JP2013173417A - Variable wing structure - Google Patents

Variable wing structure Download PDF

Info

Publication number
JP2013173417A
JP2013173417A JP2012038307A JP2012038307A JP2013173417A JP 2013173417 A JP2013173417 A JP 2013173417A JP 2012038307 A JP2012038307 A JP 2012038307A JP 2012038307 A JP2012038307 A JP 2012038307A JP 2013173417 A JP2013173417 A JP 2013173417A
Authority
JP
Japan
Prior art keywords
partition member
oil chamber
variable
hydraulic
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012038307A
Other languages
Japanese (ja)
Inventor
Tadahiro Nashiko
忠宏 梨子
Atsushi Hitomi
敦 人見
Mitsuhiro Kuse
満広 久瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2012038307A priority Critical patent/JP2013173417A/en
Publication of JP2013173417A publication Critical patent/JP2013173417A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Wind Motors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable wing structure which is suitable for application to a thin wing since no complicated link mechanism is required, and which can alter and maintain a wing shape without causing weight increase even under a condition that aerodynamic load applied to a wing is large.SOLUTION: A variable wing structure 1 for varying a wing shape includes: a plurality of split wings 2 freely turnably coupled to each other to make the relative angle of each other variable; an oil chamber 3 formed in one of two adjacent split wings 2 and having hydraulic fluid thereinside; a partition member 5 projected to the other of the two adjacent split wings 2 to partition the inside of the oil chamber 3 into two hydraulic fluid chambers 4 and turning inside the oil chamber 3 in response to a change of relative angle; and an oil supply/discharge means for adjusting oil pressure applied to the partition member 5 in each hydraulic fluid chamber 4 by supplying and discharging hydraulic fluid to two hydraulic fluid chambers 4 and changing the relative angle by turning the partition member 5.

Description

本発明は、航空機等に用いられる翼の形状を変化させる可変翼構造に関する。   The present invention relates to a variable wing structure that changes the shape of a wing used in an aircraft or the like.

近年、航空機等に用いられる翼構造として、空力特性の向上を目的とし、翼形状を滑らかに変形させる所謂モーフィング翼の研究開発が進められている。この種の可変翼構造として、翼の内部にリンク機構等を収容し、そのリンク機構等を作動させることで翼形状を変化させるようにしたものが知られている(特許文献1〜4等)。   In recent years, research and development of so-called morphing wings that smoothly deform the wing shape has been promoted for the purpose of improving aerodynamic characteristics as a wing structure used in an aircraft or the like. As this type of variable wing structure, there is known a structure in which a link mechanism or the like is housed in the wing and the wing shape is changed by operating the link mechanism or the like (Patent Documents 1 to 4). .

特開2011−178292号公報JP 2011-178292 A 特開2011−178291号公報JP 2011-178291 A 特開2011−178290号公報JP 2011-178290 A US2010/0019096号公報US2010 / 0019096

ところで、リンク機構を用いた可変翼構造においては、翼の内部に複雑なリンク機構を収容する必要があるため、その収容スペースとして、ある程度の翼厚が必要であり、翼厚が薄い翼(例えば高速翼)には適用が困難である。   By the way, in a variable wing structure using a link mechanism, since it is necessary to accommodate a complicated link mechanism inside the wing, a certain wing thickness is required as the accommodation space, and a wing having a thin wing thickness (for example, It is difficult to apply to high-speed blades.

また、リンク機構を用いた可変翼構造においては、電動モータ等のアクチュエータによって、リンク機構の各リンクを回動させて翼形状を変更し、各リンクの角度をその位置で固定して翼形状を保つようにしている。このため、翼に加わる空力荷重が増大するに応じて、リンク機構に加わる負荷も大きくなる。よって、翼に加わる空力荷重が大きい条件下(例えば高速飛行中、急旋回中)にて、翼の形状を変形してその形状を保持するためには、リンク機構の剛性を高める必要があり、重量増加を招く。   In a variable wing structure using a link mechanism, each link of the link mechanism is rotated by an actuator such as an electric motor to change the wing shape, and the angle of each link is fixed at that position to change the wing shape. I try to keep it. For this reason, as the aerodynamic load applied to the wing increases, the load applied to the link mechanism also increases. Therefore, it is necessary to increase the rigidity of the link mechanism in order to deform the shape of the wing and maintain the shape under conditions where the aerodynamic load applied to the wing is large (for example, during high-speed flight or sudden turning) Incurs weight increase.

以上の事情を考慮して創案された本発明の目的は、複雑なリンク機構が不要で薄翼に適用するに好適であり、翼に加わる空力荷重が大きい条件下においても重量増加を招くことなく翼の形状を変更し、その状態で保持できる可変翼構造を提供することにある。   The object of the present invention, which was created in view of the above circumstances, is suitable for thin blades without requiring a complicated link mechanism, and does not cause an increase in weight even under a large aerodynamic load applied to the blades. An object of the present invention is to provide a variable wing structure capable of changing the shape of a wing and maintaining the wing in that state.

上記目的を達成するために創案された本発明は、翼形状を変化させる可変翼構造であって、互いの相対角が可変となるように回動自在に連結された複数の分割翼片と、隣接する2つの分割翼片の一方に形成され、内部に作動油が充填される油室と、隣接する2つの分割翼片の他方に突設され、油室内を2つの作動油室に仕切ると共に、相対角の変化に伴って油室内を回動する仕切部材と、2つの作動油室に作動油を給排することで、各作動油室内の作動油が仕切部材に印加する油圧を調節し、仕切部材を回動させて相対角を変化させる油給排手段とを備えたことを特徴とする可変翼構造である。   The present invention created to achieve the above object is a variable wing structure that changes the wing shape, and a plurality of divided wing pieces that are rotatably connected so that their relative angles are variable, and An oil chamber formed in one of two adjacent divided blade pieces and filled with hydraulic oil, and protruded on the other of the two adjacent divided blade pieces, and partitioning the oil chamber into two hydraulic oil chambers The hydraulic oil applied to the partition member by the hydraulic oil in each hydraulic oil chamber is adjusted by supplying and discharging the hydraulic oil to and from the partition member that rotates in the oil chamber according to the change in the relative angle. The variable wing structure includes oil supply / discharge means for rotating the partition member to change the relative angle.

