JP2012176727A - Moving blade - Google Patents

Moving blade Download PDF

Info

Publication number
JP2012176727A
JP2012176727A JP2011041685A JP2011041685A JP2012176727A JP 2012176727 A JP2012176727 A JP 2012176727A JP 2011041685 A JP2011041685 A JP 2011041685A JP 2011041685 A JP2011041685 A JP 2011041685A JP 2012176727 A JP2012176727 A JP 2012176727A
Authority
JP
Japan
Prior art keywords
girder
oil chamber
blade
structures
outer plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011041685A
Other languages
Japanese (ja)
Inventor
Tadahiro Nashiko
忠宏 梨子
Atsushi Hitomi
敦 人見
Megumi Hiraki
恵 平木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2011041685A priority Critical patent/JP2012176727A/en
Publication of JP2012176727A publication Critical patent/JP2012176727A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a moving blade having a high driving force and having high blade shape retainability, to allow steering feedback control, and to provide steering function redundancy.SOLUTION: The moving blade 10 includes: flexible outer plates 21, 22, 31, 32, 41, 42 to form a blade surface; a plurality of girder structures 13, 23, 33, 43 connected in series in a direction from the base end to the tip end, at a variable relative angle to each other; oil chambers 61, 62, 63, 64, 65, 66 provided on a blade surface side with respect to a joint between two adjacent girder structures, surrounded by the two girder structures and outer plates, and varying in capacity in response to a change in relative angle between the two girder structures; and hydraulic drive systems 81, 82, 83 for varying the relative angle by varying a hydraulic pressure in the oil chamber. Each joint is provided with a steering angle sensor 52a, 52b, 52c.

Description

本発明は、翼面を曲げて翼型を変化させる動翼に関する。   The present invention relates to a moving blade that changes the airfoil shape by bending the blade surface.

従来、翼面を曲げて翼型を変化させる動翼、いわゆるモーフィング翼について種々の形態が提案されている。このような動翼は、主翼の前縁部、後縁部等に適用され、主翼本体から滑らかに連続する翼面を保持しながら、翼型を変化させることができる。
特許文献1−6に、翼型を変化させる動翼が記載されている。
特許文献3−6では、動翼内に圧縮空気を送り込む方式が採用される。
Conventionally, various forms have been proposed for a moving blade that changes the shape of a blade by bending the blade surface, a so-called morphing blade. Such a moving blade is applied to the leading edge portion, the trailing edge portion, and the like of the main wing, and can change the wing shape while maintaining a blade surface that is smoothly continuous from the main wing body.
Patent Documents 1-6 describe a moving blade that changes the airfoil.
In patent documents 3-6, the system which sends compressed air in a moving blade is employ | adopted.

特公昭63−24878号公報Japanese Patent Publication No. 63-24878 特開2010−173646号公報JP 2010-173646 A 実開平1−15896号公報Japanese Utility Model Publication No. 1-158896 特開平2−28098号公報JP-A-2-28098 特表2002−516223号公報JP-T-2002-516223 米国特許第6015115号明細書US Pat. No. 6,015,115

モーフィング翼にあっては、理想的な空力形状から逸脱しない翼外板の形成、空力荷重に耐え得る駆動機構及び構造の実現が課題となる。
また、操舵のフィードバック制御を可能とすることや、一部の故障により全操舵機能を失わない冗長性があることが望ましい。
For morphing blades, the formation of blade outer plates that do not deviate from the ideal aerodynamic shape, and the realization of a drive mechanism and structure that can withstand aerodynamic loads are problems.
In addition, it is desirable that the feedback control of the steering is possible and that there is redundancy so that the entire steering function is not lost due to a partial failure.

本発明は以上の従来技術における問題に鑑みてなされたものであって、翼面を曲げて翼型を変化させる動翼であって、高駆動力で、翼形状の保持性が高い動翼を提供することを課題とする。また、操舵のフィードバック制御を可能とすること、操舵機能の冗長性を備えることを課題とする。   The present invention has been made in view of the problems in the prior art described above, and is a moving blade that changes the blade shape by bending the blade surface, and has a high driving force and a high blade shape retaining property. The issue is to provide. It is another object of the present invention to enable steering feedback control and to provide redundancy of the steering function.

以上の課題を解決するための請求項1記載の発明は、弾性材料からなり、翼面を形成する可撓性の外板と、
前記外板を支持するとともに、基端から先端方向に連なって互いの相対角を可変にして連結された複数の桁構造と、
隣接する2つの桁構造の連結部に対して翼面側に設けられ、当該2つの桁構造と前記外板とに囲まれ、当該2つの桁構造の相対角の変化に伴って容積が変化する油室と、
前記油室の油圧を変化させることにより前記相対角を変化させる油圧駆動系と、
を備える動翼である。
The invention according to claim 1 for solving the above-mentioned problems is made of an elastic material, and a flexible outer plate forming a blade surface;
A plurality of girder structures that support the outer plate and that are connected in a variable direction relative to each other from the proximal end to the distal direction,
It is provided on the wing surface side with respect to the connecting part of two adjacent girder structures, surrounded by the two girder structures and the outer plate, and the volume changes as the relative angle of the two girder structures changes. An oil chamber,
A hydraulic drive system that changes the relative angle by changing the hydraulic pressure of the oil chamber;
It is a moving blade provided with.

