気領域の単位面積あたりのコンダクタンスCn1を、吸気領域を除く吸着パッドの表面の単位面積あたりのコンダクタンスCn2より大きくすることができる。   According to the third aspect of the present invention, the conductance Cn1 per unit area of the intake area can be calculated as the conductance per unit area of the surface of the suction pad excluding the intake area by a simple process of forming the first concave groove in the intake area. It can be larger than Cn2.

吸着パッドの全体を薄くせず、表面から第1凹溝を凹設するだけなので、吸着パッドの強度を保ちつつ、吸気領域の単位面積あたりのコンダクタンスCn1を大きくすることができる。   Since the entire suction pad is not thinned and only the first groove is formed from the surface, the conductance Cn1 per unit area of the intake region can be increased while maintaining the strength of the suction pad.

第1凹溝は吸着パッドの背面から凹設され、吸気領域の表面に凹溝が形成されないので、第1凹溝の凹設部位で吸着力が増加しても、シート状被吸着物を屈曲させたり、シート状被吸着物にサクションマークを残さずに位置決め保持することができる。   The first groove is recessed from the back surface of the suction pad, and no groove is formed on the surface of the suction area. Therefore, even if the suction force increases at the recessed portion of the first groove, the sheet-shaped object is bent. Or can be positioned and held without leaving a suction mark on the sheet-like object to be adsorbed.

請求項4の発明によれば、複数の第1凹溝間を第2凹溝によって連通するので、吸気領域での吸着力のばらつきが減少し、シート状被吸着物を屈曲させずに位置決め保持することができる。   According to the invention of claim 4, since the plurality of first concave grooves communicate with each other through the second concave grooves, the variation in the suction force in the intake area is reduced, and the sheet-like object is positioned and held without bending. can do.

請求項5の発明によれば、吸着パッドをセラミック基板で形成するので、吸気領域の単位面積あたりのコンダクタンスCn1を大きくするために、薄型化したり、多数の凹溝を凹設しても、充分な強度が得られる。   According to the fifth aspect of the present invention, since the suction pad is formed of a ceramic substrate, it is sufficient to reduce the thickness or to provide a large number of concave grooves in order to increase the conductance Cn1 per unit area of the intake region. Strength can be obtained.

図1は、本発明の一実施の形態に係る真空チャック1にシート状被吸着物Wを載置した状態を示す説明図である。FIG. 1 is an explanatory view showing a state in which a sheet-like object W is placed on a vacuum chuck 1 according to an embodiment of the present invention. 図2は、吸着パッド2の斜め下方からみた斜視図である。FIG. 2 is a perspective view of the suction pad 2 as viewed obliquely from below. 吸着パッド2の部分省略背面図である。It is a partial abbreviated rear view of the suction pad 2. 図3のA−A線端面図である。It is an AA line end view of FIG. 図3のB−B線端面図である。FIG. 4 is an end view taken along line BB in FIG. 3. 図6は、真空チャック1の吸引動作を示す説明図である。FIG. 6 is an explanatory view showing the suction operation of the vacuum chuck 1. 図7は、吸着パッド2へシート状被吸着物Wを載置した状態の吸引動作を示す説明図である。FIG. 7 is an explanatory diagram showing a suction operation in a state where the sheet-like object W is placed on the suction pad 2.

以下、本発明の一実施の形態に係る真空チャック1を図1乃至図7の各図を用いて説明する。真空チャック1は、可撓性シートWへ印刷や配線などの加工を施す間に、可撓性シートWを一時的に表面上に位置決め保持する目的で印刷機やプリント基板製造装置の一部の機構として組み込まれたもので、特に図1に示すように、円筒ドラム11に巻回された帯状の可撓性シートから所定長に裁断された可撓性シートWの位置決め保持に適している。すなわち、円筒ドラム11や送りローラ7等で巻き癖が残り、送り方向の先端部Wfが湾曲して上方に反った可撓性シートWであっても、吸着して表面に沿って位置決め保持する。   Hereinafter, a vacuum chuck 1 according to an embodiment of the present invention will be described with reference to FIGS. The vacuum chuck 1 is a part of a printer or a printed circuit board manufacturing apparatus for the purpose of temporarily positioning and holding the flexible sheet W on the surface while performing processing such as printing and wiring on the flexible sheet W. It is incorporated as a mechanism, and is particularly suitable for positioning and holding a flexible sheet W cut to a predetermined length from a strip-like flexible sheet wound around a cylindrical drum 11 as shown in FIG. In other words, even the flexible sheet W in which the curl remains on the cylindrical drum 11 or the feed roller 7 and the leading end Wf in the feed direction is curved and warps upward is attracted and positioned along the surface. .

真空チャック1は、可撓性シートWを背面側から吸着してその表面上に位置決め保持する吸着パッド2と、吸着パッド2の全ての側面を密封し、吸着パッド2の背面側を外気と遮断した減圧室3とするチャック本体4と、減圧室3に連通する排気路から排気する真空ポンプ5と、真空ポンプ5の排気効率Seを検出する為に単位時間あたりの排気量を検出する流量計6を備えているが、流量計6は、排気量を検出した後は、取り除いても良い。   The vacuum chuck 1 seals the suction pad 2 that sucks the flexible sheet W from the back side and positions and holds the flexible sheet W on the surface thereof, and seals all the side surfaces of the suction pad 2 and blocks the back side of the suction pad 2 from the outside air. The chuck body 4 serving as the decompression chamber 3, the vacuum pump 5 exhausting from the exhaust passage communicating with the decompression chamber 3, and the flow meter for detecting the exhaust amount per unit time in order to detect the exhaust efficiency Se of the vacuum pump 5 However, the flow meter 6 may be removed after detecting the displacement.

吸着パッド2は、多孔質セラミック基板で形成され、本実施の形態では、平均孔径が10μmの空隙がその内部に等密度で形成され、気孔率nが35%のセラミック基板を用いている。内部に無数の空隙が相互に連続して形成されることにより、単位面積あたりで表面と背面を連通する多数の貫通孔が並列に形成されているものとし、吸着パッド2の表面と背面間のコンダクタンスを検討できる。   The suction pad 2 is formed of a porous ceramic substrate, and in the present embodiment, a ceramic substrate is used in which voids having an average pore diameter of 10 μm are formed at an equal density therein, and the porosity n is 35%. An infinite number of voids are continuously formed inside, so that a large number of through-holes communicating with the surface and the back surface per unit area are formed in parallel, and between the surface and the back surface of the suction pad 2. Conductance can be examined.