本発明に係る可変翼構造は、油室が、分割翼片の他方に対向する開口を有し、仕切部材の先端が、開口を通じて油室に挿入され、仕切部材の根元が、開口を塞ぐようになっていてもよい。   In the variable blade structure according to the present invention, the oil chamber has an opening facing the other of the divided blade pieces, the tip of the partition member is inserted into the oil chamber through the opening, and the root of the partition member blocks the opening. It may be.

本発明に係る可変翼構造は、仕切部材の根元に、隣接する分割翼片同士を回動自在に連結する回動軸と軸受が配設され、油室の仕切部材の先端が対向する対向面が、回動軸を中心とした弧状に形成されていてもよい。   In the variable blade structure according to the present invention, a rotating shaft and a bearing for rotatably connecting adjacent divided blade pieces are disposed at the base of the partition member, and the opposing surface is opposed to the tip of the partition member of the oil chamber. However, you may form in the arc shape centering on the rotating shaft.

本発明に係る可変翼構造は、仕切部材の先端に、相対角の変化に伴って、油室の対向面に摺接する先端油圧シールを設けてもよい。   In the variable wing structure according to the present invention, a tip hydraulic seal may be provided at the tip of the partition member in sliding contact with the opposing surface of the oil chamber as the relative angle changes.

本発明に係る可変翼構造は、仕切部材の根元と作動油室の室壁との間をシールする根元油圧シールを設けてもよい。   The variable blade structure according to the present invention may be provided with a root hydraulic seal that seals between the root of the partition member and the chamber wall of the hydraulic oil chamber.

本発明に係る可変翼構造は、根元油圧シールが、可撓性を有する板体からなり、その一端が仕切部材の根元に固定されると共に、中程が折り曲げられ、他端が油室の室壁に固定されていてもよい。   In the variable wing structure according to the present invention, the root hydraulic seal is made of a flexible plate, one end of which is fixed to the base of the partition member, the middle is bent, and the other end is the chamber of the oil chamber. It may be fixed to the wall.

本発明に係る可変翼構造によれば、複数の分割翼片を互いの相対角が可変となるように回動自在に連結し、隣接する分割翼片の一方に形成された油室に他方の分割翼片に突設された仕切部材を挿入して室内を仕切部材で2つの作動油室に仕切り、各作動油室に作動油を給排することで、各作動油室内の作動油が仕切部材に印加する油圧を調節し、仕切部材を油室内で回動させて分割翼片同士の相対角を変化させることができる。   According to the variable blade structure according to the present invention, a plurality of divided blade pieces are rotatably connected so that the relative angle between them is variable, and the other chamber is formed in one of the adjacent divided blade pieces. By inserting a partition member protruding from the split blade piece, the chamber is partitioned into two hydraulic fluid chambers by the partition member, and the hydraulic fluid is supplied to and discharged from each hydraulic fluid chamber, so that the hydraulic fluid in each hydraulic fluid chamber is partitioned. The relative pressure between the divided blade pieces can be changed by adjusting the hydraulic pressure applied to the member and rotating the partition member in the oil chamber.

このように、分割翼片に設けた油室および仕切部材に直接油圧を印加し、分割翼片同士の相対角を変化させて翼形状を変形しているので、分割翼片同士の相対角を変化させるために従来必要であった複雑なリンク機構が不要となる。よって、リンク機構を収容するためのスペースが不要となり、翼厚が薄い翼にも適用できる。   Thus, since the oil pressure is directly applied to the oil chamber and the partition member provided in the divided blade pieces and the relative angle between the divided blade pieces is changed to deform the blade shape, the relative angle between the divided blade pieces is changed. A complicated link mechanism that is conventionally required for the change is not necessary. Therefore, a space for accommodating the link mechanism is not required, and the present invention can be applied to a blade having a thin blade thickness.

また、分割片に設けた油室および仕切部材に直接油圧を印加して翼形状を変形するようにしているため、作動油室内の油圧を高めることで、翼に加わる空力荷重に対抗できる。よって、翼に加わる空力荷重が大きい条件下においても、重量増加を招くことなく、翼の形状を変更し、その状態で保持できる。   Further, since the hydraulic pressure is directly applied to the oil chamber and the partition member provided in the split piece to deform the blade shape, the hydraulic pressure in the hydraulic oil chamber can be increased to counter the aerodynamic load applied to the blade. Therefore, even under a condition where the aerodynamic load applied to the wing is large, the shape of the wing can be changed and maintained in that state without causing an increase in weight.