請求項2記載の発明は、前記油室は、隣接する2つの桁構造の連結部に対して相対する両翼面側にそれぞれ設けられた請求項1に記載の動翼である。   The invention according to claim 2 is the moving blade according to claim 1, wherein the oil chamber is provided on both blade surface sides facing the connecting portions of two adjacent girder structures.

請求項3記載の発明は、前記外板は、前記桁構造のうち一の桁構造に固定され、当該一の桁構造に隣接する他の桁構造に翼面方向にスライド可能に保持された請求項1又は請求項2に記載の動翼である。   According to a third aspect of the present invention, the outer plate is fixed to one girder structure of the girder structures, and is held by another girder structure adjacent to the one girder structure so as to be slidable in the blade surface direction. The moving blade according to claim 1 or claim 2.

請求項4記載の発明は、隣接する2つの桁構造の連結部に当該2つの桁構造の相対角を検出するセンサが設けられた請求項1、請求項2又は請求項3に記載の動翼である。   According to a fourth aspect of the present invention, there is provided a moving blade according to the first, second or third aspect, wherein a sensor for detecting a relative angle between the two girder structures is provided at a connecting portion between two adjacent girder structures. It is.

請求項5記載の発明は、前記油圧駆動系は互いに独立した複数が設けられ、異なる前記油圧駆動系は、異なる前記連結部に設けられた前記油室を駆動する請求項1から請求項4のうちいずれか一に記載の動翼である。   According to a fifth aspect of the present invention, the hydraulic drive system includes a plurality of independent hydraulic drives, and the different hydraulic drive systems drive the oil chambers provided in the different connecting portions. It is a moving blade given in any one of them.

本発明によれば、動翼内に設けられた油室を駆動することにより、この油室の油圧を直接動翼可動機構に作用させることができ、高駆動力で、翼形状の保持性が高い動翼を構成することができる。高駆動力を確保するためにクランクアーム等の突出部分を外面に形成する必要も無く、薄翼化も容易となる。
なお、連結部における相対角を検出して、これに基づき操舵のフィードバック制御が可能となる。
また、複数の桁構造は、基端から先端方向に連なって互いの相対角が駆動されるので、一部の連結部において操舵不能又は操舵不十分になっても操舵可能又は操舵良好な他の連結部で操舵することで、本動翼の全操舵機能をできるだけ損なわないという冗長性を備える。
さらに、互いに独立した複数の油圧駆動系が異なる連結部に設けられた油室をそれぞれ駆動する構成をとることで、一部の油圧駆動系の故障や不具合があっても、他の油圧駆動系で補うことにより、本動翼の全操舵機能をできるだけ損なわないという冗長性を備える。
According to the present invention, by driving the oil chamber provided in the moving blade, the oil pressure of the oil chamber can be directly applied to the moving blade moving mechanism, and the blade shape can be maintained with high driving force. A high moving blade can be constructed. In order to secure a high driving force, there is no need to form a protruding portion such as a crank arm on the outer surface, and the blade can be made thin.
The relative angle at the connecting portion is detected, and based on this, feedback control of steering becomes possible.
In addition, since the plurality of girders are connected to each other in the direction from the proximal end to the distal end, their relative angles are driven. Steering at the connecting portion provides redundancy that does not impair as much as possible the entire steering function of the main blade.
Furthermore, by adopting a configuration in which a plurality of hydraulic drive systems independent from each other drive oil chambers provided in different connecting portions, even if some hydraulic drive systems fail or malfunction, other hydraulic drive systems By supplementing with the above, redundancy is provided such that the entire steering function of the main blade is not impaired as much as possible.

本発明の一実施形態に係る動翼の斜視図である。It is a perspective view of the moving blade which concerns on one Embodiment of this invention. 本発明の一実施形態に係る動翼の分離斜視図である。It is a separation perspective view of a moving blade concerning one embodiment of the present invention. 図1に示すA−A線についての断面図である。It is sectional drawing about the AA line shown in FIG. 図3に示すB部の詳細図である。FIG. 4 is a detailed view of part B shown in FIG. 3. 本発明の一実施形態に係る動翼の簡略図と油圧駆動系の回路図である。It is the simplification figure of the moving blade concerning one Embodiment of this invention, and the circuit diagram of a hydraulic drive system. 本発明の一実施形態に係る動翼の簡略図である。It is a simplified diagram of a moving blade concerning one embodiment of the present invention. 本発明の一実施形態に係る動翼の簡略図である。It is a simplified diagram of a moving blade concerning one embodiment of the present invention. 本発明の一実施形態に係る動翼の簡略図である。It is a simplified diagram of a moving blade concerning one embodiment of the present invention.

