JP6926543B2 - Morphing wings and aircraft - Google Patents

Morphing wings and aircraft Download PDF

Info

Publication number
JP6926543B2
JP6926543B2 JP2017046750A JP2017046750A JP6926543B2 JP 6926543 B2 JP6926543 B2 JP 6926543B2 JP 2017046750 A JP2017046750 A JP 2017046750A JP 2017046750 A JP2017046750 A JP 2017046750A JP 6926543 B2 JP6926543 B2 JP 6926543B2
Authority
JP
Japan
Prior art keywords
liquid
morphing
wing
blade
airfoil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017046750A
Other languages
Japanese (ja)
Other versions
JP2018149890A (en
Inventor
敬介 市毛
敬介 市毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2017046750A priority Critical patent/JP6926543B2/en
Publication of JP2018149890A publication Critical patent/JP2018149890A/en
Application granted granted Critical
Publication of JP6926543B2 publication Critical patent/JP6926543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、モーフィング翼及び航空機に関する。 The present invention relates to morphing wings and aircraft.

翼型(翼の断面形状)を任意の形状に変えられるモーフィング翼が知られている(特許文献1参照)。特許文献1では、リンク機構を用いて翼型形状を任意の形状に変化させている。 A morphing blade that can change the airfoil (cross-sectional shape of the blade) to an arbitrary shape is known (see Patent Document 1). In Patent Document 1, the airfoil shape is changed to an arbitrary shape by using a link mechanism.

特開2015−214328号公報Japanese Unexamined Patent Publication No. 2015-214328

ところで、特許文献1に開示されたモーフィング翼では、リンク機構を用いて翼型形状を変化させるため、構造が複雑であり、さらにリンク機構の固着を防ぐ対策も必要になる虞がある。 By the way, in the morphing blade disclosed in Patent Document 1, since the airfoil shape is changed by using the link mechanism, the structure is complicated, and there is a possibility that measures for preventing the link mechanism from sticking are required.

本発明は、簡単な構造で翼型を変えられるモーフィング翼及び航空機を提供することを目的とする。 An object of the present invention is to provide a morphing wing and an aircraft whose airfoil can be changed with a simple structure.

本発明の第1態様のモーフィング翼は、翼本体と、前記翼本体の上面を覆い、前記翼本体との間に形成される密閉空間内に液体を液密状態で保持し、前記密閉空間内の前記液体の量に応じて前記翼本体外側への膨出量が変化する弾性外皮と、を備える。 The morphing blade of the first aspect of the present invention covers the upper surface of the blade body and the blade body, holds the liquid in a liquid-tight state in a closed space formed between the blade body, and is inside the closed space. It is provided with an elastic outer skin in which the amount of swelling to the outside of the wing body changes according to the amount of the liquid.

第1態様のモーフィング翼では、密閉空間内の液体の量(以下、適宜「液量」と記載する。)に応じて弾性外皮の翼本体外側への膨出量(膨出変形量)が変化し、弾性外皮の膨出変形量に応じて翼型が変化する。このように上記モーフィング翼では、翼本体の上面を上記弾性外皮で覆って密閉空間内の液体を液密状態で保持する簡単な構成で、翼型を変えることができる。 In the morphing blade of the first aspect, the amount of swelling (bulging deformation amount) of the elastic outer skin to the outside of the wing body changes according to the amount of liquid in the enclosed space (hereinafter, appropriately referred to as "liquid amount"). However, the wing shape changes according to the amount of bulging deformation of the elastic outer skin. As described above, in the morphing blade, the airfoil can be changed by a simple configuration in which the upper surface of the blade body is covered with the elastic outer skin to hold the liquid in the closed space in a liquid-tight state.

本発明の第2態様のモーフィング翼は、第1態様のモーフィング翼において、前記密閉空間内の前記液体の量を調節する調節手段をさらに備える。 The morphing wing of the second aspect of the present invention further comprises an adjusting means for adjusting the amount of the liquid in the enclosed space in the morphing wing of the first aspect.

第2態様のモーフィング翼では、調節手段によって密閉空間内の液量が調節されるため、例えば、手作業で密閉空間内の液量を調節する構成と比べて、飛行中でも翼型を変えることができる。 In the morphing blade of the second aspect, since the amount of liquid in the closed space is adjusted by the adjusting means, the airfoil can be changed even during flight as compared with the configuration in which the amount of liquid in the closed space is manually adjusted, for example. can.

本発明の第3態様のモーフィング翼は、第2態様のモーフィング翼において、前記調節手段は、前記液体の貯留部と、前記貯留部から前記密閉空間へ前記液体を送る送りポンプと、前記密閉空間から前記貯留部へ前記液体を戻す戻しポンプと、を備える。 The morphing wing according to the third aspect of the present invention is the morphing wing according to the second aspect, wherein the adjusting means includes a storage portion for the liquid, a feed pump for sending the liquid from the storage portion to the closed space, and the closed space. A return pump for returning the liquid to the storage unit is provided.

第3態様のモーフィング翼では、送りポンプによって貯留部から密閉空間へ液体が送られると弾性外皮が膨らむ(膨出変形する)。一方、戻しポンプによって密閉空間から貯留部へ液体が戻されると、弾性外皮が収縮する(収縮変形する)。このように、上記モーフィング翼では、送りポンプと戻しポンプを用いた簡単な構成で弾性外皮を膨出(膨張)及び収縮させることができる。 In the morphing blade of the third aspect, when the liquid is sent from the storage portion to the closed space by the feed pump, the elastic outer skin swells (swells and deforms). On the other hand, when the liquid is returned from the closed space to the reservoir by the return pump, the elastic outer skin contracts (contracts and deforms). As described above, in the morphing blade, the elastic outer skin can be expanded (expanded) and contracted with a simple configuration using a feed pump and a return pump.

本発明の第4態様のモーフィング翼は、第3態様のモーフィング翼において、前記調節手段は、前記密閉空間内の前記液体の圧力を検出する圧力センサと、前記送りポンプ及び前記戻しポンプの駆動を制御し、前記圧力センサから送られる前記液体の圧力情報に応じて前記密閉空間内の前記液体の量を調節する制御装置と、をさらに備える。 The morphing wing of the fourth aspect of the present invention is the morphing wing of the third aspect, wherein the adjusting means drives a pressure sensor for detecting the pressure of the liquid in the enclosed space, and the feed pump and the return pump. A control device for controlling and adjusting the amount of the liquid in the enclosed space according to the pressure information of the liquid sent from the pressure sensor is further provided.

第4態様のモーフィング翼では、圧力センサから送られる液体の圧力情報に応じて制御装置が送りポンプ及び戻しポンプの駆動を制御し、密閉空間内の液量を調節する。このため、上記モーフィング翼では、制御装置によって自動で密閉空間内の液量が調節される。 In the morphing blade of the fourth aspect, the control device controls the drive of the feed pump and the return pump according to the pressure information of the liquid sent from the pressure sensor, and adjusts the amount of the liquid in the enclosed space. Therefore, in the morphing blade, the amount of liquid in the closed space is automatically adjusted by the control device.