ここで、気孔率nとは、吸着パッド2の単位体積あたりの空隙の体積の比であるが、表面側から背面側に連通する空隙が吸着パッド2内に等密度で形成されているものすれば、吸着パッド2表面の単位面積(例えば1平方センチメートル)に対し、単位面積内に開口する空隙の総開口面積の比率も、空隙の形状と大きさから定まる定数で気孔率nに比例するので、ここでは、空隙の表面への開口率を気孔率nで表す。セラミック焼結技術を用いれば、平均孔径が1乃至200μmの範囲で、気孔率nを10乃至60%の範囲で多孔質セラミック基板を形成することができるが、気孔率nを20%未満とすると、貫通孔の一部が閉塞し、算定した吸着力が得られない場合があり、また、60%以上とすると、空隙が増加して強度が劣化し、破損する恐れがある。   Here, the porosity n is the ratio of the volume of the voids per unit volume of the suction pad 2, but the voids communicating from the front side to the back side are formed in the suction pad 2 with equal density. For example, the ratio of the total opening area of the voids opened in the unit area to the unit area (for example, 1 square centimeter) of the surface of the suction pad 2 is proportional to the porosity n with a constant determined from the shape and size of the voids. Here, the opening ratio to the surface of the void is represented by the porosity n. If the ceramic sintering technique is used, a porous ceramic substrate can be formed with an average pore diameter in the range of 1 to 200 μm and a porosity n in the range of 10 to 60%. If the porosity n is less than 20%, In some cases, a part of the through-hole is blocked, and the calculated adsorption force may not be obtained. If it is 60% or more, the voids increase, the strength deteriorates, and there is a risk of breakage.

図2に示すように、可撓性シートWの上方に反って載置される周辺部(ここでは、送り方向の先端部Wf)の下方の吸着パッド2の表面の領域は、吸気領域VEと設定され、吸気領域VEの単位面積あたりのコンダクタンスCn1を、その他の吸着パッド2の単位面積あたりのコンダクタンスCn2に対して大きい値としている。   As shown in FIG. 2, the area of the surface of the suction pad 2 below the peripheral portion (here, the front end portion Wf in the feeding direction) placed on the flexible sheet W in an upward direction is an intake region VE. The conductance Cn1 per unit area of the intake area VE is set to a larger value than the conductance Cn2 per unit area of the other suction pads 2.

吸気領域VEの単位面積あたりのコンダクタンスCn1を他の領域に比べて増大させる手段として、吸気領域VEの吸着パッド2の厚さを薄くする、吸気領域VEの気孔率nを上げて空隙の平均孔径を拡大させる等の種々の方法があるが、本実施の形態では、吸着パッド2の吸気領域VEを設定した背面に、複数の横凹溝8と横凹溝8に直交する複数の縦凹溝9を凹設し、吸気領域VEの平均単位面積あたりのコンダクタンスCn1を増大させている。   As means for increasing the conductance Cn1 per unit area of the intake area VE as compared with other areas, the thickness of the suction pad 2 of the intake area VE is reduced, the porosity n of the intake area VE is increased, and the average pore diameter of the voids In the present embodiment, a plurality of horizontal concave grooves 8 and a plurality of vertical concave grooves perpendicular to the horizontal concave grooves 8 are formed on the back surface of the suction pad 2 where the intake area VE is set. 9 is recessed to increase the conductance Cn1 per average unit area of the intake region VE.

すなわち、図3乃至図5に示す横凹溝8と縦凹溝9が凹設された部位では、表面と凹溝の内頂面との距離が、吸気領域VE以外の吸着パッド2の表面と背面との距離Lに対して短く、コンダクタンスは、表面と背面を連通する空隙の距離に反比例する。従って、凹溝8、9が凹設された部位の単位面積あたりのコンダクタンスが増加し、吸気領域VEの全体での単位面積あたりの平均コンダクタンスCn1も増大する。 That is, in the portion where the horizontal groove 8 and the vertical groove 9 shown in FIGS. 3 to 5 are recessed, the distance between the surface and the inner top surface of the groove is the surface of the suction pad 2 other than the intake region VE. shorter than the distance L 2 between the rear, conductance is inversely proportional to the distance of the gap which communicates the back surface. Therefore, the conductance per unit area of the portion where the concave grooves 8 and 9 are recessed increases, and the average conductance Cn1 per unit area in the entire intake region VE also increases.

厚みがLである多孔質セラミック基板に凹溝8、9を凹設することによる吸気領域VEの平均厚みをL、厚みがLの吸気領域VE以外の吸着パッド2の単位面積あたりのコンダクタンスをCn2として、吸気領域VEの平均単位面積あたりのコンダクタンスCn1は、Cn1=(L/L)・Cn2であり、L/Lをk(0<k<1)とおけば、
Cn1=Cn2/k・・(1)式
で表される。
A thickness of L 2 porous L 1 the average thickness of the intake region VE due to the recessed concave grooves 8, 9 on a ceramic substrate, a thickness per unit area of the suction pad 2 except the intake region VE of L 2 The conductance Cn1 per average unit area of the intake region VE is Cn1 = (L 2 / L 1 ) · Cn2, where L 1 / L 2 is k 1 (0 <k 1 <1), where conductance is Cn2. If
Cn1 = Cn2 / k 1 ... (1)

(1)式において、kは、0<k<1の実数であるので、(1)式は、凹溝8、9を凹設することによる吸気領域VEの平均単位面積あたりのコンダクタンスCn1が、吸気領域VE以外の領域の単位面積あたりの平均コンダクタンスCn2に比べて増大することを示している。尚、本明細書では、特に説明上の必要がある場合を除き、吸気領域VEの全体での単位面積あたりの平均コンダクタンスCn1を単位面積あたりのコンダクタンスCn1と、吸気領域VE以外の全体の領域の単位面積あたりの平均コンダクタンスCn2を、単位面積あたりのコンダクタンスCn2として説明する。 In the equation (1), k 1 is a real number where 0 <k 1 <1. Therefore, the equation (1) represents the conductance Cn1 per average unit area of the intake region VE by providing the concave grooves 8 and 9. Indicates that the average conductance Cn2 per unit area in the region other than the intake region VE increases. In this specification, the average conductance Cn1 per unit area in the entire intake area VE is calculated as the conductance Cn1 per unit area and the entire area other than the intake area VE, unless otherwise required for explanation. The average conductance Cn2 per unit area will be described as conductance Cn2 per unit area.

吸着パッド2に等密度で空隙が形成されているので、単位面積あたりの表面と背面をそれぞれ並列に連通する空隙の数は一定であり、吸気領域VE全体のコンダクタンスC1は、吸気領域VEの表面積をSとして、C1=Cn1・Sと、吸気領域VE以外の吸着パッド2のコンダクタンスC2は、吸気領域VE以外の表面積をSとして、C2=Cn2・Sでそれぞれ表される。従って、凹溝8、9を凹設することよる吸着パッド2全体のコンダクタンスC’は、C’=Cn1・S+Cn2・Sとなり、S/Sをk(0<k<1)とおいて、(1)式を代入すれば、
C’=Cn2・S・(k+k)/k・・(2)式
で表される。
Since voids are formed at equal density in the suction pad 2, the number of voids connecting the front surface and the rear surface per unit area in parallel is constant, and the conductance C1 of the entire intake region VE is the surface area of the intake region VE. as S 1, and C1 = Cn1 · S 1, conductance C2 of the suction pad 2 except the intake region VE is the surface area of the non-suction region VE as S 2, respectively represented by C2 = Cn2 · S 2. Therefore, the conductance C ′ of the suction pad 2 as a whole by forming the concave grooves 8 and 9 is C ′ = Cn1 · S 1 + Cn2 · S 2 , and S 1 / S 2 is set to k 2 (0 <k 2 < 1) Substituting equation (1),
C ′ = Cn2 · S 2 · (k 1 + k 2 ) / k 1 ·· (2).