本発明の第1実施形態に係る可変翼構造の外観を示す斜視図である。It is a perspective view which shows the external appearance of the variable wing | blade structure which concerns on 1st Embodiment of this invention. 第1実施形態に係る可変翼構造の概略断面図である。It is a schematic sectional drawing of the variable wing | blade structure which concerns on 1st Embodiment. (a)は図2の部分拡大図、(b)は分割翼片の側端面を示す側面図である。(A) is the elements on larger scale of FIG. 2, (b) is a side view which shows the side end surface of a division | segmentation blade piece. 第1実施形態に係る可変翼構造の油給排手段を示す説明図である。It is explanatory drawing which shows the oil supply / discharge means of the variable blade structure which concerns on 1st Embodiment. 第1実施形態に係る可変翼構造の作動状態を示す概略断面図である。It is a schematic sectional drawing which shows the operating state of the variable wing | blade structure which concerns on 1st Embodiment. 第1実施形態に係る可変翼構造の部分拡大図であり、(a)はストレート状態(図2参照)、(b)は屈曲状態(図5参照)を示す。It is the elements on larger scale of the variable wing | blade structure which concerns on 1st Embodiment, (a) shows a straight state (refer FIG. 2), (b) shows a bending state (refer FIG. 5). 本発明の第2実施形態に係る可変翼構造の断面図である。It is sectional drawing of the variable wing | blade structure which concerns on 2nd Embodiment of this invention. 第2実施形態に係る可変翼構造を屈曲させた断面図である。It is sectional drawing which bent the variable wing | blade structure which concerns on 2nd Embodiment. 本発明の第3実施形態に係る可変翼構造の断面図である。It is sectional drawing of the variable wing | blade structure which concerns on 3rd Embodiment of this invention. 第3実施形態に係る可変翼構造を屈曲させた断面図である。It is sectional drawing which bent the variable wing | blade structure which concerns on 3rd Embodiment.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易にするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

(可変翼構造1:第1実施形態)
図1に本発明の第1実施形態に係る可変翼構造1の外観を示し、図2にその可変翼構造1の概略断面図を示す。本実施形態に係る可変翼構造1は、航空機の主翼の後縁に適用され、互いの相対角が可変となるように回動自在に連結された複数の分割翼片2と、隣接する2つの分割翼片2の一方に形成された油室3と、隣接する2つの分割翼片2の他方に突設されて油室3内を2つの作動油室4に仕切る仕切部材5とを備えている。
(Variable wing structure 1: first embodiment)
FIG. 1 shows the appearance of the variable blade structure 1 according to the first embodiment of the present invention, and FIG. 2 shows a schematic cross-sectional view of the variable blade structure 1. A variable wing structure 1 according to the present embodiment is applied to a trailing edge of a main wing of an aircraft, and a plurality of divided wing pieces 2 that are rotatably connected so that their relative angles are variable, and two adjacent wing pieces 2 An oil chamber 3 formed on one of the divided blade pieces 2, and a partition member 5 that projects from the other of the two adjacent divided blade pieces 2 and partitions the oil chamber 3 into two hydraulic oil chambers 4. Yes.

(分割翼片2)
図1、図2に示すように、隣接する分割翼片2同士は、回動軸(ヒンジピン)6とその軸受によって、互いの相対角が可変となるように、回動自在に連結されている。各回動軸6には、隣接する分割翼片2同士の相対角を検出するための舵角センサ(角度センサ)7が配設されている。
(Split blade 2)
As shown in FIGS. 1 and 2, the adjacent divided blade pieces 2 are rotatably connected by a rotation shaft (hinge pin) 6 and its bearing so that the relative angle to each other is variable. . Each pivot shaft 6 is provided with a steering angle sensor (angle sensor) 7 for detecting a relative angle between the adjacent divided blade pieces 2.

図3(a)に示すように、各分割翼片2には、翼面を成すアウタープレート(スキンプレート)8が夫々取り付けられている。隣接する一方(図中左側)の分割翼片2には、他方(図中右側)の分割翼片のアウタープレート8が差し込まれる凹部9が形成されている。アウタープレート8は、少なくとも、分割翼片2の端部から凹部9に差し込まれた先端までの部分8aが、可撓性を有する材質(バネ鋼等)から成っている。   As shown in FIG. 3A, an outer plate (skin plate) 8 forming a blade surface is attached to each divided blade piece 2. The adjacent one (left side in the figure) split blade piece 2 is formed with a recess 9 into which the other (right side in the figure) split blade piece is inserted. In the outer plate 8, at least a portion 8 a from the end of the divided blade piece 2 to the tip inserted into the recess 9 is made of a flexible material (spring steel or the like).

(油室3)
図2に示すように、互いに隣接する一方の分割翼片2には油室3が形成されている。油室3は、隣接する他方の分割翼片2に対向する開口3aを有し、内部に作動油が充填されるものである。油室3は、翼スパン方向に沿って形成されており、一つの分割翼片2について一つ或いは翼スパン方向に間隔を隔てて複数配設されている。
(Oil chamber 3)
As shown in FIG. 2, an oil chamber 3 is formed in one of the divided blade pieces 2 adjacent to each other. The oil chamber 3 has an opening 3a facing the other adjacent divided blade piece 2, and is filled with hydraulic oil. The oil chamber 3 is formed along the blade span direction, and one divided blade piece 2 is disposed one or a plurality at intervals in the blade span direction.

(仕切部材5)
図3(a)に示すように、隣接する他方(図中右側)の分割翼片2には、一方(図中左側)の分割翼片2の油室3の開口3aに対向する位置に、仕切部材5が突設されている。仕切部材5は、先端が開口3aを通じて油室3に挿入され、根元が開口3aを塞ぐように、断面テーパー状に形成されている。仕切部材5の根元には、隣接する分割翼片2同士を回動自在に連結する回動軸6とその軸受が配設されている。仕切部材5の先端が対向する油室3の面(対向面)3bは、回動軸6を中心とした弧状に形成されている。仕切部材5は、油室3を2つの作動油室4に仕切ると共に、隣接する分割翼片2同士の相対角が回動軸6を中心として変化するに伴って油室3内を回動する。
(Partition member 5)
As shown in FIG. 3 (a), the other adjacent (the right side in the figure) split wing piece 2 has a position facing the opening 3a of the oil chamber 3 of the one (left side in the figure) split wing piece 2. A partition member 5 is projected. The partition member 5 is formed in a tapered cross-section so that the tip is inserted into the oil chamber 3 through the opening 3a and the root closes the opening 3a. At the base of the partition member 5, a rotation shaft 6 and its bearing for rotatably connecting the adjacent divided blade pieces 2 are disposed. The surface (opposite surface) 3 b of the oil chamber 3 that is opposed to the tip of the partition member 5 is formed in an arc shape around the rotation shaft 6. The partition member 5 partitions the oil chamber 3 into two hydraulic oil chambers 4 and rotates in the oil chamber 3 as the relative angle between the adjacent divided blade pieces 2 changes around the rotation shaft 6. .