本発明の第5態様のモーフィング翼は、第1態様〜第4態様のいずれか一態様のモーフィング翼において、前記弾性外皮は、前記翼本体の前部上面を覆っている。 The morphing wing according to the fifth aspect of the present invention is the morphing wing according to any one of the first to fourth aspects, wherein the elastic outer skin covers the front upper surface of the wing body.

第5態様のモーフィング翼では、飛行中の翼表面の圧力分布が大きく変化する翼本体の前部上面を弾性外皮が覆うため、例えば、弾性外皮が翼本体の前部上面を覆わない構成と比べて、少ない膨出変形量でも高い揚抗比を得ることができる。 In the morphing blade of the fifth aspect, the elastic outer skin covers the upper surface of the front part of the blade body in which the pressure distribution on the surface of the blade changes significantly during flight. Therefore, a high lift-resilience ratio can be obtained even with a small amount of swelling deformation.

本発明の第6態様のモーフィング翼は、第1態様〜第5態様のいずれか一態様のモーフィング翼において、前記密閉空間内には、前記液体が含浸され、前記弾性外皮の膨出変形に追従する多孔質体が配置されている。 The morphing blade of the sixth aspect of the present invention is the morphing blade of any one of the first to fifth aspects, in which the liquid is impregnated in the enclosed space and follows the bulging deformation of the elastic outer skin. A porous body is arranged.

第6態様のモーフィング翼では、液体が含浸され、弾性外皮の膨出変形に追従する多孔質体が密閉空間内に配置されているため、例えば、密閉空間内に上記多孔質体を配置しない構成と比べて、剛性が向上する。 In the morphing wing of the sixth aspect, since the porous body impregnated with the liquid and following the bulging deformation of the elastic outer skin is arranged in the closed space, for example, the porous body is not arranged in the closed space. Compared with, the rigidity is improved.

本発明の第7態様のモーフィング翼は、第1態様〜第6態様のいずれか一態様のモーフィング翼において、前記翼本体の前記密閉空間を形成する部分が、前記液体に対して耐食性を有する保護膜で被覆されている。 The morphing wing according to the seventh aspect of the present invention is the morphing wing according to any one of the first to sixth aspects, in which the portion of the wing body forming the closed space is protected against the liquid. It is covered with a film.

第7態様のモーフィング翼では、翼本体の密閉空間を形成する部分が液体に対して耐食性を有する保護膜で被覆されているため、液体による腐蝕に起因して生じる翼本体の不具合を抑制できる。 In the morphing blade of the seventh aspect, since the portion forming the closed space of the blade body is covered with a protective film having corrosion resistance against the liquid, it is possible to suppress the defect of the blade body caused by the corrosion by the liquid.

本発明の第8態様の航空機は、胴体部と、前記胴体部に取り付けられた請求項1〜請求項7に記載のモーフィング翼と、を備える。 The aircraft of the eighth aspect of the present invention includes a fuselage portion and a morphing wing according to claims 1 to 7 attached to the fuselage portion.

第8態様の航空機では、例えば、複雑な構造で翼型を変えるモーフィング翼を取り付ける構成と比べて、翼型を変える際に不具合が生じにくい。 In the aircraft of the eighth aspect, a problem is less likely to occur when changing the airfoil, as compared with, for example, a configuration in which a morphing wing that changes the airfoil with a complicated structure is attached.

以上説明したように本発明は、簡単な構造で翼型を変えられるモーフィング翼及び航空機を提供することができる。 As described above, the present invention can provide a morphing wing and an aircraft whose airfoil can be changed with a simple structure.

本発明の一実施形態に係るモーフィング翼の斜視図である。It is a perspective view of the morphing wing which concerns on one Embodiment of this invention. 図1のモーフィング翼の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the morphing blade of FIG. 図1のモーフィング翼の第1翼型を示す断面図である。It is sectional drawing which shows the 1st airfoil of the morphing blade of FIG. 図3の矢印4で指し示す部分の拡大図である。It is an enlarged view of the part pointed out by the arrow 4 of FIG. 図1のモーフィング翼の第2翼型を示す断面図である。It is sectional drawing which shows the 2nd airfoil of the morphing blade of FIG. 図5の矢印6で指し示す部分の拡大図である。It is an enlarged view of the part pointed out by the arrow 6 of FIG. 図1のモーフィング翼の第3翼型を示す断面図である。It is sectional drawing which shows the 3rd airfoil of the morphing blade of FIG. 図7の矢印8で指し示す部分の拡大図である。It is an enlarged view of the part pointed out by the arrow 8 of FIG. 図1のモーフィング翼を用いた航空機の平面図である。It is a top view of the aircraft using the morphing wing of FIG. 図3の第1翼型におけるモーフィング翼の翼表面の圧力分布を示す断面図である。It is sectional drawing which shows the pressure distribution of the blade surface of the morphing blade in the 1st airfoil of FIG. 図10のモーフィング翼の迎角を上げたときの翼表面の圧力分布を示す断面図である。It is sectional drawing which shows the pressure distribution of the blade surface when the angle of attack of the morphing blade of FIG. 10 is raised. 本発明の他の実施形態に係るモーフィング翼の第2翼型における断面図である。It is sectional drawing in the 2nd airfoil of the morphing blade which concerns on other embodiment of this invention. 図12Aに示されるモーフィング翼の第3翼型における断面図である。It is sectional drawing in the 3rd airfoil of the morphing blade shown in FIG. 12A. 本発明の実施例のモーフィング翼の第1翼型〜第3翼型を示す断面図である。It is sectional drawing which shows the 1st airfoil type | 3rd airfoil type of the morphing blade of the Example of this invention. 実施例のモーフィング翼の第1翼型〜第3翼型における迎角と揚抗比との関係を示すグラフである。It is a graph which shows the relationship between the angle of attack and the lift-drag ratio in the 1st to 3rd airfoils of the morphing airfoil of the Example. 実施例のモーフィング翼の第1翼型〜第3翼型における迎角と揚力との関係を示すグラフである。It is a graph which shows the relationship between the angle of attack and lift in the 1st to 3rd airfoils of the morphing airfoil of an Example.

以下、本発明の一実施形態に係るモーフィング翼及び航空機について説明する。 Hereinafter, the morphing wing and the aircraft according to the embodiment of the present invention will be described.

<航空機100>
まず、本実施形態に係るモーフィング翼20が主翼として用いられる航空機100について図9を参照しながら説明する。
<Aircraft 100>
First, an aircraft 100 in which the morphing wing 20 according to the present embodiment is used as a main wing will be described with reference to FIG.