以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。   An embodiment of the present invention will be described below with reference to the drawings. The following is one embodiment of the present invention and does not limit the present invention.

本実施形態の動翼は、本発明の動翼が航空機の固定翼を母翼としてその後縁部に取り付けられた例である。
図1、図2及び図3により示すように本実施形態の動翼10は、母翼1に連結される可動部2、可動部2に連結される可動部3、可動部3に連結される可動部4を備え、母翼1に基端を置いて3つの可動部2〜4が基端から先端方向に連なる。
The moving blade of the present embodiment is an example in which the moving blade of the present invention is attached to the rear edge portion using the fixed wing of an aircraft as a main wing.
As shown in FIGS. 1, 2, and 3, the moving blade 10 of the present embodiment is connected to the movable portion 2 that is connected to the main wing 1, the movable portion 3 that is connected to the movable portion 2, and the movable portion 3. The movable portion 4 is provided, and the base end is placed on the main wing 1, and the three movable portions 2 to 4 are connected in the distal direction from the base end.

桁構造13は、母翼1の後縁部に配置され、母翼1の上下の外板11,12の後縁部を支持する。桁構造13は、桁部14と、その両端に結合した側壁部15,15と、桁部14の外面に結合した軸受部16,16,・・・とを備える。側壁部15,15の後縁部は桁部14より後方に延出しており、ここに軸受部16と同軸上に配置された孔部17が形成されている。   The girder structure 13 is disposed at the rear edge portion of the main wing 1 and supports the rear edge portions of the upper and lower outer plates 11 and 12 of the main wing 1. The girder structure 13 includes a girder part 14, side wall parts 15, 15 coupled to both ends thereof, and bearing parts 16, 16,... Coupled to the outer surface of the girder part 14. The rear edge portions of the side wall portions 15, 15 extend rearward from the girder portion 14, and a hole portion 17 disposed coaxially with the bearing portion 16 is formed therein.

可動部2は、桁構造23と、外板21,22とを備える。外板21,22は、弾性材料からなり翼面を形成する可撓性外板である。桁構造23は上下の外板21,22を支持する。桁構造23は、先端側桁部24a及び基端側桁部24bと、これらの両端に結合した側壁部25,25と、先端側桁部24aの外面に結合した軸受部26a,26a,・・・と、基端側桁部24bの外面に結合した軸受部26b,26b,・・・とを備える。側壁部25,25の後縁部は先端側桁部24aより後方に延出しており、ここに軸受部26aと同軸上に配置された孔部27aが形成されている。側壁部25,25の前縁部は基端側桁部24bより前方に延出しており、ここに軸受部26bと同軸上に配置された孔部27bが形成されている。   The movable part 2 includes a girder structure 23 and outer plates 21 and 22. The outer plates 21 and 22 are flexible outer plates made of an elastic material and forming a blade surface. The girder structure 23 supports the upper and lower outer plates 21 and 22. The girder structure 23 includes a front end girder portion 24a and a base end side girder portion 24b, side wall portions 25, 25 coupled to both ends thereof, and bearing portions 26a, 26a,. And bearing portions 26b, 26b,... Coupled to the outer surface of the base end side beam portion 24b. The rear edge portions of the side wall portions 25, 25 extend rearward from the front end side beam portion 24a, and a hole portion 27a arranged coaxially with the bearing portion 26a is formed therein. The front edge portions of the side wall portions 25, 25 extend forward from the base end side beam portion 24b, and a hole portion 27b arranged coaxially with the bearing portion 26b is formed therein.

母翼1の軸受部16,16の間に、可動部2の軸受部26bが配置され、側壁部15の後縁部と側壁部25の前縁部とが摺動可能に重なり、軸受部16、軸受部26b、孔部17及び孔部27bが同一軸上に配置されて、これらの孔にヒンジピン51が挿通されることで、母翼1に可動部2がヒンジ連結される。ヒンジピン51は外板21,22により形成される翼面に平行で母翼1と可動部2との連結方向に垂直な方向に延在する。
さらに、この隣接する2つの桁構造13,23の連結部に当該2つの桁構造13,23の相対角を検出する舵角センサ52aが取り付けられる。舵角センサ52aは、その外周部が側壁部15に固定され、この外周部に対して相対回転する内周部がヒンジピン51に固定され、ヒンジピン51が桁構造23に対して一体回転するように固定されることで、桁構造13,23の相対角を検出可能に装備される。舵角センサ52a、その外周部と内周部との相対位相に相当する信号を出力する構成である。
The bearing portion 26b of the movable portion 2 is disposed between the bearing portions 16 and 16 of the main wing 1 so that the rear edge portion of the side wall portion 15 and the front edge portion of the side wall portion 25 are slidably overlapped. The bearing portion 26b, the hole portion 17 and the hole portion 27b are arranged on the same axis, and the hinge pin 51 is inserted into these holes, whereby the movable portion 2 is hinge-connected to the main wing 1. The hinge pin 51 extends in a direction that is parallel to the blade surface formed by the outer plates 21 and 22 and is perpendicular to the connecting direction of the main wing 1 and the movable portion 2.
Further, a steering angle sensor 52a for detecting a relative angle between the two girder structures 13 and 23 is attached to a connecting portion between the two adjacent girder structures 13 and 23. The rudder angle sensor 52 a has an outer peripheral portion fixed to the side wall portion 15, an inner peripheral portion that rotates relative to the outer peripheral portion is fixed to the hinge pin 51, and the hinge pin 51 rotates integrally with the girder structure 23. By being fixed, it is equipped so that the relative angle of the girder structures 13 and 23 can be detected. The steering angle sensor 52a is configured to output a signal corresponding to the relative phase between the outer peripheral portion and the inner peripheral portion thereof.