(先端油圧シール10)
図3(a)に示すように、仕切部材5の先端には、油室3の対向面3bに接する先端油圧シール10が設けられている。先端油圧シール10は、分割翼片2同士の相対角の変化に伴って仕切部材5が油室3内を回動する際に、油室3の対向面3bに摺接する。先端油圧シール10は、ゴム等の弾性材から翼スパン方向に沿って形成されており、作動油が一方の作動油室4から仕切部材5と対向面3bとの間を通って他方の作動油室4に漏洩することを抑える。なお、先端油圧シール10は、一段ではなく、回動方向に間隔を隔てて二段以上配設してもよい。
(Tip hydraulic seal 10)
As shown in FIG. 3A, the front end of the partition member 5 is provided with a front end hydraulic seal 10 that contacts the facing surface 3 b of the oil chamber 3. The tip hydraulic seal 10 is in sliding contact with the facing surface 3 b of the oil chamber 3 when the partition member 5 rotates in the oil chamber 3 with a change in the relative angle between the divided blade pieces 2. The tip hydraulic seal 10 is formed from an elastic material such as rubber along the blade span direction, and hydraulic fluid passes from one hydraulic fluid chamber 4 between the partition member 5 and the opposing surface 3b, and the other hydraulic fluid. The leakage to the chamber 4 is suppressed. It should be noted that the tip hydraulic seal 10 may be arranged in two or more stages at intervals in the rotation direction instead of one stage.

(根元油圧シール11)
図3(a)に示すように、仕切部材5の根元と油室3の室壁(開口3a)との間には、それらの間をシールする根元油圧シール11が設けられている。根元油圧シール11は、可撓性を有する板体(例えばゴム板)からなり、その一端が仕切部材5の根元に固定(接着、溶着、ボルト止め等)されると共に、中程が折り曲げられ、他端が油室3の室壁(開口3a)に固定されている。根元油圧シール11は、作動油室4内の作動油が仕切部材5と開口3aとの間から外部に漏れ出ることを防止する。
(Root hydraulic seal 11)
As shown in FIG. 3A, a root hydraulic seal 11 is provided between the root of the partition member 5 and the chamber wall (opening 3a) of the oil chamber 3 to seal between them. The base hydraulic seal 11 is made of a flexible plate (for example, a rubber plate), one end of which is fixed to the base of the partition member 5 (adhesion, welding, bolting, etc.), and the middle is bent, The other end is fixed to the chamber wall (opening 3a) of the oil chamber 3. The root hydraulic seal 11 prevents the hydraulic oil in the hydraulic oil chamber 4 from leaking outside between the partition member 5 and the opening 3a.

(側面油圧シール12、13)
図3(b)は、分割翼片2の翼スパン方向の側端面を示す側面図である。図3(b)に示すように、仕切部材5の側端面には、翼コード方向に沿って先端から根元にかけて第1側面油圧シール12が設けられており、仕切部材5の側端面の根元には、回動軸6を囲繞するようにリング状に形成された第2側面油圧シール(Oリング等)13が設けられている。これら第1、第2側面油圧シール12、13は、油室3の側壁部分(図示せず)によって、或いは、分割翼片2の端面に装着した側壁板14(図1参照)によって、覆われ、シール状態が維持されている。
(Side hydraulic seals 12, 13)
FIG. 3B is a side view showing the side end face of the divided blade piece 2 in the blade span direction. As shown in FIG. 3 (b), a first side hydraulic seal 12 is provided on the side end surface of the partition member 5 from the tip to the base along the blade cord direction, and at the base of the side end surface of the partition member 5. Is provided with a second side hydraulic seal (O-ring or the like) 13 formed in a ring shape so as to surround the rotation shaft 6. These first and second side surface hydraulic seals 12 and 13 are covered by a side wall portion (not shown) of the oil chamber 3 or by a side wall plate 14 (see FIG. 1) attached to the end face of the divided blade piece 2. The sealing state is maintained.

第1側面油圧シール12は、一端が先端油圧シール10に接続されており、他端が第2側面油圧シール13に接続されている。第2側面油圧シール13は、根元油圧シール11に接続されている。第1側面油圧シール12は、作動油が一方の作動油室4から仕切部材5の側端面と油室3の側壁部分との間、或いは仕切部材5の側端面と分割翼片2の側壁板14(図1参照)との間を通って他方の作動油室4に漏洩することを抑える。第2側面油圧シール13は、作動油室4内の作動油が仕切部材5の側端面と油室3の側壁部分との間、或いは仕切部材5の側端面と分割翼片2の側壁板14との間を通って外部に漏れ出ることを防止する。   The first side hydraulic seal 12 has one end connected to the tip hydraulic seal 10 and the other end connected to the second side hydraulic seal 13. The second side hydraulic seal 13 is connected to the root hydraulic seal 11. The first side hydraulic seal 12 is configured such that the hydraulic oil is between one hydraulic oil chamber 4 and the side end surface of the partition member 5 and the side wall portion of the oil chamber 3, or the side end surface of the partition member 5 and the side wall plate of the divided blade piece 2. 14 (see FIG. 1) to prevent leakage to the other hydraulic oil chamber 4. The second side hydraulic seal 13 is configured such that the hydraulic oil in the hydraulic oil chamber 4 is between the side end surface of the partition member 5 and the side wall portion of the oil chamber 3, or the side end surface of the partition member 5 and the side wall plate 14 of the divided blade piece 2. To prevent leakage to the outside through.