航空機100は、胴体部102と、胴体部102に取付けられた主翼としてのモーフィング翼20と、胴体部102の後方に設けられた水平尾翼104及び垂直尾翼106と、を備えている。また、航空機100は、モーフィング翼20の下部に航空機100の推進力を得るための推進装置108をさらに備えている。 The aircraft 100 includes a fuselage portion 102, a morphing wing 20 as a main wing attached to the fuselage portion 102, and a horizontal stabilizer 104 and a vertical stabilizer 106 provided behind the fuselage portion 102. Further, the aircraft 100 further includes a propulsion device 108 for obtaining the propulsive force of the aircraft 100 under the morphing wing 20.

なお、本実施形態の航空機100は、胴体部102に図示しない客室が設けられており、複数の乗員が搭乗できるように構成されている。なお、本発明は上記構成に限定されない。例えば、胴体部102に荷室が設けられて、積荷が積載される構成であってもよい。また、胴体部102に客室や荷室が設けられなくてもよい。 The aircraft 100 of the present embodiment is provided with a cabin (not shown) on the fuselage portion 102 so that a plurality of crew members can board the aircraft 100. The present invention is not limited to the above configuration. For example, a luggage compartment may be provided in the body portion 102 so that the cargo can be loaded. Further, the body portion 102 does not have to be provided with a guest room or a luggage compartment.

<モーフィング翼20>
図1及び図2に示されるように、モーフィング翼20は、翼本体22と、スパー24と、リブ26と、を備えている。
<Morphing wings 20>
As shown in FIGS. 1 and 2, the morphing blade 20 includes a blade body 22, a spar 24, and a rib 26.

(翼本体22)
翼本体22は、モーフィング翼20の外郭を形成している。この翼本体22は、軽金属材料、例えば、ジュラルミンなどのアルミ合金によって形成されている。なお、本発明はこの構成に限定されず、翼本体22を、複合材料、例えば、炭素繊維強化プラスチツク(CFRP)などの炭素繊維複合材料で形成してもよいし、翼本体22の一部分を複合材料で形成し、他の部分を軽金属材料で形成してもよい。
(Wing body 22)
The wing body 22 forms the outer shell of the morphing wing 20. The wing body 22 is made of a light metal material, for example, an aluminum alloy such as duralumin. The present invention is not limited to this configuration, and the wing body 22 may be formed of a composite material, for example, a carbon fiber composite material such as carbon fiber reinforced plastic (CFRP), or a part of the wing body 22 may be composited. It may be made of a material and the other parts may be made of a light metal material.

スパー24は、翼本体22内に設けられており、翼長方向に延びている。このスパー24は、軽金属材料、例えば、ジュラルミンなどのアルミ合金によって形成されている。なお、本発明はこの構成に限定されず、スパー24を、複合材料、例えば、炭素繊維強化プラスチツク(CFRP)などの炭素繊維複合材料で形成してもよいし、スパー24の一部分を複合材料で形成し、他の部分を軽金属材料で形成してもよい。このスパー24によってモーフィング翼20の曲げ剛性及び捻じり剛性が確保されている。なお、ここでいう翼長方向とは、モーフィング翼20の付け根から先端までの長さ方向を指している。 The spar 24 is provided in the blade body 22 and extends in the blade length direction. The spar 24 is made of a light metal material, for example, an aluminum alloy such as duralumin. The present invention is not limited to this configuration, and the spar 24 may be formed of a composite material, for example, a carbon fiber composite material such as carbon fiber reinforced plastic (CFRP), or a part of the spar 24 may be made of the composite material. It may be formed and the other portion may be formed of a light metal material. The flexural rigidity and torsional rigidity of the morphing blade 20 are ensured by the spar 24. The blade length direction referred to here refers to the length direction from the base to the tip of the morphing blade 20.

リブ26は、翼本体22内に翼長方向に間隔をあけて複数設けられており、翼弦方向に延びている。このリブ26は、軽金属材料、例えば、ジュラルミンなどのアルミ合金によって形成されている。なお、本発明はこの構成に限定されず、リブ26を、複合材料、例えば、炭素繊維強化プラスチツク(CFRP)などの炭素繊維複合材料で形成してもよいし、リブ26の一部分を複合材料で形成し、他の部分を軽金属材料で形成してもよい。このリブ26によって翼本体22の内部空間が保持されている。なお、ここでいう翼弦方向とは、モーフィング翼20の翼長方向と直交する断面において、モーフィング翼20の前縁(翼本体22の前縁22A)と後縁(翼本体22の後縁22B)とを通る直線(いわゆる翼弦線)Xに沿った方向を指している。 A plurality of ribs 26 are provided in the blade body 22 at intervals in the blade length direction, and extend in the chord direction. The rib 26 is made of a light metal material, for example, an aluminum alloy such as duralumin. The present invention is not limited to this configuration, and the rib 26 may be formed of a composite material, for example, a carbon fiber composite material such as carbon fiber reinforced plastic (CFRP), or a part of the rib 26 may be made of the composite material. It may be formed and the other portion may be formed of a light metal material. The rib 26 holds the internal space of the wing body 22. The chord direction referred to here is the leading edge (leading edge 22A of the wing body 22) and the trailing edge (trailing edge 22B of the wing body 22) of the morphing wing 20 in a cross section orthogonal to the blade length direction of the morphing wing 20. ) And the straight line (so-called chord line) X.

(弾性外皮28)
図1、図3、図5、図7に示されるように、モーフィング翼20は、翼本体22の上面22Cを覆い、翼本体22との間に形成される密閉空間30内に液体Lを液密状態で保持する弾性外皮28をさらに備える。なお、翼本体22の上面22Cは、地上静止状態におけるモーフィング翼20の上記直線Xよりも上側に位置する翼本体22の外面(表面)を指す。なお、以下で言うモーフィング翼20の迎角αとは、飛行中のモーフィング翼20に対する一様流と直線Xとのなす角である。
(Elastic outer skin 28)
As shown in FIGS. 1, 3, 5, and 7, the morphing blade 20 covers the upper surface 22C of the blade body 22 and liquids L in a closed space 30 formed between the morphing blade 20 and the blade body 22. It further comprises an elastic hull 28 that holds it tightly. The upper surface 22C of the blade body 22 refers to the outer surface (surface) of the blade body 22 located above the straight line X of the morphing blade 20 in the ground stationary state. The angle of attack α of the morphing blade 20 referred to below is the angle formed by the uniform flow and the straight line X with respect to the morphing blade 20 in flight.

この弾性外皮28は、弾性変形可能なシート状部材であり、翼本体22よりも剛性が低くなっている。このため、密閉空間30内への液体Lの量(以下適宜「液量V」と記載する。)に応じて翼本体22外側への膨出量(膨出変形量)が変化するようになっている。この弾性外皮28の膨出変形量に応じてモーフィング翼20の翼型が変化する。 The elastic outer skin 28 is a sheet-like member that can be elastically deformed, and has a lower rigidity than the blade main body 22. Therefore, the amount of swelling to the outside of the blade body 22 (the amount of swelling deformation) changes according to the amount of liquid L into the closed space 30 (hereinafter, appropriately referred to as "liquid amount V"). ing. The airfoil of the morphing blade 20 changes according to the amount of bulging deformation of the elastic outer skin 28.