一方、吸気領域VEに凹溝8、9を凹設しない場合の吸着パッド2のコンダクタンスCは、C=Cn2・(S+S)であり、S=S・kであるので、(2)式を用いて、
C’/C=(k+k)/(k+k・k)・・(3)式
で表される。
On the other hand, the conductance C of the suction pad 2 when the recessed grooves 8 and 9 are not recessed in the intake region VE is C = Cn2 · (S 1 + S 2 ) and S 1 = S 2 · k 2 . Using equation (2)
C ′ / C = (k 1 + k 2 ) / (k 1 + k 1 · k 2 ) ·· (3)

(3)式において、kは0<k<1の実数であるので、(3)式の分母と分子を比較すれば、k+k>k+k・kであるので、(3)式は、凹溝8、9を凹設した吸着パッド2のコンダクタンスC’が、凹溝8、9を凹設しない吸着パッド2のコンダクタンスCに比べて増大することを示す。 In the equation (3), k 1 is a real number of 0 <k 1 <1, and therefore, if the denominator and the numerator of the equation (3) are compared, k 1 + k 2 > k 1 + k 1 · k 2 , The expression (3) indicates that the conductance C ′ of the suction pad 2 having the recessed grooves 8 and 9 recessed is larger than the conductance C of the suction pad 2 having no recessed grooves 8 and 9.

図6に示すように、多孔質セラミック基板からなる吸着パッド2を用いて、真空チャック1の減圧室3から到達圧力Puの真空ポンプ5で排気したときの減圧室3内の圧力(以下、背圧という)P2は、空隙が気体分子の平均自由行程λより直径が充分に小さい円筒であると仮定し、一般に、   As shown in FIG. 6, using the suction pad 2 made of a porous ceramic substrate, the pressure in the decompression chamber 3 (hereinafter referred to as the back) when evacuated from the decompression chamber 3 of the vacuum chuck 1 by the vacuum pump 5 having the ultimate pressure Pu. P2) (assuming pressure) is assumed to be a cylinder whose diameter is sufficiently smaller than the mean free path λ of gas molecules,

Figure 2012176852
Figure 2012176852

で表される。(4)式において、P1は、吸着パッド2の表面側の大気圧、Seは、流量計6で計測される真空ポンプ5の排気効率、rは、円筒の半径、Lは円筒の長さ、kはボルツマン定数、Tは絶対温度、mは気体分子の質量、qは、吸着パッド2全体の表裏を連通する空隙の数、q1は、可撓性シートWで覆われる吸着パッド2の空隙数である。 It is represented by In the equation (4), P1 is the atmospheric pressure on the surface side of the suction pad 2, Se is the exhaust efficiency of the vacuum pump 5 measured by the flow meter 6, r is the radius of the cylinder, L is the length of the cylinder, k is the Boltzmann constant, T is the absolute temperature, m is the mass of the gas molecule, q is the number of voids communicating with the entire front and back of the suction pad 2, and q1 is the number of voids of the suction pad 2 covered with the flexible sheet W. It is.

(4)式中の   (4) in the formula

Figure 2012176852
Figure 2012176852

は、凹溝8、9を凹設しない場合の吸着パッド2のコンダクタンスCを表し、また、図6に示すように、可撓性シートWが載置されていない状態でq1は0であるので、
(4)式は、
P2=(Pu+P1・C/Se)/(1+C/Se)・・・(5)式
で表される。
Represents the conductance C of the suction pad 2 when the recessed grooves 8 and 9 are not recessed, and as shown in FIG. 6, q1 is 0 when the flexible sheet W is not placed. ,
Equation (4) is
P2 = (Pu + P1 · C / Se) / (1 + C / Se) (5)

(5)式を用いて、大気圧P1と背圧P2との差圧ΔPは、
ΔP=P1−P2=(P1−Pu)・Se/(Se+C)・・・(6)式
となる。
Using the equation (5), the differential pressure ΔP between the atmospheric pressure P1 and the back pressure P2 is
ΔP = P1−P2 = (P1−Pu) · Se / (Se + C) (6)

また、図6に示すように、吸気領域VEに凹溝8、9を凹設し、全体のコンダクタンスがC’である吸着パッド2を用いて、遮られる減圧室3から到達圧力Puの真空ポンプ5で同一の排気効率Seで排気したときの背圧P2’は、
P2’=(Pu+P1・C’/Se)/(1+C’/Se)・・・(5)’式
となり、大気圧P1と背圧P2’との差圧ΔP’は、
ΔP’=P1−P2’=(P1−Pu)・Se/(Se+C’)・・・(7)式
となる。
Further, as shown in FIG. 6, a vacuum pump of the ultimate pressure Pu from the decompression chamber 3 to be blocked by using the suction pad 2 in which the concave grooves 8 and 9 are provided in the intake region VE and the overall conductance is C ′. The back pressure P2 ′ when exhausting with the same exhaust efficiency Se in FIG.
P2 ′ = (Pu + P1 · C ′ / Se) / (1 + C ′ / Se) (5) ′ where the differential pressure ΔP ′ between the atmospheric pressure P1 and the back pressure P2 ′ is
ΔP ′ = P1−P2 ′ = (P1−Pu) · Se / (Se + C ′) (7)

(6)式と(7)式から、
ΔP’/ΔP=(Se+C)/(Se+C’)・・・(8)式
であり、(8)式に(3)式を代入してC’を消去すれば、
ΔP’/ΔP=(Se+C)/[Se+C・(k+k)/(k+k・k)]・・・(9)式
となり、分母のCの係数(k+k)/(k+k・k)が1以上の実数であることから、凹溝8、9を凹設することによって差圧ΔP’が減少することが示されている。
From Equation (6) and Equation (7),
ΔP ′ / ΔP = (Se + C) / (Se + C ′) (8), and by substituting equation (3) into equation (8) and deleting C ′,
ΔP ′ / ΔP = (Se + C) / [Se + C · (k 1 + k 2 ) / (k 1 + k 1 · k 2 )] (9) where the coefficient of the denominator C coefficient (k 1 + k 2 ) / Since (k 1 + k 1 · k 2 ) is a real number of 1 or more, it is shown that the differential pressure ΔP ′ is reduced by providing the concave grooves 8 and 9.