以上の母翼1と可動部2との連結により、上方油室61及び下方油室62が形成される。
上方油室61は、隣接する2つの桁構造13,23の連結部に対して上方翼面側、すなわち、上方の外板21側に設けられる。上方油室61は、2つの桁構造13,23の桁部14、24b及び側壁部15,25と、外板21とに囲まれて形成される。従って2つの桁構造13,23の相対角の変化に伴って容積が変化する。
下方油室62は、隣接する2つの桁構造13,23の連結部に対して下方翼面側、すなわち、下方の外板22側に設けられる。下方油室62は、2つの桁構造13,23の桁部14、24b及び側壁部15,25と、外板22とに囲まれて形成される。従って2つの桁構造13,23の相対角の変化に伴って容積が変化する。但し、上方油室61の容積と下方油室62の容積とは相補的に変化する。すなわち、上方油室61の容積が増大し下方油室62の容積が減少して可動部2が下に操舵され、一方、上方油室61の容積が減少し下方油室62の容積が増大して可動部2が上に操舵される。
The upper oil chamber 61 and the lower oil chamber 62 are formed by the connection between the main wing 1 and the movable portion 2 described above.
The upper oil chamber 61 is provided on the upper blade surface side, that is, on the upper outer plate 21 side with respect to the connecting portion between the two adjacent girder structures 13 and 23. The upper oil chamber 61 is formed by being surrounded by the girder portions 14 and 24 b and the side wall portions 15 and 25 of the two girder structures 13 and 23, and the outer plate 21. Therefore, the volume changes as the relative angle of the two girder structures 13 and 23 changes.
The lower oil chamber 62 is provided on the lower blade surface side, that is, on the lower outer plate 22 side with respect to the connecting portion between the two adjacent girder structures 13 and 23. The lower oil chamber 62 is formed by being surrounded by the girder portions 14 and 24 b and the side wall portions 15 and 25 of the two girder structures 13 and 23, and the outer plate 22. Therefore, the volume changes as the relative angle of the two girder structures 13 and 23 changes. However, the volume of the upper oil chamber 61 and the volume of the lower oil chamber 62 change complementarily. That is, the volume of the upper oil chamber 61 is increased, the volume of the lower oil chamber 62 is decreased, and the movable part 2 is steered downward, while the volume of the upper oil chamber 61 is decreased and the volume of the lower oil chamber 62 is increased. Thus, the movable part 2 is steered upward.

以上の母翼1と可動部2との連結に際しては、油室間シール部材53が連結部に配置される。これにより、上方油室61と下方油室62との間の隔絶性を良好にすることができる。   When connecting the main wing 1 and the movable portion 2 as described above, the oil chamber seal member 53 is disposed in the connecting portion. Thereby, the isolation between the upper oil chamber 61 and the lower oil chamber 62 can be made favorable.

外板21、22は、桁構造23には固定されるが、桁構造13に対しては翼面方向にスライド可能に保持される。そのために、スライド保持部7が設けられている。これにより、円滑な翼型を形成し保持する。
スライド保持部7は、外板21、22の内側に凸にされた端部が、桁構造23の上下面それぞれに形成された溝に落とし込まれ、その上を母翼1の外板11,12が覆って保持される構造で構成される。さらに、桁構造13と外板21(22)との間にシール部材71が、外板21(22)と外板11(12)との間にシール部材72が設けられる。この二重のシール部材71,72により、油室61(62)の外側の密閉性を良好にすることができる。
図4の部分詳細部に示すように、外板21、22の内側に凸にされた端部73が、溝74に保持されており、図4(b)に示すように端部73が溝74の後方内壁74a、前方内壁74bで規制されることで、スライド範囲が制限されている。これにより、翼の外側の負圧によって外板21,22が局所的に膨出するなどの翼の空力特性に有害な影響を与える変形を抑制する。
The outer plates 21 and 22 are fixed to the girder structure 23, but are held to the girder structure 13 so as to be slidable in the blade surface direction. For this purpose, a slide holding part 7 is provided. Thereby, a smooth airfoil is formed and held.
The slide holding portion 7 has end portions projected inward of the outer plates 21 and 22 dropped into grooves formed on the upper and lower surfaces of the girder structure 23, and the outer plates 11 and 22 of the main wing 1 are placed thereon. 12 is configured to be covered and held. Further, a seal member 71 is provided between the girder structure 13 and the outer plate 21 (22), and a seal member 72 is provided between the outer plate 21 (22) and the outer plate 11 (12). The double seal members 71 and 72 can improve the airtightness of the outside of the oil chamber 61 (62).
As shown in the partial detail portion of FIG. 4, the end portion 73 that is convex on the inner side of the outer plates 21 and 22 is held in the groove 74, and the end portion 73 is the groove as shown in FIG. 4B. The slide range is limited by being regulated by the rear inner wall 74a and the front inner wall 74b. This suppresses deformation that adversely affects the aerodynamic characteristics of the wing such as the outer plates 21 and 22 locally bulging due to the negative pressure outside the wing.