また、弾性外皮28は、翼本体22の前部上面を少なくとも覆っている。なお、ここでいう翼本体22の前部上面とは、上面22Cのうち、前縁22Aから翼弦長(翼弦方向に沿った前縁22Aから後縁22Bまでの長さ(図3参照))XLの半分の位置までを指している。図10に示されるように、飛行中にモーフィング翼20の翼表面(外面)に作用する圧力は、翼本体22の前部上面に対応する部分で大きくなる。このため、弾性外皮28を翼本体22の前部上面に設けることで弾性外皮28の膨出変形量を抑えつつ、高い揚抗比を得ることができる。 Further, the elastic outer skin 28 covers at least the upper surface of the front portion of the wing body 22. The upper surface of the front portion of the wing body 22 referred to here is the length from the leading edge 22A to the chord length (the length from the leading edge 22A to the trailing edge 22B along the chord direction (see FIG. 3)) of the upper surface 22C. ) It points to the half position of XL. As shown in FIG. 10, the pressure acting on the blade surface (outer surface) of the morphing blade 20 during flight increases at the portion corresponding to the front upper surface of the blade body 22. Therefore, by providing the elastic outer skin 28 on the upper surface of the front portion of the wing body 22, it is possible to obtain a high lift-drag ratio while suppressing the amount of bulging deformation of the elastic outer skin 28.

弾性外皮28は、周縁部28A(図1参照)が接着剤や溶接などによって翼本体22に固定されており、翼本体22との間に密閉空間30を形成している。この密閉空間30内には液体Lが保持されている。 In the elastic outer skin 28, the peripheral edge portion 28A (see FIG. 1) is fixed to the blade body 22 by an adhesive or welding, and a closed space 30 is formed between the elastic outer skin 28 and the blade body 22. The liquid L is held in the closed space 30.

弾性外皮28の材質としては、例えば、エラストマーなどの高分子材料、ゴムメタル、超弾性合金、及びこれらを組み合わせたものを用いてもよい。 As the material of the elastic outer skin 28, for example, a polymer material such as an elastomer, a rubber metal, a superelastic alloy, or a combination thereof may be used.

また、図3、図5、図7に示されるように、モーフィング翼20は、密閉空間30内の液量Vを調節する調節装置32をさらに備えている。 Further, as shown in FIGS. 3, 5, and 7, the morphing blade 20 further includes an adjusting device 32 for adjusting the liquid amount V in the closed space 30.

(調節装置32)
調節装置32は、液体Lを貯留する貯留部34と、貯留部34から密閉空間30へ液体Lを送る送りポンプ36と、密閉空間30から貯留部34へ液体を戻す戻しポンプ36と、を備えている。
(Adjuster 32)
The adjusting device 32 includes a storage unit 34 for storing the liquid L, a feed pump 36 for sending the liquid L from the storage unit 34 to the closed space 30, and a return pump 36 for returning the liquid from the closed space 30 to the storage unit 34. ing.

貯留部34は、液体Lから溶存気体を除去した状態で液体Lを貯留している。なお、液体Lとしては、揮発性の低いオイルを用いることが好ましい。揮発性の低いオイルとしては、例えば、冷温性能(低温流動性)の高いフッ素系のオイルが挙げられる。 The storage unit 34 stores the liquid L in a state where the dissolved gas is removed from the liquid L. As the liquid L, it is preferable to use an oil having low volatility. Examples of the oil having low volatility include a fluorine-based oil having high cold temperature performance (low temperature fluidity).

送りポンプ36は、貯留部34から密閉空間30へ延びる送り流路40の途中に設けられている。この送りポンプ36は、後述する制御装置46によって駆動が制御されている。 The feed pump 36 is provided in the middle of the feed flow path 40 extending from the storage unit 34 to the closed space 30. The drive of the feed pump 36 is controlled by a control device 46 described later.

戻しポンプ38は、貯留部34から密閉空間30への延びる戻し流路42の途中に設けられている。この戻しポンプ38は、後述する制御装置46によって駆動が制御されている。 The return pump 38 is provided in the middle of the return flow path 42 extending from the storage unit 34 to the closed space 30. The drive of the return pump 38 is controlled by a control device 46 described later.

また、調節装置32は、密閉空間30内の液体Lの圧力(以下、適宜「液圧」と記載する。)を検出する圧力センサ44と、圧力センサ44から送られる液体Lの圧力情報(以下、適宜「液圧情報」と記載する。)に応じて送りポンプ36及び戻しポンプ38の駆動を制御し、密閉空間30内の液量Vを調節する制御装置46と、をさらに備えている。 Further, the adjusting device 32 has a pressure sensor 44 that detects the pressure of the liquid L in the closed space 30 (hereinafter, appropriately referred to as “hydraulic pressure”) and pressure information of the liquid L sent from the pressure sensor 44 (hereinafter, referred to as “hydraulic pressure”). A control device 46 that controls the drive of the feed pump 36 and the return pump 38 and adjusts the amount V of the liquid in the closed space 30 according to the appropriate “hydraulic pressure information”) is further provided.

圧力センサ44は、密閉空間30から延びる検出用流路48に設けられている。 The pressure sensor 44 is provided in the detection flow path 48 extending from the closed space 30.

制御装置46には、弾性外皮28の各膨出変形量(変形形状)に対応する翼型が設定されている。具体的には、制御装置46には、各翼型毎に密閉空間30内の液量Vと地上静止状態における液圧PLSとが設定されている。なお、本実施形態では、図3に示される弾性外皮28と翼本体22とが液体Lの膜(本実施形態ではオイル膜)を介して密着する第1翼型(液量V1、液圧PLS1)と、図5に示される密閉空間30に液体Lが注入されて弾性外皮28が膨張した第2翼型(液量V2、液圧PLS2)と、図7に示される第2翼型よりも弾性外皮28がさらに膨張した第3翼型(液量V3、液圧PLS3)と、が制御装置46に設定されている。また、モーフィング翼20は、第1翼型が他の翼型よりも失速特性が良好となるように設計することが好ましい。 The control device 46 is provided with an airfoil corresponding to each bulging deformation amount (deformation shape) of the elastic outer skin 28. Specifically, in the control device 46, the liquid amount V in the closed space 30 and the hydraulic pressure PLS in the ground stationary state are set for each airfoil. In the present embodiment, the elastic outer skin 28 and the wing body 22 shown in FIG. 3 are in close contact with each other via a liquid L film (oil film in the present embodiment) of the first wing type (liquid amount V1, hydraulic pressure PLS1). ), And the second wing type (liquid volume V2, hydraulic pressure PLS2) in which the liquid L is injected into the closed space 30 shown in FIG. 5 and the elastic outer skin 28 is expanded, and the second wing type shown in FIG. A third blade type (liquid volume V3, hydraulic pressure PLS3) in which the elastic outer skin 28 is further expanded is set in the control device 46. Further, the morphing blade 20 is preferably designed so that the first airfoil has better stall characteristics than the other airfoils.