吸気領域VEの単位面積あたりで表面から背面に吸気される通気量Qn’は、コンダクタンスの定義から、Qn’=ΔP’・Cn1で表され、同様に凹溝8、9を凹設しない領域での単位面積あたりで表面から背面に吸気される通気量Qnは、Qn=ΔP・Cn2で表されるので、
Qn’/Qn=ΔP’・Cn1/ΔP・Cn2・・・(10)式
となり、(10)式に(1)式と(9)式を代入して整理すれば、(10)式は、
Qn’/Qn=(Se+C)/[k・Se+C・(k+k)/(1+k)]・・・(11)式
で表される。ここで、分母と分子のSeの係数を比較すれば、1>kであり、分母と分子のCの係数を比較すれば、1>(k+k)/(1+k)であり、いずれも分母の係数が小さい。従って、凹溝8、9を凹設することにより差圧ΔP’が減少するものの、通気量Qn’は逆に増加し、その風圧により吸気領域VEで上方に反った可撓性シートWの先端部Wfを吸引し、確実に表面に沿って位置決め保持することができる。
The airflow rate Qn ′ sucked from the front surface to the back surface per unit area of the intake region VE is represented by Qn ′ = ΔP ′ · Cn1 from the definition of conductance, and is similarly a region where the concave grooves 8 and 9 are not provided. The air flow rate Qn sucked from the front surface to the back surface per unit area is expressed as Qn = ΔP · Cn2.
Qn ′ / Qn = ΔP ′ · Cn1 / ΔP · Cn2 (10). If the equations (1) and (9) are substituted into the equation (10) and rearranged, the equation (10) becomes
Qn ′ / Qn = (Se + C) / [k 1 · Se + C · (k 1 + k 2 ) / (1 + k 2 )] (11) Here, if the Se coefficients of the denominator and numerator are compared, 1> k 1 , and if the coefficients of C of the denominator and numerator are compared, 1> (k 1 + k 2 ) / (1 + k 2 ), Both have small denominator coefficients. Therefore, although the differential pressure ΔP ′ is reduced by forming the concave grooves 8 and 9, the air flow rate Qn ′ increases conversely, and the leading end of the flexible sheet W warped upward in the intake region VE by the wind pressure. The portion Wf can be sucked and positioned and held reliably along the surface.

つまり、吸着パッド2の表面から離れた被吸着物Wを吸着させるには、その離れた部位での吸着バッドの単位面積あたりのコンダクタンスを上げて、大気圧P1と背圧P2との差圧ΔPを増加させて吸着力を増加させることがその対策と考えられていたが、本願の発明者による鋭意研究の結果、差圧ΔPを上昇させての吸着力の増大は、表面に被吸着物Wが密着していることを前提とするもので、表面から離れた被吸着物Wを吸着させるには、むしろその部位のコンダクタンスを低下させて、全体の差圧ΔPが低下しても通気量Qnを増大させることが必要であることを見出した。   That is, in order to adsorb the object to be adsorbed away from the surface of the adsorption pad 2, the conductance per unit area of the adsorption pad at the distant part is increased and the pressure difference ΔP between the atmospheric pressure P1 and the back pressure P2 is increased. Increasing the adsorption force by increasing the adsorption force has been considered as a countermeasure. However, as a result of intensive studies by the inventors of the present application, the increase in the adsorption force by increasing the differential pressure ΔP is caused by the adsorbed object W on the surface. In order to adsorb the object to be adsorbed W away from the surface, the conductance of the part is rather decreased, and the air flow rate Qn is reduced even if the overall differential pressure ΔP is decreased. We found that it is necessary to increase

ただし、本実施の形態によれば、背圧P2’との差圧ΔP’が低下することにより、吸着パッド2の表面に沿って可撓性シートWを密着させた後の吸着力も低下するので、以下、可撓性シートWを表面に沿って位置決め保持する為の単位面積あたりの最小吸着力をFminとして、最小吸着力Fmin以上の吸着力Fを得るために吸着パッド2に求められる条件について説明する。   However, according to the present embodiment, since the differential pressure ΔP ′ from the back pressure P2 ′ is reduced, the suction force after the flexible sheet W is brought into close contact with the surface of the suction pad 2 is also reduced. Hereinafter, the conditions required for the suction pad 2 to obtain the suction force F equal to or greater than the minimum suction force Fmin, where Fmin is the minimum suction force per unit area for positioning and holding the flexible sheet W along the surface. explain.

図7に示すように、背圧がP2’となった吸着パッド2の表面に、可撓性シートWの全体が載置されると、可撓性シートWにより覆われた空隙の開口において、鉛直方向に大気圧P1と背圧P2’との差圧ΔP’を受け、可撓性シートWは、可撓性シートWにより覆われた全ての空隙の開口面積の総和S2に差圧ΔP’を乗じた吸着力Fを受ける。   As shown in FIG. 7, when the entire flexible sheet W is placed on the surface of the suction pad 2 whose back pressure is P2 ′, in the opening of the gap covered by the flexible sheet W, The flexible sheet W receives the pressure difference ΔP ′ between the atmospheric pressure P1 and the back pressure P2 ′ in the vertical direction, and the flexible sheet W has a difference pressure ΔP ′ in the sum S2 of the opening areas of all the gaps covered by the flexible sheet W. The adsorption force F multiplied by is received.

可撓性シートWの吸着パッド2の表面への投影面積をS1とすれば、気孔率nから上記総和S2は、S1・nであり、可撓性シートWの吸着力Fは、
F=nS1・ΔP’・・・(12)式
で表され、可撓性シートWの単位面積あたりの吸着力Fnは、
Fn=F/S1=n・ΔP’・・・(13)式
となる。
If the projected area of the flexible sheet W onto the surface of the suction pad 2 is S1, the total S2 from the porosity n is S1 · n, and the suction force F of the flexible sheet W is
F = nS1 · ΔP ′ (12) expressed by the equation, and the adsorption force Fn per unit area of the flexible sheet W is
Fn = F / S1 = n · ΔP ′ (13)

更に、(13)式のΔP’に(7)式を代入すれば、可撓性シートWの単位面積あたりの吸着力Fnは、
Fn=n・(P1−Pu)・Se/(Se+C’)・・・(14)式
となる。(14)式において、P1は、大気圧、Puは、真空ポンプ5の到達圧力として既知であり、Seは、図1に示す可撓性シートWを載置しない状態で単位時間中に流量計6で計測される流量を真空ポンプ5の排気効率として計測できるので、(14)式から、気孔率nとコンダクタンスC’の吸着パッド2による単位面積あたりの吸着力Fnが得られる。
Furthermore, if the equation (7) is substituted into ΔP ′ in the equation (13), the adsorption force Fn per unit area of the flexible sheet W is
Fn = n · (P1−Pu) · Se / (Se + C ′) (14) In the equation (14), P1 is known as the atmospheric pressure, Pu is known as the ultimate pressure of the vacuum pump 5, and Se is a flow meter during the unit time without the flexible sheet W shown in FIG. Since the flow rate measured at 6 can be measured as the exhaust efficiency of the vacuum pump 5, the adsorption force Fn per unit area by the adsorption pad 2 having the porosity n and the conductance C ′ is obtained from the equation (14).