(油給排手段15)
図4に示すように、本実施形態に係る可変翼構造1は、各作動油室4に作動油を給排する油給排手段15を備えている。油給排手段15は、各作動油室4に作動油を給排することで、各作動油室4内の作動油が仕切部材5に印加する油圧を調節するものである。仕切部材5に印加する油圧を調節することにより、仕切部材5を回動させ、隣接する分割翼片2同士の相対角を変化させることができる。
(Oil supply / discharge means 15)
As shown in FIG. 4, the variable blade structure 1 according to the present embodiment includes oil supply / discharge means 15 that supplies and discharges hydraulic oil to and from each hydraulic oil chamber 4. The oil supply / discharge means 15 adjusts the hydraulic pressure applied to the partition member 5 by the hydraulic oil in each hydraulic oil chamber 4 by supplying and discharging the hydraulic oil to each hydraulic oil chamber 4. By adjusting the hydraulic pressure applied to the partition member 5, the partition member 5 can be rotated to change the relative angle between the adjacent divided blade pieces 2.

油給排手段15は、隣接する分割翼片2同士の相対角を変化させるための油室3毎に別々(図4では3個の油室3毎に3系統別々)に設けられており、作動油が貯留されたリザーバ16と、リザーバ16の作動油を作動油室4に向けて圧送する油圧ポンプ17と、油圧ポンプ17から圧送された作動油の供給先を図4にて上側の作動油室4と下側の作動油室4とに切り替える機能および遮断する機能を有するサーボバルブ18とを備えている。   The oil supply / discharge means 15 is provided separately for each oil chamber 3 for changing the relative angle between adjacent divided blade pieces 2 (three systems for each of three oil chambers 3 in FIG. 4), The reservoir 16 in which the hydraulic oil is stored, the hydraulic pump 17 that pumps the hydraulic oil in the reservoir 16 toward the hydraulic oil chamber 4, and the supply destination of the hydraulic oil pumped from the hydraulic pump 17 is the upper side in FIG. A servo valve 18 having a function of switching between the oil chamber 4 and the lower hydraulic oil chamber 4 and a function of blocking is provided.

サーボバルブ18は、クロス18a、シャット18b、パラレル18cの切替機構を有する。サーボバルブをパラレル18cにすると、油圧ポンプ17から圧送された作動油が下側の作動油室4に供給され、上側の作動油室4内の作動油がリザーバ16に還流される。サーボバルブ18をクロス18aにすると、油圧ポンプ17から圧送された作動油が上側の作動油室4に供給され、下側の作動油室4内の作動油がリザーバ16に還流される。サーボバルブ18をシャット18bにすると、上下の作動油室4に対する作動油の給排が遮断される。   The servo valve 18 has a switching mechanism for a cross 18a, a shut 18b, and a parallel 18c. When the servo valve is set to parallel 18 c, the hydraulic oil pumped from the hydraulic pump 17 is supplied to the lower hydraulic oil chamber 4, and the hydraulic oil in the upper hydraulic oil chamber 4 is returned to the reservoir 16. When the servo valve 18 is set to the cross 18 a, the hydraulic oil pumped from the hydraulic pump 17 is supplied to the upper hydraulic oil chamber 4, and the hydraulic oil in the lower hydraulic oil chamber 4 is returned to the reservoir 16. When the servo valve 18 is set to the shut 18b, the supply and discharge of the hydraulic oil to and from the upper and lower hydraulic oil chambers 4 are blocked.

(作用・効果)
本実施形態に係る可変翼構造1においては、図4に示す油給排手段15のサーボバルブ18をクロス18aにすることで図5に示すように翼形状が下向きに変形する。このとき、翼形状は、図6(a)(翼形状がストレートの状態を表す)から、図6(b)(翼形状が下向きの状態を表す)のように変形し、上側のアウタープレート8の端部の部分8aが撓みつつ凹部9から引き出され、下側のアウタープレートの端部の部分8aが撓みつつ凹部9に差し込まれる。サーボバルブ18をパラレル18cにすると、翼形状が上向きに変形する。各サーボバルブ18を適宜クロス18a、パラレル18cとすることで、翼形状を蛇行変形させることもできる。そして、各サーボバルブ18をシャット18bにすることで、各作動油室4内の油圧がロックされ、翼形状をそのとき変形した形状に保持できる。
(Action / Effect)
In the variable blade structure 1 according to the present embodiment, the blade shape is deformed downward as shown in FIG. 5 by making the servo valve 18 of the oil supply / discharge means 15 shown in FIG. 4 a cross 18a. At this time, the wing shape is deformed from FIG. 6A (the wing shape represents a straight state) to FIG. 6B (the wing shape represents a downward state), and the upper outer plate 8 is deformed. The end portion 8a is pulled out from the recess 9 while being bent, and the end portion 8a of the lower outer plate is inserted into the recess 9 while being bent. When the servo valve 18 is set to the parallel 18c, the blade shape is deformed upward. By making the servo valves 18 appropriately cross 18a and parallel 18c, the blade shape can be meandered. Then, by setting each servo valve 18 to the shut 18b, the hydraulic pressure in each hydraulic oil chamber 4 is locked, and the blade shape can be held in a deformed shape at that time.