制御装置46は、飛行中における密閉空間30内の液圧PLFと、あらかじめ算出された理論液圧PREFとを比較し、液圧PLFが理論液圧PREFよりも大きい場合、失速の可能性があると判定し、失速特性の良好な他の翼型へ翼型を変える。例えば、モーフィング翼20が第2翼型又は第3翼型の場合は、失速特性が良好な第1翼型へと翼型を変える。具体的には、制御装置46は、送りポンプ36又は戻しポンプ38の駆動を制御することで密閉空間30内の液量Vを調節し、弾性外皮28の膨出変形量を調節して翼型を所望の翼型(一例として失速特性の良好な翼型)に変える。
なお、ここでいう理論液圧PREFは、図10及び図11に示されるように、液圧PLSと、飛行中の迎角及び気流速度からあらかじめ算出した弾性外皮28に作用する平均圧力(負圧)PA(図10のPAの範囲参照)との和によって求められる。すなわち、理論液圧PREF=液圧PLS+平均圧力PAで求められる。
また、モーフィング翼20が失速状態に近い場合、弾性外皮28に作用する平均圧力(負圧)の絶対値|PAstall|(図11の二点鎖線PAstall参照)は、正常な状態(失速していない状態)における平均圧力|PA|(図11の一点鎖線PA参照)よりも低くなる(|PAstall|<|PA|)。このため、失速に近い状態の液圧PLFstallは、理論液圧PREFよりも高い値となる。したがって、液圧PLFが理論液圧PREFよりも大きい場合、制御装置46は、モーフィング翼20に失速の可能性があると判定する。
The control device 46 compares the hydraulic pressure PLF in the closed space 30 during flight with the theoretical hydraulic pressure PREF calculated in advance, and if the hydraulic pressure PLF is larger than the theoretical hydraulic pressure PREF, there is a possibility of stall. And change the airfoil to another airfoil with good stall characteristics. For example, when the morphing airfoil 20 is a second airfoil or a third airfoil, the airfoil is changed to the first airfoil having good stall characteristics. Specifically, the control device 46 adjusts the amount V of the liquid in the closed space 30 by controlling the drive of the feed pump 36 or the return pump 38, and adjusts the amount of bulging deformation of the elastic outer skin 28 to form an airfoil. To the desired airfoil (for example, an airfoil with good stall characteristics).
As shown in FIGS. 10 and 11, the theoretical hydraulic pressure PREF referred to here is an average pressure (negative pressure) acting on the elastic outer skin 28 calculated in advance from the hydraulic pressure PLS, the angle of attack during flight, and the airflow velocity. ) It is obtained by the sum with PA (see the range of PA in FIG. 10). That is, it is obtained by theoretical hydraulic pressure PREF = hydraulic pressure PLS + average pressure PA.
Further, when the morphing blade 20 is close to the stalled state, the absolute value of the average pressure (negative pressure) acting on the elastic outer skin 28 | PAstal | (see the two-dot chain line PAstal in FIG. 11) is in a normal state (not stalled). The average pressure in the state) is lower than the average pressure | PA | (see the alternate long and short dash line PA in FIG. 11) (| PAstal | <| PA |). Therefore, the hydraulic pressure PLFstal in a state close to stall becomes a value higher than the theoretical hydraulic pressure PREF. Therefore, when the hydraulic pressure PLF is larger than the theoretical hydraulic pressure PREF, the control device 46 determines that the morphing blade 20 may stall.

なお、飛行中の液圧PLFは、液体Lの飽和蒸気圧PVよりも常に高くなるため、すべての飛行状態において液体Lに気体(蒸気)が介在することはない。 Since the hydraulic pressure PLF during flight is always higher than the saturated vapor pressure PV of the liquid L, gas (vapor) does not intervene in the liquid L in all flight states.

また、本実実施形態では、翼本体22の密閉空間30を形成する部分が、液体Lに対して耐食性を有する保護膜50(図4、図6、図8参照)で被覆されている。この保護膜50としては、液体Lにフッ素系オイルを用いる場合、シール材などに用いられるフッ素ゴムを用いることが好ましい。 Further, in the present embodiment, the portion of the blade body 22 forming the closed space 30 is covered with a protective film 50 (see FIGS. 4, 6, and 8) having corrosion resistance to the liquid L. When fluorine-based oil is used as the liquid L, it is preferable to use fluororubber used as a sealing material or the like as the protective film 50.

次に本実施形態の作用効果について説明する。
本実施形態のモーフィング翼20では、密閉空間30内の液量Vに応じて弾性外皮28の翼本体22外側への膨出量(膨出変形量)が変化し、弾性外皮28の膨出変形量に応じて翼型が変化する。このようにモーフィング翼20では、翼本体22の上面22Cを弾性外皮28で覆って密閉空間30内の液体Lを液密状態で保持する簡単な構成で、翼型を変えることができる。
Next, the action and effect of this embodiment will be described.
In the morphing blade 20 of the present embodiment, the amount of bulge (bulge deformation amount) of the elastic outer skin 28 to the outside of the wing body 22 changes according to the amount V of the liquid in the closed space 30, and the elastic outer skin 28 is bulged and deformed. The airfoil changes according to the amount. As described above, in the morphing blade 20, the airfoil can be changed by a simple configuration in which the upper surface 22C of the blade body 22 is covered with the elastic outer skin 28 to hold the liquid L in the closed space 30 in a liquidtight state.

特に、モーフィング翼20では、密閉空間30内に非圧縮性流体である液体Lを保持するため、例えば、密閉空間30内に圧縮性流体である気体を保持する構成と比べて、外力に対して減衰しやすく、高い飛行性能が安定して得られる。 In particular, in the morphing blade 20, since the liquid L which is an incompressible fluid is held in the closed space 30, for example, as compared with the configuration where the gas which is a compressible fluid is held in the closed space 30, it is against an external force. It is easy to attenuate and high flight performance can be obtained stably.

さらに、モーフィング翼20では、従来公知の翼型が変化しない翼と同じ構成(翼本体22、スパー24及びリブ26)を備えるため、上記翼型が変化しない翼と同程度の強度を確保でき、さらに、翼型を変えることで良好な飛行性能と飛行特性を得ることができる。 Further, since the morphing blade 20 has the same configuration (blade body 22, spar 24 and rib 26) as a conventionally known airfoil whose airfoil does not change, it is possible to secure the same strength as a blade whose airfoil does not change. Furthermore, good flight performance and flight characteristics can be obtained by changing the airfoil.

また、モーフィング翼20では、調節装置32によって密閉空間30内の液量Vが調節されるため、例えば、手作業で密閉空間30内の液量Vを調節する構成と比べて、飛行中でも翼型を変えることができる。 Further, in the morphing blade 20, since the liquid amount V in the closed space 30 is adjusted by the adjusting device 32, for example, as compared with the configuration in which the liquid amount V in the closed space 30 is manually adjusted, the airfoil is formed even during flight. Can be changed.