ここで、吸着パッド2全体のコンダクタンスC’は、表面に可撓性シートWが載置されていない状態での値であるので、投影面積がS1の可撓性シートWで一部の空隙の開口が覆われると増加し、単位面積あたりの吸着力Fnは更に増大する。   Here, the conductance C ′ of the suction pad 2 as a whole is a value in a state where the flexible sheet W is not placed on the surface. When the opening is covered, it increases and the adsorption force Fn per unit area further increases.

従って、可撓性シートWの有無に関わらず、表面に沿った単位面積あたりの吸着力Fnは、可撓性シートWが載置されない状態での(14)式から算定される吸着力Fnを下回ることはなく、真空チャック1の可撓性シートWを吸着保持するために必要な単位面積あたりの最小吸着力Fminとすれば、
Fmin≦n・(P1−Pu)・Se/(Se+C’)・・・(15)式
を満たす気孔率nとコンダクタンスC’の吸着パッド2を選定すれば、可撓性シートWの大きさにかかわらず、可撓性シートWを確実に位置決め保持することが可能な真空チャック1とすることができる。ここで、単位面積あたりの最小吸着力Fminは、可撓性シートWの厚みや比重によっても異なるが、例えば、可撓性シートWへの作業中に吸着パッド2上で位置ずれせずに吸着保持するための最小吸着力Fminとして、大気圧P1の3/10の33kPaとする。
Therefore, regardless of the presence or absence of the flexible sheet W, the adsorption force Fn per unit area along the surface is the adsorption force Fn calculated from the equation (14) in a state where the flexible sheet W is not placed. If the minimum adsorbing force Fmin per unit area necessary for adsorbing and holding the flexible sheet W of the vacuum chuck 1 is not decreased,
Fmin ≦ n · (P1−Pu) · Se / (Se + C ′) (15) If the suction pad 2 having a porosity n and a conductance C ′ satisfying the equation (15) is selected, the size of the flexible sheet W can be obtained. Regardless, the vacuum chuck 1 that can reliably position and hold the flexible sheet W can be obtained. Here, the minimum suction force Fmin per unit area varies depending on the thickness and specific gravity of the flexible sheet W. For example, the suction is performed without shifting the position on the suction pad 2 during the work on the flexible sheet W. The minimum adsorption force Fmin for holding is 33 kPa, which is 3/10 of the atmospheric pressure P1.

また、吸着パッド2の表面への投影面積がS1である可撓性シートWを位置決め保持する為に必要な最小吸着力をF’とすれば、
F’=Fmin・S1≦n・S1・(P1−Pu)・Se/(Se+C’)・・・(16)式
を満たす気孔率nとコンダクタンスC’の吸着パッド2を選定することにより、可撓性シートWを確実に位置決め保持することができる。
If the minimum suction force required for positioning and holding the flexible sheet W whose projected area onto the surface of the suction pad 2 is S1 is F ′,
F '= Fmin.S1.ltoreq.n.S1. (P1-Pu) .Se / (Se + C')... By selecting a suction pad 2 having a porosity n and conductance C 'satisfying the equation (16) The flexible sheet W can be reliably positioned and held.

(実施例)
気孔率nが35%で大きさが100mm平方、厚さが5mmの多孔質セラミック基板の可撓性シートWの先端部が載置される横幅95mm、縦幅15mmの領域を吸気領域VEに設定し、吸気領域VEの背面側から、図2乃至図5に示すように、6本の多数の横凹溝8と9本の縦凹溝9を交差させて凹設し、吸着パッド2とした(以下、吸着パッドAという)。図4に示すように、横凹溝8は、幅1mm、深さ3mmで背面側から表面に向けて凹設され、各横凹溝8間は2mmピッチの等間隔となっている。また、縦凹溝9も、幅1mm、深さ3mmで背面側から表面に向けて凹設され、各縦凹溝9は、12mmの等ピッチで各横凹溝8に直交し、横凹溝8間を連通させている。
(Example)
An area having a width of 95 mm and a width of 15 mm on which the tip of the flexible sheet W of a porous ceramic substrate having a porosity n of 35%, a size of 100 mm square and a thickness of 5 mm is placed is set as an intake area VE. Then, from the back side of the intake area VE, as shown in FIG. 2 to FIG. 5, six horizontal concave grooves 8 and nine vertical concave grooves 9 are formed so as to intersect to form the suction pad 2. (Hereinafter referred to as suction pad A). As shown in FIG. 4, the horizontal grooves 8 are 1 mm wide and 3 mm deep and recessed from the back side to the surface, and the horizontal grooves 8 are equally spaced with a pitch of 2 mm. The vertical grooves 9 are also 1 mm wide and 3 mm deep and recessed from the back side to the surface. Each vertical groove 9 is orthogonal to each horizontal groove 8 at an equal pitch of 12 mm. 8 communicates with each other.

このように吸気領域VEに多数の横凹溝8と縦凹溝9を凹設することにより、凹溝8、9が凹設された部位での内頂面と表面との間隔(厚さ)は、2mmとなり、吸気領域VE全体の平均の厚みが薄くなるので、厚さ5mmである吸気領域VE以外の単位面積あたりのコンダクタンスCn2に比べて、吸気領域VEの単位面積あたりのコンダクタンスCn1が大きくなる。   Thus, by providing a large number of the horizontal grooves 8 and the vertical grooves 9 in the intake region VE, the distance (thickness) between the inner top surface and the surface at the position where the grooves 8 and 9 are formed. Is 2 mm, and the average thickness of the entire intake region VE is reduced. Therefore, the conductance Cn1 per unit area of the intake region VE is larger than the conductance Cn2 per unit area other than the intake region VE having a thickness of 5 mm. Become.

実施例である吸着パッドAの比較例として、吸着パッドAと同材質で大きさが100mm平方、厚さが2mmの多孔質セラミック基板からなる吸着パッド2(以下、吸着パッドB)と、吸着パッドAと同材質で大きさが100mm平方、厚さが5mmの多孔質セラミック基板からなる吸着パッド2(以下、吸着パッドC)を用意した。従って、吸着パッドBの単位面積あたりのコンダクタンスCn3は、コンダクタンスCn2より大きく、吸着パッドCの単位面積あたりのコンダクタンスは、Cn1となり、吸着パッド2全体のコンダクタンスCは、吸着パッドC、吸着パッドA、吸着パッドBの順に大きくなる。   As a comparative example of the suction pad A which is an embodiment, the suction pad 2 (hereinafter referred to as the suction pad B) made of a porous ceramic substrate having the same material as the suction pad A, a size of 100 mm square and a thickness of 2 mm, and the suction pad An adsorption pad 2 (hereinafter, adsorption pad C) made of a porous ceramic substrate having the same material as A and a size of 100 mm square and a thickness of 5 mm was prepared. Therefore, the conductance Cn3 per unit area of the suction pad B is larger than the conductance Cn2, the conductance per unit area of the suction pad C is Cn1, and the conductance C of the entire suction pad 2 is the suction pad C, the suction pad A, The suction pad B increases in order.