各サーボバルブ18は、制御部(図示せず)によって制御される。制御部は、変形させるべき所望の翼形状に応じた各回動軸6の目標角を設定し、各回動軸6に配設された舵角センサ7(図1参照)の出力値(検出角)に基づいて、検出角と目標角との偏差が零に収束するように、夫々のサーボバルブ18をフィードバック制御する。これにより、翼形状を所望の形状に正確に変形させることができる。また、同一油圧系統における上下の作動油室4の油圧バランスを取ることで、翼のノミナル舵角を形成することができる。なお、制御部は、翼形状を所望の形状に変形した後、各サーボバルブ18をシャット18bにすることで翼形状を保持・固定する。   Each servo valve 18 is controlled by a control unit (not shown). The control unit sets a target angle of each rotating shaft 6 according to a desired blade shape to be deformed, and an output value (detection angle) of a rudder angle sensor 7 (see FIG. 1) disposed on each rotating shaft 6. Based on the above, each servo valve 18 is feedback-controlled so that the deviation between the detected angle and the target angle converges to zero. Thereby, a wing | blade shape can be correctly changed into a desired shape. Moreover, the nominal rudder angle of a wing | blade can be formed by balancing the hydraulic pressure of the upper and lower hydraulic oil chambers 4 in the same hydraulic system. The control unit holds and fixes the blade shape by changing the shape of the blade to a desired shape and then setting each servo valve 18 to the shut 18b.

以上説明したように、本実施形態に係る可変翼構造1によれば、複数の分割翼片2を互いの相対角が可変となるように回動軸6で回動自在に連結し、隣接する分割翼片2の一方に形成された油室3に他方の分割翼片2に突設された仕切部材5を挿入して油室3内を仕切部材5で2つの作動油室4に仕切り、各作動油室4に作動油を給排することで、各作動油室4内の作動油が仕切部材5に印加する油圧を調節し、仕切部材5を油室3内で回動させて分割翼片2同士の相対角を変化させている。   As described above, according to the variable blade structure 1 according to the present embodiment, the plurality of divided blade pieces 2 are rotatably connected by the rotation shaft 6 so that the relative angles of the divided blade pieces 2 are variable, and adjacent to each other. A partition member 5 projecting from the other split blade piece 2 is inserted into the oil chamber 3 formed on one of the split blade pieces 2, and the inside of the oil chamber 3 is partitioned into two hydraulic oil chambers 4 by the partition member 5, By supplying and discharging the hydraulic oil to and from each hydraulic oil chamber 4, the hydraulic pressure applied to the partition member 5 by the hydraulic oil in each hydraulic oil chamber 4 is adjusted, and the partition member 5 is rotated and divided in the oil chamber 3. The relative angle between the wing pieces 2 is changed.

このように、分割翼片2に設けた油室3および仕切部材5に直接油圧を印加し、分割翼片2同士の相対角を変化させて翼形状を変形しているので、分割翼片2同士の相対角を変化させるために従来必要であった複雑なリンク機構が不要となる。よって、リンク機構を収容するためのスペースが不要となり、翼厚が薄い翼(例えば高速翼)にも適用できる。   Thus, since the oil pressure 3 is directly applied to the oil chamber 3 and the partition member 5 provided in the divided blade piece 2 and the relative angle between the divided blade pieces 2 is changed, the blade shape is deformed. In order to change the relative angle between them, a complicated link mechanism that has been conventionally required is not required. Therefore, a space for accommodating the link mechanism is not required, and the present invention can be applied to a blade having a thin blade thickness (for example, a high-speed blade).

また、分割翼片2に設けた油室3および仕切部材5に直接油圧を印加して翼形状を変形するようにしているため、作動油室4内の油圧を高めることで、容易に、翼に加わる空力荷重に対抗できる。よって、翼に加わる空力荷重が大きい使用条件下(例えば高速飛行中、急旋回中)においても、重量増加を招くことなく、翼の形状を変更して保持できる。   In addition, since the hydraulic pressure is directly applied to the oil chamber 3 and the partition member 5 provided in the divided blade piece 2 to deform the blade shape, the hydraulic pressure in the hydraulic oil chamber 4 is increased, so that the blade can be easily Can counteract aerodynamic loads applied to Therefore, the shape of the wing can be changed and maintained without causing an increase in weight even under use conditions where the aerodynamic load applied to the wing is large (for example, during high-speed flight or sudden turning).

また、隣接する分割翼片2同士の相対角を変更するモーメント(ヒンジモーメント)は、油室3内の仕切部材5に印加される油圧によって得ているため、回動軸6から仕切部材5の先端までの長さが長いほど大きくなる。よって、仕切部材5を翼コード方向に長くし、それに応じて油室3を翼コード方向に深くすることで、翼厚を厚くすることなく上記ヒンジモーメントを稼ぐことができる。よって、翼厚が薄い翼に好適な可変翼構造1となる。   Further, the moment (hinge moment) for changing the relative angle between the adjacent divided blade pieces 2 is obtained by the hydraulic pressure applied to the partition member 5 in the oil chamber 3. The longer the length to the tip, the larger the length. Therefore, the hinge moment can be earned without increasing the blade thickness by elongating the partition member 5 in the blade cord direction and correspondingly deepening the oil chamber 3 in the blade cord direction. Therefore, the variable blade structure 1 is suitable for a blade having a thin blade thickness.

さらに、油室3が分割翼片2の内部に形成されているので、本出願人が先に出願した特願2011−41685号に係る発明(可撓性の外板によって油室の一部を区画するもの)と比べると、シール構成を簡素化でき作動油の漏洩の可能性を低減できる。   Further, since the oil chamber 3 is formed inside the divided blade piece 2, the invention according to Japanese Patent Application No. 2011-41685 filed earlier by the present applicant (a part of the oil chamber is formed by a flexible outer plate). Compared with the one to be partitioned), the seal configuration can be simplified and the possibility of leakage of hydraulic oil can be reduced.