以上説明した母翼1と可動部2との連結構造、舵角センサ構成及び油室形成構造と同様の構成が、可動部2と可動部3との連結部、可動部3と可動部4との連結部に採用される。
可動部3に関し、上下の可撓性外板を31,32、桁構造を33、先端側桁部を34a、基端側桁部を34b、側壁部を35、軸受部を36a,36b、側壁部35の孔部を37a,37bとし、可動部2と可動部3との連結部に関し、舵角センサを52b、上方油室を63と下方油室を64とする。
可動部4に関し、上下の可撓性外板を41,42、桁構造を43、先端側桁部を44a、基端側桁部を44b、側壁部を45、軸受部を46、側壁部45の孔部を47とし、可動部3と可動部4との連結部に関し、舵角センサを52c、上方油室を65と下方油室を66とする。
The connection structure between the main wing 1 and the movable part 2, the structure of the rudder angle sensor and the oil chamber forming structure described above are the same as the connection part between the movable part 2 and the movable part 3, Adopted at the connecting part.
With respect to the movable portion 3, the upper and lower flexible outer plates 31 and 32, the girder structure 33, the distal side girder portion 34a, the proximal end girder portion 34b, the side wall portion 35, the bearing portions 36a and 36b, the side wall With respect to the connecting portion between the movable portion 2 and the movable portion 3, the rudder angle sensor is 52b, the upper oil chamber is 63, and the lower oil chamber is 64.
Regarding the movable part 4, the upper and lower flexible outer plates are 41 and 42, the girder structure is 43, the front end girder part is 44 a, the proximal end girder part is 44 b, the side wall part is 45, the bearing part is 46, and the side wall part 45. , The steering angle sensor is 52c, the upper oil chamber is 65, and the lower oil chamber is 66 with respect to the connecting portion between the movable portion 3 and the movable portion 4.

図5に示すように、本動翼10には、油室の油圧を変化させることにより相対角を変化させる油圧駆動系81,82,83が装備される。
油圧駆動系81,82,83の基本構成は同様であり、代表して油圧駆動系81は、リザーバ81aと、油圧ポンプ81bと、サーボバルブ81cとを備えて構成される。リザーバ81aに貯留された作動油が、油圧ポンプ81bによりサーボバルブ83cへ圧送され、サーボバルブ83cは、(1)遮断、(2)上方油室61に作動油を圧入するとともに下方油室62をリザーバ81aへの戻り路に接続、(3)下方油室62に作動油を圧入するとともに上方油室61をリザーバ81aへの戻り路に接続、の3状態を切り替えるとともに、(2)(3)の状態にあっては、圧入量を調整する。(2)の状態にあっては、上方油室61の圧力が高まることによって舵角の変化に伴い上方油室61の容積が増大すると、下方油室62の容積が縮小して下方油室62の作動油の一部がリザーバ81aへ排出される。(3)の状態にあっては、下方油室62の圧力が高まることによって舵角の変化に伴い下方油室62の容積が増大すると、上方油室61の容積が縮小して上方油室61の作動油の一部がリザーバ81aへ排出される。
As shown in FIG. 5, the main blade 10 is equipped with hydraulic drive systems 81, 82, and 83 that change the relative angle by changing the oil pressure in the oil chamber.
The basic configurations of the hydraulic drive systems 81, 82, and 83 are the same. Typically, the hydraulic drive system 81 includes a reservoir 81a, a hydraulic pump 81b, and a servo valve 81c. The hydraulic oil stored in the reservoir 81a is pumped to the servo valve 83c by the hydraulic pump 81b. The servo valve 83c (1) shuts off, and (2) pressurizes the hydraulic oil into the upper oil chamber 61 and moves the lower oil chamber 62 through the lower oil chamber 62. Connected to the return path to the reservoir 81a, (3) The hydraulic oil is pressed into the lower oil chamber 62 and the upper oil chamber 61 is connected to the return path to the reservoir 81a. In the state of, adjust the press-fitting amount. In the state (2), when the pressure of the upper oil chamber 61 increases and the volume of the upper oil chamber 61 increases as the rudder angle changes, the volume of the lower oil chamber 62 decreases and the lower oil chamber 62 decreases. A part of the hydraulic oil is discharged to the reservoir 81a. In the state of (3), when the volume of the lower oil chamber 62 increases with the change in the steering angle due to the pressure in the lower oil chamber 62 increasing, the volume of the upper oil chamber 61 is reduced and the upper oil chamber 61 is reduced. A part of the hydraulic oil is discharged to the reservoir 81a.