上記3種類の吸着パッドA、吸着パッドB、吸着パッドC毎に、それぞれチャック本体4に載置して全ての側面をチャック本体4で密封し、減圧室3から到達圧力Puが−96kPaの真空ポンプ5により、排気効率Seを200L/分で排気した。   Each of the above three types of suction pads A, suction pads B, and suction pads C is placed on the chuck body 4 and all sides are sealed with the chuck body 4, and a vacuum with an ultimate pressure Pu of −96 kPa from the decompression chamber 3 is obtained. The pump 5 exhausted exhaust efficiency Se at 200 L / min.

始めに、吸着パッド2の表面に被吸着物Wを載置しない状態で、各背圧P2を測定し、吸着パッドAが−69kPa、吸着パッドBが−55kPa、吸着パッドCが−75kPaであり、吸着パッド2全体のコンダクタンスCが大きくなるほど、大気圧P1と背圧P2との差圧ΔPが減少する上記(6)式の結果を示している。   First, each back pressure P2 is measured in a state where the object W is not placed on the surface of the suction pad 2, the suction pad A is -69 kPa, the suction pad B is -55 kPa, and the suction pad C is -75 kPa. The result of the above equation (6) in which the differential pressure ΔP between the atmospheric pressure P1 and the back pressure P2 decreases as the conductance C of the entire suction pad 2 increases.

次に、シート状被吸着物Wとして、幅15mm、長さ120mm、厚さ1mmのPVC板からなる可撓性シートWを用い、吸着パッドAについては、可撓性シートWを吸気領域VEと鉛直方向で重なるように吸気領域VEの上方に配置し、長手方向の一側を吸気領域VEから引き上げて、その状態での吸着力Fを測定した。また、吸着パッドBと吸着パッドCについては、同じ可撓性シートWを、吸気領域VEに相当する表面の領域の上方に配置し、長手方向の一側を表面から引き上げて、同様の姿勢での吸着力Fを測定した。すなわち、各吸着パッドA、B、Cに、周辺部が上方に反った可撓性シートWが載置される状態を疑似的に再現し、その状態で上方に反った可撓性シートW周辺部を吸着パッド2の表面へ吸着させる方向に働く力を吸着力Fとして測定した。   Next, a flexible sheet W made of a PVC plate having a width of 15 mm, a length of 120 mm, and a thickness of 1 mm is used as the sheet-shaped object to be adsorbed W. For the suction pad A, the flexible sheet W is defined as an intake region VE. Arranged above the intake region VE so as to overlap in the vertical direction, one side in the longitudinal direction was pulled up from the intake region VE, and the adsorption force F in that state was measured. Further, for the suction pad B and the suction pad C, the same flexible sheet W is disposed above the surface area corresponding to the intake area VE, and one side in the longitudinal direction is pulled up from the surface, with the same posture. The adsorption force F of was measured. That is, the state in which the flexible sheet W whose peripheral portion warps upward is placed on each of the suction pads A, B, and C is reproduced in a pseudo manner, and the periphery of the flexible sheet W that warps upward in that state. The force acting in the direction to adsorb the part to the surface of the suction pad 2 was measured as the adsorption force F.

その結果、吸着パッドAによる吸着力Fが208gf、吸着パッドBによる吸着力Fが204gf、吸着パッドCによる吸着力Fが115gfであり、吸気領域VEの単位面積あたりのコンダクタンスCn1を大きくした吸着パッドAと、吸気領域VEに相当する領域の単位面積あたりのコンダクタンスCn3を更に大きくした吸着パッドBを吸着パッド2としたときに、反り返った周辺部を表面側に吸着する大きな吸着力Fが働くことが明らかとなった。   As a result, the suction force F by the suction pad A is 208 gf, the suction force F by the suction pad B is 204 gf, the suction force F by the suction pad C is 115 gf, and the suction pad having a larger conductance Cn1 per unit area of the suction region VE. When a suction pad B having a larger conductance Cn3 per unit area in a region corresponding to A and the intake region VE is used as the suction pad 2, a large suction force F that attracts the warped peripheral portion to the surface side works. Became clear.

続いて、一側を表面から引き上げた可撓性シートWを、吸着パッド2の表面に沿って密着させた状態で測定した各背圧P2は、吸着パッドAが−75kPa、吸着パッドBが−57kPa、吸着パッドCが−74kPaであった。   Subsequently, the back pressure P2 measured in a state where the flexible sheet W whose one side is pulled up from the surface is in close contact with the surface of the suction pad 2 is -75 kPa for the suction pad A and-for the suction pad B. The pressure was 57 kPa and the suction pad C was -74 kPa.

これらの測定結果から、吸着パッドAと吸着パッドBが、表面から離れた可撓性シートWの周辺部の吸着には有効であるが、吸着パッドBは、全体のコンダクタンスCも大きくなるので、背圧P2が充分に低下せず、可撓性シートWの全体が表面に沿って配置された後は、位置決め保持するための吸着力が不充分となり、また、全体が薄型化するので、強度も劣化する。   From these measurement results, the suction pad A and the suction pad B are effective for sucking the peripheral portion of the flexible sheet W away from the surface, but the suction pad B also increases the overall conductance C. After the back pressure P2 is not sufficiently reduced and the entire flexible sheet W is arranged along the surface, the adsorbing force for positioning and holding becomes insufficient, and the whole is thinned. Deteriorate.

本発明の実施例にかかる吸着パッドAによれば、可撓性シートWの一部が吸着パッドAの表面から上方に沿った状態で載置されても、表面まで吸着する充分な吸着力が得られるとともに、可撓性シートWの全体を表面に沿って吸着した後は、残る吸着パッドAの表面が可撓性シートWが覆われていない状態であっても、吸着位置で可撓性シートWの位置決め保持するのに充分な吸着力が得られる。また、吸気領域VEを設定した一部の領域の単位面積あたりのコンダクタンスCn1を増大させるだけなので、全体を薄型化せずに所定の強度が得られる。   According to the suction pad A according to the embodiment of the present invention, even when a part of the flexible sheet W is placed in a state along the upper side from the surface of the suction pad A, a sufficient suction force to suck the surface is sufficient. In addition, after the entire flexible sheet W is adsorbed along the surface, even if the surface of the remaining adsorbing pad A is not covered with the flexible sheet W, it is flexible at the adsorbing position. Adsorption force sufficient to position and hold the sheet W can be obtained. In addition, since the conductance Cn1 per unit area of a part of the region where the intake region VE is set is merely increased, a predetermined strength can be obtained without reducing the overall thickness.