さらに、モーフィング翼20では、送りポンプ36によって貯留部34から密閉空間30へ液体Lが送られると弾性外皮28が膨らむ(膨出変形する)。一方、戻しポンプ38によって密閉空間30から貯留部34へ液体Lが戻されると、弾性外皮28が収縮する(収縮変形する)。このように、モーフィング翼20では、送りポンプ36と戻しポンプ38を用いた簡単な構成で弾性外皮28を膨出(膨張)及び収縮させることができる。 Further, in the morphing blade 20, when the liquid L is sent from the storage portion 34 to the closed space 30 by the feed pump 36, the elastic outer skin 28 swells (swells and deforms). On the other hand, when the liquid L is returned from the closed space 30 to the storage portion 34 by the return pump 38, the elastic outer skin 28 contracts (contracts and deforms). As described above, in the morphing blade 20, the elastic outer skin 28 can be expanded (expanded) and contracted with a simple configuration using the feed pump 36 and the return pump 38.

また、モーフィング翼20では、圧力センサ44から送られる液圧情報に応じて制御装置46が送りポンプ36及び戻しポンプ38の駆動を制御し、密閉空間30内の液量Vを調節する。このため、モーフィング翼20では、制御装置46によって自動で翼型を変えることができる。また、制御装置46は、送りポンプ36及び戻しポンプ38の駆動を制御する簡易な制御でモーフィング翼20の翼型を変えることができる。 Further, in the morphing blade 20, the control device 46 controls the drive of the feed pump 36 and the return pump 38 according to the hydraulic pressure information sent from the pressure sensor 44, and adjusts the liquid amount V in the closed space 30. Therefore, in the morphing blade 20, the airfoil can be automatically changed by the control device 46. Further, the control device 46 can change the airfoil of the morphing blade 20 by simple control for controlling the drive of the feed pump 36 and the return pump 38.

モーフィング翼20では、飛行中の翼表面の圧力分布が大きく変化する翼本体22の前部上面を弾性外皮28が覆うため、例えば、弾性外皮28が翼本体22の前部上面を覆わない構成と比べて、少ない膨出変形量でも高い揚抗比を得ることができる。なお、図10では、後述する第1翼型で飛行しているときの翼表面の圧力分布を一点鎖線Pで示している。 In the morphing wing 20, the elastic outer skin 28 covers the front upper surface of the wing body 22 whose pressure distribution on the wing surface changes significantly during flight. Therefore, for example, the elastic outer skin 28 does not cover the front upper surface of the wing body 22. In comparison, a high lift-resilience ratio can be obtained even with a small amount of swelling deformation. In FIG. 10, the pressure distribution on the wing surface when flying with the first airfoil described later is shown by the alternate long and short dash line P.

モーフィング翼20は、翼本体22の密閉空間30を形成する部分が液体Lに対して耐食性を有する保護膜50で被覆されているため、液体Lによる腐蝕に起因して生じる翼本体22の不具合を抑制できる。 Since the portion of the morphing blade 20 forming the closed space 30 of the blade body 22 is covered with a protective film 50 having corrosion resistance to the liquid L, the morphing blade 20 has a defect of the blade body 22 caused by corrosion by the liquid L. Can be suppressed.

そして、航空機100は、胴体部102にモーフィング翼20が取り付けられるため、例えば、複雑な構造で翼型を変えるモーフィング翼を取り付ける構成と比べて、翼型を変える際に不具合が生じにくい。 Since the morphing wing 20 is attached to the fuselage portion 102 of the aircraft 100, a problem is less likely to occur when changing the airfoil, as compared with a configuration in which a morphing wing that changes the airfoil with a complicated structure is attached.

前述の実施形態では、密閉空間30内に液体Lのみが介在する構成としているが、本発明はこの構成に限定されず、例えば、図12A及び図12Bに示されるように、密閉空間30内に液体Lが含浸され、弾性外皮28の膨出変形に追従する多孔質体52が配置されていてもよい。多孔質体52としては、弾性外皮28の膨出変形に追従して膨らみ、収縮変形に追従して縮む気孔率の高い多孔質体、例えば、スポンジなどの海綿状部材が好ましい。このような多孔質体52を密閉空間30内(好ましくは密閉空間30内全域)に配置した場合、弾性外皮28の膨出変形量に応じて多孔質体の膨張量が変化するため、例えば、密閉空間30内に多孔質体52を配置しない構成と比べて、モーフィング翼20の曲げ剛性及び捻じり剛性が向上する。また、多孔質体52は、を密閉空間30内全域に配置した場合、旋回時などに密閉空間30内の液体Lが片側によるのを抑制することができる。 In the above-described embodiment, only the liquid L is interposed in the closed space 30, but the present invention is not limited to this configuration, and for example, as shown in FIGS. 12A and 12B, the inside of the closed space 30 is formed. A porous body 52 that is impregnated with the liquid L and follows the bulging deformation of the elastic outer skin 28 may be arranged. As the porous body 52, a porous body having a high porosity that expands following the swelling deformation of the elastic outer skin 28 and shrinks following the contraction deformation, for example, a sponge-like member such as a sponge is preferable. When such a porous body 52 is arranged in the closed space 30 (preferably the entire area in the closed space 30), the amount of expansion of the porous body changes according to the amount of expansion and deformation of the elastic outer skin 28. Therefore, for example, The flexural rigidity and the torsional rigidity of the morphing blade 20 are improved as compared with the configuration in which the porous body 52 is not arranged in the closed space 30. Further, when the porous body 52 is arranged in the entire area of the closed space 30, it is possible to prevent the liquid L in the closed space 30 from being squeezed from one side during swirling or the like.

前述の実施形態では、モーフィング翼20で用いるオイルを専用品として備えたが、本発明はこの構成に限定されない。例えば、モーフィング翼20で用いるオイルを航空機100の他の部位で用いるオイルと兼用としてもよい。さらに、前述の実施形態では、モーフィング翼20で用いる調節装置32を専用品として備えたが、本発明はこの構成に限定されない。例えば、調節装置が、航空機に既設された油圧系統(一例として、フラップやエルロンを動かすための作動させるための油圧系統)の一部又は全部を使用する構成としてもよい。このように既設された油圧系統を使用することで、例えば、ポンプ数を減らしたり、調節装置の構成を簡略化したりすることができる。 In the above-described embodiment, the oil used in the morphing blade 20 is provided as a dedicated product, but the present invention is not limited to this configuration. For example, the oil used in the morphing wing 20 may be used in combination with the oil used in other parts of the aircraft 100. Further, in the above-described embodiment, the adjusting device 32 used in the morphing blade 20 is provided as a dedicated product, but the present invention is not limited to this configuration. For example, the adjusting device may be configured to use part or all of the existing hydraulic system in the aircraft (for example, the hydraulic system for operating the flaps and ailerons). By using the existing hydraulic system in this way, for example, the number of pumps can be reduced and the configuration of the adjusting device can be simplified.