以上説明したように油圧駆動系81は、油室61,62の油圧を変化させることにより桁構造13と桁構造23の相対角を変化させる駆動系である。
同様にして油圧駆動系82は、油室63,64の油圧を変化させることにより桁構造23と桁構造33の相対角を変化させる駆動系として構成される。同様にして油圧駆動系83は、油室65,66の油圧を変化させることにより桁構造33と桁構造43の相対角を変化させる駆動系として構成される。油圧駆動系のうち油室に接続する配管の一部は本動翼10内に配置され、他の構成は母翼や機体胴体部等の適所に配置される。
As described above, the hydraulic drive system 81 is a drive system that changes the relative angle between the beam structure 13 and the beam structure 23 by changing the oil pressure in the oil chambers 61 and 62.
Similarly, the hydraulic drive system 82 is configured as a drive system that changes the relative angle between the girder structure 23 and the girder structure 33 by changing the oil pressure in the oil chambers 63 and 64. Similarly, the hydraulic drive system 83 is configured as a drive system that changes the relative angle between the girder structure 33 and the girder structure 43 by changing the oil pressure in the oil chambers 65 and 66. A part of the piping connected to the oil chamber in the hydraulic drive system is disposed in the main rotor blade 10, and the other components are disposed in appropriate places such as the main wing and the fuselage fuselage.

操舵を制御する制御部(図示せず)は、舵角センサ52aから検出舵角の入力を受けつつサーボバルブ81cの駆動回路部に制御信号を出力して、桁構造13と桁構造23の相対角(=可動部2の舵角)に割り当てられる目標舵角と舵角センサ52aの検出舵角と差がゼロに収束するようにフィードバック制御する。
また、同制御部は、舵角センサ52bから検出舵角の入力を受けつつサーボバルブ82cの駆動回路部に制御信号を出力して、桁構造23と桁構造33の相対角(=可動部3の舵角)に割り当てられる目標舵角と舵角センサ52bの検出舵角と差がゼロに収束するようにフィードバック制御する。
また、同制御部は、舵角センサ52cから検出舵角の入力を受けつつサーボバルブ83cの駆動回路部に制御信号を出力して、桁構造33と桁構造43の相対角(=可動部4の舵角)に割り当てられる目標舵角と舵角センサ52cの検出舵角と差がゼロに収束するようにフィードバック制御する。
A control unit (not shown) for controlling the steering outputs a control signal to the drive circuit unit of the servo valve 81c while receiving the input of the detected steering angle from the steering angle sensor 52a. Feedback control is performed so that the difference between the target steering angle assigned to the angle (= the steering angle of the movable portion 2) and the detected steering angle of the steering angle sensor 52a converges to zero.
Further, the control unit outputs a control signal to the drive circuit unit of the servo valve 82c while receiving the detected steering angle input from the steering angle sensor 52b, and the relative angle between the girder structure 23 and the girder structure 33 (= the movable part 3). Feedback control is performed so that the difference between the target steering angle assigned to the steering angle) and the detected steering angle of the steering angle sensor 52b converges to zero.
Further, the control unit outputs a control signal to the drive circuit unit of the servo valve 83c while receiving the detected steering angle input from the steering angle sensor 52c, and the relative angle between the girder structure 33 and the girder structure 43 (= the movable part 4). Feedback control is performed so that the difference between the target steering angle assigned to the steering angle) and the detected steering angle of the steering angle sensor 52c converges to zero.

例えば、同制御部は、上方油室61と下方油室62、上方油室63と下方油室64、上方油室65と下方油室66のそれぞれの油圧バランスを中立的なバランスにとることで、図6に示すようにノミナル角を形成する。
また例えば図7に示すように同制御部は、上方油室61,63,65を加圧し、下方油室62,64,66を減圧することで舵面を全体的に下に操舵する。
いずれの操舵でも目標の状態となったら(1)の遮断状態として、各油室の油量容積を保持することで、空力荷重による外板変形を抑制する。
また同制御部は、例えば図8に示すように、各可動部2,3,4の舵角を個々に制御することで、高速巡航時等において任意の舵面形状を形成し空力特性の最適化を図る。
For example, the control unit neutralizes the hydraulic pressure balance between the upper oil chamber 61 and the lower oil chamber 62, the upper oil chamber 63 and the lower oil chamber 64, and the upper oil chamber 65 and the lower oil chamber 66. As shown in FIG. 6, a nominal angle is formed.
For example, as shown in FIG. 7, the control unit pressurizes the upper oil chambers 61, 63 and 65 and depressurizes the lower oil chambers 62, 64 and 66 to steer the control surface as a whole.
If the target state is reached in any steering, the oil volume of each oil chamber is maintained as the shut-off state of (1), thereby suppressing deformation of the outer plate due to the aerodynamic load.
Further, as shown in FIG. 8, for example, the control unit individually controls the rudder angle of each of the movable units 2, 3, and 4 to form an arbitrary rudder surface shape during high-speed cruising and the like, and to optimize the aerodynamic characteristics. Plan