また、複数の分割翼片2を連結しているので、一部の連結部(回動軸6)が損傷・故障しても、残りの連結部によって翼形状を変形できるという冗長性を備える。また、図4に示すように、3個の油室3毎に3系統別々に油給排手段15を設けたので、一部の油給排手段15が損傷・故障しても、残りの油給排手段15によって翼形状を変形できるという冗長性を備える。   Moreover, since the some division | segmentation blade piece 2 is connected, even if one connection part (rotating shaft 6) is damaged and failed, it has the redundancy that a wing | blade shape can be deform | transformed by the remaining connection part. Further, as shown in FIG. 4, since three oil supply / discharge means 15 are provided for each of the three oil chambers 3, even if some of the oil supply / discharge means 15 are damaged / failed, the remaining oil Redundancy that the blade shape can be deformed by the supply / discharge means 15 is provided.

(第2実施形態)
図7、図8に、本発明の第2実施形態に係る可変翼構造1aを示す。第2実施形態に係る可変翼構造1aにおいては、根元側(翼の前縁側)の2つの油室3がインナースキン(インナープレート)19と桁20とによって形成され、先端側(翼の後縁側)の1つの油室3がアウタープレート8と桁20とによって形成された点を除き、第1実施形態と同様の構成となっている。よって、第1実施形態と同じ構成要素には同一の符号を付して説明を省略する。第2実施形態の作用効果は、第1実施形態と同様である。
(Second Embodiment)
7 and 8 show a variable blade structure 1a according to a second embodiment of the present invention. In the variable wing structure 1a according to the second embodiment, two oil chambers 3 on the root side (the leading edge side of the wing) are formed by an inner skin (inner plate) 19 and a girder 20, and the tip side (the trailing edge side of the wing) ) Except that the one oil chamber 3 is formed by the outer plate 8 and the girder 20. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. The effect of 2nd Embodiment is the same as that of 1st Embodiment.

(第3実施形態)
図9、図10に、本発明の第3実施形態に係る可変翼構造1bを示す。第3実施形態に係る可変翼構造1bにおいては、仕切部材5が回動軸6に対して翼の後縁側に配置されている点が、仕切部材5が回動軸6に対して翼の前縁側に配置された第1および第2実施形態と相違しており、その他は第1および第2実施形態と略同様の構成となっている。よって、第1実施形態と同じ構成要素には同一の符号を付して説明を省略する。なお、第3実施形態は、油室3がアウタープレート8と桁20とによって形成されている点も相違するが、基本的な作用効果は、第1実施形態と同様である。
(Third embodiment)
9 and 10 show a variable wing structure 1b according to a third embodiment of the present invention. In the variable wing structure 1 b according to the third embodiment, the partition member 5 is disposed on the trailing edge side of the blade with respect to the rotation shaft 6. This is different from the first and second embodiments arranged on the edge side, and the other configurations are substantially the same as those of the first and second embodiments. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. The third embodiment is also different in that the oil chamber 3 is formed by the outer plate 8 and the girder 20, but the basic function and effect are the same as those of the first embodiment.

以上、添付図面を参照しつつ本発明の好適な実施形態について説明したが、本発明は上述した各実施形態に限定されないことは勿論であり、特許請求の範囲に記載された範疇における各種の変更例又は修正例についても、本発明の技術的範囲に属することは言うまでもない。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings. However, the present invention is not limited to the above-described embodiments, and various modifications within the scope of the claims. Needless to say, examples and modifications also belong to the technical scope of the present invention.

例えば、本発明に係る可変翼構造は、航空機の主翼の後縁側に適用されるものに限られず、主翼の前縁側、水平尾翼の後縁側および前縁側の少なくとも一方、垂直尾翼の後縁側および前縁側の少なくとも一方、に適用してもよい。また、翼のスパン方向の先端に適用してもよい。   For example, the variable wing structure according to the present invention is not limited to the one applied to the trailing edge side of the main wing of an aircraft, but includes at least one of the leading edge side of the main wing, the trailing edge side and the leading edge side of the horizontal tail, the trailing edge side and the front of the vertical tail. You may apply to at least one of the edge side. Moreover, you may apply to the front-end | tip of the span direction of a wing | blade.

本発明は、航空機等の翼の形状を変化させる可変翼構造に利用できる。   The present invention can be used for a variable wing structure that changes the shape of a wing of an aircraft or the like.

1 可変翼構造
2 分割翼片
3 油室
3a 開口
3b 対向面
4 作動油室
5 仕切部材
6 回動軸
10 先端油圧シール
11 根元油圧シール
15 油給排手段
DESCRIPTION OF SYMBOLS 1 Variable blade structure 2 Split blade piece 3 Oil chamber 3a Opening 3b Opposite surface 4 Hydraulic oil chamber 5 Partition member 6 Rotating shaft 10 Tip hydraulic seal 11 Root hydraulic seal 15 Oil supply / discharge means

Claims (6)