上述の実施の形態は、平坦な吸着パッド2の表面に、周辺部が上方に湾曲する可撓性シートWを吸着して位置決め保持する真空チャックで説明したが、吸着パッドを構成する多孔性基板が円筒体若しくは円筒体の一部であり、表面が凸曲面に湾曲する吸着パッド上に平坦な可撓性シートWが搬送され、平坦な可撓性シートWを吸着パッドの表面に沿って胃決め保持する真空チャックへも適用できる。この真空チャックでは、平坦な可撓性シートWの先端部に対応する吸着パッドの表面の部位に吸気領域を設定し、吸気領域の単位面積あたりのコンダクタスCn1を他の表面領域の単位面積あたりのコンダクタスCn2より大きくなるようにする。   In the above-described embodiment, the vacuum chuck that adsorbs and holds the flexible sheet W whose peripheral portion curves upward on the surface of the flat suction pad 2 has been described. However, the porous substrate constituting the suction pad is described above. Is a cylindrical body or a part of a cylindrical body, and a flat flexible sheet W is conveyed onto a suction pad whose surface is curved into a convex curved surface, and the flat flexible sheet W is stomached along the surface of the suction pad. It can also be applied to vacuum chucks that are fixed and held. In this vacuum chuck, an intake region is set at the surface portion of the suction pad corresponding to the tip of the flat flexible sheet W, and the conductance Cn1 per unit area of the intake region is determined per unit area of other surface regions. Larger than the conductance Cn2.

また、上述の実施の形態では、吸着パッド2として多孔質セラミック基板を用いたが、多孔性基板であれば、種々の材質、構造の基板を吸着パッド2とすることができる。   Further, in the above-described embodiment, the porous ceramic substrate is used as the suction pad 2. However, as long as the porous substrate is used, substrates of various materials and structures can be used as the suction pad 2.

吸気領域VEを設定する吸着パッド2の領域は、シート状被吸着物の上方に反った周辺部が配置されると予想される部位であり、図示した吸着パッド2の表面の領域に限らず、他の位置であってもよく、また、異なる2箇所以上の位置に吸気領域VEを設定してもよい。   The area of the suction pad 2 that sets the intake area VE is a part where the peripheral part warped above the sheet-like object to be adsorbed is expected, and is not limited to the surface area of the suction pad 2 shown in the figure. Other positions may be used, and the intake region VE may be set at two or more different positions.

また、吸気領域VEでの単位面積あたりのコンダクタンスCn1を大きくする手段としては、凹溝を凹設する上記手段に限らず、吸気領域VE全体の厚さを薄くしたり、空隙の密度を低下させたり、また、吸気領域VEを除く多孔性基板に対して個々の空隙の内径が大きい多孔性基板や気孔率nが高い多孔性基板を、吸気領域VEに相当する部位に一体に接合するものであってもよい。   Further, the means for increasing the conductance Cn1 per unit area in the intake area VE is not limited to the above-described means in which the concave groove is provided, but the overall thickness of the intake area VE is reduced or the density of the air gap is reduced. In addition, a porous substrate having a large inner diameter of each air gap or a porous substrate having a high porosity n is integrally joined to a portion corresponding to the intake region VE with respect to the porous substrate excluding the intake region VE. There may be.

本発明は、半導体、液晶、プリント配線基板などの製造装置や印刷機の作業工程で周辺部に巻き癖の残るシート状被吸着物を表面に位置決め保持する真空チャックや平坦な可撓性シートをその表面に沿って位置決め保持するサクションロールに適している。     The present invention provides a vacuum chuck or a flat flexible sheet for positioning and holding a sheet-like adsorbate with a curl remaining on the periphery in a manufacturing process of a semiconductor, a liquid crystal, a printed wiring board, or the like or a printing machine. It is suitable for a suction roll that is positioned and held along its surface.

1 真空チャック
2 吸着パッド
3 減圧室
5 真空ポンプ
6 流量計
W シート状被吸着物(可撓性シート)
Se 排気効率
Pu 到達圧力
P1 大気圧
P2 背圧
VE 吸気領域
DESCRIPTION OF SYMBOLS 1 Vacuum chuck 2 Adsorption pad 3 Decompression chamber 5 Vacuum pump 6 Flowmeter W Sheet-like adsorbent (flexible sheet)
Se Exhaust efficiency Pu Ultimate pressure P1 Atmospheric pressure P2 Back pressure VE Intake region

Claims (5)

側面の全体が密閉され、多数の空隙により表面と背面が連通する多孔性基板からなる吸着パッドを備え、密閉された吸着パッドの背面側を真空ポンプで減圧し、吸着パッドの表面に載置されるシート状被吸着物を空隙を介して吸引し、前記表面に沿って位置決め保持する真空チャックであって、
シート状被吸着物の周辺部を位置決め保持する吸着パッドの表面の部位に吸気領域を設定し、吸気領域の単位面積あたりのコンダクタンスCn1を、吸気領域を除く吸着パッドの表面の単位面積あたりのコンダクタンスCn2より大きくしたことを特徴とする真空チャック。
The suction pad is composed of a porous substrate with the entire side sealed and the surface and back communicate with each other by a number of gaps. The back side of the sealed suction pad is depressurized with a vacuum pump and placed on the surface of the suction pad. A vacuum chuck for sucking a sheet-shaped object to be adsorbed through a gap and positioning and holding the object along the surface,
An intake area is set at the surface area of the suction pad that positions and holds the periphery of the sheet-like object to be adsorbed, and the conductance Cn1 per unit area of the intake area is determined as the conductance per unit area of the surface of the suction pad excluding the intake area. A vacuum chuck characterized by being larger than Cn2.
吸着パッドは、表面が凸曲面で湾曲する多孔性基板からなり、シート状被吸着物の先端部を位置決め保持する吸着パッドの表面の部位に吸気領域を設定し、吸着パッドの表面に載置される平坦なシート状被吸着物を、凸曲面の表面に沿って位置決め保持することを特徴とする請求項1に記載の真空チャック。 The suction pad is made of a porous substrate whose surface is curved with a convex curved surface, and an intake region is set at the surface of the suction pad that positions and holds the tip of the sheet-like object to be adsorbed, and is placed on the surface of the suction pad. The vacuum chuck according to claim 1, wherein the flat sheet-shaped object to be adsorbed is positioned and held along the surface of the convex curved surface. 吸着パッドは、多数の空隙が略等密度に形成され、吸気領域に設定した吸着パッドの背面に多数の第1凹溝が凹設されたことを特徴とする請求項1または請求項2のいずれか1項に記載の真空チャック。 3. The suction pad according to claim 1, wherein a number of voids are formed in substantially equal density, and a number of first concave grooves are formed in the back surface of the suction pad set in the intake area. The vacuum chuck according to claim 1. 吸気領域に設定した吸着パッドの背面に、複数の第1凹溝と交差し、交差する第1凹溝間を連通する第2凹溝が凹設されていることを特徴とする請求項3に記載の真空チャック。 The back surface of the suction pad set in the intake area is provided with a second groove that intersects with the plurality of first grooves and communicates between the intersecting first grooves. The vacuum chuck as described. 吸着パッドが多孔質セラミック基板であることを特徴とする請求項1乃至請求項4のいずれか1項に記載の真空チャック。 The vacuum chuck according to any one of claims 1 to 4, wherein the suction pad is a porous ceramic substrate.
JP2011041912A 2011-02-28 2011-02-28 Vacuum chuck Expired - Fee Related JP5733700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011041912A JP5733700B2 (en) 2011-02-28 2011-02-28 Vacuum chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011041912A JP5733700B2 (en) 2011-02-28 2011-02-28 Vacuum chuck