また、同制御部は操舵制御にあたって、舵角センサ52a,52b,52cの検出舵角に基づき可動部2,3,4のうちいずれか1又は2に操舵が効かないか又は不十分であるものがあると判断すれば、残りの可動部に多く舵角を割り当てて、必要な空力特性を可及的に達成するように操舵する。
このように複数の桁構造は、基端から先端方向に連なって互いの相対角が駆動されるので、一部の連結部において操舵不能又は操舵不十分になっても操舵可能又は操舵良好な他の連結部で操舵することで、本動翼10の全操舵機能をできるだけ損なわないという冗長性を備える。さらに、互いに独立した複数の油圧駆動系81,82,83が異なる連結部に設けられた油室をそれぞれ駆動する構成をとることで、一部の油圧駆動系の故障や不具合があっても、他の油圧駆動系で補うことにより、本動翼の全操舵機能をできるだけ損なわないという冗長性を備える。
In addition, in the case of the steering control, the control unit is one in which steering is not effective or insufficient in any one or two of the movable units 2, 3 and 4 based on the detected steering angles of the steering angle sensors 52a, 52b and 52c. If it is determined that there is, a steering angle is assigned to many of the remaining movable parts, and steering is performed so as to achieve the necessary aerodynamic characteristics as much as possible.
As described above, since the plurality of girders structures are driven relative to each other in the direction from the proximal end to the distal end, it is possible to steer even when steering is impossible or insufficient at some connecting portions. Steering is performed at the connecting portion, so that the entire steering function of the moving blade 10 is not impaired as much as possible. Furthermore, by adopting a configuration in which a plurality of hydraulic drive systems 81, 82, 83 that are independent from each other are configured to drive oil chambers provided in different connecting portions, even if there is a failure or malfunction of some hydraulic drive systems, By supplementing with another hydraulic drive system, redundancy is provided such that the entire steering function of the main blade is not impaired as much as possible.

以上の実施形態においては、本発明の動翼を母翼の後縁部に設けたが、本発明の動翼の適用部位は限定されるものではなく、本発明の動翼を翼前縁部や翼側縁部、副翼全体等に適用してもよい。
また、以上の実施形態においては、可動部をピンヒンジにより連結したが、互いの相対角を可変にして連結すれば足りる。例えば、上記実施形態のピンヒンジ、油室間シール部材に代え、母翼−可動部間、可動部−可動部間を繋ぐ弾性的に繰り返し屈曲可能な板状等の部材を配置して連結と上下油室間の隔絶を図っても良い。
In the above embodiment, the moving blade of the present invention is provided at the trailing edge of the main blade, but the application part of the moving blade of the present invention is not limited, and the moving blade of the present invention is mounted on the leading edge of the blade. It may be applied to the blade side edge, the entire sub wing, or the like.
Moreover, in the above embodiment, although the movable part was connected by the pin hinge, it is sufficient if it connects by making a relative angle mutually variable. For example, instead of the pin hinge and the oil chamber seal member of the above embodiment, a plate-like member that is elastically repeatedly bendable that connects between the main wing and the movable part and between the movable part and the movable part is arranged to connect and move up and down. Isolation between oil chambers may be achieved.

1 母翼
2-4 可動部
11,12 外板
13 桁構造
14 桁部
15 側壁部
21,22 外板
23 桁構造
24a 先端側桁部
24b 基端側桁部
25 側壁部
31,32 外板
33 桁構造
34a 先端側桁部
34b 基端側桁部
35 側壁部
41,42 外板
43 桁構造
44a 先端側桁部
44b 基端側桁部
45 側壁部
51 ヒンジピン
52a,52b,52c 舵角センサ
53 油室間シール部材
61,63,65 上方油室
62,64,66 下方油室
7 スライド保持部
71,72 シール部材
81,82,83 油圧駆動系
1 Mother wing 2-4 Movable part 11, 12 Outer plate 13 Girder structure 14 Girder part 15 Side wall parts 21, 22 Outer plate 23 Girder structure 24a Front end side girder part 24b Base end side girder part 25 Side wall parts 31, 32 Outer plate 33 Girder structure 34a Tip side girder part 34b Base end side girder part 35 Side wall parts 41, 42 Outer plate 43 Girder structure 44a Tip side girder part 44b Base end side girder part 45 Side wall part 51 Hinge pins 52a, 52b, 52c Steering angle sensor 53 Oil Inter-chamber seal members 61, 63, 65 Upper oil chambers 62, 64, 66 Lower oil chamber 7 Slide holding portions 71, 72 Seal members 81, 82, 83 Hydraulic drive system