また、前述の実施形態では、航空機100の主翼に本発明におけるモーフィング翼20を適用したが、本発明はこの構成に限定されない。例えば、本発明におけるモーフィング翼を水平尾翼104に適用してもよいし、本発明におけるモーフィング翼を航空機100の主翼及び水平尾翼にそれぞれ適用してもよい。 Further, in the above-described embodiment, the morphing wing 20 in the present invention is applied to the main wing of the aircraft 100, but the present invention is not limited to this configuration. For example, the morphing wing in the present invention may be applied to the horizontal stabilizer 104, or the morphing wing in the present invention may be applied to the main wing and the horizontal stabilizer of the aircraft 100, respectively.

さらに、前述の実施形態では、推進装置108をモーフィング翼20の下部に備える構成としているが、本発明はこの構成に限定されない。推進装置108を機首に備える構成としてもよいし、機首及びモーフィング翼20の下部に備える構成としてもよい。 Further, in the above-described embodiment, the propulsion device 108 is provided in the lower part of the morphing blade 20, but the present invention is not limited to this configuration. The propulsion device 108 may be provided on the nose, or may be provided on the nose and the lower part of the morphing wing 20.

またさらに、前述の実施形態では、推進装置を備える航空機に本発明におけるモーフィング翼20を適用しているが、本発明はこの構成に限定されない。例えば、推進装置を備えない滑空機の翼に本発明におけるモーフィング翼20を適用してもよい。 Furthermore, in the above-described embodiment, the morphing wing 20 of the present invention is applied to an aircraft provided with a propulsion device, but the present invention is not limited to this configuration. For example, the morphing wing 20 of the present invention may be applied to the wing of a glider without a propulsion device.

また、前述の実施形態では、主翼が前方にあり、尾翼が後方にある航空機100にモーフィング翼20を適用したが、本発明はこの構成に限定されない。例えば、主翼が後方にあり、水平尾翼に相当する先尾翼が前方にある航空機(いわゆる先尾翼機)にモーフィング翼20を適用してもよいし、水平尾翼を備えない航空機(いわゆる無尾翼機)にモーフィング翼20を適用してもよい。 Further, in the above-described embodiment, the morphing wing 20 is applied to the aircraft 100 in which the main wing is in the front and the tail wing is in the rear, but the present invention is not limited to this configuration. For example, the morphing wing 20 may be applied to an aircraft having a main wing at the rear and a canard corresponding to the horizontal stabilizer at the front (so-called canard aircraft), or an aircraft without a horizontal stabilizer (so-called tailless aircraft). The morphing wing 20 may be applied to the aircraft.

本発明の効果を検証するため、翼型を第1翼型〜第3翼型に変えられる本発明を適用したモーフィング翼を準備し、第1翼型〜第3翼型における迎角αと揚抗比Cl/Cdとの関係及び第1翼型〜第3翼型における迎角αと揚力Clとの関係についてそれぞれ図14、図15にグラフで示した。なお、図14の横軸は迎角αを示し、縦軸は揚抗比を示している。また、図15の横軸は迎角αを示し、縦軸は揚力Clを示している。なお、図14、図15に示される各翼型のグラフは2次元の翼型を用いた計算値に基づいている。 In order to verify the effect of the present invention, a morphing wing to which the present invention can be applied in which the airfoil can be changed from the first airfoil to the third airfoil is prepared, and the angle of attack α and lift in the first to third airfoils are prepared. The relationship between the resistance ratio Cl / Cd and the relationship between the angle of attack α and the lift Cl in the first to third airfoils are shown graphically in FIGS. 14 and 15, respectively. The horizontal axis of FIG. 14 indicates the angle of attack α, and the vertical axis indicates the lift-drag ratio. Further, the horizontal axis of FIG. 15 indicates the angle of attack α, and the vertical axis indicates the lift Cl. The graphs of the airfoils shown in FIGS. 14 and 15 are based on the calculated values using the two-dimensional airfoils.

第1翼型A・・弾性外皮と翼本体が液体Lの膜を介して密着した状態での翼型(図13の二点鎖線で示す翼型(実施形態のモーフィング翼20の第1翼型に対応する翼型)である)。
第2翼型B・・密閉空間に液体Lが供給されて弾性外皮が中程度膨出変形した状態での翼型(図13の実線で示す翼型(実施形態のモーフィング翼20の第2翼型に対応する翼型)であり、NACA4412の翼型と同じ翼型である)。
第3翼型C・・第2翼型Bよりも弾性外皮が膨出変形した状態での翼型(図13の一点鎖線で示す翼型(実施形態のモーフィング翼20の第3翼型に対応する翼型)である)。
ここでNACA翼型とは、アメリカ航空宇宙局(NASA)の前身である国家航空宇宙諮問委員会(NACA)が定義した翼型をいう。
First airfoil A ... An airfoil in which the elastic outer skin and the wing body are in close contact with each other via a film of liquid L (the airfoil shown by the two-point chain line in FIG. 13 (the first airfoil of the morphing wing 20 of the embodiment). The wing type corresponding to)).
Second airfoil B ... Airfoil in a state where the liquid L is supplied to the closed space and the elastic outer skin is moderately swollen and deformed (the airfoil shown by the solid line in FIG. 13 (the second airfoil of the morphing blade 20 of the embodiment). It is an airfoil corresponding to the type) and is the same airfoil as the NACA4412 airfoil).
Third airfoil C ... Airfoil with the elastic outer skin bulging and deformed compared to the second airfoil (the airfoil shown by the one-point chain line in FIG. 13 (corresponding to the third airfoil of the morphing wing 20 of the embodiment). It is an airfoil).
Here, the NACA airfoil refers to the airfoil defined by the National Advisory Committee for Aerospace (NACA), which is the predecessor of NASA.

図14に示されるように、第1翼型〜第3翼型では、迎角αに対して揚坑比が高くなる領域がそれぞれ異なる。このため、NACA4412の翼型と同じ翼型である第2翼型を基準として、モーフィング翼の翼型を第1翼型A及び第3翼型Cに変えることで、第2翼型に対して高い揚抗比となる領域(図14の領域X1及び領域X2)を拡大することができる。 As shown in FIG. 14, the first to third airfoils have different regions where the lift ratio is higher than the angle of attack α. Therefore, by changing the airfoil of the morphing wing to the first airfoil A and the third airfoil C based on the second airfoil, which is the same airfoil as the NACA4412 airfoil, the second airfoil can be compared with the second airfoil. The region having a high lift-drag ratio (region X1 and region X2 in FIG. 14) can be expanded.

図15に示されるように、第1翼型は第2翼型及び第3翼型よりも失速状態に至る迎角(失速角度)を遅らせることができる。このため、第2翼型及び第3翼型において各々の失速角度が近付いた場合、モーフィング翼の翼型を第1翼型に変えることで失速角度が遅れて失速状態を回避することが可能となる。 As shown in FIG. 15, the first airfoil can delay the angle of attack (stall angle) leading to the stall state as compared with the second and third airfoils. Therefore, when the stall angles of the 2nd and 3rd airfoils approach each other, it is possible to avoid the stall state by delaying the stall angle by changing the airfoil of the morphing airfoil to the 1st airfoil. Become.