翼形状を変化させる可変翼構造であって、
互いの相対角が可変となるように回動自在に連結された複数の分割翼片と、
隣接する2つの分割翼片の一方に形成され、内部に作動油が充填される油室と、
隣接する2つの分割翼片の他方に突設され、前記油室内を2つの作動油室に仕切ると共に、前記相対角の変化に伴って前記油室内を回動する仕切部材と、
前記2つの作動油室に作動油を給排することで、各作動油室内の作動油が前記仕切部材に印加する油圧を調節し、前記仕切部材を回動させて前記相対角を変化させる油給排手段と
を備えたことを特徴とする可変翼構造。
A variable wing structure that changes the wing shape,
A plurality of split wing pieces that are rotatably coupled so that their relative angles are variable;
An oil chamber formed in one of two adjacent divided blade pieces and filled with hydraulic oil therein;
A partition member that protrudes from the other of the two adjacent divided blade pieces, partitions the oil chamber into two hydraulic oil chambers, and rotates the oil chamber as the relative angle changes;
Oil that supplies and discharges hydraulic oil to and from the two hydraulic oil chambers, adjusts the hydraulic pressure applied to the partition member by the hydraulic oil in each hydraulic oil chamber, and rotates the partition member to change the relative angle. A variable wing structure comprising a supply / discharge means.
前記油室が、前記分割翼片の他方に対向する開口を有し、
前記仕切部材の先端が、前記開口を通じて前記油室に挿入され、
前記仕切部材の根元が、前記開口を塞ぐことを特徴とする請求項1に記載の可変翼構造。
The oil chamber has an opening facing the other of the divided blade pieces;
The tip of the partition member is inserted into the oil chamber through the opening,
The variable wing structure according to claim 1, wherein a base of the partition member closes the opening.
前記仕切部材の根元に、隣接する分割翼片同士を回動自在に連結する回動軸と軸受が配設され、
前記油室の前記仕切部材の先端が対向する対向面が、前記回動軸を中心とした弧状に形成されたことを特徴とする請求項1または2に記載の可変翼構造。
At the base of the partition member, a rotating shaft and a bearing that rotatably connect adjacent divided blade pieces are disposed,
3. The variable wing structure according to claim 1, wherein a facing surface of the oil chamber facing the tip of the partition member is formed in an arc shape centering on the rotation shaft.
前記仕切部材の先端に、前記相対角の変化に伴って、前記油室の対向面に摺接する先端油圧シールを設けたことを特徴とする請求項1から3の何れか1項に記載の可変翼構造。   The variable according to any one of claims 1 to 3, wherein a tip hydraulic seal is provided at a tip of the partition member so as to be in sliding contact with a facing surface of the oil chamber as the relative angle changes. Wing structure. 前記仕切部材の根元と前記作動油室の室壁との間をシールする根元油圧シールを備えたことを特徴とする請求項1から4の何れか1項に記載の可変翼構造。   The variable blade structure according to any one of claims 1 to 4, further comprising a root hydraulic seal that seals between a root of the partition member and a chamber wall of the hydraulic oil chamber. 前記根元油圧シールは、可撓性を有する板体からなり、その一端が前記仕切部材の根元に固定されると共に、中程が折り曲げられ、他端が前記油室の室壁に固定されたことを特徴とする請求項5に記載の可変翼構造。   The base hydraulic seal is made of a flexible plate, one end of which is fixed to the base of the partition member, the middle is bent, and the other end is fixed to the chamber wall of the oil chamber. The variable wing structure according to claim 5.
JP2012038307A 2012-02-24 2012-02-24 Variable wing structure Pending JP2013173417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012038307A JP2013173417A (en) 2012-02-24 2012-02-24 Variable wing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012038307A JP2013173417A (en) 2012-02-24 2012-02-24 Variable wing structure

Publications (1)

Publication Number Publication Date
JP2013173417A true JP2013173417A (en) 2013-09-05

Family

ID=49266784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012038307A Pending JP2013173417A (en) 2012-02-24 2012-02-24 Variable wing structure

Country Status (1)

Country Link
JP (1) JP2013173417A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168429A (en) * 2014-03-05 2015-09-28 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Wing, method for constructing wing, and method for changing shape of wing
CN112550664A (en) * 2020-12-09 2021-03-26 西北工业大学 Variable camber wing structure based on shape memory alloy drive
CN112572763A (en) * 2020-12-09 2021-03-30 西北工业大学 Reversing mechanism for bidirectional variable trailing edge wing
WO2022104779A1 (en) * 2020-11-23 2022-05-27 西湖大学 Wing panel structure for aircraft, wing structure, and aircraft

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168429A (en) * 2014-03-05 2015-09-28 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Wing, method for constructing wing, and method for changing shape of wing
WO2022104779A1 (en) * 2020-11-23 2022-05-27 西湖大学 Wing panel structure for aircraft, wing structure, and aircraft
CN112550664A (en) * 2020-12-09 2021-03-26 西北工业大学 Variable camber wing structure based on shape memory alloy drive
CN112572763A (en) * 2020-12-09 2021-03-30 西北工业大学 Reversing mechanism for bidirectional variable trailing edge wing

Similar Documents

Publication Publication Date Title
JP2013173417A (en) Variable wing structure
ES2673327T3 (en) Optimization of the propeller position of an open downstream fan
ES2869888T3 (en) Swallowtail wing profile
JP2012501895A (en) Slat support assembly
CN102745327B (en) Active gurney flap
ES2748697T3 (en) Aerodynamic structures that have lower surface spoilers
CN105460205A (en) Rotorcraft having a stabilizer device
US10479494B2 (en) Rotorcraft tail rotor, a rotorcraft fitted with such a tail rotor, and a method of statically and/or dynamically balancing a rotorcraft tail rotor
BR112016016467B1 (en) BLADE FOR A TURBOMACHINE PROPELLER, IN PARTICULAR UNFAIRED FAN, PROPELLER AND CORRESPONDING TURBOMACHINE, AND, PROCESS FOR REDUCING THE SOUND EMISSIONS OF A TURBOMACHINE
CN103649424A (en) Swivel joint for construction machinery
US10017240B2 (en) Aircraft
US20190084665A1 (en) Control surface for an aircraft, and aircraft having a flexible control surface
CN104254688B (en) The method of the lift of wind turbine blade and this blade of control
BR112016001860A2 (en) hydraulic servo valve improvements
RU2702376C2 (en) Rotor blade system
US20220009618A1 (en) Active Lift Control Device and Method
CN113294504A (en) Rotary actuator
US11300135B2 (en) Variable stator vane and compressor
CN102271999B (en) Bearing assembly
US8128039B2 (en) Aerodynamic surface assembly for aircraft
GB2540953A (en) A control surface for an aircraft
JP6926543B2 (en) Morphing wings and aircraft
KR102013256B1 (en) Steam turbine
JP2013043460A (en) Fluid actuator
EP3374262B1 (en) Rotor blade structures