Claims (5)

弾性材料からなり、翼面を形成する可撓性の外板と、
前記外板を支持するとともに、基端から先端方向に連なって互いの相対角を可変にして連結された複数の桁構造と、
隣接する2つの桁構造の連結部に対して翼面側に設けられ、当該2つの桁構造と前記外板とに囲まれ、当該2つの桁構造の相対角の変化に伴って容積が変化する油室と、
前記油室の油圧を変化させることにより前記相対角を変化させる油圧駆動系と、
を備える動翼。
A flexible outer plate made of an elastic material and forming a wing surface;
A plurality of girder structures that support the outer plate and that are connected in a variable direction relative to each other from the proximal end to the distal direction,
It is provided on the wing surface side with respect to the connecting part of two adjacent girder structures, surrounded by the two girder structures and the outer plate, and the volume changes as the relative angle of the two girder structures changes. An oil chamber,
A hydraulic drive system that changes the relative angle by changing the hydraulic pressure of the oil chamber;
With moving blades.
前記油室は、隣接する2つの桁構造の連結部に対して相対する両翼面側にそれぞれ設けられた請求項1に記載の動翼。 2. The moving blade according to claim 1, wherein the oil chambers are respectively provided on both blade surfaces facing the connecting portions of two adjacent girder structures. 前記外板は、前記桁構造のうち一の桁構造に固定され、当該一の桁構造に隣接する他の桁構造に翼面方向にスライド可能に保持された請求項1又は請求項2に記載の動翼。 3. The outer plate according to claim 1, wherein the outer plate is fixed to one girder structure of the girder structure, and is held by another girder structure adjacent to the one girder structure so as to be slidable in the blade surface direction. Moving blades. 隣接する2つの桁構造の連結部に当該2つの桁構造の相対角を検出するセンサが設けられた請求項1、請求項2又は請求項3に記載の動翼。 The moving blade according to claim 1, 2 or 3, wherein a sensor for detecting a relative angle between the two girder structures is provided at a connecting portion between two adjacent girder structures. 前記油圧駆動系は互いに独立した複数が設けられ、異なる前記油圧駆動系は、異なる前記連結部に設けられた前記油室を駆動する請求項1から請求項4のうちいずれか一に記載の動翼。 The said hydraulic drive system is provided with two or more mutually independent, The said different hydraulic drive system drives the said oil chamber provided in the said different connection part, The movement as described in any one of Claims 1-4. Wings.
JP2011041685A 2011-02-28 2011-02-28 Moving blade Withdrawn JP2012176727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011041685A JP2012176727A (en) 2011-02-28 2011-02-28 Moving blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011041685A JP2012176727A (en) 2011-02-28 2011-02-28 Moving blade

Publications (1)

Publication Number Publication Date
JP2012176727A true JP2012176727A (en) 2012-09-13

Family

ID=46978890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011041685A Withdrawn JP2012176727A (en) 2011-02-28 2011-02-28 Moving blade

Country Status (1)

Country Link
JP (1) JP2012176727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156159A (en) * 2013-02-14 2014-08-28 Univ Of Tokyo Flexible blade and marine vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156159A (en) * 2013-02-14 2014-08-28 Univ Of Tokyo Flexible blade and marine vessel

Similar Documents

Publication Publication Date Title
US8056865B2 (en) Mechanism for changing the shape of a control surface
US8583293B2 (en) Flight control surface actuation force fight mitigation system and method
JP6178571B2 (en) Rotor actuator device, aircraft rotor blade, and aircraft
CN204775999U (en) Servo system of actuating of aircraft fracture formula rudder
CN105247206A (en) Submersible power plant having multiple turbines
US8596575B2 (en) Aircraft actuator
US9745031B2 (en) Fin stabilizer and watercraft
CN103935507B (en) Self-driven intelligence is dynamic air rudder entirely
EP2530012B1 (en) Aircraft control surface drive mechanism
CN103373465B (en) Continuous line technology (CMT) elastomer control surface
JP2012176727A (en) Moving blade
JP5154806B2 (en) Fluid device
US20070284483A1 (en) Mobile airfoil device for an aircraft wing
US10570936B2 (en) Symmetrically loaded dual hydraulic fly-by-wire actuator
EP2562431B1 (en) Fluid actuator
US8152465B2 (en) Rotor blade for a rotor airplane
CN203876980U (en) Intelligent self-driven all-moved aerial rudder
JP2013173417A (en) Variable wing structure
JP5711543B2 (en) Hydraulic actuator system
NL2006936C2 (en) A morphing structure and method for morphing a structure.
JP4078191B2 (en) Flapping levitation moving device
EP3986783B1 (en) Adaptive structure
RU2451201C1 (en) Liquid propellant rocket engine
JP3940353B2 (en) Ascent movement device
JP2013119364A (en) Moving blade and aircraft

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513