以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。 The embodiments of the present invention have been described above with reference to the embodiments, but these embodiments are examples and can be modified in various ways without departing from the gist. Needless to say, the scope of rights of the present invention is not limited to these embodiments.

20 モーフィング翼
22 翼本体
22A 前縁
22B 後縁
22C 上面
28 弾性外皮
30 密閉空間
32 調節装置
34 貯留部
36 送りポンプ
38 戻しポンプ
44 圧力センサ
46 制御装置
50 保護膜
100 航空機
20 Morphing wing 22 Wing body 22A Leading edge 22B Trailing edge 22C Top surface 28 Elastic outer skin 30 Sealed space 32 Regulator 34 Storage 36 Feed pump 38 Return pump 44 Pressure sensor 46 Control device 50 Protective membrane 100 Aircraft

Claims (7)

翼本体と、
前記翼本体の上面を覆い、前記翼本体との間に形成される密閉空間内に液体を液密状態で保持し、前記密閉空間内の前記液体の量に応じて前記翼本体外側への膨出量が変化する弾性外皮と、
を備え、
前記密閉空間内には、前記液体が含浸され、前記弾性外皮の膨出変形に追従する多孔質体が配置されている、モーフィング翼。
With the wing body
The upper surface of the wing body is covered, the liquid is held in a liquid-tight state in the closed space formed between the wing body and the wing body, and the liquid expands to the outside of the wing body according to the amount of the liquid in the closed space. With an elastic hull that changes the amount of output,
Bei to give a,
A morphing blade in which the liquid is impregnated and a porous body that follows the bulging deformation of the elastic exodermis is arranged in the closed space.
前記密閉空間内の前記液体の量を調節する調節手段をさらに備える請求項1に記載のモーフィング翼。 The morphing wing according to claim 1, further comprising an adjusting means for adjusting the amount of the liquid in the enclosed space. 前記調節手段は、前記液体の貯留部と、前記貯留部から前記密閉空間へ前記液体を送る送りポンプと、前記密閉空間から前記貯留部へ前記液体を戻す戻しポンプと、を備える請求項2に記載のモーフィング翼。 The adjusting means includes a storage part for the liquid, a feed pump for sending the liquid from the storage part to the closed space, and a return pump for returning the liquid from the closed space to the storage part. Described morphing wings. 前記調節手段は、前記密閉空間内の前記液体の圧力を検出する圧力センサと、前記送りポンプ及び前記戻しポンプの駆動を制御し、前記圧力センサから送られる前記液体の圧力情報に応じて前記密閉空間内の前記液体の量を調節する制御装置と、をさらに備える請求項3に記載のモーフィング翼。 The adjusting means controls the drive of the feed pump and the return pump with a pressure sensor that detects the pressure of the liquid in the sealed space, and seals the liquid according to the pressure information of the liquid sent from the pressure sensor. The morphing wing according to claim 3, further comprising a control device for adjusting the amount of the liquid in the space. 前記弾性外皮は、前記翼本体の前部上面を覆っている、請求項1〜請求項4のいずれか1項に記載のモーフィング翼。 The morphing wing according to any one of claims 1 to 4, wherein the elastic outer skin covers the upper surface of the front portion of the wing body. 前記翼本体の前記密閉空間を形成する部分が、前記液体に対して耐食性を有する保護膜で被覆されている、請求項1〜請求項のいずれか1項に記載のモーフィング翼。 The morphing blade according to any one of claims 1 to 5 , wherein the portion of the blade body forming the closed space is coated with a protective film having corrosion resistance to the liquid. 胴体部と、
前記胴体部に取り付けられた請求項1〜請求項に記載のモーフィング翼と、
を備える航空機。
With the torso
The morphing wing according to claim 1 to 6 , which is attached to the fuselage portion.
Aircraft equipped with.
JP2017046750A 2017-03-10 2017-03-10 Morphing wings and aircraft Active JP6926543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017046750A JP6926543B2 (en) 2017-03-10 2017-03-10 Morphing wings and aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017046750A JP6926543B2 (en) 2017-03-10 2017-03-10 Morphing wings and aircraft

Publications (2)

Publication Number Publication Date
JP2018149890A JP2018149890A (en) 2018-09-27
JP6926543B2 true JP6926543B2 (en) 2021-08-25

Family

ID=63681304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017046750A Active JP6926543B2 (en) 2017-03-10 2017-03-10 Morphing wings and aircraft

Country Status (1)

Country Link
JP (1) JP6926543B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111252236B (en) * 2020-03-05 2024-01-02 中国飞机强度研究所 Smooth continuous camber-changing wing test piece and end rib plugging sealing method thereof

Also Published As

Publication number Publication date
JP2018149890A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
US10272987B2 (en) Autonomous slat-cove-filler device for reduction of aeroacoustic noise associated with aircraft systems
US8870124B2 (en) Application of elastomeric vortex generators
US8056865B2 (en) Mechanism for changing the shape of a control surface
US11203409B2 (en) Geometric morphing wing with adaptive corrugated structure
US7744038B2 (en) Controllable winglets
CA2518080C (en) Adaptive compliant wing and rotor system
US20170305525A1 (en) Morphing skin for an aircraft
Nguyen et al. Experimental investigation of a flexible wing with a variable camber continuous trailing edge flap design
Kaul et al. Drag optimization study of variable camber continuous trailing edge flap (VCCTEF) using OVERFLOW
US8342446B2 (en) Airplane with a modifiable surface of vertical empannage
WO2013192483A1 (en) Morphing wing for an aircraft
US5551369A (en) Dualcavitating hydrofoil structures
EP2923943A1 (en) Flight control surface seal
US20090308971A1 (en) Airfoil System for Cruising Flight
EP2965985A1 (en) Morphable structure
US10704592B2 (en) Hinge system for airfoil
Nguyen et al. Wind tunnel investigation of a flexible wing high-lift configuration with a variable camber continuous trailing edge flap design
JP6926543B2 (en) Morphing wings and aircraft
Abdelmoula et al. Aerodynamic performance of morphed camber rotor airfoils
Olson Semi-empirical prediction of aircraft low-speed aerodynamic characteristics
Nguyen et al. Aeroelastic analysis of wind tunnel test data of a flexible wing with a variable camber continuous trailing edge flap (VCCTEF)
Seywald et al. Airworthiness investigation of a highly nonplanar flexible wing concept
Biber et al. Some Examples of Airfoil Design For Future Unmanned Air Vehicle Concepts
Urnes et al. Active Control for Elastic Wing Structure Dynamic Modes
Mallik et al. Aeroelastic analysis and optimization of flexible wing aircraft with a novel control effector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R150 Certificate of patent or registration of utility model

Ref document number: 6926543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150