Publications (2)

Publication Number Publication Date
JP2012176852A true JP2012176852A (en) 2012-09-13
JP5733700B2 JP5733700B2 (en) 2015-06-10

Family

ID=46978999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011041912A Expired - Fee Related JP5733700B2 (en) 2011-02-28 2011-02-28 Vacuum chuck

Country Status (1)

Country Link
JP (1) JP5733700B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135310A (en) * 2013-01-08 2014-07-24 Lasertec Corp Chuck device and chuck method
JP2014203904A (en) * 2013-04-03 2014-10-27 株式会社ナノテム Vacuum suction device and suction plate
JP2016103626A (en) * 2014-11-13 2016-06-02 株式会社ナノテム Pad for transfer, transfer device employing the same, and transfer method
JP2018137445A (en) * 2017-02-23 2018-08-30 エーエスエム・アセンブリー・システムズ・シンガポール・ピーティーイー・リミテッド Support for flexible workpieces
JP2018165001A (en) * 2017-03-28 2018-10-25 株式会社トライテック Industrial inkjet drawing apparatus
JPWO2017154085A1 (en) * 2016-03-08 2018-11-22 株式会社ナノテム Transport pad, transport device using the same, and transport method
JP2019012808A (en) * 2017-07-03 2019-01-24 株式会社ディスコ Chuck table
KR20210129113A (en) 2019-02-21 2021-10-27 아마노 엔자임 가부시키가이샤 Prevents agglomeration of vegetable milk
KR20210129112A (en) 2019-02-21 2021-10-27 아마노 엔자임 가부시키가이샤 Prevents agglomeration of nut milk
US11813858B2 (en) 2019-05-31 2023-11-14 Kateeva, Inc. Printer calibration module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294133U (en) * 1989-01-06 1990-07-26
JP2002324831A (en) * 2001-04-26 2002-11-08 Takatori Corp Vacuum suction table
JP2003211749A (en) * 2002-01-25 2003-07-29 Noritsu Koki Co Ltd Recording medium transfer device and image recorder with the same
JP2009246013A (en) * 2008-03-28 2009-10-22 Taiheiyo Cement Corp Vacuum suction apparatus and method of manufacturing the same
JP2009253247A (en) * 2008-04-11 2009-10-29 Ariake Materials Co Ltd Suction body for vacuum suction apparatus, and vacuum suction apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294133U (en) * 1989-01-06 1990-07-26
JP2002324831A (en) * 2001-04-26 2002-11-08 Takatori Corp Vacuum suction table
JP2003211749A (en) * 2002-01-25 2003-07-29 Noritsu Koki Co Ltd Recording medium transfer device and image recorder with the same
JP2009246013A (en) * 2008-03-28 2009-10-22 Taiheiyo Cement Corp Vacuum suction apparatus and method of manufacturing the same
JP2009253247A (en) * 2008-04-11 2009-10-29 Ariake Materials Co Ltd Suction body for vacuum suction apparatus, and vacuum suction apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135310A (en) * 2013-01-08 2014-07-24 Lasertec Corp Chuck device and chuck method
JP2014203904A (en) * 2013-04-03 2014-10-27 株式会社ナノテム Vacuum suction device and suction plate
JP2016103626A (en) * 2014-11-13 2016-06-02 株式会社ナノテム Pad for transfer, transfer device employing the same, and transfer method
JPWO2017154085A1 (en) * 2016-03-08 2018-11-22 株式会社ナノテム Transport pad, transport device using the same, and transport method
KR102082637B1 (en) * 2017-02-23 2020-02-28 에이에스엠 어셈블리 시스템스 싱가포르 피티이 리미티드 Support for flexible workpieces
KR20180097457A (en) * 2017-02-23 2018-08-31 에이에스엠 어셈블리 시스템스 싱가포르 피티이 리미티드 Support for flexible workpieces
CN108471704A (en) * 2017-02-23 2018-08-31 先进装配系统新加坡有限公司 The support element of flexible workpiece
JP2018137445A (en) * 2017-02-23 2018-08-30 エーエスエム・アセンブリー・システムズ・シンガポール・ピーティーイー・リミテッド Support for flexible workpieces
CN108471704B (en) * 2017-02-23 2020-04-07 先进装配系统新加坡有限公司 Support for flexible workpieces
US11311982B2 (en) 2017-02-23 2022-04-26 Asm Assembly Systems Singapore Pte. Ltd. Support for flexible workpieces
JP2018165001A (en) * 2017-03-28 2018-10-25 株式会社トライテック Industrial inkjet drawing apparatus
JP2019012808A (en) * 2017-07-03 2019-01-24 株式会社ディスコ Chuck table
KR20210129113A (en) 2019-02-21 2021-10-27 아마노 엔자임 가부시키가이샤 Prevents agglomeration of vegetable milk
KR20210129112A (en) 2019-02-21 2021-10-27 아마노 엔자임 가부시키가이샤 Prevents agglomeration of nut milk
US11813858B2 (en) 2019-05-31 2023-11-14 Kateeva, Inc. Printer calibration module

Also Published As

Publication number Publication date
JP5733700B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5733700B2 (en) Vacuum chuck
KR101801994B1 (en) Method of suction of object to be worked upon suction unit and method of manufacture of ceramic capacitor
JP5652832B2 (en) Chuck device and chuck method
JP5291687B2 (en) Suction table
WO2017154085A1 (en) Conveyance pad, and conveyance device and conveyance method using same
JP2004331265A (en) Floating unit and substrate inspection device
JP6154173B2 (en) Vacuum suction device and suction plate
TW201440975A (en) Reduced pressure adhesion device
WO2011065021A1 (en) Vacuum chuck
JP6518891B2 (en) Transport device
JP2010195592A (en) Floating unit and substrate inspection apparatus
JP2010129706A (en) Suction apparatus and inspection apparatus
JP5201642B2 (en) Adsorption device and processing device
JP5957330B2 (en) Wafer sticking device
TW201530145A (en) Inspecting device
KR20070037831A (en) Vacuum chuck
TW201810499A (en) Holding device, transport device, lithographic apparatus, and article manufacturing method
JP4901407B2 (en) Adsorption transport structure
JP2004152941A (en) Noncontact supporting apparatus
JP2014175541A (en) Wafer sticking method
WO2012066613A1 (en) Gas-permeable conveyance table
JP7003431B2 (en) Light irradiation device
JP2010260318A (en) Suction stage
TWM449343U (en) Vacuum suction device
JP2016103626A (en) Pad for transfer, transfer device employing the same, and transfer method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5733700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees